高三基础知识天天练1-1. 数学 数学doc人教版
高三基础知识天天练 数学选修4-1-1人教版
选修4-1 第1节一、选择题1.若三角形三边上的高分别为a 、b 、c ,这三边长分别为6、4、3,则a ∶b ∶c =( )A .1∶2∶3B .6∶4∶3C .2∶3∶4D .3∶4∶6解析:由三角形面积公式: 12×6a =12×4b =12×3c , ∴6a =4b =3c ,设3c =k ,则a =k 6,b =k 4,c =k 3,∴a ∶b ∶c =k 6∶k 4∶k32∶3∶4.答案:C2.如下图,DE ∥BC ,DF ∥AC ,AD =4 cm ,BD =8 cm ,DE =5 cm ,则线段BF 的长为( )A .5 cmB .8 cmC .9 cmD .10 cm解析:∵DE ∥BC ,DF ∥AC , ∴四边形DECF 是平行四边形, ∴FC =DE =5 cm , ∵DF ∥AC ,∴BF FC =BD DA, 即BF 5=84,∴BF =10 cm. 答案:D3.Rt △ABC 中,∠CAB =90°,AD ⊥BC 于D ,AB ∶AC =3∶2,则CD ∶BD =( )A .3∶2B .2∶3C .9∶4D .4∶9解析:由△ABD ∽△CBA 得AB 2=BD ·BC , 由△ADC ∽△BAC 得AC 2=DC ·BC , ∴CD ·BC BD ·BC =AC 2AB 2=49,即CD ∶BD =4∶9. 答案:D4.已知:如右图,正方形ABCD 的边长为4,P 为AB 上的点,且AP ∶PB =1∶3,PQ ⊥PC ,则PQ 的长为( )A .1 B.54 C.32D. 2解析:∵PQ ⊥PC ,∴∠APQ +∠BPC =90°, ∴∠APQ =∠BCP ,∴Rt △APQ ∽Rt △PBC , ∴AP BC =AQBP. ∵AB =4,AP ∶PB =1∶3,∴PB =3,AP =1, ∴AQ =AP ·BP BC =1×34=34, ∴PQ =AQ 2+AP 2=916+1=54. 答案:B5.已知矩形ABCD ,R 、P 分别在边CD 、BC 上,E 、F 分别为AP 、PR 的中点,当P 在BC 上由B 向C 运动时,点R 在CD 上固定不变,设BP =x ,EF =y ,那么下列结论中正确的是( )A .y 是x 的增函数B .y 是x 的减函数C .y 随x 的增大先增大再减小D .无论x 怎样变化,y 为常数解析:∵E 、F 分别为AP 、PR 中点,∴EF 是△P AR 的中位线,∴EF =12AR ,∵R 固定,∴AR 是常数,即y 为常数.答案:D6.如右图所示,矩形ABCD 中,AB =12,AD =10,将此矩形折叠使点B 落在AD 边的中点E 处,则折痕FG 的长为( )A .13 B.635 C.656D.636解析:过A 作AH ∥FG 交DG 于H ,则四边形AFGH 为平行四边形.∴AH =FG . ∵折叠后B 点与E 点重合,折痕为FG , ∴B 与E 关于FG 对称.∴BE ⊥FG ,∴BE ⊥AH . ∴∠ABE =∠DAH ,∴Rt △ABE ∽Rt △DAH . ∴BE AB =AH AD. ∵AB =12,AD =10,AE =12AD =5,∴BE =122+52=13, ∴FG =AH =BE ·AD AB =656.答案:C 二、填空题7.在Rt △ABC 中,CD 、CE 分别是斜边AB 上的高和中线,设该图中共有x 个三角形与△ABC 相似,则x =________.解析:2个,△ACD 和△CBD . 答案:28.在△ABC 中,D ,E 分别为AB ,AC 上的点,且DE ∥BC ,△ADE 的面积是2 cm 2,梯形DBCE 的面积为6 cm 2,则DE ∶BC 的值为________.解析:△ADE ∽△ABC ,利用面积比等于相似比的平方可得答案. 答案:1∶29.如右图,在直角梯形ABCD 中,上底AD =3,下底BC =33,与两底垂直的腰AB =6,在AB 上选取一点P ,使△PAD 和△PBC 相似,这样的点P 有________个.解析:设AP =x ,(1)若△ADP ∽△BPC ,则AD BP =APBC,即36-x =x 33,所以x 2-6x +9=0,解得x =3. (2)若△ADP ∽△BCP ,则AD BC =APBP ,即333=x 6-x ,解得x =32, 所以符合条件的点P 有两个. 答案:两 三、解答题10.如右图,BD 、CE 分别是△ABC 的两边上的高,过D 作DG ⊥BC 于G ,分别交CE 及BA 的延长线于F 、H .求证:(1)DG 2=BG ·CG ; (2)BG ·CG =GF ·GH .证明:(1)DG 为Rt △BCD 斜边上的高, ∴由射影定理得DG 2=BG ·CG . (2)∵DG ⊥BC ,∴∠ABC +∠H =90°, ∵CE ⊥AB ,∴∠ABC +∠ECB =90°, ∴∠ABC +∠H =∠ABC +∠ECB , ∴∠H =∠ECB .又∵∠HGB =∠FGC =90°, ∴Rt △HBG ∽Rt △CFG , ∴BG GF =GHGC,∴BG ·CG =GF ·GH . 11.如右图,正方形ABCD 中,AB =2,P 是BC 边上与B 、C 不重合的任意一点,DQ ⊥AP 于Q .(1)试证明△DQA ∽△ABP ;(2)当点P 在BC 上变动时,线段DQ 也随之变化,设PA =x ,DQ =y ,求y 与x 之间的函数关系式.解:(1)∵DQ ⊥AP ,∴∠DQA =90°, ∠DAQ +∠ADQ =90°, 又∵∠DAQ +∠BAP =90°, ∴∠BAP =∠QDA . ∴△DQA ∽△ABP .(2)∵△DQA ∽△ABP ,∴DA AP =DQ AB,∴DQ =DA ·AB PA ,即y =4x. 12.有一块直角三角形木板,如右图所示,∠C =90°,AB =5 cm ,BC =3 cm ,AC =4 cm.根据需要,要把它加工成一个面积最大的正方形木板,设计一个方案,应怎样裁才能使正方形木板面积最大,并求出这个正方形木板的边长.解:如图(1)所示,设正方形DEFG 的边长为x cm ,过点C 作CM ⊥AB 于M ,交DE 于N ,因为S △ABC =12AC ·BC =12AB ·CM ,所以AC ·BC =AB ·CM ,即3×4=5·CM .所以CM =125. 因为DE ∥AB ,所以△CDE ∽△CAB . 所以CN CM =DE AB ,即125-x125=x 5.所以x =6037.如图(2)所示,设正方形CDEF 的边长为y cm , 因为EF ∥AC ,所以△BEF ∽△BCA . 所以BF BC =EF AC ,即3-y 3=y 4.所以y =127. 因为x =6037,y =127=6035,所以x <y . 所以当按图(2)的方法裁剪时,正方形面积最大,其边长为127cm.。
完整word版2014届高三数学天天练1教师版
2021届高三数学每日练11、不等式x-11的解集是_____________________0,22、不等式1的解是_______________x0或x1x13、假定会合A xx2,B xx a,知足AB2,那么实数a______24、假定函数f(x)的反函数f1x log2x,那么f(x)_________f(x)2x xR5、假定正四棱柱ABCDA1B1C1D1的底面边长为2,高位4,那么异面直线BD1与AD所成角的大小是_________________〔结果用反三角函数值表示〕arctan56、假定球O1,O2表面积之比S14,那么它们的半径之比R1_______2 S2R27、函数y2sinxcosx的最大值为___________58、函数y2cos2xsin2x的最小值是_____________1-29、函数f(x)log3(x 3)的反函数的图像与y轴的交点坐标是__________0,-210、在相距2千米的A,B两点处丈量目标点C,假定CAB75,CBA60,那么A,C两点之间的距离为______________千米11、一个高为2的圆柱,底面周长为62 ,该圆柱的表面积为__________612、假定函数函数的分析式f(x) x abx 2a常数a,b R是偶函数,且它的值域为,4,那么该f(x) _________ f(x) 2x2 413、0x2,化简:lgcosxtanx12sin2x lg2cosx lg1sin2x24答案:014、函数f(x)log a 1mx是奇函数a0,a1 x1〔1〕求m值〔2〕解对于x的不等式f x0答案:〔1〕m1〔2〕当a1时,x1;当0a1时,x115、设函数f(x)2cos2x23sinxcosx mxR〔1〕化简函数f x的表达式,并求函数fx的最小正周期〔2〕假定,能否存在实数m,使函数17假定存在,恳求出mx0,fx的值域恰为,?222的值;假定不存在,请说明原因。
高三基础知识天天练 数学检测11人教版
单元质量检测(11)一、选择题1.不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁不能排在一起,则不同的排法共有( )A .12种B .20种C .24种D .48种解析:甲、乙捆绑后与第5种商品排列有A 22种,产生的三个空排丙、丁,有A 23种,再排甲、乙有A 22种,共有A 22A 23A 22=24种.答案:C2.直角坐标xOy 平面上,平行直线x =n (n =0,1,2,…,5)与平行直线y =n (n =0,1,2,…,5)组成的图形中,矩形共有( )A .25个B .36个C .100个D .225个解析:从构成矩形的四条边入手,可以从6条竖着的直线中任取两条,共有C 26种选法;再从6条横着的直线中任取两条直线,共有C 26种选法,所以可构成矩形C 26·C 26=225(个). 答案:D3.(1+3x )6⎝⎛⎭⎪⎫1+14x 10的展开式中的常数项为( )A .1B .46C .4245D .4246 解析:(1+3x )6的通项公式为C r 6x r3,⎝⎛⎭⎪⎫1+14x 10的通项公式为C k10x -k 4,由r 3+(-k 4)=0,得⎩⎪⎨⎪⎧ r =0k =0,⎩⎪⎨⎪⎧ r =3k =4,⎩⎪⎨⎪⎧r =6k =8共三项,所以常数项为C 06C 010+C 36C 410+C 66C 810=4246. 答案:D4.在一底面半径和高都是2 cm 的圆柱形容器中盛满小麦种子,但有一粒带麦锈病的种子混入了其中.现从中随机取出2 cm 3的种子,则取出带麦锈病的种子的概率是( )A.14B.18πC.14πD .1-14π解析:可用体积作为几何度量,易知取出带有麦锈病的种子的概率为P =2π ·22·2=14π.答案:C5.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于S4的概率是( )A.14B.12 C.34D.23解析:如右图,在AB 边取点P ′,使AP ′AB =34,则P 只能在AP ′内运动,则概率为AP ′AB =34.答案:C6.口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,定义数列{a n }:a n =⎩⎪⎨⎪⎧-1 第n 次摸取红球1 第n 次摸取白球,如果S n 为数列{a n }的前n 项和,那么S 7=3的概率为( )A .C 57(13)2(23)5B .C 27(23)2(13)5C .C 57(13)2(13)5D .C 37(13)2(23)5 解析:由题意得,在7次摸球中,摸得红球的次数恰为2次,则有S 7=3. 又因为每次摸球,摸得红球的概率为23,设X 为摸得红球的次数,则X ~B (7,23),在7次摸球中,恰有2次摸得红球的概率 P (X =2)=C 27(23)2(13)5. 答案:B7.集合A ={(x ,y )|y ≥|x -1|,x ∈N *},集合B ={(x ,y )|y ≤-x +5,x ∈N *}. 先后掷两颗骰子,设掷第一颗骰子得点数记作a ,掷第二颗骰子得点数记作b ,则(a ,b )∈A ∩B 的概率等于( )A.14B.29C.736 D.536解析:由于y ≥|x -1|⇔⎩⎪⎨⎪⎧x -y -1≤0x +y -1≥0,根据二元一次不等式表示平面的区域,可知A ∩B对应如下图所示的阴影部分的区域中的整数点.其中整数点有(0,1),(0,2),(0,3),(0,4),(0,5),(1,0),(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,2),共14个.现先后抛掷2颗骰子,所得点数分别有6种,共会出现36种结果,其中落入阴影区域内的有8种,即(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,2).所以满足(a ,b )∈A ∩B 的概率为836=29,故选B.答案:B8.设随机变量的概率分布为:则X ( )A.12B .0C .2D .随p 的变化而变化 解析:EX =0×p 3+1×p 3+2×(1-2p3)=2-p ,又∵p 3≥0,1-23p ≥0,∴0≤p ≤32,∴当p =32时,EX 的值最小,最小值为2-32=12.答案:A9.利用计算机在区间(0,1)上产生两个随机数a 和b ,则方程x =-2a -bx 有实根的概率为( )A.12B.13C.16D.23解析:方程x =-2a -bx ,即x 2+2ax +b =0,若方程有实根,则有Δ=4a 2-4b ≥0即b ≤a 2,其所求概率可转化为几何概型,如右图,其概率等于阴影面积与正方形面积之比,S 阴影=⎠⎛01a 2d a =13a 3| 10=13,所以所求概率P =13.答案:B10.在区间[0,1]上任意两个实数a ,b ,则函数f (x )=12x 3+ax -b 在区间[-1,1]上有且仅有一个零点的概率为( )A.18B.14C.34D.78解析:f ′(x )=32x 2+a ,故f (x )在x ∈[-1,1]上单调递增,又因为函数f (x )=12x 3+ax -b在[-1,1]上有且仅有一个零点,即有f (-1)·f (1)<0成立,即(12+a -b )(-12-a -b )<0,则(12+a -b )(12+a +b )>0,可化为:⎩⎪⎨⎪⎧ 0≤a ≤10≤b ≤112+a -b >012+a +b >0或⎩⎪⎨⎪⎧0≤a ≤10≤b ≤112+a -b <012+a +b <0,由线性规划知识在直角坐标系aOb 中画出这两个不等式组所表示的可行域,再由几何概型可以知道,函数f (x )=12x 3+ax -b 在[-1,1]上有且仅有一个零点的概率为:可行域的面积除以直线a =0,a =1,b =0,b =1围成的正方形的面积,计算可得面积之比为78.答案:D11.若k 为实数,且k ∈[-2,2],则k 的值使得过点A (1,1)的两条直线与圆x 2+y 2+kx -2y -54k =0相切的概率为( )A.14B.12C.34D .不确定解析:由题意知点A (1,1)在圆x 2+y 2+kx -2y -54k =0,即(x +k 2)2+(y -1)2=k 24+1+54k的外部,所以⎩⎨⎧k 24+1+54k >012+12+k -2-54k >0,即⎩⎪⎨⎪⎧k >-1或k <-4k <0.又k ∈[-2,2],所以-1<k <0.故由几何概型概率公式得所求概率为P =14.答案:A12.已知0≤a <2,0≤b <4,为估计在a >1的条件下,函数f (x )=x 2+2ax +b 有两相异零点的概率为P ,用计算机产生了[0,1)内的两组随机数a 1,b 1各2400个,并组成了2400个有序数对(a 1,b 1),统计这2400个有序数对后得到2×2列联表的部分数据如下表:( )A.1348B.1124C.1324D.712解析:本题先对产生的随机数对(a 1,b 1)进行a =2a 1,b =4b 1的变换后可转化为满足题中条件的数对(a ,b ),而当4a 2-4b >0时,原函数f (x )有两个相异零点.所以先将表格补全,知当a >1即a 1>12时,满足a 21-b 1>0时,有两个相异零点,于是P =6501200=1324. 答案:C 二、填空题13.已知(1+kx 2)6(k 是正整数)的展开式中x 8的系数小于120,则k =________.解析:(1+kx 2)6按二项式定理展开的通项为T r +1=C r 6(kx 2)r =C r 6k r ·x 2r. 令2r =8,得r =4,∴x 8的系数为C 46·k 4,即15k 4<120,∴k 4<8.而k 是正整数,故k 只能取1. 答案:114.某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有________种.(有数字作答)解析:由题意可知有一个工厂安排2个班,另外三个工厂每厂安排1个班,共有C 14·C 25·A 33=240种安排方法.答案:24015.在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(2,+∞)上取值的概率为________.解析:由正态分布的特征易得 P (ξ>2)=12[1-2P (0<ξ<1)]=12(1-0.8)=0.1. 答案:0.116.罐中有6个红球,4个白球,从中任取1球,记住颜色后再放回,连续摸取4次,设ξ为取得红球的次数,则ξ的期望Eξ=________.解析:因为是有放回地摸球,所以每次摸球(试验)摸得红球(成功)的概率均为35,连续摸4次(做4次试验),ξ为取得红球(成功)的次数,则ξ~B (4,35),从而有Eξ=np =4×35=125.答案:125三、解答题17.在一个盒中装有6支圆珠笔,其中3支一等品,2支二等品和1支三等品,求 (1)从中任取1支,得到一等品或二等品的概率; (2)从中任取2支,没有三等品的概率.解:(1)从6支笔中任取1支得一等品或二等品共有3+2=5种, 不同的取法,任取一支笔共有6种取法, ∴任取1支,得到一等品或二等品的概率为56.(2)从中任取2支,有三等品的取法,有5种,而任取2支共有C 26=15种取法. ∴任取2支,有三等品的概率为515=13,∴任取2支,没有三等品的概率为1-13=23.18.为了调查某野生动物保护区内某种野生动物的数量,调查员某天逮住这种动物600只做好标记后放回,经过一星期后,又逮到这种动物500只,其中做过标记的有50只,根据上述数据,估算保护区内有多少只动物?解:设保护区内这种野生动物有x 只,每只动物被逮到的可能性是相同的,那么第一次逮到的600只占所有这种动物的概率为600x ,第二次逮到的500只中,有50只是第一次逮到的,即事件发生的频数为50,说明第一次逮到的在总的动物中的频率为110,由概率的定义知600x =110,解得x =6000,即按此方法计算,估计保护区内有6000只这种野生动物.19.一个口袋中装有大小相同的2个白球和3个黑球. (1)从中摸出两个球,求两球颜色不同的概率;(2)从中摸出一个球,放回后再摸出一个球,求两球恰好颜色不同的概率.解:(1)记“摸出两个球,两球恰好颜色不同”为A ,摸出两个球共有方法C 25=10种,其中,两球一白一黑有C 12·C 13=6种.∴P (A )=C 12C 13C 25=35.(2)解法一:记“摸出一球,放回后再摸出一个球两球恰好颜色不同”为B ,摸出一球得白球的概率为25=0.4,摸出一球得黑球的概率为35=0.6,“有放回摸两次,颜色不同”指“先白再黑”或“先黑后白”,∴P (B )=2×3+3×25×5=0.4×0.6+0.6×0.4=0.48.解法二:有放回地摸两次,互相独立,摸一次得白球的概率为25,∴“有放回摸两次,颜色不同”的概率为 P (B )=C 12·25·(1-25)=0.48. 20.已知关于x 的二次函数f (x )=ax 2-4bx +1.(1)设集合P ={-1,1,2,3,4,5}和Q ={-2,-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数y =f (x )在区间[1,+∞)上是增函数的概率;(2)设点(a ,b )是区域⎩⎪⎨⎪⎧x +y -8≤0x >0y >0内的随机点,求函数y =f (x )在区间[1,+∞)上是增函数的概率.解:(1)∵函数f (x )=ax 2-4bx +1的图象的对称轴为x =2ba ,要使函数f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,当且仅当a >0且2ba≤1,即2b ≤a .若a =1,则b =-2,-1; 若a =2,则b =-2,-1,1; 若a =3,则b =-2,-1,1;若a =4,则b =-2,-1,1,2; 若a =5,则b =-2,-1,1,2; ∴所求事件包含基本事件的个数是 2+3+3+4+4=16. ∴所求事件的概率为1636=49.(2)由(1)知当且仅当2b ≤a 且a >0时,函数f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,依条件可知试验的全部结果所构成的区域为⎩⎪⎨⎪⎧(a ,b )|⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a +b -8≤0a >0b >0,构成所求事件的区域为如右图阴影部分. 由⎩⎪⎨⎪⎧a +b -8=0b =a 2得交点坐标为(163,83),∴所求事件的概率为 P =12×8×8312×8×8=13.21.某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知某学生选修甲而不选修乙和丙的概率为0.08,选修甲和乙而不选修丙的概率是0.12,至少选修一门课的概率是0.88,用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积.(1)记“函数f (x )=x 2+ξ·x 在R 上的偶函数”为事件A ,求事件A 的概率; (2)求ξ的分布列和数学期望.解:设该学生选修甲、乙、丙的概率分别为x 、y 、z . 依题意得⎩⎪⎨⎪⎧x (1-y )(1-z )=0.08xy (1-z )=0.12.1-(1-x )(1-y )(1-z )=0.88,解得⎩⎪⎨⎪⎧x =0.4y =0.6z =0.5.(1)若函数f (x )=x 2+ξ·x 为R 上的偶函数,则ξ=0. 当ξ=0时,表示该学生选修三门功课或三门功课都没选. ∴P (A )=P (ξ=0)=xyz +(1-x )(1-y )(1-z ) =0.4×0.5×0.6+(1-0.4)(1-0.5)(1-0.6)=0.24. ∴事件A 的概率为0.24.(2)依题意知ξ的取值为0和2,由(1)所求可知P(ξ=0)=0.24,P(ξ=2)=1-P(ξ=0)=0.76.则ξ的分布列为∴ξ的数学期望为Eξ=022.在某学校组织的一次篮球定点投篮训练中,规定每人最多投3次:在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次.某同学在A处的命中率q1为0.25,在B处的命中率q2,该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为(1)求q2的值;(2)求随机变量ξ的数学期望Eξ;(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.解:(1)由题设可知,“ξ=0”对应的事件为“在三次投篮中没有一次投中”,由对立事件和相互独立事件性质可知p(ξ=0)=(1-q1)(1-q2)2=0.03,解得q2=0.8(2)根据题意p1=P(ξ=2)=(1-q1)C12(1-q2)q2=0.75×2×0.2×0.8=0.24,p2=P(ξ=3)=q1(1-q2)2=0.25×(1-0.8)2=0.01,p3=P(ξ=4)=(1-q1)q22=0.75×0.82=0.48,p4=P(ξ=5)=q1q2+q1(1-q2)=0.25×0.8+0.25×0.2×0.8=0.24,因此Eξ=0×0.03+2×0.24+3×0.01+4×0.48+5×0.24=3.63.(3)用C表示事件“该同学选择第一次在A处投,以后都在B处投,得分超过3分”,用D表示事件“该同学选择都在B处投,得分超过3分”,则P(C)=P(ξ=4)+P(ξ=5)=p3+p4=0.48+0.24=0.72,P(D)=q22+C12q2(1-q2)q2=0.82+2×0.8×0.2×0.8=0.896.故P(D)>P(C).即该同学选择都在B处投篮得分超过3分的概率大于该同学选择第一次在A处以后都在B处投得分超过3分的概率.。
高中数学基础强化天天练必修1第1练
第39练任意角(1)目标:理解任意角的概念;能判定任一已知角为第几象限角;能写出与任一已知角终边相同的角的集合.一、填空题1.200°是第_____象限角【答案】三2.锐角α的取值范围是__________。
【答案】] 2 0[π,3. 下列说法中,正确的是________(填序号).①终边落在第一象限的角为锐角;②锐角是第一象限的角;③第二象限的角为钝角;④小于90°的角一定为锐角;⑤角α与-α的终边关于x轴对称.【答案】②⑤【解析】终边落在第一象限的角不一定是锐角,如400°的角是第一象限的角,但不是锐角,故①的说法是错误的;同理第二象限的角也不一定是钝角,故③的说法也是错误的;小于90°的角不一定为锐角,比如负角,故④的说法是错误的.4.在-390°,-885°,1 351°,2 012°这四个角中,其中第四象限角的个数为________.【答案】2【解析】∵-390°=-360°+(-30°),-30°是第四象限角,∴-390°是第四象限角;∵-885°=-3×360°+195°,195°是第三象限角,∴-885°是第三象限角;∵1 351°=3×360°+271°,271°是第四象限角,∴1 351°是第四象限角;∵2 012°=5×360°+212°,212°是第三象限角,∴2 012°是第三象限角.5.写出-720°到360°之间与-1068°终边相同的角的集合:__________________________.【答案】{-708°,-348°,12°}【解析】因为-720°到360°之间与-1068°终边相同的角有-708°,-348°,12°,所以-720°到360°之间与-1068°终边相同的角的集合为{-708°,-348°,12°}.6.终边落在坐标轴上的角的集合为___________________________.【答案】{α|α= k·90°,k∈Z}.7.若α与β的终边互为反向延长线,且α=-120°,则β=________.【答案】k·360°+60°,k∈Z【解析】β与-120°角的终边互为反向延长线,则β与60°角的终边相同.∴β=k·360°+60°,k ∈Z .8.以下四个命题中,正确的命题的个数是_____.(1)终边相同的角一定相等;(2)相等的角终边一定相同;(3)始边与终边重合的角为0°;(4)第二象限角总比第一象限角大.【答案】1【解析】(2)正确,故正确的命题的个数是1个.9.与-1210°终边相同的最小正角和最大负角之和是_______.【答案】100°【解析】与-1210°终边相同的最小正角是230°,最大负角是-130°,故最小正角和最大负角之和是100°.10.若集合A={α|α=30°+k ·360°,k ∈Z },B={β|β=30°+k ·720°,k ∈Z },C={γ|γ=30°+k ·180°,k ∈Z },则集合A 、B 、C 的关系是__________________.【答案】B ≠⊂A ≠⊂C【解析】A={α|α=30°+2k ·180°,k ∈Z },B={β|β=30°+4k ·180°,k ∈Z },C={γ|γ=30°+k ·180°,k ∈Z })所以B ≠⊂A ≠⊂C二、解答题11.在与角-2 013°终边相同的角中,求满足下列条件的角.(1)最小的正角;(2)最大的负角;(3)-720°~720°内的角.解 (1)∵-2 013°=-6×360°+147°,∴与角-2 013°终边相同的最小正角是147°.(2)∵-2 013°=-5×360°+(-213°),∴与角-2 013°终边相同的最大负角是-213°.(3)∵-2 013°=-6×360°+147°,∴与角-2 013°终边相同也就是与角147°终边相同.由-720°<k ·360°+147°<720°,k ∈Z ,解得:k =-2,-1,0,1.代入k ·360°+147°依次得:-573°,-213°,147°,507°.12.已知α与-240°角的终边相同,判断α2是第几象限角. 解:由α=k ·360°-240°(k ∈Z )得α2=k ·180°-120°(k ∈Z ).若k =2n ,n ∈Z ,则α2=n ·360°-120°,n ∈Z ,所以α2是第三象限角;若k =2n +1,n ∈Z ,则α2=n ·360°+60°,k ∈Z ,所以α2是第一象限角.综上所述,α2是第一或第三象限角.。
高三基础知识天天练 数学检测10人教版
单元质量检测(10)一、选择题1.某班的78名同学已编号1,2,3,…,78,为了解该班同学的作业情况,老师收取了学号能被5整除的15名同学的作业本,这里运用的抽样方法是() A.简单随机抽样法B.系统抽样法C.分层抽样法D.抽签法解析:系统抽样适用于个体较多但均衡的总体,学号能被5整除,即将学生均匀分成几部分,又是从某一部分抽出一学生,所以符合系统抽样的定义,又无明显层次差异,也不宜采取分层抽样,故采用系统抽样.答案:B2.某地区有300家商店,其中大型商店有30家,中型商店有75家,小型商店有195家,为了掌握各商店的营业情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的中型商店数是() A.2 B.3C.5 D.13解析:在整个抽样过程中,每个个体被抽到的概率为20300=115,则抽取的中型商店数为75×115=5.答案:C3.将容量为100的样本数据,按从小到大的顺序分成8个小组,如下表:则第6() A.0.14 B.14C.0.15 D.15解析:x=100-(9+14+14+13+12+13+10)=15,∴频率为15100=0.15.4.选择薪水高的职业是人之常情,假如张伟和李强两人大学毕业有甲、乙两个公司可供选择,现从甲、乙两个公司分别随机抽取了50名员工的月工资的资料,统计如下:的工作,则他俩分别选择的公司是( )A .甲、乙B .乙、甲C .都选择甲D .都选择乙解析:由表中的信息可知,甲公司的工资标准差远小于乙公司的工资标准差,这表示甲公司的工资比较稳定,张伟想找一份工资比较稳定的工作,会选择甲公司;而乙公司的工资最大值和极差远大于甲公司的工资最大值和极差,李强想找一份有挑战性的工作,会选择乙公司.答案:A5.为了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔(抽样距)k 为( )A .40B .30C .20D .12解析:k =120030=40.答案:A 6.下列四个命题①线性相关系数r 越大,两个变量的线性相关性越强;反之,线性相关性越小; ②残差平方和越小的模型,拟合的效果越好;③用相关指数R 2来刻画回归效果,R 2越小,说明模型的拟合效果越好; ④随机误差e 是衡量预报精确度的一个量,它满足E (e )=0. 则正确命题的序号是( )A .①③B .②④C .①④D .②③解析:由数理统计的有关概念,可以判断①错误,应该是相关系数的绝对值;||r 越接近1,相关性越强,③错误,应该是R 2越趋近1,效果越好.7.一组数据的标准差为s ,将这组数据中每一个数据都扩大到原来的2倍,所得到的一组数据的方差是( )A.s 22B .4s 2C .2s 2D .s 2解析:平均数也扩大到原来的二倍,则s ′2=1n [(2x 1-2x -)2+(2x 2-2x -)2+…+(2x n -2x -)2]=4·1n [(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2]=4s 2.答案:B8.关于统计数据的分析,有以下几个结论: ①一组数不可能有两个众数;②将一组数据中的每个数据都减去同一个数后,方差没有变化;③调查剧院中观众观看感受时,从50排(每排人数相同)中任意抽取一排的人进行调查,属于分层抽样;④一组数据的方差一定是正数; ⑤如右图是随机抽取的200辆汽车通过某一段公路时的时速分布直方图,根据这个直方图,可以得到时速在[50,60)的汽车大约是60辆.则这5种说法中错误的个数是( )A .2B .3C .4D .5解析:一组数中可以有两个众数,故①错;根据方差的计算法可知②正确;③属于简单随机抽样,错误;④错误,因为方差可以是零;⑤正确.故错误的说法有3个.答案:B9.下图是根据《山东统计年鉴2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字.从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为( )21583 63247A.304.6C.302.6 D.301.6解析:由于数字的上下对称性,可以知道将个位数字都看成0时,平均数为300,又个位数字的平均数是(1+1+5+8+2+6+0+2+4+7)÷10=3.6,故平均数是303.6.答案:B10.在第29届北京奥运会上,中国健儿取得了51金、21银、28铜的好成绩,稳居金牌榜榜首,由此许多人认为中国进入了世界体育强国之列,也有许多人持反对意见,有网友为此进行了调查,在参加调查的2548名男性中有1560名持反对意见,2452名女性中有1200名持反对意见,在运用这些数据说明性别对判断“中国进入了世界体育强国之列”是否有关系时,用什么方法最有说服力() A.平均数与方差B.回归直线方程C.独立性检验D.概率解析:由于参加调查的公民按性别被分成了两组,而且每一组又被分成了两种情况,认为有关与无关,符合2×2列联表的要求,故用独立性检验最有说服力.答案:C11.为了了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机选取了60名高中生,通过问卷调查,得到以下数据:() A.没有充足的理由认为课外阅读量大与作文成绩优秀有关B.有0.5%的把握认为课外阅读量大与作文成绩优秀有关C.有99.9%的把握认为课外阅读量大与作文成绩优秀有关D.有99.5%的把握认为课外阅读量大与作文成绩优秀有关解析:根据独立性检验的基本思想和临界值表可以知道,有99.5%的把握认为课外阅读量大与作文成绩优秀有关.答案:D12.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例的数据,一定符合该标志的是() A.甲地:总体均值为3,中位数为4B.乙地:总体均值为1,总体方差大于0C.丙地:中位数为2,众数为3D.丁地:总体均值为2,总体方差为3解析:只有D选项符合题意,当总体均值为2,方差为3时,必满足题意.答案:D二、填空题13.某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是________.解析:设学生的人数为x,则1602400×x=150,x=2250.则教师的人数为2400-2250=150.答案:15014.如下图是某样本数据的茎叶统计图,则该样本数据的众数为________.94673 6解析:答案:8415.为了开展“家电下乡”活动,政府调查某地区家庭拥有彩电的情况,从该地区的10万户居民中,随机抽查了96户,这96户拥有彩电的情况如下:________.解析:样本中农村没有彩电的比例为P =1414+42×100%=25%,集镇中没有彩电的比例为Q =44+36×100%=10%,则该地区没有彩电的总户数约为105×53+5×25%+105×33+5×10%=15625+3750=19375(户).答案:1937516.在2009年春节期间,某市物价部门,对本市五个商场销售的某商品一天的销售量及其价格进行调查,五个商场的售价x 元和销售量y 件之间的一组数据如下表所示:通过分析,y 对商品的价格x 的回归直线方程为________.解析:∑i =15x i y i =392,x -=10,y -=8,∑i =15(x i -x -)2=2.5,代入公式,得b ^=-3.2,所以,a ^=y --b ^x -=40,故回归直线方程为y ^=-3.2x +40.答案:y ^=-3.2x +40 三、解答题17.某重点中学高中各班级学生人数如下表所示:学校计划召开学生代表座谈会.请根据上述基本数据,设计一个容量为总体容量的120的抽样方案.解:由表中基本数据可知,高一学生总数为145人,高二学生总数为150人,高三学生总数为155人,第一步:确定高一、高二、高三的被抽个体数.由于总体容量与样本容量之比为20,所以样本中包含的各年级个体数应为145÷20≈7,150÷20≈8,155÷20≈8.第二步:将高一年级被抽到的个体数分配到各班.由于抽样比为7145,所以1班、2班、3班被抽到的人数分别为7145×45≈2,7145×48≈2,7145×52≈3. 第三步:将高二年级被抽到的个体数分配到各班.由于抽样比为8150,所以1班、2班、3班被抽到的人数分别为8150×46≈2,8150×54≈3,8150×50≈3. 第四步:将高三年级被抽到的个体数分配到各班.由于抽样比为8155,所以1班、2班、3班被抽到的人数分别为8155×48≈2,8155×55≈3,8155×52≈3. 18.一次科技知识竞赛,两组学生成绩统计如下:在这次竞赛中的成绩谁优谁次?并说明理由.解:(1)从众数看,甲为90分,乙为70分,甲组成绩较好;(2)从中位数看,两组中位数都为80分,但在80分(含80分)以上,甲组有33人,乙组有26人,甲组人数多于乙组人数,甲组成绩较好;(3)从方差看,s 2甲=172,s 2乙=256,甲组成绩波动较小,较稳定;(4)从得满分情况来看,甲组人数6人,乙组人数12人,成绩较好者应为乙组. 19.为研究是否喜欢饮酒与性别之间的关系,在某地区随机抽取290人,得到如下列联表:解:由列联表中的数据得 K 2=290×(101×20-124×45)2146×144×225×65≈11.953.∵K 2≈11.953>10.828.∴有99.9%的把握认为“是否喜欢饮酒与性别有关”.20.某中学高一(2)班甲、乙两名同学自高中以来每场数学考试成绩情况如下: 甲的得分:95,81,75,91,86,89,71,65,76,88,94,110,107; 乙的得分:83,86,93,99,88,103,98,114,98,79,101.画出两人的数学成绩茎叶图.请根据茎叶图对两人的成绩进行比较. 解:作出茎叶图:98;甲同学的得分情况除一个特殊得分外,也大致对称,中位数是88.因此乙同学发挥比较稳定,总体得分情况比甲同学好.21. “世界睡眠日”定在每年的3月21日.2009年的世界睡眠日的主题是“科学管理睡眠”,以提高公众对健康睡眠的自我管理能力和科学认识.为此某网站2009年3月13日到3月20日持续一周的在线调查,共有200人参加调查,现将数据整理分组如题中表格所示.(1)画出整理数据的频率分布直方图; (2)睡眠时间小于8小时的概率是多少?(3)为了对数据进行分析,采用了计算机辅助计算,分析中一部分计算见算法流程图,求输出S 的值,并说明S 的统计意义.(注:框图中的赋值符号“=”也可写成“←”或“:=”)(2)睡眠时间小于8小时的概率是 P =0.04+0.26+0.30+0.28=0.88.(3)首先要理解直到型循环结构图的含义,输入m i ,f i 的值后,由赋值语句:S =S +m i ·f i可知,流程图进入一个求和状态.令a i =m i ·f i (i =1,2,…,6),数列{a i }的前i 项和为T i ,即:T 6=4.5×0.04+5.5×0.26+6.5×0.30+7.5×0.28+8.5×0.10+9.5×0.02=6.70, 则输出S 的值为6.70.S 的统计意义即是指参加调查者的平均睡眠时间,从统计量的角度来看,即是睡眠时间的期望值.22.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10日的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?(参考公式:b ^=∑i =1n(x i -x -)(y i -y -)∑i =1n(x i -x -)2,a ^=y --b ^x -.)解:(1)设抽到相邻两个月的数据为事件A ,因为从6组数据中选取2组数据共有C 26=15种情况,每种情况都是等可能出现的,其中,抽到相邻两个月的数据的情况有5种,所以P (A )=515=13.(2)由表中数据求得x -=11,y -=24, 由参考公式可得b ^=187,再由a ^=y --b ^x -求得a ^=-307,所以y 关于x 的线性回归方程为y ^=187x -307.(3)当x =10时,y ^=1507,⎪⎪⎪⎪1507-22=47<2; 同样,当x =6时,y ^=787,⎪⎪⎪⎪787-12=67<2. 所以,该小组所得线性回归方程是理想的.。
高三基础知识天天练2-3. 数学 数学doc人教版
第2模块第3节[知能演练]一、选择题1.函数y=-x2(x∈R)是() A.左减右增的偶函数B.左增右减的偶函数C.减函数、奇函数D.增函数、奇函数解析:∵y=-x2是开口向下的一条抛物线,∴y=-x2在(-∞,0)上为增函数,(0,+∞)上为减函数,不妨设y=f(x)=-x2,则f(-x)=-(-x)2=-x2=f(x),∴f(x)为偶函数.答案:B2.已知函数f(x)在R上是奇函数,且当x>0时,f(x)=x2-2x,则f(x)在R上的解析式是() A.f(x)=x·(x-2)B.f(x)=|x|(x-2)C.f(x)=|x|(|x|-2)D.f(x)=x(|x|-2)答案:D3.f(x)、g(x)都是定义在R上的奇函数,且F(x)=3f(x)+5g(x)+2,若F(a)=b,则F(-a)等于() A.-b+4 B.-b+2C.b-2 D.b+2解析:依题设F(-x)=3f(-x)+5g(-x)+2=-3f(x)-5g(x)+2,∴F(x)+F(-x)=4,则F(a)+F(-a)=4,F(-a)=4-F(a)=4-b.答案:A4.定义在R上的函数f(x)既是奇函数又是周期函数,T是它的一个正周期.若将方程f(x)=0在闭区间[-T,T]上的根的个数记为n,则n可能为() A.0 B.1C.3 D.5解析:定义在R上的函数f(x)是奇函数,则f(0)=0,又f(x)是周期函数,T是它的一个正周期,∴f (T )=f (-T )=0,f (-T 2)=-f (T 2)=f (-T 2+T )=f (T2).∴f (-T 2)=f (T2)=0,则n 可能为5,选D.答案:D 二、填空题5.设函数f (x )=(x +1)(x +a )x 为奇函数,则a =________.解析:∵f (1)+f (-1)=0⇒2(1+a )+0=0, ∴a =-1. 答案:-16.已知函数f (x )=x 2-cos x ,对于[-π2,π2]上的任意x 1,x 2,有如下条件:①x 1>x 2;②x 21>x 22;③|x 1|>x 2.其中能使f (x 1)>f (x 2)恒成立的条件序号是________.解析:函数f (x )=x 2-cos x 显然是偶函数,其导数y ′=2x +sin x 在0<x <π2时,显然也大于0,是增函数,想象其图象,不难发现,x 的取值离对称轴越远,函数值就越大,②满足这一点.当x 1=π2,x 2=-π2时,①③均不成立.答案:② 三、解答题7.已知f (x )=px 2+23x +q 是奇函数,且f (2)=53.(1)求实数p ,q 的值;(2)判断函数f (x )在(-∞,-1)上的单调性,并加以证明. 解:(1)∵f (x )是奇函数,∴f (-x )=-f (x ),即px 2+2-3x +q =-px 2+23x +q .从而q =0,因此f (x )=px 2+23x .又∵f (2)=53,∴4p +26=53.∴p =2.(2)f (x )=2x 2+23x,任取x 1<x 2<-1,则f (x 1)-f (x 2)=2x 21+23x 1-2x 22+23x 2=2(x 2-x 1)(1-x 1x 2)3x 1x 2.∵x 1<x 2<-1,∴x 2-x 1>0,1-x 1x 2<0,x 1x 2>0. ∴f (x 1)-f (x 2)<0.∴f (x )在(-∞,-1)上是单调增函数.8.已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (x )在[-1,1]上的解析式; (2)证明f (x )在(0,1)上是减函数.(1)解:只需求出f (x )在x ∈(-1,0)和x =±1,x =0时的解析式即可,因此,要注意应用奇偶性和周期性,当x ∈(-1,0)时,-x ∈(0,1).∵f (x )是奇函数,∴f (x )=-f (-x )=-2-x4-x +1=-2x4x +1,由f (0)=f (-0)=-f (0),且f (1)=f (-2+1)=f (-1)=-f (1), 得f (0)=f (1)=f (-1)=0. ∴在区间[-1,1]上有f (x )=⎩⎨⎧2x4x +1x ∈(0,1),-2x 4x+1x ∈(-1,0),0 x ∈{-1,0,1}.(2)证明:当x ∈(0,1)时,f (x )=2x4x +1.设0<x 1<x 2<1, f (x 1)-f (x 2)=2x 14x 1+1-2x 24x 2+1=(2x 2-2x 1)(2x 1+x 2-1)(4x 1+1)(4x 2+1).∵0<x 1<x 2<1.∴2x 2-2x 1>0,2x 1+x 2-1>0. ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),故f (x )在(0,1)上单调递减.[高考·模拟·预测]1.已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2008)+f (2009)的值为( )A .-2B .-1C .1D .2解析:f (-2008)+f (2009)=f (0)+f (1)=log 21+log 22=1.答案:C2.已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )·f (x ),则f (52)的值是( )A .0 B.12 C .1D.52解析:令g (x )=f (x )x ,则g (-x )=f (-x )-x =-f (x )x =-g (x ),∴g (x )为奇函数.又g (x +1)=f (x +1)x +1=f (x )x =g (x ).∴g (52)=f (52)52=g (12)=g (-12)=-g (12),∴g (12)=0,∴f (52)=0.故选A. 答案:A3.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:∵f (x -4)=-f (x ),∴f (x +4)=-f (x ),∴f (x +8)=f (x ).∴f (-25)=f (-1)=-f (1),f (11)=f (3)=-f (-1)=f (1),f (80)=f (0)=0.而f (x )在[0,2]上是增函数,∴f (1)≥f (0)=0.∴f (-25)<f (80)<f (11).故选D.答案:D4.函数f (x )的定义域为R ,若f (x +1)与f (x -1)都是奇函数,则( ) A .f (x )是偶函数 B .f (x )是奇函数 C .f (x )=f (x +2) D .f (x +3)是奇函数解析:由题意f (-x +1)=-f (x +1),f (-x -1)=-f (x -1),即f (x )=-f (2-x )且f (x )=-f (-2-x ).∴f (x )=-f (2-x )=f [-2-(2-x )]=f (x -4),∴f (-x +3)=f (-x -1)=-f [2-(-x -1)]=-f (x +3),故选D. 答案:D5.定义在R 上的增函数y =f (x )对任意x ,y ∈R 都有f (x +y )=f (x )+f (y ). (1)求f (0);(2)求证:f (x )为奇函数;(3)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立,求实数k 的取值范围. 解:(1)令x =y =0,得f (0+0)=f (0)+f (0),即f (0)=0. (2)令y =-x ,得f (x -x )=f (x )+f (-x ),又f (0)=0,则有 0=f (x )+f (-x ).即f (-x )=-f (x )对任意x ∈R 成立, 所以f (x )是奇函数.(3)证法一:因为f (x )在R 上是增函数,又由(2)知f (x )是奇函数.f (k ·3x )<-f (3x -9x -2)=f (-3x +9x +2), 所以k ·3x <-3x +9x +2,32x -(1+k )·3x +2>0对任意x ∈R 成立.令t =3x >0,问题等价于t 2-(1+k )t +2>0对任意t >0恒成立. 令f (t )=t 2-(1+k )t +2,其对称轴为x =1+k 2,当1+k2<0即k <-1时,f (0)=2>0,符合题意; 当1+k2≥0即k ≥-1时,对任意t >0,f (t )>0恒成立⇔⎩⎪⎨⎪⎧1+k 2≥0,Δ=(1+k )2-4×2<0,解得-1≤k <-1+2 2. 综上所述,当k <-1+22时,f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立. 解法二:由k ·3x <-3x +9x +2, 得k <3x +23x -1.u =3x +23x -1≥22-1,即u 的最小值为22-1,要使对x ∈R 不等式k <3x +23x -1恒成立,只要使k <22-1.所以满足题意的k 的取值范围是(-∞,22-1)[备选精题]6.已知函数f (x )=x 2+ax (x ≠0,常数a ∈R ).(1)讨论函数f (x )的奇偶性,并说明理由;(2)若函数f (x )在x ∈[2,+∞)上为增函数,求a 的取值范围. 解:(1)当a =0时,f (x )=x 2,对任意x ∈(-∞,0)∪(0,+∞), f (-x )=(-x )2=x 2=f (x ),∴f (x )为偶函数. 当a ≠0时,f (x )=x 2+ax (a ≠0,x ≠0),取x =±1,得f (-1)+f (1)=2≠0,f (-1)-f (1)= -2a ≠0.∴f (-1)≠-f (1),f (-1)≠f (1).∴函数f (x )既不是奇函数,也不是偶函数.(2)解法一:要使函数f (x )在x ∈[2,+∞)上为增函数, 等价于f ′(x )≥0在x ∈[2,+∞)上恒成立,即f ′(x )=2x -ax 2≥0在x ∈[2,+∞)上恒成立,故a ≤2x 3在x ∈[2,+∞)上恒成立.∴a ≤(2x 3)min =16.∴a 的取值范围是(-∞,16]. 解法二:设2≤x 1<x 2,f(x1)-f(x2)=x21+ax1-x22-ax2=(x1-x2)x1x2[x1x2(x1+x2)-a],要使函数f(x)在x∈[2,+∞)上为增函数,必须f(x1)-f(x2)<0恒成立,∵x1-x2<0,即a<x1x2(x1+x2)恒成立,又∵x1+x2>4,x1x2>4,∴x1x2(x1+x2)>16.∴a的取值范围是(-∞,16].。
高三基础知识天天练3-3. 数学 数学doc人教版
第3模块 第3节[知能演练]一、选择题1.函数y =xsin x,x ∈(-π,0)∪(0,π)的图象可能是下列图象中的()解析:∵y =xsin x 是偶函数,排除A ,当x =2时,y =2sin2>2,排除D. 当x =π6时,y =π6sin π6=π3>1,排除B.答案:C2.函数f (x )=tan ωx (ω>0)图象的相邻的两支截直线y =π4所得线段长为π4,则f (π4)的值是( )A .0B .1C .-1D.π4解析:由题意知T =π4,由πω=π4得ω=4,∴f (x )=tan4x ,∴f (π4)=tan π=0.答案:A3.函数f (x )=sin x -3cos x (x ∈[-π,0])的单调递增区间是( )A .[-π,-5π6]B .[-5π6,-π6]C .[-π3,0]D .[-π6,0]解析:f (x )=sin x -3cos x =2sin(x -π3)∵-π≤x ≤0,∴-4π3≤x -π3≤-π3当-π2≤x -π3≤-π3时,即-π6≤x ≤0时,f (x )递增.答案:D4.对于函数f (x )=sin x +1sin x(0<x <π),下列结论中正确的是( )A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值又无最小值解析:f (x )=sin x +1sin x =1+1sin x ,∵0<x <π,∴0<sin x ≤1,∴1sin x ≥1,∴1+1sin x≥2.∴f (x )有最小值而无最大值. 答案:B 二、填空题 5.函数y =lgsin x + cos x -12的定义域为____________,函数y =12sin(π4-23x )的单调递增区间为________.解析:(1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0cos x ≥12,解得⎩⎪⎨⎪⎧2kπ<x <π+2kπ-π3+2kπ≤x ≤π3+2kπ(k ∈Z ), ∴2kπ<x ≤π3+2kπ,k ∈Z ,∴函数的定义域为{x |2kπ<x ≤π3+2kπ,k ∈Z }.(2)由y =12sin(π4-23x )得y =-12sin(23x -π4),由π2+2kπ≤23x -π4≤32π+2kπ,得 98π+3kπ≤x ≤21π8+3kπ,k ∈Z ,故函数的单调递增区间为 [98π+3kπ,21π8+3kπ](k ∈Z ). 答案:{x |2kπ<x ≤π3+2kπ,k ∈Z }[98π+3kπ,21π8+3kπ](k ∈Z ) 6.对于函数f (x )=⎩⎪⎨⎪⎧sin x ,sin x ≤cos x cos x ,sin x >cos x ,给出下列四个命题:①该函数是以π为最小正周期的周期函数;②当且仅当x =π+kπ(k ∈Z )时,该函数取得最小值-1; ③该函数的图象关于x =5π4+2kπ(k ∈Z )对称;④当且仅当2kπ<x <π2+2kπ(k ∈Z )时,0<f (x )≤22.其中正确命题的序号是________.(请将所有正确命题的序号都填上) 解析:画出f (x )在一个周期[0,2π]上的图象.由图象知,函数f (x )的最小正周期为2π,在x =π+2kπ(k ∈Z )和x =32π+2kπ(x ∈Z )时,该函数都取得最小值-1,故①②错误,由图象知,函数图象关于直线x =54π+2kπ(k ∈Z )对称,在2kπ<x <π2+2kπ(k ∈Z )时,0<f (x )≤22.故③④正确.答案:③④ 三、解答题7.已知函数y =f (x )=2sin x1+cos 2x -sin 2x.(1)求函数定义域;(2)用定义判断f (x )的奇偶性; (3)在[-π,π]上作出f (x )的图象; (4)写出f (x )的最小正周期及单调区间. 解:(1)∵f (x )=2sin x 2cos 2x=sin x|cos x |, ∴函数的定义域是{x |x ≠kπ+π2,k ∈Z }.(2)由(1)知f (-x )=sin(-x )|cos(-x )|=-sin x|cos x |=-f (x ),∴f (x )是奇函数. (3)f (x )=⎩⎨⎧tan x (-π2<x <π2)-tan x (-π≤x <-π2或π2<x ≤π),y =f (x )(x ∈[-π,π])的图象如图所示.(4)f (x )的最小正周期为2π,单调递增区间是(-π2+2kπ,π2+2kπ)(k ∈Z ),单调递减区间是(π2+2kπ,3π2+2kπ)(k ∈Z ).8.已知a >0,函数f (x )=-2a sin(2x +π6)+2a +b ,当x ∈[0,π2]时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f (x +π2)且lg[g (x )]>0,求g (x )的单调区间.解:(1)∵x ∈[0,π2],∴2x +π6∈[π6,7π6],∴sin(2x +π6)∈[-12,1],∴-2a sin(2x +π6)∈[-2a ,a ],∴f (x )∈[b,3a +b ],又-5≤f (x )≤1.∴⎩⎪⎨⎪⎧ b =-53a +b =1,解得⎩⎪⎨⎪⎧a =2b =-5. (2)f (x )=-4sin(2x +π6)-1,g (x )=f (x +π2)=-4sin(2x +7π6)-1=4sin(2x +π6)-1,又由lg[g (x )]>0,得g (x )>1, ∴4sin(2x +π6)-1>1,∴sin(2x +π6)>12,∴π6+2kπ<2x +π6<56π+2kπ,k ∈Z ,由π6+2kπ<2x +π6≤2kπ+π2,得 kπ<x ≤kπ+π6,k ∈Z .由π2+2kπ≤2x +π6<56π+2kπ得 π6+kπ≤x <π3+kπ,k ∈Z . ∴函数g (x )的单调递增区间为(kπ,π6+kπ](k ∈Z ),单调递减区间为[π6+kπ,π3+kπ)(k ∈Z ).[高考·模拟·预测]1.若函数f (x )=(1+3tan x )cos x,0≤x <π2,则f (x )的最大值为( )A .1B .2 C.3+1D.3+2解析:因为f (x )=(1+3tan x )cos x =cos x +3sin x =2cos(x -π3),当x =π3时,函数取得最大值为2.故选B.答案:B2.若将函数y =tan(ωx +π4)(ω>0)的图象向右平移π6个单位长度后,与函数y =tan(ωx +π6)的图象重合,则ω的最小值为( )A.16 B.14 C.13D.12解析:将函数y =tan(ωx +π4)的图象向右平移π6个单位后,得到的函数为y =tan[ω(x -π6)+π4]=tan(ωx -πω6+π4),这个函数的图象与函数y =tan(ωx +π6)的图象重合,根据正切函数的周期是kπ,故其充要条件是-πω6+π4=kπ+π6(k ∈Z ),即ω=-6k +12(k ∈Z ),当k =0时,ω的最小值为12,故选D.答案:D3.已知函数f (x )=sin(x -π2)(x ∈R ),下面结论中错误的是( )A .函数f (x )的最小正周期为2πB .函数f (x )在区间[0,π2]上是增函数C .函数f (x )在图象关于直线x =0对称D .函数f (x )是奇函数解析:∵f (x )=-cos x ,∴f (x )为偶函数,故选D. 答案:D4.已知α∈(0,π4),a =(sin α)cos α,b =(sin α)sin α,c =(cos α)sin α,则a 、b 、c 的大小关系是________.解析:α∈(0,π4),1>cos α>sin α>0,y =(sin α)x 为减函数,∴a <b .而y =x sin α在(0,+∞)上为增函数,∴c >b .故c >b >a .答案:a <b <c5.已知函数f (x )=3(sin 2x -cos 2x )-2sin x cos x . (1)求f (x )的最小正周期;(2)设x ∈[-π3,π3],求f (x )的值域和单调递增区间.解:(1)∵f (x )=-3(cos 2x -sin 2x )-2sin x cos x =-3cos2x -sin2x =-2sin(2x +π3)∴f (x )的最小正周期为π.(2)∵x ∈[-π3,π3],∴-π3≤2x +π3≤π,∴-32≤sin(2x +π3)≤1. ∴f (x )的值域为[-2,3].∵当y =sin(2x +π3)递减时,f (x )递增,令2kπ+π2≤2x +π3≤2kπ+3π2,则kπ+π12≤x ≤kπ+7π12,k ∈Z ,又x ∈[-π3,π3],∴π12≤x ≤π3.故f (x )的递增区间为[π12,π3].[备选精题]6.设函数f (x )=sin(π4x -π6)-2cos 2π8x +1.(1)求f (x )的最小正周期;(2)若函数y =g (x )与y =f (x )的图象关于直线x =1对称,求当x ∈[0,43]时y =g (x )的最大值.解:(1)f (x )=sin π4x cos π6-cos π4x sin π6-cos π4x =32sin π4x -32cos π4x =3sin(π4x -π3),故f (x )的最小正周期为T =2ππ4=8.(2)解法一:在y =g (x )的图象上任取一点(x ,g (x )),它关于x =1的对称点为(2-x ,g (x )).由题设条件,点(2-x ,g (x ))在y =f (x )的图象上,可知g (x )=f (2-x )=3sin[π4(2-x )-π3]=3sin(π2-π4x -π3)=3cos(π4x +π3).当0≤x ≤43时,π3≤π4x +π3≤2π3,因此y =g (x )在区间[0,43]上的最大值为g (x )max =3cos π3=32.解法二:因区间[0,43]关于x =1的对称区间为[23,2],且y =g (x )与y =f (x )的图象关于x=1对称,故y =g (x )在[0,43]上的最大值即为y =f (x )在[23,2]上的最大值.由(1)知f (x )=3sin(π4x -π3),当23≤x ≤2时,-π6≤π4x -π3≤π6. 因此y =g (x )在[0,43]上的最大值为g (x )max =3sin π6=32.。
基础强化天天练数学必修一内容
一 集合与函数1 集合的含义及表示*⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪∈∉⎨⎪⎧⎪⎨⎪⎩⎪⎪⎩确定性集合中元素的特征 互异性无序性 集合与元素的关系 : 列举法 集合的表示 描述法常见的数集 N N Z Q R2,,A B B A A B A B A A A A B A B A B οοφ≠⊆⊆=⎧⊆⊆⊆⎪⎪⎨⎪⎪⊆≠⊂⎩1定义:A=B2若且则子集: , 集合相等: 集合间的基本关系真子集: 若且 则空集φ的特殊性: 空集是任何集合的子集,任何非空集合的真子集 *结论 含有n 个元素的集合,其子集的个数为2n,真子集的个数为21n-3集合的基本运算{}{}{}|||U A B x x A x B A B x x A x B C A x x U x A ⎧⋃=∈∈⎪⋂=∈∈⎨⎪=∈∉⎩并集:或 交集:且 补集:且在集合运算中常借助于数轴和文氏图(*注意端点值的取舍)*结论 (1)A A A ⋃= A A A ⋂=, A A φ⋃= A φφ⋂=(2)A B B A B ⋃=⊆若则 A B A A B ⋂=⊆若则 (3)()U A C A φ⋂= ()U A C A U ⋃=(4)若A B φ⋂= 则A φ=或A φ≠4函数及其表示⎧⎪⎧⎪⎪⎪⎨⎪⎪⎪⎩⎨⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩函数的定义 定义域函数的三要素对应法则值域区间的表示 解析式法函数的表示法列表法图像法5 函数的单调性及应用(1) 定义: 设[]2121,,x x b a x x ≠∈⋅那么:1212,()()x x f x f x <<⇔[]1212()()()0x x f x f x -->⇔0)()(2121>--x x x f x f []b a x f ,)(在⇔上是增函数;1212,()()x x f x f x <>⇔[]1212()()()0x x f x f x --<⇔0)()(2121<--x x x f x f []b a x f ,)(在⇔上是减函数.(2) 判定方法:1ο定义法(证明题) 2ο图像法 3ο复合法 (3) 定义法:证明函数单调性用利用定义来证明函数单调性的一般性步骤:1ο设值:任取12,x x 为该区间内的任意两个值,且12x x <2ο做差,变形,比较大小:做差12()()f x f x -,并利用通分,因式分解,配方,有理化等方法变形比较12(),()f x f x 大小3ο下结论(说函数单调性必须在其单调区间上)(4)常见函数利用图像直接判断单调性:一次函数,二次函数,反比例函数,指对数函数,幂函数,对勾函数(5)复合法:针对复合函数采用同增异减原则(6)单调性中结论:在同一个单调区间内:增+增=增: 增—减=增:减+减=减:减—增=增若函数)(x f 在区间[]b a ,为增函数,则—)(x f ,)(1xf 在[]b a ,为减函数 (7)单调性的应用:1ο:利用函数单调性比较大小2ο利用函数单调性求函数最值(值域)重点题型:求二次函数在闭区间上的最值问题6 函数的奇偶性及应用f x定义域关于原点对称(1)定义:若()1ο若对于任取x的,均有()()-=则()f x为偶函数f x f x2ο若对于任取x的,均有()()f x为奇函数-=-则()f x f x(2)奇偶函数的图像和性质(3)判定方法:1ο定义法(证明题)2ο图像法3ο口诀法(4)定义法: 证明函数奇偶性步骤:1ο求出函数的定义域观察其是否关于原点对称(前提性必备条件)2ο由出发()-,寻找其与()f x之间的关系f x3ο下结论(若()()-=-则()f x为奇f x f x-=则()f x f xf x为偶函数,若()()函数函数)(4)口诀法:奇函数+奇函数=奇函数:偶函数+偶函数=偶函数奇函数⨯奇函数=偶函数:奇函数⨯偶函数=奇函数:偶函数⨯偶函数=偶函数二 指数函数与对数函数 1 指数运算公式1οm n m n a a a +⋅= 2οm n m n a a a -÷= 3ο ()mm mab a b = 4ο()m nmna a=5ο()m m m a a b b= 6οmn a =7οm na-=8ο,,a a ⎧=⎨⎩当n 为偶数时当n 为奇数时2 对数运算公式 (1)对数恒等式0,1a a >≠当时 ,log xa N x N =⇔=alog 10a = log 1a a = log a Na N =(2)对数的运算法则(01,0,0)a a M N >≠>>且1ο log ()log log a a a M N M N ⋅=+ 2ο log ()log log a a a MM N N=- 3ο log ()log n a a M n M =(3)换底公式及推论 log log log c a c bb a=(01,01,0)a a c c b >≠>≠>且且推论 1οlog log m n a a nb b m=2ο1log log a N N a=3ο log log log a b a b c c =3 指数函数与对数函数图像定义域值域定点单调性4 指数与对数中的比较大小问题(1)指数式比较大小1οm a,n a2οm a,n b(2)对数式比较大小1οloga m,logan2οloga m,logbn5指数与对数图像6幂函数:一般地,函数y xα=叫做幂函数,其x中为自变量,α是常数几种幂函数的图象:函数零点及二分法 一 函数零点的判定(一) 函数有实数根⇔函数的图像与轴有交点⇔函数有零点(二) 函数的零点的判定定理如果函数()y f x =在区间[],a b 上的图像时连续不断的一条曲线,并且有()()0f a f b <,那么,函数()y f x =在区间(),a b 内有零点,即存在(),c a b ∈,使得()0f c =,这个c 也就是方程的根 二 函数二分法的应用(一)函数二分法:对于在区间上连续不断且的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法。
高三基础知识天天练化学1-2-1人教版
第1章第2节第1课时1.下列叙述正确的是() A.同温同压下,相同体积的物质,它们的物质的量必相等B.任何条件下,等物质的量的乙烯和一氧化碳所含的分子数必相等C.1 L一氧化碳气体一定比1 L氧气的质量小D.等体积、等物质的量浓度的强酸中所含的H+数一定相等解析:A项必须指明是气体.B项正确.C项未指明温度和压强,无法比较.D项强酸还分多元酸和一元酸,如等体积、等物质的量浓度的H2SO4和HCl所含的H+数不相等,故A、C、D均不正确.答案:B2.设n A代表阿伏加德罗常数(N A)的数值,下列说法正确的是() A.1 mol硫酸钾中阴离子所带电荷数为n AB.乙烯和环丙烷(C3H6)组成的28g混合气体中含有3n A个氢原子C.标准状况下,22.4 L氯气与足量氢氧化钠溶液反应转移的电子数为n AD.将0.1mol氯化铁溶于1L水中,所得溶液含有0.1n A个Fe3+解析:A项,1mol硫酸钾中阴离子所带电荷数为2n A.B项,应含有4n A个氢原子.D 项,由于Fe3+水解,所得溶液含有的Fe3+个数小于0.1n A.答案:C3.在一定温度和压强下,1 L X气体和1 L Y气体完全反应后生成1 L水蒸气和1 L氮气,X、Y两种气体是() A.H2、N2O4B.H2、N2O2C.H2、N2O D.H2、NO2解析:应用阿伏加德罗定律的推论(在相同温度和压强下,气体的体积之比等于其物质的量之比)和原子守恒即得出X、Y分别为H2与N2O.故C正确.答案:C4.下列条件中,两种气体所含原子数一定相等的是() A.同质量、不同密度的N2和COB.同温度、同体积的H2和N2C.同体积、同密度的C2H6和NOD .同压强、同体积的N 2O 和CO 2解析:因为N 2和CO 具有相同的摩尔质量,所以两者质量相同时物质的量也相同,分子个数应相同,又因两者都是双原子分子,故原子个数也相等,A 项正确;同温、同体积时,气体的物质的量之比等于压强之比,B 选项中没有提到压强,所以分子个数不一定相等,B 项错误;体积相同、密度相等,所以质量相等,C 2H 6和NO 的摩尔质量也相等,所以分子个数相等,但由于它们的分子组成不同,所以原子个数不相等,C 项错误;同压强、同体积时,由于没有说明温度,所以两种气体的物质的量不一定相等,因此D 项错误.答案:A5.体积为1 L 的干燥容器中充入HCl 气体后,测得容器中气体对氧气的相对密度为1.082.将此气体倒扣在水中,进入容器中液体的体积是( )A .0.25LB .0.5 LC .0.75 LD .1 L解析:M r =D·M r (O 2)=1.082×32=34.6<M r (HCl)=36.5,故该混合气体中必混有空气.HCl 易溶于水,空气不溶于水,故进入容器中液体的体积等于HCl 气体的体积.设HCl 气体的体积为x ,则空气的体积为(1 L -x ).根据气体平均摩尔质量计算公式:36.5 g/mol·x /1 L +29 g/mol·(1 L -x )/1 L =34.6 g/mol , 解得x =0.75 L. 答案:C6.已知Q 和R 的摩尔质量之比为9∶22,在反应X +2Y===2Q +R 中,当1.6 g X 与Y 完全反应后,生成4.4 g R ,则参加反应的Y 和生成物Q 的质量比为( )A .23∶9B .32∶9C .46∶9D .16∶9解析:设反应生成Q 的质量为x ,则据题意可列:x4.4 g =9×222,解得x =3.6 g ,依据质量守恒:m (Y)=(3.6 g +4.4 g)-1.6 g =6.4 g 所以m (Y )m (Q )=6.4 g 3.6 g =16∶9.答案:D7.在两个容积相同的容器中,一个盛有HCl 气体,另一个盛有H 2和Cl 2的混合气体.在同温同压下,两容器内的气体一定具有相同的( )A .原子数B .密度C .质量D .质子数解析:本题关键是理解阿伏加德罗定律的基本内容:同温、同压、同体积的气体应具有相同的物质的量.根据题意,则Cl 2和H 2的物质的量之和应与HCl 的物质的量相等.无论是Cl 2、H 2还是HCl ,均为双原子分子,所以在该条件下,两容器中的气体具有相同的原子数.由于H 2与Cl 2的比例不确定,故不能确定密度、质量、质子数是否相同.答案:A8.若以M 表示水的摩尔质量,V 表示在标准状况下水蒸气的摩尔体积,ρ为在标准状况下水蒸气的密度,N A 为阿伏加德罗常数,m 、Δ分别表示每个水分子的质量和体积,下面是四个关系式:①N A =Vρ/m ,②ρ=M /(N A Δ),③m =M/N A ,④Δ=V /N A ,其中( )A .①和②都是正确的B .①和③都是正确的C .③和④都是正确的D .①和④都是正确的解析:由在标准状况下水蒸气的密度为ρ、水蒸气的摩尔体积为V ,可知水的摩尔质量为ρV =M ,每个水分子的质量为m ,N A 个水分子的质量为m ·N A ,由此可得m ·N A =ρV =M ,推出①③正确;②④两式混淆了水在标准状况下的状态为液体,认为一个水分子的体积为Δ,N A 个水分子的体积为N A Δ=V ,从而推出错误的关系式为②④.答案:B9.同温同压下,等质量的SO 2和CO 2相比较,下列叙述中正确的是( )A .体积比1∶1B .体积比11∶16C .密度比1∶1D .密度比11∶16解析:设SO 2和CO 2的质量各为1 g ,则其物质的量分别为n (SO 2)=164 mol ,n (CO 2)=144mol ,根据阿伏加德罗定律的推论:同温同压下,两种气体的体积之比等于其物质的量之比得V (SO 2)V (CO 2)=n (SO 2)n (CO 2)=164∶144=11∶16,又由阿伏加德罗定律的推论:同温同压下,气体的密度之比等于其相对分子质量之比,故ρ(SO 2)ρ(CO 2)=6444=1611,故只有B 正确.答案:B10.在三个密闭容器中分别充入Ne 、H 2、O 2三种气体,当它们的温度和密度都相同时,这三种气体的压强(p )从大到小的顺序是( )A .p (Ne)>p (H 2)>p (O 2)B .p (O 2)>p (Ne)>p (H 2)C .p (H 2)>p (O 2)>p (Ne)D .p (H 2)>p (Ne)>p (O 2)解析:根据阿伏加德罗定律,当它们的温度和密度相同时,摩尔质量与压强成反比,摩尔质量由小到大的顺序为H 2、Ne 、O 2.答案:D11.现有m g 某气体,它由四原子分子构成,它的摩尔质量为M g/mol.则: (1)该气体的物质的量为________mol. (2)该气体中所含的原子总数为________个. (3)该气体在标准状况下的体积为________L.(4)该气体溶于1 L 水中(不考虑反应),其溶液中溶质的质量分数为________. (5)该气体溶于水后形成V L 溶液,其溶液的物质的量浓度为________mol/L. 解析:(1)该气体的物质的量为:n =m g M g/mol =mM mol(2)原子总数为:m M ×4×6.02×1023=2.408×1024m M(3)标准状况下的体积为mM ×22.4 L.(4)因m (H 2O)=1000 g ,所以溶质的质量分数为mm +1000×100%(5)物质的量浓度c =n V =mM V =mMVmol/L.答案:(1)m M (2)2.408×1024m M (3)22.4m M (4)m m +1000×100% (5)mMV12.在25℃、101 kPa 条件下,将15 L O 2通入10 L CO 和H 2的混合气体中,使其完全燃烧,干燥后,恢复至原来的温度和压强.(1)若剩余气体的体积是15 L ,则原CO 和H 2的混合气体中V (CO)=________L ,V (H 2)=________L.(2)若剩余气体的体积为a L ,则原CO 和H 2的混合气体中V (CO)∶V (H 2)=________. 解析:(1)2CO +O 2=====点燃2CO 2,2H 2+O 2=====点燃2H 2O(液态),分析这两个反应式可以发现:完全燃烧时,消耗O 2的体积是CO 和H 2体积的一半,所以O 2是过量的,燃烧掉的O 2是5 L ,剩余O 2的体积为10 L ,另外5 L 的剩余气体肯定是CO 2,CO 2的体积与CO 的体积相等,所以CO 和H 2的体积都是5 L.(2)从上面的分析中可以看出:剩余气体中O 2总是10 L ,若剩余气体总共是a L 时,则CO 2的体积为(a -10) L ,即V (CO)=(a -10) L ,V (H 2)=10 L -(a -10)L =(20-a )L. 所以,V (CO)∶V (H 2)=a -1020-a .答案:(1)5 5 (2)a -1020-a13.在120℃时分别进行如下三个反应: A .2H 2S +3O 2===2H 2O +2SO 2 B .C 2H 4+3O 2===2H 2O +2CO 2 C .C 4H 8+6O 2===4H 2O +4CO 2(1)若反应在容积为V 的固定容器中进行:(ρ为气体的密度) 符合ρ(前)=ρ(后),p (前)>p (后)的是________; 符合ρ(前)=ρ(后),p (前)=p (后)的是________. (2)若压强p 恒定,容积V 可变:符合ρ(前)>ρ(后),V (前)<V (后)的是________;解析:(1)容积不变:由ρ=mV 可得如果反应物与生成物都为气态,由质量守恒定律可得:如果气体质量不变,则密度不变,而对于压强而言,在体积与温度不变的情况下,气体的压强与气体总物质的量成正比.由上分析可得反应A 反应前气体总物质的量大于反应后气体总物质的量,即ρ(前)=ρ(后),p (前)>p (后).反应B 反应前气体总物质的量等于反应后气体总物质的量,即ρ(前)=ρ(后),p (前)=p (后)(2)压强恒定:经分析三个化学反应可以看出,只有C 反应为气体体积增大的反应,即V (前)<V (后),再据ρ=mV,反应前后气体质量不变,体积增大,所以有ρ(前)>ρ(后).答案:(1)A B (2)C。
山东省节高三数学寒假作业天天练(第1天) 新人教版
第一节 集合与简易逻辑一. 选择题1命题“对任意的01,23≤+-∈x x R x ”的否定是( )A.不存在01,23≤+-∈x x R xB.存在01,23≥+-∈x x R xC.存在01,23>+-∈x x R xD. 对任意的01,23>+-∈x x R x2.已知==+∈==∈=N M y x R x N x y R y M 则}.2|{},|{222( )A .)}1,1(),1,1{(-B .{1}C .[0,1]D .]2,0[3.设集合{}23S x x =->,{}8T x a x a =<<+,ST =R ,则a 的取值范围是( ) A .31a -<<-B .31a --≤≤C .3a -≤或1a -≥D .3a <-或1a >-4. 满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a =,,,的集合M 的个数是( ) A .1B .2C .3D .4 5. 0a <是方程2210ax x ++=至少有一个负数根的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件6. 给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A .3B .2C .1D .07.若集合M ={0,l ,2},N ={(x ,y)|x -2y +1≥0且x -2y -1≤0,x ,y ∈M},则N 中元素的个数为A .9B .6C .4D .28.下列各小题中,p 是q 的充分必要条件的是①3:62:2+++=>-<m mx x y q m m p ;,或有两个不同的零点②()()()x f y q x f x f p ==-:1:;是偶函数 ③βαβαtan tan :cos cos :==q p ;④A C B C q A B A p U U ⊆=::;A.①②B.②③C.③④D. ①④二.填空题9.设集合U ={1,2,3,4,5},A ={2,4},B={3,4,5},C={3,4},则)()(C C B A U = .10.已知条件p:1≤x ≤4,条件q :|x -2|>1,则p 是⌝q 的___________________条件11.定义集合运算:A ⊙B ={z ︳z = xy (x+y ),x ∈A ,y ∈B },设集合A={0,1},B={2,3},则集合A ⊙B 的所有元素之和为_____________12.非空集合G 关于运算○+满足,①对任意a 、b G ∈,都有a+b G ∈;②存在G e ∈,使对一切G e ∈都有a ○+e=e ○+a=a ,则称G 关于运算○+的融洽集,现有下列集合和运算:(1)G={非负整数},○+整数的加法(2)G={偶数},○+整数的中法(3)G={平面向量},○+平面向量的加法(4)G={二次三项式},○+多项式加法其中为融洽集的为 (写出所有符合题意的序号)三.解答题13.(本小题满分12分)已知函数21)(-+=x x x f 的定义域是集合A ,函数])12(lg[)(22a a x a x x g +++-=的定义域是集合B.(1)求集合A 、B ;(2)若.,的取值范围求实数a B B A =14.(本小题满分12分)设p :不等式1|2|>-+m x x 的解集为R ;q :函数6)34()(23++++=x m mx x x f 在R上有极值.求使命题“p 且q ”为真的实数m 的取值范围.答案:1-8 CDABBCCD9.{}5,2 10.必要不充分 11.18 12.(1),(3)13.解:(1)1|{-≤=x x A 或}2>x ……………………2分a x x B <=|{或}1+>a x ……………………6分(2)由B B A = 得,B A ⊆……………………………………8分因此⎩⎨⎧≤+->211a a …………………………10分 11≤<-∴a∴实数a 的取值范围是(]1,1-……………………12分14.解:由m m x x m x m m x m x m x x 2|2|,)2(2)2(22|2|≥-+⎩⎨⎧<≥-=-+知, 由题意,.21,12,1|2|>>∴>-+m m m x x 即恒成立…………………………4分 又由函数6)34()(23++++=x m mx x x f 在R 上有极值,知03423)(2=+++='m mx x x f 有解,即△≥0. 由△= 0,得m =-1或m = 4.此时函数没有极值.由△>0,得m <-1或m >4.要使“p 且q ”为真命题,则 ……………………8分4,4121>⎪⎩⎪⎨⎧>-<>m m m m 解得或,m ∴的取值范围为).,4(+∞…………………………12分。
高三数学天天练1 集合的概念与运算
天天练1 集合的概念与运算一、选择题1.(·银川质检)设全集U ={x ∈N *|x ≤5},A ={1,4},B ={4,5},则∁U (A ∩B )=( )A .{1,2,3,5}B .{1,2,4,5}C .{1,3,4,5}D .{2,3,4,5}2.(·贵阳监测)如图,全集I =R ,集合A ={x |0<x <2},B ={x |1<x <3},则图中阴影部分所表示的集合为( )A .{x |1<x <2}B .{x |0<x <3}C .{x |x <3}D .{x |x >0}3.(·太原五中检测)已知集合A ={x ∈Z |x 2-2x -3≤0},B ={y |y=2x },则A ∩B 子集的个数为( )A .10B .16C .8D .74.(·赣州摸底)已知集合A ={x |x 2-x -2≤0,x ∈R },B ={x |lg(x+1)<1,x ∈Z },则A ∩B =( )A .(0,2)B .[0,2]C .{0,2}D .{0,1,2}5.(·长沙一模)记集合A ={x |x -a >0},B ={y |y =sin x ,x ∈R },若0∈A ∩B ,则a 的取值范围是( )A .(-∞,0)B .(-∞,0]C .[0,+∞)D .(0,+∞)6.(·河南适应性测试)已知集合A ={0,1,2},B ={y |y =2x ,x ∈A },则A ∪B 中的元素个数为( )A .6B .5C .4D .37.(·衡水中学一调)已知全集U =R ,集合A ={x |x 2-x -6≤0},B ={x |x +1x -4>0},那么集合A ∩(∁U B )=( ) A .{x |-2≤x <4} B .{x |x ≤3或x ≥4}C .{x |-2≤x <-1}D .{x |-1≤x ≤3}8.(·太原二模)已知集合A ={x |log 2(x -1)<2},B ={x |a <x <6},且A ∩B ={x |2<x <b },则a +b =( )天天练1集合的概念与运算1.A由于全集U={x∈N*|x≤5}={1,2,3,4,5},A={1,4},B={4,5},A∩B={4},则∁U(A∩B)={1,2,3,5},故选A.2.B由Venn图可知,阴影部分表示的是集合A∪B={x|0<x<3},故选B.3.C因为A={-1,0,1,2,3},B=(0,+∞),所以A∩B={1,2,3},其子集的个数为23=8,故选C.4.D由x2-x-2≤0得-1≤x≤2,所以A={x|-1≤x≤2}.由lg(x+1)<1,得0<x+1<10,解得-1<x<9,所以B={0,1,2,3,4,5,6,7,8},所以A∩B={0,1,2},故选D.5.A依题意得,0∈A,0-a>0,a<0,因此实数a的取值范围是(-∞,0),选A.6.C因为B={0,2,4},所以A∪B={0,1,2,4},元素个数为4,故选C.7.D依题意A={x|-2≤x≤3},B={x|x<-1或x>4},故∁U B ={x|-1≤x≤4},故A∩(∁U B)={x|-1≤x≤3},故选D.。
高三基础知识天天练1-1. 数学 数学doc人教版
第1模块 第1节[知能演练]一、选择题1.满足条件M ∪{1}={1,2,3}的集合M 的个数是( )A .1B .2C .3D .4解析:满足条件M ∪{1}={1,2,3}的集合M 为{2,3},{1,2,3},共两个. 答案:B2.已知集合P ={(x ,y )||x |+|y |=1},Q ={(x ,y )|x 2+y 2≤1},则( )A .P ⊆QB .P =QC .P ⊇QD .P ∩Q =Ø 答案:A3.若集合A ={x |2a +1≤x ≤3a -5},B ={x |3≤x ≤22},则能使A ⊆B 成立的所有a 的集合是( )A .{a |1≤a ≤9}B .{a |6≤a ≤9}C .{a |a ≤9}D .Ø解析:若2a +1>3a -5,即a <6时,A =Ø⊆B ; 若2a +1=3a -5,即a =6时,A ={x |x =13}⊆B ; 若2a +1<3a -5,即a >6时,由A ⊆B 得⎩⎪⎨⎪⎧2a +1≥33a -5≤22,解得6<a ≤9.综上可得a ≤9. 答案:C4.已知集合A ={x |x <a },B ={x |1<x <2},且A ∪ (∁R B )=R ,则实数a 的取值范围是( )A .a ≤1B .a <1C .a ≥2D .a >2解析:∁R B =(-∞,1]∪[2,+∞),又A ∪(∁R B )=R ,数轴上画图可得a ≥2,故选C. 答案:C 二、填空题5.若集合{(x ,y )|x +y -2=0且x -2y +4=0} {(x ,y )|y =3x +b },则b =________.解析:由⎩⎪⎨⎪⎧ x +y -2=0,x -2y +4=0.⇒⎩⎪⎨⎪⎧x =0,y =2.点(0,2)在y =3x +b 上,∴b =2.答案:26.对于集合M 、N 定义M -N ={x |x ∈M ,且x ∉N },M ⊕N =(M -N )∪(N -M ),设A ={t |t =x 2-3x ,x ∈R },B ={x |y =lg(-x )},则A ⊕B =________.解析:∵t =x 2-3x =(x -32)2-94≥-94,∴A ={t |t ≥-94}.又由B 可知y =lg(-x ),则-x >0,得x <0, ∴B ={x |x <0},∴A -B ={x |x ≥0},B -A ={x |x <-94},∴A ⊕B =(-∞,-94)∪[0,+∞).答案:(-∞,-94)∪[0,+∞)三、解答题7.已知集合A ={x |x 2-5x +6=0},B ={x |mx +1=0},且B ⊆A ,求实数m 的值组成的集合.解:A ={x |(x -2)(x -3)=0}={2,3}, 若m =0,B =Ø⊆A ;若m ≠0,B ={x |x =-1m},由B ⊆A 得-1m =2,或-1m =3,解得m =-12,m =-13, 因此实数m 的值组成的集合是{0,-12,-13}.8.已知集合E ={x ||x -1|≥m },F ={x |10x +6>1}.(1)若m =3,求E ∩F ;(2)若E ∪F =R ,求实数m 的取值范围; (3)若E ∩F =Ø,求实数m 的取值范围. 解:(1)当m =3时,E ={x ||x -1|≥3}={x |x ≤-2或x ≥4},F ={x |10x +6>1}={x |x -4x +6<0}={x |-6<x <4}.∴E ∩F ={x |x ≤-2或x ≥4}∩{x |-6<x <4} ={x |-6<x ≤-2}. (2)∵E ={x ||x -1|≥m },①m ≤0时,E =R ,E ∪F =R ,满足条件. ②m >0时,E ={x |x ≤1-m 或x ≥1+m }, 由E ∪F =R ,F ={x |-6<x <4},∴⎩⎪⎨⎪⎧ 1-m ≥-6,1+m ≤4,m >0,解得0<m ≤3.∴综上,实数m 的取值范围为(-∞,3]. (3)∵E ={x ||x -1|≥m },①m ≤0时,E =R ,E ∩F =F ≠Ø,不满足条件.②m >0时,E ={x |x ≤1-m 或x ≥1+m },由E ∩F =Ø,F ={x |-6<x <4}, ∴⎩⎪⎨⎪⎧1-m ≤-6,1+m ≥4,m >0,解得m ≥7.∴综上,实数m 的取值范围为[7,+∞).[高考·模拟·预测]1.已知全集U =R ,集合M ={x |-2≤x -1≤2}和N ={x |x =2k -1,k =1,2,…}的关系的韦恩(Venn)图如下图所示,则阴影部分所示的集合的元素共有( )A .3个B .2个C .1个D .无穷多个解析:∵阴影部分M ∩N ={x |-2≤x -1≤2}∩{x |x =2k -1,k =1,2,…}={x |-1≤x ≤3}∩{x |x =2k -1,k =1,2,…}={1,3},∴阴影部分所示的集合的元素共有2个,故选B.答案:B 2.已知全集U =R ,则正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的韦恩(Venn)图是( )解析:N ={x |x 2+x =0}={-1,0},而M ={-1,0,1},故N M ,所以选B. 答案:B3.设全集U =A ∪B ={x ∈N *|lg x <1}.若A ∩(∁U B )={m |m =2n +1,n =0,1,2,3,4},则集合B =______________.解析:由题意得U =A ∪B ={1,2,3,4,5,6,7,8,9},A ∩(∁U B )={1,3,5,7,9},所以B ={2,4,6,8}. 答案:{2,4,6,8}4.设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a +b 、a -b 、ab 、ab∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集F ={a +b 2|a ,b ∈Q }也是数域,有下列命题:①整数集是数域;②若有理数集Q ⊆M ,则数集M 必为数域; ③数域必为无限集; ④存在无穷多个数域.其中正确命题的序号是________.(把你认为正确的命题的序号都填上)解析:对于整数集Z ,a =1,b =2时,a b =12∉Z ,故整数集不是数域,①错;对于满足Q ⊆M 的集合M =Q ∪{2},1+2∉M ,M 不是数域,②错;若P 是数域,则存在a ∈P 且a ≠0,依定义,2a,3a,4a …均是P 中的元素,故P 中有无数个无素,③正确;类似数集F ,{a +b 3|a ,b ∈Q },{a +b 5|a ,b ∈Q }等均是数域,④正确.答案:③④5.已知集合A ={x |(x -2)[x -(3a +1)]<0},B ={x |x -2ax -(a 2+1)<0}.(1)当a =2时,求A ∩B ;(2)求使B ⊆A 的实数a 的取值范围. 解:(1)当a =2时,A ={x |2<x <7},B ={x |4<x <5}. ∴A ∩B ={x |4<x <5}, (2)B ={x |2a <x <a 2+1},①当B =Ø时,2a ≥a 2+1,∴a =1, 此时A ={x |2<x <4},B ⊆A 符合题意.②若B ≠Ø,方程(x -2)[x -(3a +1)]=0的两根为x 1=2,x 2=3a +1. ∵B ≠Ø.∴A ≠Ø∴3a +1≠2,即a ≠13.当3a +1>2,即a >13时,⎩⎪⎨⎪⎧2a ≥2a 2+1≤3a +12a <a 2+1⇒⎩⎪⎨⎪⎧a ≥10≤a ≤3⇒1<a ≤3a ≠1.当3a +1<2,即a <13时,⎩⎪⎨⎪⎧ 2a ≥3a +1a 2+1≤2⇒⎩⎪⎨⎪⎧a ≤-1-1≤a ≤1⇒a =-1. ∴a 的取值范围为[1,3]∪{-1}.[备选精题]6.集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}. (1)若B ⊆A ,求实数m 的取值范围;(2)当x ∈Z 时,求A 的非空真子集的个数;(3)当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围. 解:(1)当m +1>2m -1,即m <2时,B =Ø满足B ⊆A . 当m +1≤2m -1,即m ≥2时,要使B ⊆A 成立, 需⎩⎪⎨⎪⎧m +1≥-22m -1≤5,可得2≤m ≤3, 综上,m 的取值范围是m ≤3.(2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5}, 所以A 的非空真子集个数为28-2=254.(3)因为x ∈R ,且A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},又没有元素x 使x ∈A 与x ∈B 同时成立.则①若B =Ø,即m +1>2m -1,得m <2时满足条件. ②若B ≠Ø,则要满足的条件是 ⎩⎪⎨⎪⎧ m +1≤2m -1m +1>5或⎩⎪⎨⎪⎧m +1≤2m -12m -1<-2,解得m >4. 综上,m 的取值范围是m <2或m >4.。
高三基础知识天天练3-1. 数学 数学doc人教版
第3模块 第1节[知能演练]一、选择题1.已知角α的终边过点(-1,2),则cos α的值为( )A .-55 B.255 C .-255 D .-12答案:A2.点P (tan2007°,cos2007°)位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限 解析:∵2007°=360°×6-153°, ∴2007°与-153°的终边相同, ∴2007°是第三象限角, ∴tan2007°>0,cos2007°<0. ∴P 点在第四象限,故选D. 答案:D3.已知角α的余弦线是单位长度的有向线段,那么角α的终边在( )A .x 轴上B .y 轴上C .直线y =x 上D .直线y =-x 上解析:由角α的余弦线长度为1分析可知,角α的终边与x 轴重合,故选A. 答案:A4.设a =sin(-1),b =cos(-1),c =tan(-1),则有( )A .a <b <cB .b <a <cC .c <a <bD .a <c <b解析:∵a =-sin1,b =cos1,c =-tan1,∴a <0,b >0,c <0.又∵sin1<tan1,∴-sin1>-tan1,∴c <a <b .故选C.答案:C 二、填空题5.点P 从(1,0)出发,沿单位圆x 2+y 2=1按逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为________.解析:由弧长公式l =|α|r ,l =2π3,r =1得,P 点按逆时针方向转过的角度为α=2π3,所以Q 点的坐标为(cos 2π3,sin 2π3),即(-12,32).答案:(-12,32)6.若角β的终边与60°角的终边相同,在[0°,360°)内,终边与角β3的终边相同的角为________________________.解析:∵β=k ·360°+60°,k ∈Z ,∴β3=k ·120°+20°,k ∈Z .又β3∈[0°,360°),∴0°≤k ·120°+20°<360°,k ∈Z ,∴-16≤k <176,∴k =0,1,2.此时得β3分别为20°,140°,260°.故在[0°,360°)内,与角β3终边相同的角为20°,140°,260°.答案:20°,140°,260° 三、解答题7.已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈(π2,π),求sin α,cos α,tan α的值.解:∵θ∈(π2,π),∴-1<cos θ<0,∴r =9cos 2θ+16cos 2θ=-5cos θ,故sin α=-45,cos α=35,tan α=-43.8.(1)确定tan(-3)cos8·tan5的符号;(2)确定lg(cos6-sin6)的符号.解:(1)∵-3,5,8分别是第三、第四、第二象限角, ∴tan(-3)>0,tan5<0,cos8<0,∴原式>0.(2)∵6为第四象限角,∴cos6>0,sin6<0,故cos6-sin6>0.∵(cos6-sin6)2=1-2sin6cos6=1-sin12>1(12是第四象限的角),∴cos6-sin6>1,∴lg(cos6-sin6)>0.[高考·模拟·预测]1.已知点P (sin 3π4,cos 3π4)落在角θ的终边上,且θ∈[0,2π),则θ的值为( )A.π4B.3π4C.5π4D.7π4解析:由sin 3π4>0,cos 3π4<0知角θ在第四象限,∵tan θ=cos3π4sin 3π4=-1,θ∈[0,2π),∴θ=7π4.答案:D2.已知sin α=45,cos α=35,则角2α所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限解法一:由sin α=45,cos α=35知2kπ+π4<α<2kπ+π2,∴4kπ+π2<2α<4kπ+π(k ∈Z ),角2α所在的象限是第二象限,选择B.解法二:由sin α=45,cos α=35易得sin2α=2425,cos2α=-725,∴角2α所在的象限是第二象限,选择B.答案:B3.若点A (x ,y )是300°角终边上异于原点的一点,则yx的值为________.解析:yx=tan300°=-tan60°=- 3.答案:- 34.若角α的终边落在射线y =-x (x ≥0)上,则sin α1-sin 2α+1-cos 2αcos α=________.解析:由定义知,sin α=-22,cos α=22,则原式=0.答案:05.借助单位圆解不等式组⎩⎪⎨⎪⎧sin x ≥02cos x -1>0.解:由⎩⎪⎨⎪⎧sin x ≥0,2cos x -1>0,即⎩⎪⎨⎪⎧sin x ≥0,cos x >12,分析正弦函数线和余弦函数线,如右图所示,由三角函数线可得x 满足的条件为 ⎩⎪⎨⎪⎧2kπ≤x ≤2kπ+π,2kπ-π3<x <2kπ+π3(k ∈Z ).此交集恰好为图形中的阴影交错部分,由数形结合可得2kπ≤x <2kπ+π3(k ∈Z ).[备选精题]6.在直角坐标系xOy 中,若角α的始边为x 轴的非负半轴,终边为射线l :y =22x (x ≥0).(1)求sin(α+π6)的值;(2)若点P 、Q 分别是角α始边、终边上的动点,且PQ =4,求△POQ 面积最大时,点P 、Q 的坐标.解:(1)由射线l 的方程为y =22x ,可得sin α=223,cos α=13,故sin(α+π6)=223×32+13×12=1+266. (2)设P (a,0),Q (b,22b )(a >0,b >0).在△POQ 中,因为PQ 2=(a -b )2+8b 2=16, 即16=a 2+9b 2-2ab ≥6ab -2ab =4ab , 所以ab ≤4.所以S △POQ =2ab ≤4 2.(当且仅当a =3b ,即a =23,b =233时取得等号).所以△POQ 面积最大时,点P ,Q 的坐标分别为P (23,0),Q (233,463).。
高三数学基础练习一 新课标 人教版
高三数学基础练习一 新课标 人教版一.填空选择部分1.若条件p :14x +≤,条件q :23x <<,则q ⌝是p ⌝的( )BA .充分不必要条件B .必要不充分条件C .充要条件D .既非充分条件也非必要条件 2.若函数()12-=x x f 的定义域是()[)5,21, ∞-,则其值域为( )D A.()0,∞- B.(]2,∞- C.⎥⎦⎤ ⎝⎛21,0 D.()1,0,22⎛⎤-∞ ⎥⎝⎦3.设函数y =f (x )的图象关于直线x =1对称,在x ≤1时,f (x )=(x +1)2-1,则x >1时f (x)等于( )BA f (x )=(x +3)2-1B f (x )=(x -3)2-1C f (x )=(x -3)2+1D f (x )=(x -1)2-14.已知定义域为(-1,1)的奇函数y =f (x )又是减函数,且f (a -3)+f (9-a 2)<0,则a 的取值范围是( )AA (22,3)B (3,10)C (22,4)D (-2,3)5. 垂直于直线2610x y -+=,且与曲线3231y x x =+-相切的直线方程是( )A A .320x y ++= B .320x y -+= C .320x y +-= D .320x y --=6. 设点P 是曲线y =x 3-3x +2上的任意一点,P 点处切线倾斜角为α,则角α的取值范围是______.),32[)2,0[πππ _____7. 把函数)3sin 3(cos 22x x y -=的图象适当变动,就可得到y =-sin3x 的图象,这种变动可以是( )DA 沿x 轴向右平移4π B 沿x 轴向左平移4π C 沿x 轴向右平移12π D 沿x 轴向左平移12π8.如图,函数)(x f y =的图象是中心在原点,焦点在x 轴上的椭圆的两段弧,则不等式x x f x f +-<)()(的解集为 ( )AA.{}22,02|≤<<<-x x x 或B.{}22,22|≤<-<≤-x x x 或C.⎭⎬⎫≤<⎩⎨⎧-<≤-222,222|x x x 或 D.{}0,22|≠<<-x x x 且9.在坐标平面上,不等式组⎩⎨⎧+≤-≥11||2x y x y 所表示的平面区域的面积为 3810.在等差数列{}n a 中,若4681012120a a a a a ++++=,则91113a a -的值为 ( ) C A .14 B .15 C .16 D .1711.已知数列{}n a 的各项均为正数,其前n 项和为n S ,若2{log }n a 是公差为-1的等差数列,且638S =,那么1a 的值是( )AA .421B .631C .821D .123112.二面角βα--l 为︒120,A 、B 是棱上两点,AC 、BD 分别在α、β内,l BD l AC ⊥⊥,,且AB = AC =BD =1,则CD 的长为 2 ;13.在正三棱锥S ABC -中,M ,N 分别是棱SC 、BC 的中点,且MN AM ⊥,若侧棱23SA =,则正三棱锥S ABC -外接球的表面积是( )CA .12πB .32πC .36πD .48π14.已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是( )DA .324+B .13-C .213+ D .13+ 15.将2n 个正整数2,3,2,1n 填入n n ⨯方格中,使其每行,每列,每条对角线上的数的和相等,这个正方形叫做n 阶幻方.记)(n f 为n 阶幻方对角线的和,如右图就是一个3阶幻方,可知,15)3(=f 则=)5(f ( )CA .63B .64C .65D .6616.已知直线01=-+by ax (b a ,不全为0)与圆5022=+y x 有公共点,且公共点的横、纵坐标均为整数,那么这样的直线有( )BA.66条B.72条C.74条D.78条17.从8名女生,4名男生中选出6名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法种数为( )A8 3 4 1 5 9 672A .4284C C ⋅B .3384C C ⋅C .612CD .4284A A ⋅ 18.已知8a x x ⎛⎫- ⎪⎝⎭展开式中的常数项为1 120,其中实数a 是常数,则展开式中各项系数的和为 1或83 19.定义运算a cad bc b d=-,复数z 满足11z i i i=+,则复数在的模为( )CA .1235 D .12-20.右图给出的是计算201614121+⋅⋅⋅+++的值的一个程序框图,其中判断框内应填入的条件是( )BA .i >10B .i <10C .i >20D .i <20。
高三基础知识天天练3-6. 数学 数学doc人教版
第3模块 第6节[知能演练]一、选择题1.若tan α=3,tan β=43,则tan(α-β)等于( )A .-3B .-13C .3D.13 解析:tan(α-β)=tan α-tan β1+tan αtan β=3-431+3×43=535=13.答案:D2.已知450°<α<540°,则12+1212+12cos2α的值是 ( )A .-sin α2B .cos α2C .sin α2D .-cos α2解析:原式=12+121+cos2α2=12-12cos α=⎪⎪sinα2. ∵450°<α<540°,∴225°<α2<270°.∴原式=-sin α2.答案:A3.等式|sin αcos α|+122α-cos 2α|=12成立的充要条件是( )A .α=kπ(k ∈Z )B .α=kπ2(k ∈Z ) C .α=kπ4(k ∈Z )D .α=kπ8(k ∈Z )解析:由题意知:原式=12|sin2α|+12|cos2α|=12∴|sin2α|+|cos2α|=1,∴1+2|sin2αcos2α|=1. |sin4α|=0,α=kπ4(k ∈Z ). 答案:C4.设M (cos πx 3+cos πx 5sin πx 3+sin πx5)(x ∈R )为坐标平面内一点,O 为坐标原点,记f (x )=|OM |,当x 变化时,函数f (x )的最小正周期是( )A .30πB .15πC .30D .15解析:f (x )=|OM | =2+2(cos π3x cos π5x +sin π3x sin π5x )=2+2cos(π3x -π5x )=2(1+cos 215πx )=2(1+2cos 2π15x -1)=4cos 2π15x=2|cos π15x |.所以其最小正周期T =ππ15=15.答案:D 二、填空题5.求值:cos 4π8+cos 43π8+cos 45π8+cos 47π8=________.解析:原式=2⎝⎛⎭⎫cos 4π8+cos 43π8=2⎝⎛⎭⎫cos 4π8+sin 4π8=2⎝⎛⎭⎫1-2sin 2π8cos 2π8 =2⎝⎛⎭⎫1-12sin 2π4=32. 答案:326.若锐角α、β满足(1+3tan α)(1+3tan β)=4,则α+β=________. 解析:由(1+3tan α)(1+3tan β)=4, 可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3.又α+β∈(0,π),∴α+β=π3.答案:π3三、解答题7.用tan α表示sin2α,cos2α. 解:sin2α=2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1,cos2α=cos 2α-sin 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2α1+tan 2α.8.已知0<α<π4,β为f (x )=cos ⎝⎛⎭⎫2x +π8的最小正周期,a =⎝⎛⎭⎫tan ⎝⎛⎭⎫α+14,-1,b =(cos α,2),且a·b =m ,求2cos 2α+sin2(α+β)cos α-sin α的值.解:因为β为f (x )=cos ⎝⎛⎭⎫2x +π8的最小正周期,故β=π.因a·b =cos αtan ⎝⎛⎭⎫α+14β-2=m , 故cos αtan ⎝⎛⎭⎫α+π4=m +2.由于0<α<π4,所以2cos 2α+sin2(α+β)cos α-sin α=2cos 2α+sin(2α+2π)cos α-sin α=2cos 2α+sin2αcos α-sin α=2cos α(cos α+sin α)cos α-sin α=2cos α·1+tan α1-tan α=2cos αtan ⎝⎛⎭⎫α+π4=4+2m .[高考·模拟·预测]1.函数f (x )=sin x -13-2cos x -2sin x(0≤x ≤2π)的值域为( )A .[-22,0] B .[-1,0] C .[-2,0]D .[-3,0]解析:f (x )=sin x -13-2cos x -2sin x=sin x -13-22sin(x +π4),此函数的最大值必为0,当x =0时,分子为-1,分母为1,此时函数值最小,最小值为-1,故选B.答案:B2.函数f (x )=(sin 2x +12009sin 2x )(cos 2x +12009cos 2x)的最小值是 ( )A.42009 B.22009(2010-1) C.22009D.22009(2009-1) 解析:f (x )=(2009sin 4x +1)(2009cos 4x +1)20092sin 2x cos 2x=20092sin 4x cos 4x +2009(sin 4x +cos 4x )+120092sin 2x cos 2x=20092sin 4x cos 4x +2009[(sin 2x +cos 2x )2-2sin 2x cos 2x ]+120092sin 2x cos 2x=sin 2x cos 2x +201020092sin 2x cos 2x -22009≥22009(2010-1). 答案:B3.若sin θ22cos θ2=0,则tan θ=________.解析:由sin θ2-2cos θ2=0得tan θ2=2,代入二倍角公式可得tan θ=2tanθ21-tan 2θ2=-43.答案:-434.俗话说“一石激起千层浪”,小时候在水上打“水漂”的游戏一定不会忘记吧.现在一个圆形波浪实验水池的中心已有两个振动源,在t 秒内,它们引发的水面波动可分别由函数y 1=sin t 和y 2=sin(t +2π3)来描述,当这两个振动源同时开始工作时,要使原本平静的水面保持平静,则需再增加一个振动源(假设不计其他因素,则水面波动由几个函数的和表达),请你写出这个新增振动源的函数解析式:________________.解析:因为y 1+y 2+y 3=sin t +sin(t +2π3)+y 3=sin t -12t +32cos t +y 3=0,所以y 3=sin(t +4π3)时符合题意.本题也可为y 3=sin(t -2π3)(答案不唯一). 答案:y 3=sin(t +4π3)(答案不唯一). 5.设函数f (x )=cos(2x +π3)+sin 2x .(Ⅰ)求函数f (x )的最大值和最小正周期;(Ⅱ)设A ,B ,C 为△ABC 的三个内角,若cos B =13f (C 2)=-14C 为锐角,求sin A .解:(Ⅰ)f (x )=cos2x cos π3-sin2x sin π3+1-cos2x2=12cos2x -32sin2x +12-12cos2x =12-32sin2x . 所以当2x =-π2+2kπ,即x =-π4+kπ(k ∈Z )时,f (x )取得最大值,[f (x )]最大值=1+32,f (x )的最小正周期T =2π2=π,故函数f (x )的最大值为1+32,最小正周期为π.(Ⅱ)由f (C 2)=-14,即12-32sin C =-14,解得sin C =32,又C 为锐角,所以C =π3由cos B =13求得sin B =223.因此sin A =sin[π-(B +C )]=sin(B +C ) =sin B cos C +cos B sin C =223×12+13×32=22+36. [备选精题]6.已知A ,B 是△ABC 的两个内角,向量a =(2cos A +B 2,sin A -B 2),若|a |=62.(1)证明:tan A tan B 为定值;(2)当tan C 取最大值时,求△ABC 的三个内角的大小.解:(1)由条件可知32=(62)2=|a |2=2cos 2A +B 2+sin 2A -B 2=1+cos(A +B )+1-cos(A -B )2,∴cos(A +B )=12cos(A -B ),∴3sin A sin B =cos A cos B ,∵A ,B 是△ABC 的两个内角,∴tan A tan B =13为定值.(2)tan C =-tan(A +B )=-tan A +tan B1-tan A tan B由(1)知tan A tan B =13,∴tan A >0,tan B >0,从而tan C =-32(tan A +tan B )≤-32·2·tan A tan B =-3, ∴取等号的条件是当且仅当tan A =tan B =33,即A =B =π6时,tan C 取得最大值,此时△ABC 的三个内角分别是π6,π6,2π3.。
高三基础知识天天练3-7. 数学 数学doc人教版
第3模块 第7节[知能演练]一、选择题1.在△ABC 中,a 2-c 2+b 2=ab ,则角C 为( )A .60°B .45°或135°C .120°D .30°解析:∵a 2-c 2+b 2=ab ,∴cos C =a 2+b 2-c 22ab =ab 2ab =12.又∵0°<C <180°,∴C =60°.答案:A2.在△ABC 中,A =120°,AB =5,BC =7,则sin Bsin C的值为 ( )A.85B.58C.53D.35解析:由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos A ,即72=52+AC 2-10AC ·cos120°,∴AC =3.由正弦定理得sin B sin C =AC AB =35.答案:D3.已知△ABC 的三边长分别为a ,b ,c ,且面积S △ABC =14(b 2+c 2-a 2),则A 等于( )A .45°B .30°C .120°D .15°解析:由S △ABC =14(b 2+c 2-a 2)=12bc sin A得sin A =b 2+c 2-a 22bc =cos A ,∴A =45°.答案:A4.在△ABC 中,BC =2,B =π3,若△ABC 的面积为32,则tan C 为( )A. 3 B .1 C.33D.32解析:由S △ABC =12BC ·BA sin B =32得BA =1,由余弦定理得AC 2=AB 2+BC 2-2AB ×BC cos B ,∴AC =3,∴△ABC 为直角三角形,其中A 为直角,∴tan C =AB AC =33.答案:C 二、填空题5.某人向正东方向走了x 千米,他右转150°,然后朝新方向走了3千米,结果他离出发点恰好3千米,那么x 的值是________.解析:如图所示,该问题转化为已知△ABC 中BC =3,AC =3,B =30°,求AB 的长.由正弦定理AC sin B =BC sin A 可求得角A ,进而可求出角C 再由AB sin C =ACsin B可求得AB ,即x . 答案:3或2 36.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,b =7,c =3,则B =________.解析:由余弦定理变形得cos B =a 2+c 2-b 22ac =1+3-72×1×3=-32.又∵B ∈(0,π),∴B =5π6.答案:5π6三、解答题7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,并且a 2=b (b +c ). (1)求证:A =2B ;(2)若a =3b ,判断△ABC 的形状. (1)证明:因为a 2=b (b +c ),即a 2=b 2+bc , 所以在△ABC 中,由余弦定理可得, cos B =a 2+c 2-b 22bc =c 2+bc 2ac=b +c 2a =a 22ab =a 2b =sin A2sin B, 所以sin A =sin2B ,∴A =2B 或A +2B =π,而当A +2B =π时有B =C 即b =c ,代回已知得a =2b ,此时a 2=b 2+c 2,故A =90°,而B =C =45°也即A =2B .故A =2B .(2)解:因为a =3b ,所以ab =3,由a 2=b (b +c )可得c =2b ,cos B =a 2+c 2-b 22ac =3b 2+4b 2-b 243b 2=32所以B =30°,A =2B =60°,C =90°. 所以△ABC 为直角三角形.8.已知a 、b 、c 是△ABC 的三边长,关于x 的方程ax 2-2c 2-b 2x -b =0(a >c >b )的两根之差的平方等于4,△ABC 的面积S =103,c =7. (1)求角C ; (2)求a ,b 的值.解:(1)设x 1、x 2为方程ax 2-2c 2-b 2x -b =0的两根,则x 1+x 2=2c 2-b 2a,x 1·x 2=-b a. ∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2 =4(c 2-b 2)a 2+4b a =4.∴a 2+b 2-c 2=ab .又cos C =a 2+b 2-c 22ab =ab 2ab =12,又∵C ∈(0°,180°),∴C =60°. (2)由S =12ab sin C =103,∴ab =40.①由余弦定理c 2=a 2+b 2-2ab cos C , 即c 2=(a +b )2-2ab (1+cos60°). ∴72=(a +b )2-2×40×(1+12).∴a +b =13.又∵a >b ② ∴由①②,得a =8,b =5.[高考·模拟·预测]1.△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且cos2B +3cos(A +C )+2=0,b =3,则c ∶sin C 等于( )A .3∶1 B.3∶1 C.2∶1D .2∶1解析:cos2B +3cos(A +C )+2=2cos 2B -3cos B +1=0,∴cos B =12或cos B =1(舍).∴B=π3.∴c sin C =b sin B =332=2.故选D. 答案:D2.△ABC 中,AB =3,AC =1,B =30°,则△ABC 的面积等于( )A.32B.34C.32或 3D.32或34解析:1sin30°=3sin C ,∴sin C =32.∴C =60°或120°. (1)当C =60°时,A =90°,∴BC =2,此时,S △ABC =32; (2)当C =120°时,A =30°,S △ABC =12×3×1×sin30°=34,故选D.答案:D3.在锐角△ABC 中,b =2,B =π3,sin2A +sin(A -C )-sin B =0,则△ABC 的面积为________.解析:sin2A +sin(A -C )-sin B =sin2A +sin(A -C )-sin(A +C )=sin2A -2sin C cos A =2cos A (sin A -sin C )=0,∵△ABC 是锐角三角形, ∴cos A ≠0.∴sin A =sin C ,即A =C . 又B =π3,∴△ABC 为正三角形.∴S =34×22= 3. 答案: 34.已知△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,若a =c =6+2且∠A =75°,则b =( )A .2B .4+2 3C .4-2 3D.6- 2解析:sin A =sin75°=sin(30°+45°)=sin30°cos45°+sin45°cos30°=2+64.由a =c =6+2可知,∠C =75°,所以∠B =30°,sin B =12.由正弦定理得b =asin A ·sin B=2+62+64×12=2,故选A. 答案:A5.在△ABC 中,BC =5,AC =3,sin C =2sin A . (1)求AB 的值; (2)求sin ⎝⎛⎭⎫2A -π4的值. 解:(1)在△ABC 中,根据正弦定理,AB sin C =BCsin A .于是AB =sin Csin A BC =2BC =2 5.(2)在△ABC 中,根据余弦定理得 cos A =AB 2+AC 2-BC 22AB ·AC =255.于是sin A =1-cos 2A =55. 从而sin2A =2sin A cos A =45,cos2A =cos 2A -sin 2A =35.所以sin ⎝⎛⎫2A -π4=sin2A cos π4-cos2A sin π4=210. [备选精题]6.已知函数f (x )=2sin x cos 2φ2+cos x sin φ-sin x (0<φ<π)在x =π处取最小值.(1)求φ的值;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边.已知a =1,b =2,f (A )=32,求角C .解:(1)f (x )=2sin x 1+cos φ2+cos x sin φ-sin x=sin x +sin x cos φ+cos x sin φ-sin x =sin x cos φ+cos x sin φ=sin(x +φ). 因为f (x )在x =π时取最小值. 所以sin(π+φ)=-1,故sin φ=1. 又0<φ<π,所以φ=π2.(2)由(1)知f (x )=sin ⎝⎛⎭⎫x +π2=cos x .因为f (A )=cos A =32,且A 为△ABC 的内角, 所以A =π6.由正弦定理得sin B =b sin A a =22.又b >a ,所以B =π4或B =3π4.当B =π4时,C =π-A -B =π-π6-π4=7π12,当B =3π4时,C =π-A -B =π-π6-3π4=π12.综上所述,C =7π12或C =π12.。
高三数学天天练(1) 文 新人教A版
汉台中学2013届文科数学综合考练一(时间:120分钟 满分:150分)一﹑选择题(5×10=50分)1..设集合M={-1,0,1},N={x|x 2=x},则M ∩N=( )A.{-1,0,1}B.{0,1}C.{1}D.{0}2.命题“若α=4π,则tan α=1”的逆否命题是( ) A.若α≠4π,则tan α≠1 B. 若α=4π,则tan α≠1C. 若tan α≠1,则α≠4πD. 若tan α≠1,则α=4π3.在集合{a ,b ,c ,d}上定义两种运算⊕和⊗如下:那么d ⊗()a c ⊕=( )A .aB .bC .cD .d4.若一个几何体的三视图如图所示,则此几何体的 体积为( )A . B.5 C.4 D. 925.函数y=12x 2-㏑x 的单调递减区间为 A (-1,1] B (0,1] C.[1,+∞) D (0,+∞)6.已知α,β的终边均在第一象限,则“α>β”是“sin α>sin β”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分又不必要条件7.函数1()lg(1)1f x x x=++-的定义域是( )A .(,1)-∞-B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞)8.已知函数3log ,0()2,0x x x f x x >⎧=⎨≤⎩,则1(())9f f =( )A .4B .14C .-4D .-149.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=( ) A . 45-B .35-C .35 D .4510.已知m<-2,点(m-1,y 1),(m,y 2),(m+1,y 3)都在二次函数x x y 22-=的图像上,则( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 1<y 3<y 2D .y 2<y 1<y 3二﹑填空题(5×5=25分)11.设()f x 是定义在R 上的奇函数,当x ≤0时,()f x =22x x -,则(1)f = 12.在ABC ∆中,若3a =,3b =,3A π∠=,则C ∠的大小为13.函数y=x 2-2ax-3在(2,+∞)上单调递增,则a 的取值范围是 14.函数2()2cos sin 2f x x x =+的最小值是15.【本题A 、B 、C 三个选答题,请考生任选一题作答,如果多做,则按所做的第一题计分】 (A 不等式选做题)若存在实数x 使|||1|3x a x -+-≤成立, 则实数a 的取值范围是 .(B 几何证明选做题)如图,在圆O 中,直径AB 与弦CD 垂直,垂足为E ,EF DB ⊥,垂足为F ,若6AB =,1AE =,则DF DB ⋅= . 相交的(C 坐标系与参数方程)直线2cos 1ρθ=与圆2cos ρθ=弦长为 . 三﹑解答题(共75分): 16.(12分)已知函数xx x x x f sin 2sin )cos (sin )(-=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1模块 第1节[知能演练]一、选择题1.满足条件M ∪{1}={1,2,3}的集合M 的个数是( )A .1B .2C .3D .4解析:满足条件M ∪{1}={1,2,3}的集合M 为{2,3},{1,2,3},共两个. 答案:B2.已知集合P ={(x ,y )||x |+|y |=1},Q ={(x ,y )|x 2+y 2≤1},则( )A .P ⊆QB .P =QC .P ⊇QD .P ∩Q =Ø 答案:A3.若集合A ={x |2a +1≤x ≤3a -5},B ={x |3≤x ≤22},则能使A ⊆B 成立的所有a 的集合是( )A .{a |1≤a ≤9}B .{a |6≤a ≤9}C .{a |a ≤9}D .Ø解析:若2a +1>3a -5,即a <6时,A =Ø⊆B ; 若2a +1=3a -5,即a =6时,A ={x |x =13}⊆B ; 若2a +1<3a -5,即a >6时,由A ⊆B 得⎩⎪⎨⎪⎧2a +1≥33a -5≤22,解得6<a ≤9.综上可得a ≤9. 答案:C4.已知集合A ={x |x <a },B ={x |1<x <2},且A ∪ (∁R B )=R ,则实数a 的取值范围是( )A .a ≤1B .a <1C .a ≥2D .a >2解析:∁R B =(-∞,1]∪[2,+∞),又A ∪(∁R B )=R ,数轴上画图可得a ≥2,故选C. 答案:C 二、填空题5.若集合{(x ,y )|x +y -2=0且x -2y +4=0} {(x ,y )|y =3x +b },则b =________.解析:由⎩⎪⎨⎪⎧ x +y -2=0,x -2y +4=0.⇒⎩⎪⎨⎪⎧x =0,y =2.点(0,2)在y =3x +b 上,∴b =2.答案:26.对于集合M 、N 定义M -N ={x |x ∈M ,且x ∉N },M ⊕N =(M -N )∪(N -M ),设A ={t |t =x 2-3x ,x ∈R },B ={x |y =lg(-x )},则A ⊕B =________.解析:∵t =x 2-3x =(x -32)2-94≥-94,∴A ={t |t ≥-94}.又由B 可知y =lg(-x ),则-x >0,得x <0, ∴B ={x |x <0},∴A -B ={x |x ≥0},B -A ={x |x <-94},∴A ⊕B =(-∞,-94)∪[0,+∞).答案:(-∞,-94)∪[0,+∞)三、解答题7.已知集合A ={x |x 2-5x +6=0},B ={x |mx +1=0},且B ⊆A ,求实数m 的值组成的集合.解:A ={x |(x -2)(x -3)=0}={2,3}, 若m =0,B =Ø⊆A ;若m ≠0,B ={x |x =-1m},由B ⊆A 得-1m =2,或-1m =3,解得m =-12,m =-13, 因此实数m 的值组成的集合是{0,-12,-13}.8.已知集合E ={x ||x -1|≥m },F ={x |10x +6>1}.(1)若m =3,求E ∩F ;(2)若E ∪F =R ,求实数m 的取值范围; (3)若E ∩F =Ø,求实数m 的取值范围. 解:(1)当m =3时,E ={x ||x -1|≥3}={x |x ≤-2或x ≥4},F ={x |10x +6>1}={x |x -4x +6<0}={x |-6<x <4}.∴E ∩F ={x |x ≤-2或x ≥4}∩{x |-6<x <4} ={x |-6<x ≤-2}. (2)∵E ={x ||x -1|≥m },①m ≤0时,E =R ,E ∪F =R ,满足条件. ②m >0时,E ={x |x ≤1-m 或x ≥1+m }, 由E ∪F =R ,F ={x |-6<x <4},∴⎩⎪⎨⎪⎧ 1-m ≥-6,1+m ≤4,m >0,解得0<m ≤3.∴综上,实数m 的取值范围为(-∞,3]. (3)∵E ={x ||x -1|≥m },①m ≤0时,E =R ,E ∩F =F ≠Ø,不满足条件.②m >0时,E ={x |x ≤1-m 或x ≥1+m },由E ∩F =Ø,F ={x |-6<x <4}, ∴⎩⎪⎨⎪⎧1-m ≤-6,1+m ≥4,m >0,解得m ≥7.∴综上,实数m 的取值范围为[7,+∞).[高考·模拟·预测]1.已知全集U =R ,集合M ={x |-2≤x -1≤2}和N ={x |x =2k -1,k =1,2,…}的关系的韦恩(Venn)图如下图所示,则阴影部分所示的集合的元素共有( )A .3个B .2个C .1个D .无穷多个解析:∵阴影部分M ∩N ={x |-2≤x -1≤2}∩{x |x =2k -1,k =1,2,…}={x |-1≤x ≤3}∩{x |x =2k -1,k =1,2,…}={1,3},∴阴影部分所示的集合的元素共有2个,故选B.答案:B 2.已知全集U =R ,则正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的韦恩(Venn)图是( )解析:N ={x |x 2+x =0}={-1,0},而M ={-1,0,1},故N M ,所以选B. 答案:B3.设全集U =A ∪B ={x ∈N *|lg x <1}.若A ∩(∁U B )={m |m =2n +1,n =0,1,2,3,4},则集合B =______________.解析:由题意得U =A ∪B ={1,2,3,4,5,6,7,8,9},A ∩(∁U B )={1,3,5,7,9},所以B ={2,4,6,8}. 答案:{2,4,6,8}4.设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a +b 、a -b 、ab 、ab∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集F ={a +b 2|a ,b ∈Q }也是数域,有下列命题:①整数集是数域;②若有理数集Q ⊆M ,则数集M 必为数域; ③数域必为无限集; ④存在无穷多个数域.其中正确命题的序号是________.(把你认为正确的命题的序号都填上)解析:对于整数集Z ,a =1,b =2时,a b =12∉Z ,故整数集不是数域,①错;对于满足Q ⊆M 的集合M =Q ∪{2},1+2∉M ,M 不是数域,②错;若P 是数域,则存在a ∈P 且a ≠0,依定义,2a,3a,4a …均是P 中的元素,故P 中有无数个无素,③正确;类似数集F ,{a +b 3|a ,b ∈Q },{a +b 5|a ,b ∈Q }等均是数域,④正确.答案:③④5.已知集合A ={x |(x -2)[x -(3a +1)]<0},B ={x |x -2ax -(a 2+1)<0}.(1)当a =2时,求A ∩B ;(2)求使B ⊆A 的实数a 的取值范围. 解:(1)当a =2时,A ={x |2<x <7},B ={x |4<x <5}. ∴A ∩B ={x |4<x <5}, (2)B ={x |2a <x <a 2+1},①当B =Ø时,2a ≥a 2+1,∴a =1, 此时A ={x |2<x <4},B ⊆A 符合题意.②若B ≠Ø,方程(x -2)[x -(3a +1)]=0的两根为x 1=2,x 2=3a +1. ∵B ≠Ø.∴A ≠Ø∴3a +1≠2,即a ≠13.当3a +1>2,即a >13时,⎩⎪⎨⎪⎧2a ≥2a 2+1≤3a +12a <a 2+1⇒⎩⎪⎨⎪⎧a ≥10≤a ≤3⇒1<a ≤3a ≠1.当3a +1<2,即a <13时,⎩⎪⎨⎪⎧ 2a ≥3a +1a 2+1≤2⇒⎩⎪⎨⎪⎧a ≤-1-1≤a ≤1⇒a =-1. ∴a 的取值范围为[1,3]∪{-1}.[备选精题]6.集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}. (1)若B ⊆A ,求实数m 的取值范围;(2)当x ∈Z 时,求A 的非空真子集的个数;(3)当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围. 解:(1)当m +1>2m -1,即m <2时,B =Ø满足B ⊆A . 当m +1≤2m -1,即m ≥2时,要使B ⊆A 成立, 需⎩⎪⎨⎪⎧m +1≥-22m -1≤5,可得2≤m ≤3, 综上,m 的取值范围是m ≤3.(2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5}, 所以A 的非空真子集个数为28-2=254.(3)因为x ∈R ,且A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},又没有元素x 使x ∈A 与x ∈B 同时成立.则①若B =Ø,即m +1>2m -1,得m <2时满足条件. ②若B ≠Ø,则要满足的条件是 ⎩⎪⎨⎪⎧ m +1≤2m -1m +1>5或⎩⎪⎨⎪⎧m +1≤2m -12m -1<-2,解得m >4. 综上,m 的取值范围是m <2或m >4.。