最新中考几何模型解题法资料
初中几何48个模型及题型讲解

初中几何48个模型及题型讲解一、直线和角1. 平行线和垂直线的性质平行线的性质包括对应角相等、内错角相等、同旁内角相等,垂直线的性质包括互补角相等、邻补角相等等等。
2. 直线的夹角与邻角两条直线之间的夹角等于它的补角,夹角的补角叫相邻角。
3. 同位角与对顶角同位角相等、对顶角相等。
4. 角的大小关系锐角、直角、钝角的大小关系。
5. 角和角度角的性质包括平分角等。
6. 角的运算法则相等角相加还是相等角;补角与角补加为90°。
7. 顶角和底角的性质同位角相等、顶底角相等。
二、等腰三角形、等边三角形1. 等腰三角形的性质两底角相等,两底边相等等。
2. 等边三角形的性质三边相等、三角也相等等等三、全等三角形1. 全等三角形的基本判定条件AAA、SAS、SSS、ASA四种判定条件。
2. 全等三角形的性质全等三角形的对应边和对应角相等等等。
四、相似三角形1. 相似三角形的基本判定条件AA、SAS、SSS、AAS四种判定条件。
2. 相似三角形的性质相似三角形的对应边成比例,对应角相等等等。
五、直角三角形1. 直角三角形的性质勾股定理、边角关系、三边关系等。
2. 解直角三角形的基本方法利用三角函数解决实际问题等。
六、三角形的面积1. 三角形的面积计算公式面积公式S=1/2×底×高等。
2. 多边形的面积计算公式正多边形、梯形、平行四边形、菱形等多边形的面积公式。
七、四边形1. 平行四边形的性质对角线互相平分等。
2. 矩形的性质对角相等、对边相等等。
3. 菱形的性质对角相等、对边相等、对角平分等。
4. 正方形的性质矩形和菱形的结合。
五、圆1. 圆的基本概念圆心、圆周、半径、直径等。
2. 圆的周长和面积周长C=2πr,面积S=πr^2等。
3. 圆中角和弧的关系圆心角、圆周角、同弧对应角等。
4. 切线与切点切线与圆相切于一个点等。
六、坐标系1. 直角坐标系和平面直角坐标系横坐标和纵坐标等。
初中数学66个常考几何模型50个应用题答题公式

初中数学常考的几何模型和应用题答题公式是学习和备考数学的关键内容。
不过,
请注意,我无法列出具体的66个常考几何模型或50个应用题答题公式,因为这
取决于不同地区、不同版本的教材和考试要求。
但我可以为你提供一些常见的几何模型和应用题答题思路或公式。
几何模型示例:
1.等边三角形模型:等边三角形的三条边相等,三个内角都是60°。
2.等腰三角形模型:等腰三角形有两条边相等,且对应的两个底角也相等。
3.直角三角形模型:直角三角形有一个90°的角,满足勾股定理(a² + b² = c²)。
4.平行四边形模型:平行四边形的对边平行且相等,对角相等。
5.梯形模型:梯形有一组对边平行,常考察其面积计算(上底加下底,乘以高,再除
以2)。
应用题答题公式或思路示例:
1.速度、时间、距离关系:速度= 距离/ 时间,距离= 速度×时间,时间= 距
离/ 速度。
2.工作问题:工作效率= 工作总量/ 工作时间,常用于比较不同人或机器的工作效
率。
3.百分比问题:部分= 总量×百分比,总量= 部分/ 百分比,百分比= 部分/
总量× 100%。
4.利息问题:简单利息= 本金×利率×时间,复利则考虑本金和利息的共同增
长。
5.浓度问题:浓度= 溶质质量/ 溶液质量× 100%,常用于解决混合溶液的浓度问
题。
2024年中考数学几何模型归纳(全国通用):全等与相似模型-半角模型(教师版)

专题16全等与相似模型-半角模型全等三角形与相似三角形在中考数学几何模块中占据着重要地位。
相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。
如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了。
本专题就半角模型进行梳理及对应试题分析,方便掌握。
模型1.半角模型半角模型概念:过多边形一个顶点作两条射线,使这两条射线夹角等于该顶角一半。
思想方法:通过旋转(或截长补短)构造全等三角形,实现线段的转化。
解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。
半角模型(题中出现角度之间的半角关系)利用旋转——证全等——得到相关结论。
【模型展示】1)正方形半角模型条件:四边形ABCD是正方形,∠ECF=45°;结论:①△BCE≌△DCG;②△CEF≌△CGF;③EF=BE+DF;④ AEF的周长=2AB;⑤CE、CF分别平分∠BEF和∠EFD。
2)等腰直角三角形半角模型条件: ABC是等腰直角三角形,∠DAE=45°;结论:①△BAD≌△CAG;②△DAE≌△GAE;③∠ECG==90°;④DE2=BD2+EC2;3)等边三角形半角模型(120°-60°型)条件: ABC 是等边三角形, BDC 是等腰三角形,且BD =CD ,∠BDC =120°,∠EDF =60°;结论:①△BDE ≌△CDG ;②△EDF ≌△GDF ;③EF =BE +FC ;④ AEF 的周长=2AB ;⑤DE 、DF 分别平分∠BEF 和∠EFC 。
4)等边三角形半角模型(60°-30°型)条件: ABC 是等边三角形,∠EAD =30°;结论:①△BDA ≌△CFA ;②△DAE ≌△FAE ;③∠ECF =120°;④DE 2=(12BD +EC)2+2;5)半角模型(2 - 型)条件:∠BAC =2 ,AB =AC ,∠DAE = ;结论:①△BAD ≌△CAF ;②△EAD ≌△EAF ;③∠ECF=180°-2 。
九年级数学几何模型

九年级数学几何模型一、相似三角形模型。
1. A字模型。
- 基本图形:在三角形ABC中,DE平行于BC,则三角形ADE相似于三角形ABC。
- 性质:对应边成比例,即(AD)/(AB)=(AE)/(AC)=(DE)/(BC)。
- 应用:在很多几何证明和计算中,若已知平行关系和部分线段长度,可以利用此模型求出其他线段的长度。
例如,已知AD = 2,AB = 5,BC = 6,求DE的长度。
根据(DE)/(BC)=(AD)/(AB),可得DE=(AD× BC)/(AB)=(2×6)/(5)=(12)/(5)。
2. 8字模型。
- 基本图形:若有四边形ABDC,其中AB与CD相交于点E,则三角形AEC相似于三角形BED。
- 性质:(AE)/(BE)=(CE)/(DE),并且AE× DE = BE× CE。
- 应用:在求解线段比例关系或者证明线段乘积相等时经常用到。
比如在一个几何图形中,已知AE = 3,BE = 4,CE = 6,求DE的长度。
根据AE× DE = BE×CE,可得DE=(BE× CE)/(AE)=(4×6)/(3)=8。
3. 母子相似三角形模型(射影定理模型)- 基本图形:在直角三角形ABC中,∠ ACB = 90^∘,CD垂直于AB于点D。
则三角形ACD相似于三角形ABC,三角形BCD相似于三角形BAC,三角形ACD相似于三角形CBD。
- 性质:- 在三角形ACD与三角形ABC中,AC^2=AD× AB。
- 在三角形BCD与三角形BAC中,BC^2=BD× AB。
- 在三角形ACD与三角形CBD中,CD^2=AD× BD。
- 应用:在涉及直角三角形中的线段长度计算和比例关系证明时非常有用。
例如,在直角三角形ABC中,∠ ACB = 90^∘,CD垂直于AB,AD = 2,DB = 8,求AC 的长度。
2024年中考数学几何模型归纳(全国通用):全等与相似模型之十字模型(教师版)

专题18全等与相似模型之十字模型几何学是数学的一个重要分支,研究的是形状、大小和相对位置等几何对象的性质和变换。
在初中几何学中,十字模型就是综合了上述知识的一个重要模型。
本专题就十字模型相关的考点作梳理,帮助学生更好地理解和掌握。
模型1.正方形的十字架模型(全等模型)“十字形”模型,基本特征是在正方形中构成了一个互相重直的“十字形”,由此产生了两组相等的锐角及一组全等的三角形。
1)如图1,在正方形ABCD中,若E、F分别是BC、CD上的点,AE⊥BF;则AE=BF。
2)如图2,在正方形ABCD中,若E、F、G分别是BC、CD、AB上的点,AE⊥GF;则AE=GF。
3)如图3,在正方形ABCD中,若E、F、G、H分别是BC、CD、AB、AD上的点,EH⊥GF;则HE=GF。
模型巧记:正方形内十字架模型,垂直一定相等,相等不一定垂直.例1.(22·23下·广东·课时练习)如图,将一边长为12的正方形纸片ABCD的顶点A折叠至DC边上的点DE ,若折痕为PQ,则PQ的长为()E,使5A.13B.14【答案】A在正方形ABCD中,AD∥BCA .1个B .2【答案】C 【分析】利用正方形的性质找条件证明到90ECD CDF ,则AH DF ,在Rt CGD △中,由直角三角形斜边上的中线等于斜边的一半得到∴,∴同理可得:ADH DCF △≌△∴1122HG CD AD ,即2HG ∵12HG HD CD ,∴DGH 若AG DG ,则ADG △是等边三角形,则则12CF DF ,而12CF BC模型2.矩形的十字架模型(相似模型)矩形的十字架模型:矩形相对两边上的任意两点联结的线段是互相垂直的,此时这两条线段的的比等于矩形的两边之比。
通过平移线段构造基本图形,再借助相似三角形和平行四边的性质求得线段间的比例关系。
如图1,在矩形ABCD中,若E是AB上的点,且DE⊥AC,则DE BCAC AB.如图2,在矩形ABCD中,若E、F分别是AB、CD上的点,且EF⊥AC,则EF BCAC AB.如图3,在矩形ABCD 中,若E 、F 、M 、N 分别是AB 、CD 、AD 、BC 上的点,且EF ⊥MN ,则EF BC MN AB .【答案】2103【分析】先证明BDF DMG △△∽再利用全等三角形的性质,即可得到答案.【详解】解:如图,连接BD 与∴90MDF DFB ,∴MDB 又∵MN BD ,∴DMG MDG 又∵90BFD DGM ,∴BDF △∵22AB 且45ABF ,∴BE 又∵4BC ,∴BF BC CF BC ∴2222622BD BF DF ∴2101063DF DG MG BF ,∴DMG BNG △≌△,∴MG NG ,(1)如图1,矩形ABCD中,EF⊥GH,EF分别交AB,CD于点E,F,GH分别交AD,BC于点证:EF ADGH AB;(2)如图2,在满足(1)的条件下,点M,N分别在边BC,CD上,若EFGH值;(3)如图3四边形ABCD中,∠ABC=90°,AB=AD=10,AM⊥DN,点M,N分别在边∵四边形ABCD 是矩形,∴∥DC ,AD ∥BC .∴四边形AEFP 、四边形BHGQ 都是平行四边形,∴AP =EF ,GH =BQ .又∵GH ⊥EF ,∴AP ⊥BQ ,∴∠QAT +∠AQT =90°.∵四边形ABCD 是矩形,∴∠DAB =∠D =90°,∴∠DAP +∠DPA =90°,∽△QAB ,∴AP AD BQ AB ,∴EF AD GH AB;模型3.三角形的十字架模型(全等+相似模型)1)等边三角形中的斜十字模型(全等+相似):如图1,已知等边△ABC,BD=EC(或CD=AE),则AD=BE,且AD和BE夹角为60°,△ABC。
2024年中考数学几何模型归纳(全国通用):全等与相似模型-一线三等角(K字)模型(学生版)

专题14全等与相似模型-一线三等角(K 字)模型全等三角形与相似三角形在中考数学几何模块中占据着重要地位。
相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。
如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就一线三等角模型进行梳理及对应试题分析,方便掌握。
模型1.一线三等角(K 型图)模型【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。
【常见模型及证法】同侧型一线三等角:锐角一线三等角直角一线三等角(“K 型图”)钝角一线三等角条件:A CED B +CE=DE证明思路:,A B C BED +任一边相等BED ACE异侧型一线三等角:锐角一线三等角直角一线三等角钝角一线三等角条件:FAC ABD CED +任意一边相等证明思路:,A B C BED +任一边相等BED ACE例1.(2021·山东日照·中考真题)如图,在矩形ABCD 中,8cm AB ,12cm AD ,点P 从点B 出发,以2cm/s 的速度沿BC 边向点C 运动,到达点C 停止,同时,点Q 从点C 出发,以cm/s v 的速度沿CD 边向点D 运动,到达点D 停止,规定其中一个动点停止运动时,另一个动点也随之停止运动.当v 为_____时,ABP △与PCQ △全等.例2.(2022·黑龙江·九年级期末)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明∶DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC= ,其中 为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.例3.(2022·广东·汕头市潮阳区一模)(1)模型建立,如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;,OB=4,将线段AB绕(2)模型应用:①已知直线AB与y轴交于A点,与x轴交于B点,sin∠ABO=35点B逆时针旋转90度,得到线段BC,过点A,C作直线,求直线AC的解析式;②如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A,C分别在坐标轴上,P是线段BC上动点,已知点D在第一象限,且是直线y=2x 5上的一点,若△APD是以D为直角顶点的等腰直角三角形,请求出所有符合条件的点D的坐标.例4.(2023·湖南岳阳·统考一模)如图,在ABC 中,AB =AC =2,∠B =40°,点D 在线段BC 上运动(点D 不与点B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于点E .(1)当∠BDA =115°时,∠EDC =______°,∠AED =______°;(2)线段DC 的长度为何值时,△ABD ≌△DCE ,请说明理由;(3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,求∠BDA 的度数;若不可以,请说明理由.例5.(2022·浙江杭州·一模)老师在上课时,在黑板上写了一道题:“如图,ABCD 是正方形,点E 在BC 上,DF ⊥AE 于F ,请问图中是否存在一组全等三角形?”小杰同学经过思考发现:△ADF ≌△EAB .理由如下:因为ABCD 是正方形(已知)所以∠B =90°且AD =AB 和AD ∥BC又因为DF ⊥AE (已知)即∠DFA =90°(垂直的意义)所以∠DFA =∠B (等量代换)又AD ∥BC 所以∠1=∠2(两直线平行,内错角相等)在△ADF 和△EAB 中12DFA B AD AB所以△ADF ≌△EAB (AAS )小胖却说这题是错误的,这两个三角形根本不全等.你知道小杰的错误原因是什么吗?我们再添加一条线段,就能找到与△ADF 全等的三角形,请能说出此线段的做法吗?并说明理由.例6.(2022·山东·九年级课时练习)(1)课本习题回放:“如图①,90ACB ,AC BC ,AD CE ,BE CE ,垂足分别为D ,E , 2.5cm AD , 1.7cm DE .求BE 的长”,请直接写出此题答案:BE 的长为________.(2)探索证明:如图②,点B ,C 在MAN 的边AM 、AN 上,AB AC ,点E ,F 在MAN 内部的射线AD 上,且BED CFD BAC .求证:ABE CAF ≌.(3)拓展应用:如图③,在ABC 中,AB AC ,AB BC .点D 在边BC 上,2CD BD ,点E 、F 在线段AD 上,BED CFD BAC .若ABC 的面积为15,则ACF 与BDE 的面积之和为________.(直接填写结果,不需要写解答过程)例7.(2023·贵州遵义·八年级统考期末)过正方形ABCD (四边都相等,四个角都是直角)的顶点A 作一条直线MN .(1)当MN 不与正方形任何一边相交时,过点B 作BE MN 于点E ,过点D 作DF MN 于点F 如图(1),请写出EF ,BE ,DF 之间的数量关系,并证明你的结论.(2)若改变直线MN 的位置,使MN 与CD 边相交如图(2),其它条件不变,EF ,BE ,DF 的关系会发生变化,请直接写出EF ,BE ,DF 的数量关系,不必证明;(3)若继续改变直线MN 的位置,使MN 与BC 边相交如图(3),其它条件不变,EF ,BE ,DF 的关系又会发生变化,请直接写出EF ,BE ,DF 的数量关系,不必证明.模型2.一线三等角模型(相似模型)【模型解读与图示】“一线三等角”型的图形,因为一条直线上有三个相等的角,一般就会有两个三角形的“一对角相等”,再利用平角为180°,三角形的内角和为180°,就可以得到两个三角形的另外一对角也相等,从而得到两个三角形相似.1)一线三等角模型(同侧型)(锐角型)(直角型)(钝角型)条件:如图,∠1=∠2=∠3,结论:△ACE∽△BED.2)一线三等角模型(异侧型)条件:如图,∠1=∠2=∠3,结论:△ADE∽△BEC.3)一线三等角模型(变异型)图1图2图3①特殊中点型:条件:如图1,若C为AB的中点,结论:△ACE∽△BED∽△ECD.②一线三直角变异型1:条件:如图2,∠ABD=∠AFE=∠BDE=90°.结论:△ABC∽△BDE∽△BFC∽△AFB.③一线三直角变异型2:条件:如图3,∠ABD=∠ACE=∠BDE=90°.结论:△ABM∽△NDE∽△NCM.例1.(2023·山东东营·统考中考真题)如图,ABC,为等边三角形,点D,E分别在边BC,AB上,60ADE若4DE ,则AD的长为()BD DC, 2.4A.3B.5C.2例3.(2022·河南新乡·九年级期中)某学习小组在探究三角形相似时,发现了下面这种典型的基本图形.(1)如图1,在 ABC中,∠BAC=90°,ABAC=k,直线l经过点A,BD⊥直线I,CE上直线l,垂足分别为D、E.求证:BDAE=k.(2)组员小刘想,如果三个角都不是直角,那么结论是否仍然成立呢?如图2,将(1)中的条件做以下修改:在 ABC中,ABAC=k,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问(1)中的结论还成立吗?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,在 ABC中,沿 ABC的边AB、AC向外作矩形ABDE和矩形ACFG,ABAE=ACAG=12,AH是BC边上的高,延长HA交EG于点I.①求证:I是EG的中点.②直接写出线段BC与AI之间的数量关系:.问题探究:(1)先将问题特殊化,如图(2),当90 时,直接写出GCF 的大小;(2)再探究一般情形,如图(1),求GCF 与 的数量关系.问题拓展:(3)将图(1)特殊化,如图(3),当120 时,若12DG CG ,求BE CE 的值.例5.(2022·山西晋中·一模)阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①,在ABC中,90ACB,AC BC,分别过A、B向经过点C直线作垂线,垂足分别为D、E,我们很容易发现结论:ADC CEB△≌△.(1)探究问题:如果AC BC,其他条件不变,如图②,可得到结论;ADC CEB△∽△.请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线12y x与直线CD交于点 2,1M,且两直线夹角为 ,且3tan2,请你求出直线CD的解析式.(3)拓展应用:如图④,在矩形ABCD中,3AB ,5BC ,点E为BC边上—个动点,连接AE,将线段AE绕点E顺时针旋转90 ,点A落在点P处,当点P在矩形ABCD 外部时,连接PC,PD.若DPC△为直角三角形时,请你探究并直接写出BE的长.【观察与猜想】(1)如图1,在正方形ABCD中,E,F分别是AB,AD则DECF的值为___________;(2)如图2,在矩形ABCD中,7AD ,BD,若CE BD,则CEBD的值为___________;【类比探究】(3)如图3,在四边形ABCD中,90A B,E为线交ED的延长线于G,交AD的延长线于F,求证:DE AB CF课后专项训练1.(2022·湖南·长沙市二模)如图,等腰直角三角形ABC 的直角顶点C 与坐标原点重合,分别过点A 、B 作x 轴的垂线,垂足为D 、E ,点A 的坐标为(-2,5),则线段DE 的长为()A .4B .6C .6.5D .72.(2022·贵州·凯里一模)如图,在平面直角坐标系中 0,4A 、 6,0C ,BC x 轴,存在第一象限的一点 ,25P a a 使得PAB △是以AB 为斜边的等腰直角三角形,则点P 的坐标().A . 3,1或 3,3B . 5,5C . 3,1或 5,5D .3,3A . 9,3B . 9,24.(2023·湖南长沙·九年级专题练习)如图,在矩形CD 或延长线上运动,且∠BEF5.(2021·浙江台州·中考真题)如图,点E,F,G分别在正方形ABCD的边AB,BC,AD上,AF⊥EG.若AB=5,AE=DG=1,则BF=_____.7.(2022·安徽·九年级专题练习)如图,矩形取BE的中点G,点G绕点E运动路径=,△CEF10.(2023·浙江·九年级期末)如图,已知ABC 和CDE 均是直角三角形,Rt ACB CED ,AC CE ,AB CD 于点F .(1)求证:ABC ≌CDE ;(2)若点B 是EC 的中点,10cm DE ,求AE 的长.11.(2022·江苏·九年级专题练习)【感知模型】“一线三等角”模型是平面几何图形中的重要模型之一,请根据以下问题,把你的感知填写出来:①如图1,ABC 是等腰直角三角形,90C ,AE =BD ,则AED ≌_______;②如图2,ABC 为正三角形,,60BD CF EDF ,则BDE ≌________;③如图3,正方形ABCD 的顶点B 在直线l 上,分别过点A 、C 作AE l 于E ,CF l 于F .若1AE ,2CF ,则EF 的长为________.【模型应用】(2)如图4,将正方形OABC 放在平面直角坐标系中,点O 为原点,点A 的坐标为 ,则点C 的坐标为________.【模型变式】(3)如图5所示,在ABC 中,90ACB ,AC BC ,BE CE 于E ,AD ⊥CE 于D ,4cm DE ,6cm AD ,求BE 的长.12.(2022·江苏镇江·二模)模型构建:如图1,AM MN 于点M ,BN MN 于点N ,AB 的垂直平分线交MN 于点P ,连接AP 、BP .若90APB ,求证:AM BN MN .数学应用:如图2,在ABC 中,D 是BC 上一点,AC AD BD ,90CAD ,8AB ,求ABC 的面积.实际运用:建设“交通强国”是满足人民日益增长的美好生活需要的必然要求.建设“美丽公路”是落实美丽中国建设、回应人民日益增长的美好生活对优美生态环境的需要.如图3是某地一省道与国道相交处的示意图,点Q 处是一座古亭,鹅卵石路QA 、QB 以及 AB 两旁栽有常青树,其它区域种植不同的花卉;设计要求QA QB ,QA QB , AB 是以Q 为圆心、QA 为半径的圆弧(不计路宽,下同).请在图4中画出符合条件的设计图,要求尺规作图,保留作图痕迹,标注必要的字母,写出详细的作法,不要求说明理由;13.(2022·黑龙江·桦南县九年级期中)如图1,在ABC 中,90ACB ,AC BC ,直线MN 经过点C ,且AD MN 于D ,BE MN 于E .(1)由图1,证明:DE AD BE ;(2)当直线MN 绕点C 旋转到图2的位置时,请猜想出DE ,AD ,BE 的等量关系并说明理由;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE ,AD ,BE 又具有怎样的等量关系?请直接写出这个等量关系(不必说明理由).14.(2022·黑龙江佳木斯·三模)在ABC 中,90ABC ,AB BC ,D 为直线AB 上一点,连接CD ,过点B 作BE CD 交CD 于点E ,交AC 于点F ,在直线AB 上截取AM BD ,连接FM .(1)当点D ,M 都在线段AB 上时,如图①,求证:BF MF CD ;(2)当点D 在线段AB 的延长线上,点M 在线段BA 的延长线上时,如图②;当点D 在线段BA 的延长线上,点M 在线段AB 的延长线上时,如图③,直接写出线段BF ,MF ,CD 之间的数量关系,不需要证明.15.(2022·安徽·合肥二模)(1)如图1,等腰直角ABC 中,90ACB ,CB CA ,线段ED 经过点C ,过A 作AD ED 于点D ,过B 作BE ED 于.E 求证:BEC △≌CDA .(2)如图2,已知在平面直角坐标系xOy 中,O 为坐标原点,点A 的坐标为 0,4,点C 的坐标为 3,0 ,点B 是平面直角坐标系中的一点,若ABC 是以AC 为直角边的等腰直角三角形,求点B 的坐标;(3)如图3,已知在平面直角坐标系xOy 中,O 为坐标原点,在等腰直角OAB 中,90OAB ,4OA AB ,点M 在线段OB 上从O 向B 运动(运动到点B 停止),以点M 为直角顶点向右上方做等腰直角AMN ,求点N 移动的距离.(3)【拓展探究】在整个运动过程中,请直接写出N 点运动的路径长,及CN 的最小值.(1)若正方形ABCD 的边长为2,E 是AD 的中点.①如图1,当FEC ②如图2,当2tan 3FCE 时,求AF 的长;(2)如图3,延长CF ,DA 交于点时,求证:AE AF .18.(2023·广东深圳·九年级校考阶段练习)如图,在ABC 中6cm AB AC ,8cm BC ,点E 是线段BC 边上的一动点(不含B 、C 两端点),连接AE ,作AED B ,交线段AB 于点D .(1)求证:BDE CEA △∽△(2)设BE x ,AD y ,请求y 与x 之间的函数关系式.(3)E 点在运动的过程中,ADE V 能否构成等腰三角形?若能,求出BE 的长;若不能,请说明理由.19.(2023·浙江·九年级专题练习)在平面直角坐标系中,O 为坐标原点,直线AB 与y 轴交于点A ,与x 轴交于点B ,2OA ,AOB 的面积为2.(1)如图1,求直线AB 的解析式.(2)如图2,线段OA 上有一点C ,直线BC 为2(0)y kx k k ,AD y 轴,将BC 绕点B 顺时针旋转90 ,交AD 于点D ,求点D 的坐标.(用含k 的式子表示)(3)如图3,在(2)的条件下,连接OD ,交直线BC 于点E ,若345ABC BDO ,求点E 的坐标.20.(2022·湖南郴州·中考真题)如图1,在矩形ABCD 中,4AB ,6BC .点E 是线段AD 上的动点(点E 不与点A ,D 重合),连接CE ,过点E 作EF CE ,交AB 于点F .(1)求证:AEF DCE ∽;(2)如图2,连接CF ,过点B 作BG CF ⊥,垂足为G ,连接AG .点M 是线段BC 的中点,连接GM .①求AG GM 的最小值;②当AG GM 取最小值时,求线段DE 的长.。
2024中考数学常见几何模型归纳总结—三角形中的倒角模型-高分线模型、双(三)垂直模型

2024中考数学常见几何模型归纳总结—三角形中的倒角模型-高分线模型、双(三)垂直模型近年来各地考试中常出现一些几何倒角模型,该模型主要涉及高线、角平分线及角度的计算(内角和定理、外角定理等)。
熟悉这些模型可以快速得到角的关系,求出所需的角。
本专题高分线模型、双垂直模型、子母型双垂直模型(射影定理模型)进行梳理及对应试题分析,方便掌握。
模型1:高分线模型条件:AD 是高,AE 是角平分线结论:∠DAE=2B C∠∠-例1.(2023秋·浙江·八年级专题练习)如图,在ABC 中,30A ∠=︒,50B ∠=︒,CD 为ACB ∠的平分线,CE AB ⊥于点E ,则ECD ∠度数为()A .5︒B .8︒C .10︒D .12︒【答案】C 【分析】依据直角三角形,即可得到40BCE ∠=︒,再根据30A ∠=︒,CD 平分ACB ∠,即可得到BCD ∠的度数,再根据DCE BCD BCE ∠=∠-∠进行计算即可.【详解】解:50,B CE AB ∠=︒⊥ ,40BCE ∴∠=︒,又30A ∠=︒ ,CD 平分ACB ∠,1118050305022()BCD BCA ∴∠=∠=⨯︒-︒-︒=︒,504010DCE BCD BCE ∴∠=∠-∠=︒-︒=︒,故选:C .【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180︒是解答此题的关键.例2.(2023春·河南南阳·七年级统考期末)如图,在△ABC 中,∠1=∠2,G 为AD 的中点,BG 的延长线交AC 于点E ,F 为AB 上的一点,CF 与AD 垂直,交AD 于点H ,则下面判断正确的有()①AD 是△ABE 的角平分线;②BE 是△ABD 的边AD 上的中线;③CH 是△ACD 的边AD 上的高;④AH 是△ACF 的角平分线和高A .1个B .2个C .3个D .4个【答案】B【详解】解:①根据三角形的角平分线的概念,知AG 是△ABE 的角平分线,故此说法错误;②根据三角形的中线的概念,知BG 是△ABD 的边AD 上的中线,故此说法错误;③根据三角形的高的概念,知CH 为△ACD 的边AD 上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH 是△ACF 的角平分线和高线,故此说法正确.故选:B .【点睛】本题考查了三角形的角平分线、三角形的中线、三角形的高的概念,注意:三角形的角平分线、中线、高都是线段,且都是顶点和三角形的某条边相交的交点之间的线段.透彻理解定义是解题的关键.例3.(2023·安徽合肥·七年级统考期末)如图,已知AD 、AE 分别是Rt △ABC 的高和中线,AB =9cm ,AC =12cm ,BC =15cm ,试求:(1)AD 的长度;(2)△ACE 和△ABE 的周长的差.【答案】(1)AD 的长度为365cm ;(2)△ACE 和△ABE 的周长的差是3cm .【分析】(1)利用直角三角形的面积法来求线段AD 的长度;(2)由于AE 是中线,那么BE =CE ,再表示△ACE 的周长和△ABE 的周长,化简可得△ACE 的周长﹣△ABE 的周长=AC ﹣AB 即可.【详解】解:(1)∵∠BAC =90°,AD 是边BC 上的高,∴S △ACB =12AB•AC =12BC•AD ,∵AB =9cm ,AC =12cm ,BC =15cm ,∴AD =AB AC CB ⋅=91215⨯=365(cm ),即AD 的长度为365cm ;(2)∵AE 为BC 边上的中线,∴BE =CE ,∴△ACE 的周长﹣△ABE 的周长=AC+AE+CE ﹣(AB+BE+AE )=AC ﹣AB =12﹣9=3(cm ),即△ACE 和△ABE 的周长的差是3cm .【点睛】此题主要考查了三角形的面积,关键是掌握直角三角形的面积求法.例4.(2023·广东东莞·八年级校考阶段练习)如图,在ABC 中,AD ,AE 分别是ABC 的高和角平分线,若30B ∠=︒,50C ∠=︒.(1)求DAE ∠的度数.(2)试写出DAE ∠与C B ∠-∠关系式,并证明.(3)如图,F 为AE 的延长线上的一点,FD BC ⊥于D ,这时AFD ∠与C B ∠-∠的关系式是否变化,说明理由.【答案】(1)10︒(2)()12DAE C B ∠=∠-∠(3)不变,理由见解析【分析】(1)根据三角形内角和求出BAC ∠,根据角平分线的定义得到50BAE ∠=︒,根据高线的性质得到90ADE ∠=︒,从而求出60BAD ∠=︒,继而根据角的和差得到结果;(2)根据角平分线的定义得到12BAE BAC ∠=∠,根据三角形内角和求出119022EAC B C ∠=︒-∠-∠,根据角的和差得到结果;(3)过A 作AG BC ⊥于G ,结合(2)知1()2EAG C B ∠=∠-∠,证明FD AG ∥,得到AFD EAG ∠=∠,即可证明.【详解】(1)解:∵30B ∠=︒,50C ∠=︒,∴1805030100BAC ∠=︒-︒-︒=︒,∵AE 平分BAC ∠,∴1502BAE CAE BAC ∠=∠=∠=︒,∵AD 是高,∴90ADE ∠=︒,∵30B ∠=︒,∴60BAD ∠=︒,∴10DAE BAD BAE ∠=∠-∠=︒;(2)()12DAE C B ∠=∠-∠,证明如下:∵AE 平分BAC ∠,∴12EAC BAC ∠=∠,∵180BAC B C ∠=︒-∠-∠,∴()11101902822B C B C EAC ︒-∠-∠-∠︒-==∠∠,∴EAD EAC DAC ∠=∠-∠()11090922B C C =︒∠---∠︒-∠()12C B =∠-∠;(3)不变,理由是:如图,过A 作AG BC ⊥于G ,由(2)可知:1()2EAG C B ∠=∠-∠,AG BC ⊥ ,90AGB ∠=︒,FD BC ⊥ ,90FDC ∴∠=︒,AGD FDC ∴∠=∠,FD AG ∴∥,AFD EAG ∴∠=∠,1()2AFD C B ∴∠=∠-∠.【点睛】本题主要考查三角形的内角和定理、角平分线的性质、直角三角形的性质和平行线的判定与性质,熟练掌握三角形的内角和定理和角平分线的性质是解题的关键.模型2:双垂直模型结论:①∠A =∠C ;②∠B =∠AFD =∠CFE ;③AB CD AE BC ⋅=⋅。
几何模型解题秘籍

几何模型解题秘籍一、几何模型解题秘籍的那些事儿咱都知道,几何模型解题那可是有不少小窍门的。
就说三角形模型吧,等腰三角形,那可是有着特殊的性质。
等腰三角形两腰相等,两底角也相等。
比如说在一个等腰三角形ABC 里,AB = AC,那角B和角C肯定是相等的。
这时候如果知道了一个角的度数,就能算出其他角的度数了。
这在解题的时候特别有用,像那种求角度总和或者角度比例的题目,要是发现了等腰三角形这个模型,就可以轻松入手啦。
还有四边形模型呢。
矩形,四个角都是直角,对边还相等。
这性质在计算矩形的周长、面积或者证明一些线段关系的时候,那就是大宝贝。
比如说有个矩形ABCD,AB = 5,BC = 3,那周长就是2×(5 + 3)=16,面积就是5×3 = 15。
要是在复杂的几何图形里能识别出矩形这个模型,就能把复杂的问题简单化。
圆形模型也不能小看。
圆的半径、直径、圆周率之间的关系那可是基础中的基础。
圆的周长公式 C = 2πr,面积公式S = πr²。
要是有个圆,半径是4,那周长就是2×π×4 = 8π,面积就是π×4² = 16π。
在一些和圆形有关的组合图形里,比如圆和三角形组合,圆和矩形组合,把圆的这些基本性质搞清楚了,解题就会容易很多。
相似三角形模型也是很重要的。
相似三角形对应边成比例,对应角相等。
要是有两个三角形相似,一个三角形的边长是3、4、5,另一个相似三角形的一条边是6,那根据相似比就能算出其他边的长度了。
这在解决一些比例问题或者间接求长度的题目里非常好用。
在做几何题的时候,我们得学会从复杂的图形里把这些几何模型找出来。
有时候可能要添加辅助线,让这些模型能更明显地呈现出来。
比如说在一个三角形里,要证明两条线段相等,可能通过添加辅助线构造出等腰三角形模型,然后利用等腰三角形的性质就能证明了。
还有就是要多做一些几何模型相关的练习题。
通过练习,我们能更熟练地掌握这些模型的性质和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考几何模型解题法 研修课论文 宋海平第一讲 以中招真题为例讲解在几何题中,与角平分线的四类模型:夹角模型、角平分线加垂直模型、角平分线加平行线模型、四边形对角互补角平分线模型。
第二讲 弦图是证明勾股定理时所构造出来的图形。
本讲将从弦图出发,抽离出相似模型,及通过变形得到的高级相似模型,培养学生利用模型快速解决几何证明题的能力。
第三讲 在熟悉A 字型相似、8字型相似及各自变形的基础上,培养学生从题目中寻找相似基本模型的能力,从而使其能够灵活利用模型来解决几何证明题。
第四讲 中考数学题中,求线段和最大值、线段差最小值的题目出现频率较高。
本讲通过作图,利用轴对称的性质将线段进行转移,利用奶站模型、天桥模型帮助学生找到解题的突破口,提高做题效率。
第五讲 几何题目中经常会出现大角中间夹着一个半角的条件(如90度角,中间夹一个45度角),用来求线段或图形的数量关系。
本讲把这一条件总结为大角夹半角模型,帮助学生从题目特征入手,按照模型不同的特征采取不同的处理方法,快速找到题目的突破口,提升解题的效率。
第六讲 本讲重点讲解根据题目条件,通过构造圆,把问题放到圆的背景下,利用圆的性质解决问题。
培养学生把几何的三大板块:三角形,四边形和圆统一起来解决问题,做到融会贯通。
一、角平分线模型一、 精讲精练【模型一】夹角模型OA 、OC 分别是∠BAC 、∠BCA 的角平分线,则:∠AOC=90°+12∠B .BP 、CP 分别是∠ABC 、∠ACD 的角平分线,则:∠P=12∠A .AD 、CD 分别是∠EAC 、∠FCA 的角平分线,图1则: ∠D=90°-12∠B .1. 如图,在△ABC 中,∠B =60°,∠A 、∠C 的角平分线AE 、CF 相交于O .求证:OE =OF .2. (2011湖北黄冈)如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 平分线BP 交于点P ,若∠BPC =40°,则∠CAP =_______________.3. (2011年山东临沂)如图,△ABC 中,AB =AC ,AD 、CD 分别是两个外角的平分线.(1)求证:AC =AD ;(2)若∠B =60°,求证:四边形ABCD 是菱形.FE DC B A【模型二】角平分线加垂直AB ⊥AC ,AB =AC ,CE 是∠ACB 的平分线,BE ⊥CE ,则: BE =12CF .AC图2O FECBABAN4. (2011大连)在△ABC 中,∠A =90°,点D 在线段BC 上,∠EDB =12∠C ,BE ⊥DE ,垂足为E ,DE 与AB 相交于点F . (1)当AB =AC 时(如图1),①∠EBF =_______°;②探究线段BE 与FD 的数量关系,并加以证明;(2)当AB =kAC 时(如图2),求BEFD的值(用含k 的式子表示).【模型三】角平分线加平行线OP 是∠MON 的角平分线,AB ∥ON , 则:OA=AB .5. (2011江苏宿迁)如图,在梯形ABCD 中,AB ∥DC ,∠ADC 的平分线与∠BCD 的平分线的交点E恰在AB 上.若AD =7cm ,BC =8cm ,则AB 的长度是 _____cm .ED CBA6. (2011山东滨州)如图,在△ABC 中,点O 是AC 边上(端点除外)的一个动点,过点O 作直线MN ∥BC .设MN 交∠BCA 平分线于点E ,交∠BCA 的外角平分线于点F ,连接AE 、AF .那么当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.【模型四】四边形对角互补模型∠A +∠C =180°,BD 是∠ABC 的平分线, 则:AD =CD .7. (2011年山东临沂前两问)如图1,将三角板放在正方形ABCD 上,使三角板的直角顶点E 与正方形ABCD 的顶点A 重合,三角板的一边交CD 于点F ,另一边交CB 的延长线于点G .(1)求证:EF =EG ;(2)如图2,移动三角板,使顶点E 始终在正方形ABCD 的对角线AC 上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.弦图模型。
一、 知识提要图2EABCDFG图1GFD CBE(A )1. 弦图基本模型 模型一:cba模型二:2. 弦图模型之变形二、 专项训练【板块一】弦图基本模型1. 如图,Rt △ABC 中,CD ⊥AB ,垂足为D ,DE ⊥AC ,垂足为E ,求证:22AC AEBC CE.2. 如图,梯形ABCD 中,AB //DC ,∠B =90°,E 为BC 上一点,且AE ⊥ED .若BC =12,DC=7,ca bBE:EC=1:2,则AB的长为____________.3.在△ABC中,AB=AC=4,BC=2,以AB为边向△ABC外作△ABD,使△ABD为等腰直角三角形,求线段CD的长.【板块二】弦图模型之变形4.(2011乌鲁木齐)如图,等边三角形ABC的边长为3,点P为BC边上一点,且BP=1,点D为AC边上一点,若∠APD=60°,则CD的长为.5.(2011锦州)如图,四边形ABCD,M为BC边的中点.若∠B=∠AMD=∠C=45°,AB=8,CD=9,则AD的长为()A.3 B.4 C.5 D.66.(2011荆州)如图,P为线段AB上一点,AD与BC交干E,∠CPD=∠A=∠B,BC交PD于F,AD交PC于G,则图中相似三角形有()A.1对B.2对C.3对D.4对7.在△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点,求证:MC:NC=AP:PB.1111相似基本模型三、知识提要1.相似基本模型1:“A”字型相似及其变形2.相似基本模型2:“8”字型相似及其变形四、专项训练1.四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形边长EF=______.2.如图,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,则BC的长度为()A .B.C.3D .3.如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连接EF交CD 于M.已知BC=5,CF=3,则DM:MC的值为()A.5:3B.3:5C.4:3D.3:44.如图,在平行四边形ABCD中,M,N为BD的三等分点,连接CM并延长交AB于E点,连接EN并延长交CD于F点,则DF:AB等于()A.1:3B.1:4C.2:5D.3:85.如图,半圆O的直径AB=7,两弦AC、BD相交于点E,弦CD=27,且BD=5,则DE等于_________.6.已知:如图,△ABC中,AE=CE,BC=CD,求证:ED=3EF.7.已知:如图,梯形ABCD中,AB∥DC,E是AB的中点,直线ED分别与对角线AC和BC的延长线交于M、N点,求证:MD:ME=ND:NE.巧用轴对称解线段和差最值【板块一】线段和最小1. 如图,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD+PE 的和最小,则这个最小值为( ) A.B .C.3 D2. 如图,在五边形ABCDE 中,∠BAE =120°,∠B =∠E =90°,AB =BC ,AE =DE ,在BC ,DE 上分别找一点M ,N ,使得△AMN 周长最小时,则∠AMN + ∠ANM 的度数为( )A . 100°B . 110°C . 120°D . 130°N ME D CB A3.如图, 在锐角△ABC 中, AB =,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M ,N 分别是AD ,AB 上的动点,则BM +MN 的最小值是___________.MD C BA4.(2011福州)已知,如图,二次函数223(0)y ax ax a a=+-≠图象的顶点为H,与x轴交于A、B两点(B在A点右侧),点H、B关于直线:l y x=+.(3)过点B作直线BK∥AH交直线l于K点,M、N分别为直线AH和直线l上的两个动点,连接HN、NM、MK,求HN+NM+MK的最小值.x5.已知四边形P ABQ在坐标系中的位置如图所示,则当四边形P ABQ的周长最小时,a= .【板块二】线段差最大CA BE MN 6. (2009四川眉山)如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0). (3)在抛物线的对称轴上找一点M ,使MA MC -的值最大,求出点M 的坐标.大角夹半角模型原题剖析: 如图,已知在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,若有∠EAF =45°,求证:BE +DF =EF .模型提取:题型对比:1.(2008天津)已知Rt △ABC 中,︒=∠90ACB ,CB CA =,有一个圆心角为︒45,半径的长等于CA 的扇形CEF 绕点C 旋转,且直线CE ,CF 分别与直线AB 交于点M ,N . (Ⅰ)当扇形CEF 绕点C 在ACB ∠的内部旋转时,如图①,求证:222BN AM MN +=;(Ⅱ)当扇形CEF 绕点C 旋转至图②的位置时,关系式222BN AM MN +=是否仍然成立?若成立,请证明;若不成立,请说明理由.实战训练2. (2010重庆改编)边长为2的等边△ABC 的两边AB 、AC 上有两点M 、N ,D 为△ABC 外一点,且∠MDN =60°,∠BDC =120°,BD =DC . 探究:当M 、N 分别在AB 、AC 上移动时,△AMN 的周长是否为定值?典型特例:3.如图,点C 、D 在线段AB 上,△PCD 是等边三角形,且∠APB =120°,CD =3,设AC =x 、BD =y ,求y 关于x 的表达式.4.如图,在△ABC 中,AB =AC =2,∠BAC =20°.动点P 、Q 分别在直线BC 上运动,且始终保持∠P AQ =100°.设BP =x ,CQ =y , 求y 与x 之间的函数关系式.CABEFMN 图②5.如图,将两个全等的等腰直角三角形ABC与AFG摆放在一起,A为公共端点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC 的交点分别为D、E(D、E不与B、C重合),设BE=m,CD=n.(1)请在图中找出两对相似而不全等的三角形,并选取其中一组进行证明;(2)求m与n的函数关系式,直接写出自变量的取值范围.6. 如图,在△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求△ABC的面积.四点共圆【板块一】对角互补1.2.如图,在△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M,求证:∠ANM=∠B.3.如图,在四边形ABCD中,已知∠BAD=60°,∠ABC=90°,∠BCD=120°,对角线AC,BD交于点S,且DS=2SB,P为AC的中点.求证:(1)∠PBD=30°;(2)AD=DC.【板块二】同线段同侧所张的角相等4.如图,在四边形ABCD中,BC>AB,A在BC的垂直平分线上,D在AC的垂直平分线上,且∠CAD=∠ABD,则∠ABC+∠ADC=()A.90°B.120°C.150°D.180°5.6.正方形ABCD的中心为O,面积为1989cm2.P为正方形内一点,且∠OPB=45°,P A:PB=5:14.则PB=_________.7.如图,在△ABC中,已知AD⊥BC,BE⊥AC,AD与BE相交于点H,P为边AB的中点,过点C作CQ⊥PH,垂足为Q,求证:PE2=PH•PQ.8.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.求证:∠CFD=∠CAD.。