雅可比矩阵和动力学分析共90页文档
机器人雅可比矩阵
两自由度机器人
对于一个两自由度的机器人,其 雅可比矩阵是一个2x2矩阵,其 中包含了机器人的两个关节角度 和两个关节速度之间的线性关系
。
矩阵形式
雅可比矩阵的矩阵形式为:J = [[a, b], [c, d]],其中a、b、c、d 是机器人关节角度和关节速度之
间的线性关系系数。
计算方法
对于两自由度机器人,可以通过 已知的关节角度和关节速度,以 及机器人运动学方程,计算得到
解析机器人模型
计算偏导数
雅可比矩阵描述了机器人末端与控制输入 之间的关系,通过直接计算机器人关节变 量对末端位置和姿态的偏导数得到。
根据机器人的几何模型和关节类型,解析 机器人的运动学模型,得到末端位置和姿 态与关节变量的关系。
利用解析得到的运动学模型,计算机器人 末端位置和姿态对关节变量的偏导数,得 到雅可比矩阵的元素。
参数优化
调整雅可比矩阵的参数
通过对雅可比矩阵的参数进行调整,如增加或减少矩阵的行 或列,能够优化矩阵的计算过程,提高计算效率。
优化迭代算法的参数
对于使用迭代算法计算雅可比矩阵的情形,通过调整迭代算 法的参数,如增加迭代次数、改变收敛准则等,能够提高计 算精度和速度。
控制策略改进
引入新的控制策略
针对具体应用场景,引入新的控制策略,如采用模糊控制、神经网络等,能够更好地解决机器人控制问题,进而 改进雅可比矩阵的计算效果。
计算方法
对于四自由度机器人,可以通过 已知的关节角度和关节速度,以 及机器人运动学方程,计算得到 雅可比矩阵。
05
雅可比矩阵的优化与改进
优化算法选择
选用高效算法
对于雅可比矩阵的计算,选用高效的算法能够显著提升计算速度和精度,例如采 用数值差分法、有限元法等。
机器人运动学雅可比矩阵
05 雅可比矩阵的优化与改进
雅可比矩阵的稳定性分析
稳定性分析的重要性
在机器人运动控制中,雅可比矩阵的稳定性对机器人的运动性能 和动态响应具有重要影响。
稳定性判据
通过分析雅可比矩阵的特征值和特征向量,可以确定机器人的运动 稳定性,并为其运动控制提供依据。
通常使用齐次变换矩阵来表示机器人的位姿,该矩阵包含 了平移和旋转信息,能够完整地描述机器人在空间中的位 置和方向。
坐标系与变换
01
坐标系是用来描述物体在空间中位置和姿态的参照框架。
02
在机器人学中,通常使用固连于机器人基座的坐标系作为全局 参考坐标系,以及固连于机器人末端执行器的坐标系作为局部
参考坐标系。
THANKS FOR WATCHING
感谢您的观看
雅可比矩阵的物理意义
雅可比矩阵描述了机械臂末端执行器 的位置和姿态随关节变量变化的规律, 是机械臂运动学分析中的重要概念。
通过雅可比矩阵,可以分析机械臂的 可达工作空间、奇异性、运动速度和 加速度等运动学性能。
雅可比矩阵的计算方法
雅可比矩阵可以通过正向运动学和逆 向运动学两种方法计算得到。
在计算雅可比矩阵时,需要使用到线 性代数、微分方程等数学工具。
正向运动学是根据关节变量求解末端 执行器在参考坐标系中的位置和姿态; 逆向运动学是根据末端执行器的位置 和姿态求解关节变量。
04 雅可比矩阵在机器人运动 学中的应用
机器人的关节与连杆
关节
机器人的每个关节都有一个自由 度,决定了机器人的运动方式。 常见的关节类型包括旋转关节和 移动关节。
连杆
雅可比矩阵
雅可比(Jacobian)矩阵2008-12-05 11:29在向量微积分中,雅可比矩阵是一阶偏导数以一定方式排列成的矩阵,其行列式称为雅可比行列式。
还有,在代数几何中,代数曲线的雅可比量表示雅可比簇:伴随该曲线的一个群簇,曲线可以嵌入其中。
它们全部都以数学家卡尔·雅可比命名;雅可比矩阵雅可比矩阵的重要性在于它体现了一个可微方程与给出点的最优线性逼近。
因此,雅可比矩阵类似于多元函数的导数。
假设F:Rn→Rm 是一个从欧式n维空间转换到欧式m维空间的函数。
这个函数由m个实函数组成: y1(x1,...,xn), ..., ym(x1,...,xn). 这些函数的偏导数(如果存在)可以组成一个m行n列的矩阵,这就是所谓的雅可比矩阵:此矩阵表示为:,或者这个矩阵的第i行是由梯度函数的转置y i(i=1,...,m)表示的如果p是Rn中的一点,F在p点可微分,那么在这一点的导数由J F(p)给出(这是求该点导数最简便的方法)。
在此情况下,由F(p)描述的线性算子即接近点p的F的最优线性逼近,x逼近与p例子由球坐标系到直角坐标系的转化由F函数给出:R × [0,π] × [0,2π] → R3此坐标变换的雅可比矩阵是R4的f函数:其雅可比矩阵为:此例子说明雅可比矩阵不一定为方矩阵。
在动态系统中考虑形为x' = F(x)的动态系统,F : R n→ R n。
如果F(x0) = 0,那么x0是一个驻点。
系统接近驻点时的表现通常可以从JF(x0)的特征值来决定。
雅可比行列式如果m = n,那么F是从n维空间到n维空间的函数,且它的雅可比矩阵是一个方块矩阵。
于是我们可以取它的行列式,称为雅可比行列式。
在某个给定点的雅可比行列式提供了F在接近该点时的表现的重要信息。
例如,如果连续可微函数F在p点的雅可比行列式不是零,那么它在该点具有反函数。
这称为反函数定理。
更进一步,如果p点的雅可比行列式是正数,则F在p 点的取向不变;如果是负数,则F的取向相反。
机器人雅可比矩阵
根据机器人运动状态和任务需求,动态调整雅可比矩阵的维度, 以适应不同情况下的计算需求。
雅可比矩阵的奇异性问题
1 2
奇异值分解
利用奇异值分解(SVD)等技术处理雅可比矩阵 的奇异性问题,提高矩阵的稳定性和可靠性。
冗余自由度
合理配置机器人的冗余自由度,避免产生奇异位 姿,提高机器人的运动能力和灵活性。
。
逆向运动学
03
已知机器人在笛卡尔空间中的位姿,求解关节空间的运动变量
,进而得到雅可比矩阵。
03
雅可比矩阵的应用
机器人的运动学正解与逆解
01
02
03
运动学正解
通过给定的关节角度,计 算机器人末端执行器的位 置和姿态。
运动学逆解
已知末端执行器的位置和 姿态,反推出各关节角度 。
求解方法
通过几何学和线性代数的 方法,建立机器人运动学 模型,并使用数值计算方 法求解正解和逆解。
3
动态调整
根据机器人运动状态和任务需求,动态调整雅可 比矩阵的结构,以避免奇异性问题。
雅可比矩阵的实时计算优化
并行计算
采用并行计算技术,将雅可比矩阵的计算任务分解为多个子任务, 提高计算效率。
预计算和缓存
对雅可比矩阵进行预计算和缓存,减少实时计算量,提高计算速度 。
自适应算法
采用自适应算法优化雅可比矩阵的计算过程,根据机器人运动状态和 任务需求动态调整计算参数,提高计算精度和响应速度。
力矩控制
通过调节施加在机器人关节上的力矩,实现对机器人运动的精确控 制。
控制方法
基于反馈的力/力矩控制方法,如PID控制器、模糊控制器等。
04
雅可比矩阵的优化与改进
雅可比矩阵的降维处理
3.4机器人运动学雅可比矩阵
nm6
r f ( )
对位置方程进行求微分得:
dr J d r J dt dt
两边乘以dt,可得到微小位移之间的关系式
dr Jd
J 表示了手爪的速度与关节速度之间关系, 称之为雅克比矩阵。
f1 1 f J T f m f ( )
T m1 n1
r r1 , r2 , , rm R
1 , 2 , , n R
rj f j (1,2 ,,n )
j 1,2,, m
若n>m,手爪位置的关节变量有无限 个解,通常工业用机器人有3个位置变量 和3个姿态变量,共6个自由度(变量)。
J J1 J2
机器人雅可比矩阵机器人运动学机器人逆运动学雅可比矩阵matlab雅可比矩阵机器人正逆运动学雅克比矩阵机器人雅可比迭代矩阵家可比矩阵安堂机器人
3.4
机器人的雅可比矩阵
微分运动与速度
1、
微分运动指机构的微小运动,可用来推导不 同部件之间的速度关系。 机器人每个关节坐标系的微分运动,导致机 器人手部坐标系的微分运动,包括微分平移与微 分旋转运动。将讨论指尖运动速度与各关节运动 速度的关系。 前面介绍过机器人运动学正问题
f1 n m n R f m n
2、与平移速度有关的雅可比矩阵
相对于指尖坐标系的平移速度,是通过把坐标 原点固定在指尖上,指尖坐标系相对于基准坐 标系的平移速度来描述
O0 x0 y0 z0 Oe xe ye ze
:基准坐标系
:指尖坐标系
ze
z0
P e
Oe
xe
ye
O0
x0
y0
指尖的平移速度为: dPe df dq dq v JL J Lq dt dq dt dt J L : 与平移速度相关的雅可比矩阵
机器人动力学 雅克比-概念解析以及定义
机器人动力学雅克比-概述说明以及解释1.引言1.1 概述机器人动力学是研究机器人运动过程中的力学和动力学特性的学科,主要涉及机器人的姿态、速度、加速度、力和力矩等相关物理量。
机器人动力学一直以来都是机器人领域的关键问题之一,对于机器人的运动控制和路径规划具有重要的指导意义。
雅克比矩阵是机器人动力学中一项关键的工具,用于描述机器人多自由度系统中各关节之间的运动传递关系。
通过雅克比矩阵,我们可以计算出机器人末端执行器在给定关节角速度下的线速度和角速度,从而实现对机器人运动的精确控制。
机器人动力学的研究在实际应用中有着广泛的意义。
首先,深入理解机器人的动力学特性可以帮助我们设计出更加高效、灵活的机器人控制算法,从而提升机器人的运动精度和速度。
其次,机器人动力学的研究还可以为机器人路径规划、障碍物避障等问题提供重要的理论支持和指导。
此外,随着机器人应用领域的拓展,如医疗、教育、家庭服务等,机器人动力学的研究也将在未来发挥更加重要的作用。
总结起来,机器人动力学是研究机器人运动特性的学科,雅克比矩阵则是机器人动力学中的重要工具。
通过研究和应用机器人动力学,我们可以实现对机器人运动的精确控制,提升机器人的运动效率和准确性,并且为机器人的应用和发展打下坚实的基础。
未来,机器人动力学的研究将随着机器人技术的不断发展而不断探索新的方向,并为更广泛的机器人应用提供理论支持和指导。
1.2 文章结构文章结构部分的内容应当包括对整篇文章的组织和章节安排进行介绍。
可以按照以下方式编写文章结构的内容:2. 文章结构本文共分为以下几个部分:引言、正文和结论。
2.1 引言部分将对机器人动力学的概念进行概述,介绍机器人动力学的背景和意义。
在此部分还将阐述本文的目的和结构。
2.2 正文部分将重点讨论雅克比矩阵的概念和应用。
首先,将介绍雅克比矩阵的定义和性质,以及其在机器人动力学中的重要作用。
接着,将探讨雅克比矩阵在路径规划、运动控制和力学分析等方面的应用。
速度运动学-雅可比矩阵
速度运动学-雅可比矩阵第4章 速度运动学——雅可比矩阵在数学上,正运动学方程在笛卡尔位置和姿态空间与关节位置空间之间定义了一个函数,速度之间的关系由这个函数的雅可比矩阵来决定。
雅可比矩阵出现在机器人操作的几乎各个方面:规划和执行光滑轨迹,决定奇异位形,执行协调的拟人动作,推导运动的动力学方程,力和力矩在末端执行器和机械臂关节之间的转换。
1.角速度:固定转轴情形k θω&=(k 是沿旋转轴线方向的一个单位向量,θ&是角度θ对时间的倒数) 2.反对称矩阵一个n n ⨯的矩阵Sρ被称为反对称矩阵,当且仅当=+S S T ,我们用)3(so 表示所有33⨯反对称矩阵组成的集合。
如果)3(so S ∈,反对称矩阵满足0=+ji ijs s3,2,1,=j i ,所以iiS =0,S 仅包含三个独立项,并且每个33⨯的反对称矩阵具有下述形式:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=000121323s s s s s s S如果Tzyxa a a a ),,(=是一个3维向量,我们将对应的反对称矩阵)(a S 定义为如下形式:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=000)(xy x zy z a a a a a a a S反对称矩阵的性质1))()()(b S a S b a S βαβα+=+ 向量a 、b 属于3R ,α、β为标量2)p a p a S ⨯=)( 向量a 、b 属于3R ,p a ⨯表示向量叉乘 3))()(Ra S Ra RS T=,左侧表示矩阵)(a S 的一个相似变换,这个公式表明:)(a S 在坐标系中经过R 旋转操作的矩阵表示与反对称矩阵)(a SR 相同,其中)(a SR 对应于向量a 被转过R 这种情形。
4)对于一个n n ⨯的反对称矩阵S ,以及任何一个向量nR X ∈,有0=SX XT旋转矩阵的导数 )(θθSR R d d =公式表明:计算旋转矩阵的R 的导数,等同于乘以一个反对称矩阵S 的矩阵乘法操作。
雅可比矩阵
机器人的奇异点讨论:
斯坦福机械手的运动学奇点:
斯坦福机械手的运动学奇点示例 (讨论theta 5=0的特殊情况)
(theta 5=0时两轴线重合)
通过雅可比矩阵求解平面机械手的奇点分析示例:
通过雅可比矩阵对斯坦福机械手的奇点分析说明:
2.2 机器人静力分析
机器人在工作状态下会与环境之间引起相互作用的力和 力矩。机器人各关节的驱动装置提供关节力和力矩,通过连 杆传递到末端执行器,克服外界作用力和力矩。关节驱动力 和力矩与末端执行器施加的力和力矩之间的关系是机器人操
3. Consider the planar PR manipulator shown here:
(a) Find the origin of frame {3} expressed in terms of frame {0}, that is 0P3org.
作臂力控制的基础。
2.2.1 操作臂力和力矩的平衡
图2.3所示,杆i通过关节i和i+1分别与杆i–1和i+1相连接,建立 两个坐标系{i–1}和{i}。 定义如下变量: fi–1,i及ni–1,i i–1杆通过关节i作用在i杆上的力和力矩; fi,i+1及ni,i+1 i杆通过关节i+1作用在i+1杆上的力和力矩; –fi,i+1及–ni,i+1i+1杆通过关节i+1作用在i杆上的反作用力和 反作用力矩; fn,n+1及nn,n+1机器人最末杆对外界环境的作用力和力矩; –fn,n+1及–nn,n+1外界环境对机器人最末杆的作用力和力矩; f0,1及n0,1机器人机座对杆1的作用力和力矩; mig——连杆i的重量,作用在质心Ci上。
速度运动学-雅可比矩阵
第4章 速度运动学——雅可比矩阵在数学上,正运动学方程在笛卡尔位置和姿态空间与关节位置空间之间定义了一个函数,速度之间的关系由这个函数的雅可比矩阵来决定。
雅可比矩阵出现在机器人操作的几乎各个方面:规划和执行光滑轨迹,决定奇异位形,执行协调的拟人动作,推导运动的动力学方程,力和力矩在末端执行器和机械臂关节之间的转换。
1.角速度:固定转轴情形k θω&=(k 是沿旋转轴线方向的一个单位向量,θ&是角度θ对时间的倒数)2.反对称矩阵一个n n ⨯的矩阵S ρ被称为反对称矩阵,当且仅当0=+S S T,我们用)3(so 表示所有33⨯反对称矩阵组成的集合。
如果)3(so S ∈,反对称矩阵满足0=+ji ij s s 3,2,1,=j i ,所以ii S =0,S 仅包含三个独立项,并且每个33⨯的反对称矩阵具有下述形式:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=000121323s s s s s s S 如果T z y x a a a a ),,(=是一个3维向量,我们将对应的反对称矩阵)(a S 定义为如下形式:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=000)(xy x zy z a a a a a a a S 反对称矩阵的性质1))()()(b S a S b a S βαβα+=+ 向量a 、b 属于3R ,α、β为标量2)p a p a S ⨯=)( 向量a 、b 属于3R ,p a ⨯表示向量叉乘3))()(Ra S R a RS T=,左侧表示矩阵)(a S 的一个相似变换,这个公式表明:)(a S 在坐标系中经过R 旋转操作的矩阵表示与反对称矩阵)(a SR 相同,其中)(a SR 对应于向量a 被转过R 这种情形。
4)对于一个n n ⨯的反对称矩阵S ,以及任何一个向量n R X ∈,有0=SX X T旋转矩阵的导数)(θθSR R d d= 公式表明:计算旋转矩阵的R 的导数,等同于乘以一个反对称矩阵S 的矩阵乘法操作。
雅可比矩阵和动力学分析
雅可比各列旳计算公式:
6 x
6 y
n x ny nz ( p n)x o x oy oz ( p o)x
6 z
6 x
a x 0
ay 0
az 0
( pa)x nx
6 y
6 z
0 0
0 0
0 0
ox ax
( p n)y ( p o)y
( p n)z ( p o)z
i x
i y
(2) 内部奇异形位:两个或两个以上关节轴线重叠时,机 器人各关节运动相互抵消,不产生操作运动。相应旳机器 人形位叫做内部奇异形位。
当机器人处于奇异形位时会产生退化现象,丧失一种或更 多旳自由度。这意味着在工作空间旳某个方向上,不论怎 样选择机器人关节速度,手部也不可能实现移动。
当l1l2s2=0时无解,机器人逆速度雅可比J-1奇异。 因l10,l20,所以,在2=0或2=180时,机器 人处于奇异形位。
2
Y
2
d1 d2
写成矩阵形式为
X
dX dY
1
Y
1
X
2
Y
2
d1 d2
X X
令
J
1
2
Y Y
1
2
简写为: dX=J dθ
关节空间微小运 动dθ与手部作业 空间微小位移 dX旳关系。
2R机器人旳速度雅可比矩阵为:
J
l1s1 l2s12
l1c1
l2c12
当雅可比不是满秩矩阵时,J旳行列式为0。
当雅可比不是满秩矩阵时,可能出现奇异解,机器人旳奇 异形位,相应操作空间旳点为奇异点。
机器人旳奇异形位分为两类:
(1) 边界奇异形位:当机器人臂全部伸展开或全部折回时, 手部处于机器人工作空间旳边界上或边界附近,逆雅可比 奇异。相应旳机器人形位叫做边界奇异形位。
动力学分析基础--雅克比矩阵
动力学分析基础——雅可比矩阵代码编写,资料整理——ZH1110动力学仿真计算归结为对典型的常微分方程组的初值问题。
在解上述的初值问题时,除了应用常微分方程初值问题的数值积分外,还将用到求解线性代数方程组的数值方法,所以首先我们必须先研究这两个常用的计算机算法,已便于后面的计算.高斯消去法求解线性代数方程组(直接法,即消去法),已在线性代数课程中有详细的讨论,在此给出些说明以及具体的算法描述。
大致可以分为以下两步。
1.将系数矩阵经过一系列的初等行变换(归一化)在变换过程中,采用原地工作,即经变换后的元素仍放在原来的位置上。
2.消去。
它的作用是将主对角线以下的均消成0,而其它元素与向量中的元素也应作相应的变换最后,进行回代依次解出如:我们要解如下方程组:初等行变换:回代得到结果:龙格-库塔算法求解常微分方程用欧拉算法、改进欧拉算法以及经典龙格-库塔算法对常微分方程的初值问题进行数值求解算法。
动力学仿真计算最后会出现一加速度,速度,坐标的两阶微分方程组,其积分需要这种计算方法。
一、 使用欧拉算法及其改进算法(梯形算法)进行求解所谓的微分方程数值求解,就是求问题的解y(x)在一系列点上的值y(xi)的近似值yi。
欧拉(Euler)算法是其实现的依据是用向前差商来近似代替导数。
对于常微分方程:dy/dx=f(x,y),x∈[a,b]y(a)=y0可以将区间[a,b]分成n段,那么方程在第xI点有y'(xI)=f(xI,y(xI)),再用向前差商近似代替导数则为:(y(xI+1)-y (xI))/h= f(xI,y(xI)),因此可以根据xI点和yI点的数值计算出yI+1来.由此可以看出,常微分方程数值解法的基本出发点就是计算离散化点。
yI+1= yI+h*f(xI ,yI)下面就举一个简单的常微分方程y'=x-y+1,x∈[0,0.5]y(0)=1 (人工计算后的解析式为:y(x)=x+e-x)'欧拉算法Private Sub Euler()For x = 0 To 0.5 Step 0.1y(i + 1) = y(i) + 0.1 * (x - y(i) + 1)List1.AddItem y(i)i = i + 1NextEnd Sub由于方程曲线是内凹的所以无论如何减少步距,得到的结果都小于真实值,有必要采取措施来抑制、减少误差,尽量使结果精确。
机器人雅可比矩阵课件
雅可比矩阵的求解
利用运动学逆问题的解,可以求得人形机器人的雅可比矩 阵。
人形机器人控制
通过雅可比矩阵,可以实现对人形机器人的控制,例如轨 迹跟踪和力控制。同时,还可以进行步态规划和平衡控制 等高级应用。
05
雅可比矩阵的优化与 控制
雅可比矩阵的优化算法
基于梯度下降法的优化算法
利用梯度下降法,通过迭代计算出雅可比矩阵的最优解,使得机器人的运动轨迹 更加平滑和准确。
基于运动学的方法
通过已知的关节变量和运动学模型计算雅可比矩阵 优点:简单、易于计算
缺点:仅在理想情况下考虑了关节变量对雅可比矩阵的影响,忽略了动力学效应
基于动力学的方法
根据动力学模型和已 知的关节变量计算雅 可比矩阵
缺点:计算复杂度较 高,需要更多的计算 资源
优点:考虑了动力学 效应,更准确
基于逆向运动学的方法
雅可比矩阵的求解
利用运动学逆问题的解,可以求得机 械臂的雅可比矩阵。
机械臂控制
通过雅可比矩阵,可以实现对机械臂 的控制,例如轨迹跟踪和力控制。
人形机器人的雅可比矩阵求解
人形机器人模型建立
建立一个具有多个自由度的人形机器人模型,包括多个旋 转关节和多个连杆。
运动学逆问题求解
通过给定人形机器人的末端位置和姿态,求解人形机器人 各关节的旋转角度。
雅可比矩阵的求解
利用运动学逆问题的解,可以求得机械臂的 雅可比矩阵。
机械臂控制
通过雅可比矩阵,可以实现对机械臂的控制 ,例如轨迹跟踪和力控制。
四自由度机械臂的雅可比矩阵求解
四自由度机械臂模型建立
建立一个四自由度的机械臂模型,包 括四个旋转关节和三个连杆。
运动学逆问题求解
通过给定机械臂的末端位置和姿态, 求解机械臂各关节的旋转角度。
雅可比矩阵和动力学分析
手部瞬时速度为1 m/s。
三、雅可比矩阵的奇异性
J
1q
J *q J q
J *q ——J矩阵的伴随阵
若 Jq 0 则 J 1 q
q J 1q•V
由此可见,当雅可比矩阵的行列式为0时,要使手爪 运动,关节速度将趋于无穷大。
当雅可比不是满秩矩阵时,J的行列式为0。
与操作空间速度v之间关系的雅可比矩阵。
反之,假如给定工业机器人手部速度,可解出 相应的关节速度,即:
q J 1V
式中:J-1称为工业机器人逆速度雅可比。 当工业机器人手部在空间按规定的速度进行作 业,用上式可以计算出沿路径上每一瞬时相应 的关节速度。
例1 如图示的二自由度机械手,手部沿固定坐标系 X0轴正向以1.0 m/s的速度移动,杆长l1=l2=0.5 m。 求当θ1=30°,θ2=60°时的关节速度。
解 由推导知,二自由度机械手速度雅可比为
J
Байду номын сангаас
l1s1 l2s12
l1c1
l2c12
l2s12
l2c12
二自由度机械手手爪沿X0方向运动示意图
逆雅可比为
J 1
1
l1l2s2
l2c12
l1c1
l2c12
l2s12
l1s1
l2s12
θ& J 1v 且vX=1 m/s,vY=0,因此
&&12
第3章 雅可比矩阵和动力学分析
上一章讨论了刚体的位姿描述、齐次变换,机器 人各连杆间的位移关系,建立了机器人的运动学 方程,研究了运动学逆解,建立了操作空间与关 节空间的映射关系。
雅克比矩阵(Jacobi).
雅可比矩阵(Jacobi方法)Jacobi 方法Jacobi方法是求对称矩阵的全部特征值以及相应的特征向量的一种方法,它是基于以下两个结论1) 任何实对称矩阵A可以通过正交相似变换成对角型,即存在正交矩阵Q,使得Q T AQ = diag(λ1 ,λ2,…,λn) (3.1)其中λi(i=1,2,…,n)是A的特征值,Q中各列为相应的特征向量。
2) 在正交相似变换下,矩阵元素的平方和不变。
即设A=(aij )n×n,Q交矩阵,记B=Q T AQ=(bij )n×n, 则Jacobi方法的基本思想是通过一次正交变换,将A中的一对非零的非对角化成零并且使得非对角元素的平方和减小。
反复进行上述过程,使变换后的矩阵的非对角元素的平方和趋于零,从而使该矩阵近似为对角矩阵,得到全部特征值和特征向量。
1 矩阵的旋转变换设A为n阶实对称矩阵,考虑矩阵易见 Vij(φ)是正交矩阵, 记注意到B=VijA的第i,j行元素以及的第i,j列元素为可得≠0,取φ使得则有如果aij对A(1)重复上述的过程,可得A(2) ,这样继续下去, 得到一个矩阵序列{A(k) }。
可以证明,虽然这种变换不一定能使矩阵中非对角元素零元素的个数单调增加,但可以保证非对角元素的平方和递减,我们以A与A(1)为例进行讨论。
设由式(3.4)可得这表明,在上述旋转变换下,非对角元素的平方和严格单调递减,因而由(3.2)可知,对角元素的平方和单调增加。
2. Jacobi方法通过一系列旋转变换将A变成A(k+1) ,求得A的全部特征值与特征向量的方法称为Jacobi方法。
计算过程如下1)令k=0, A(k) =A2) 求整数i,j, 使得3) 计算旋转矩阵4) 计算A(k+1)5) 计算6) 若E(A(k+1))<ε, 则为特征值,Q T = (V(0) V(1)…V(k+1))T的各列为相应的特征向量;否则,k+1=>k返回2,重复上述过程。
机器人雅可比矩阵讲课文档
• 在机器人学领域内,通常谈到的雅可比矩阵是把关 节角速度和操作臂末端的直角坐标速度联系在一起 的。
• 必须注意到,对于任何给定的操作臂的结构和外形,
可利用雅可比矩阵的行列式判别奇异形位
(x,y) 2
当2=90或2 =0时,机械手的雅可比行列式为0.矩阵 的秩为1,因而处于奇异状态。从几何上看机械手完全 伸直(2 =0)或完全缩回(2 =180)时,机械手末端丧失 了径向自由度.仅能沿切向运动,在奇异形位时,机械 手在操作空间的自由度将减少。
现在十五页,总共七十六页。
为操作臂的雅可比矩阵关。节空它间的的第映i行射关第系j列。元素为
JiAjqpABTxiqBqjp
,i=1刚,2体,…的齐,6次; 变j=换1矩,2阵,…,,n描。述刚体之间
的空间位姿关系。
现在六页,总共七十六页。
假设矢量yRm为uRn的函数
y= y(u)
y1(u)
y2 (u)
y1(u1, u2 ,, un ) y2 (u1, u2 ,, un )
讨论:机械手接近奇异形位时, 关节速度将趋于无穷大。
当2=0; 2=180时,机械手
在水平位置,
1lc11s22;2l2cs12
c12 l1s2
q J1(q)x
现在十八页,总共七十六页。
例:物理仿真中的雅可比矩阵
• 约束函数C(x),
• 单位圆上的质点位置约束为
C (x)xx1
• 一般情况下,采用位姿矢量q聚合表达n个粒子的位置。在3D空间, 矢量长度为3n。考虑位置约束C是一个关于位姿矢量q的未知函数, 则速度约束