测试装置静态特性
工程测试技术试题

1.测试装置的静态特性指标主要有灵敏度、线性度、回差、精确度一阶系统的动态参数是时间常数τ,二阶系统的动态参数是时间常数τ和阻尼比ξ;2测试装置的幅频特性描述的是输出信号与输入信号幅值比随输入信号频率变化的关系, 相频特性描述的是输出信号与输入信号相位差随输入信号频率变化的关;2.表征测试装置动态特性的频率响应特性应包括_幅频特性,和_相频特性;3.将信号xt=6sin2t输入时间常数τ= 的一阶装置,则稳态输出的幅值Y0= ,相位滞后φ0=_____,输出信号yt= ;︒-︒当测量较小应变值时,应选用根据压阻效应工作t4545)的半导体应变片,而测量大应变值时应选用根据电阻应变效应工作的金属电阻应变片;4.常用的应变片有半导体与金属丝两大类;对于金属电阻应变片来说:S=1+2μ,而对于半导体应变片来说 S=πLE ;前一种应变片的灵敏度比后一种低5.金属电阻应变片的电阻相对变化主要是由于电阻丝的几何尺寸变化产生的;6.差动变压器式传感器工作时,如果铁芯做一定频率的往复运动,其输出电压是调制波;7.差动变压器式位移传感器是将被测位移量的变化转换成线圈_互感_____系数的变化,两个次级线圈要求_反向____串接;11交流电桥的平衡条件为相对桥臂阻抗之模的乘积相等和阻抗角和相等 ,因此,当桥路相邻两臂为电阻时,则另外两个桥臂应接入电阻性质的元件才能平衡;12自感式传感器通过改变气隙、面积和有效线圈匝数从而改变线圈的自感量,可将该类传感器分为变气隙式自感式传感器、变面积式自感传感器和螺管式自感传感器 ;13压电传感器在使用电荷放大器时,其输出电压几乎不受电缆长度变化的影响;14压电传感器中的压电片并联时可提高电荷灵敏度,适用于测量缓变信号和以电荷为输出量的场合;而串联时可提高电压灵敏度,适用于以电压为输出量的场合;15压电传感器在使用前置放大器时,连接电缆长度的改变,测量系统的灵敏度也将发生变化;16压电式传感器是双向可逆型换能器,即可将机械能转换为电能,这是由于压电效应;也可将电能转换为机械能,这是根据逆压电效应;8.压电传感器前置放大器的作用是把传感器输入的高阻抗变为低阻抗输出和把传感器的微弱信号放大9.周期信号的频谱是离散的,非周期信号的频谱是连续的;非周期信号的频谱可以借助于数学工具傅立叶变换而得到;10.在非电量的电测技术中,总是将被测的物理量转换为___电_____信号;11.组成热电偶的条件是两电极材料不同和两电极有温度差 ;12.测试系统的特性可分为静态特性和动态特性;13.能用确切数学表达式表达的信号称为确定性信号,不能用确切数学表达式表达的信号称为随机信号;14.描述测试系统动态特性的数学模型有微分方程和频率响应函数 ;15.附加传感器质量将使原被测系统的固有频率减小增大、减小、不变;16.温度引起电阻应变片阻值变化的原因有两个,其一电阻温度效应 ,其二线膨胀系数不同 ;17.均方差表示信号的波动量 ,方差表示信号的绕均值波动的程度 ;18.测试系统不失真条件是幅频特性为常数、相频特性为过原点的负方向斜线 ;19.常用的温度传感器有热电偶、电阻温度计等;20.利用霍尔元件可以测量位移和转速等运动量;21.单位脉冲的频谱是均匀谱 ,它在整个频率范围内具有幅值相等 ;22.线性系统具有频率保持性,即系统输入一正弦信号,其稳态输出的幅值和相位一般会发生变化;23.差动电桥可提高灵敏度 ,改善非线性 ,进行温度补偿;24.为补偿温度变化给应变测量带来的误差,主应变片与补偿应变片应接相邻桥臂;25.一般将控制高频振荡的缓变信号称为调制信号 ,载送缓变信号的高频振荡信号称为载波 ,经过调制的高频震荡信号称为已调制波 ;判断1. 周期信号的频谱必定是离散的;2. 灵敏度指输出增量与输入增量的比值,又称放大倍数;X3. 传递函数表征系统的传递特性,并反映其物理结构;因此,凡传递函数相同的系统其物理结构亦相同;X4. 变间隙式电感传感器,只要满足δ<<δo的条件,则灵敏度可视为常数;5. 用差动变压器测量位移时,根据其输出特性可辨别被测位移的方向;X6.莫尔条纹的间距B随光栅刻度线夹角θ增大而减小;7. 测量小应变时,应选择灵敏度高的金属丝应变片,测量大应变时,应选用灵敏度低的半导体应变片;X8.霍尔元件包括两个霍尔电极和两个激励电极;9. 在光的照射下材料的电阻率发生改变的现象称为外光电效应;X10. 采用热电偶冷端恒温法进行冷端温度补偿,只能将冷端置于冰水混合的容器中;X11. 非周期信号的频谱是离散谱;X12. 随机信号的概率密度函数是表示信号的幅值落在指定区间的概率;13.为提高测试精度,传感器灵敏度越高越好;X14. 依靠被测对象输入能量使之工作的传感器称为能量转换型传感器;X15. 根据压电效应,在压电材料的任何一个表面的压力均会在相应表面上产生电荷;X16. 由同一种材料构成热电偶即使两端温度不等也不会形成电势;17. 若将四个承受应力的应变片作为全桥四臂,则电桥输出电压一定比仅用一个应变片大四倍;X18. 对某常系数线性系统输入周期信号,则其稳态输出信号将保持频率、幅值和相位不变;X19. 任何周期信号都可以由不同频率的正弦或余弦信号迭加而成;20. 一个信号不能在时域和频域上都是有限的;21. 当信号在时间尺度上压缩时,其频谱频带加宽,幅值增高;X22. 线性定常系统中,当初始条件为零时,系统输出量与输入量之比的拉氏变换称为传递函数;X23. 莫尔条纹有位移放大作用,可以通过莫尔条纹进行脉冲计数来测量微小位移;24. 同一个传递函数可表征多个完全不同的物理系统,因此不同物理系统可能会有相似传递特性;X25. 一阶系统时间常数和二阶系统固有频率越小越好;26.调幅波是频率不变而幅值发生变化的已调波;27. 相敏检波器是一种能鉴别信号相位和极性而不能放大信号的检波器;28. 频率保持性是指测试系统的输出信号频率总等于输入信号的频率;X29. 测试装置的灵敏度越高,其测量范围就越大;30. 一阶测试系统的时间常数越小越好;X31. 动态特征好的测试系统应具有很短的瞬态响应时间和很窄的频率响应特征;32.线性定常系统,初始条件为零时,系统输出量的拉氏变换与输入量的拉氏变换之比称为传递函数;33. 时间常数表征一阶系统的惯性,是过渡过程长短的度量;34. 用常系数微分方程描述的系统为线性系统;00000傅里叶级数中的系数表示谐波分量的振幅_;1.准周期信号的频谱是__.离散的_________;2.如果一个信号的频谱是离散的,则该信号的频率成份是有限的或无限的______;3.时域信号使其变化速度减慢,则低频成分__增加____;概率密度函数是_.幅值_____域上来描述随机信号的;4.二阶系统的阻尼比越小,则阶跃响应的超调量__越大_________;5.幅值解调过程中,相敏检波器的作用是__判断极性和提取已调波的幅值信息_________;6.在非电量的电测技术中,总是将被测的物理量转换为__电 ______信号;7.输出信号与输入信号的相位差随频率变化的关系称___相频特征 _____; 测试装置的脉冲响应函数与它的频率响应函数的关系为__.傅氏变换对______;8.9.的灵敏度;11.高频反射式涡流传感器是基于涡电流和集肤效应来实现信号的感受和变换的;,,14.;15.,这;,18.输出电压几乎不受联接19.,,则应该增大加速度计固有频率,则应减小加速度计固有频率,可以增大质量块的质量或者减小弹簧的刚度,此时灵敏度 ;23.测量应变所用电桥特性是电桥的和差特性 ;为提高电桥灵敏度,极性相同的应变片应该接于相对臂,极性向反的应变片应接于相邻臂;24.由测量仪器本身结构或原理引起的误差称为系统误差;25.能完成接受和实现信号转换的装置称为传感器 ;26.对某二阶系统输入周期信号,则其输出信号将保持频率不变,幅值、相位改变 ;27.减小随机误差影响的主要办法是增加测量次数 ;28.低通滤波器的作用是滤除高频信号 ;29.半导体应变片是根据压阻效应原理工作的;30.压电式传感器属于发电型传感器;31.采用直流电桥进行测量时,每一桥臂增加相同的应变片数,则电桥的测量精度不变 ;32.用某一调制信号xt=Acos40pt+Bcos400pt,调制载波信号yt=Ccos4000pt,则调制波的频率宽为 2000-200~2000+200; ;33.灵敏度始终是常数的传感器是变面积式自感传感器和电阻应变片 ;计量光栅测量位移时,采用细分技术是为了提高分辨率34.描述周期信号的数学工具是傅立叶级数,描述非周期信号的数学工具是傅立叶变换 ;35.将信号在时域平移,则在频域中信号将会仅有相移 ;36.金属丝应变片在测量某一构件的应变时,其电阻变化主要由金属丝几何尺寸变化来决定;为什么通常二阶系统的阻尼比ζ≈左右频域:在一定误差范围下,ζ≈时系统可测频带范围宽;时域:ζ≈时,当ω0越大,响应时间越短;何为调制、解调调制与解调的目的是什么调制就是用调制信号控制载波信号,让后者的某一特征参数按前者变化;解调就是从已经调制的信号中提取反映被测量值的测量信号;调制的目的是使缓变信号便于放大和传输;解调的目的是恢复原信号;简述系统不失真测试的条件时域和频域及其物理意义;时域:yt=kxt-t0;物理意义:系统的输出波形与输入信号的波形完全相似,保留了原信号的全部特征信息;输出波形与输入信号的波形只是幅值放大了k倍,在时间上延迟了t0;频域:Aω=k=常数,φω=-ωt0;物理意义:幅频特性在xt频谱范围内恒为常数,即输入信号各频率成分幅值通过此系统所乘系数相同,幅频特性\有无限宽通频带;相频特性是通过原点向负方向发展并与ω成线性关系的直线,即输入信号中各频率成分相位角通过此系统时成与频率ω成正比的滞后移动,滞后时间都相同;试说明为什么不能用压电式传感器测量变化比较缓慢的信号由于传感器的内阻及后续测量电路输入电阻Ri 非无限大,电路将按指数规律放电,造成测量误差,电荷泄漏使得利用压电传感器测量静态或准静态量非常困难;通常压电传感器适宜作动态测量,动态测量时电荷量可以不断得到补充;简述测试系统的静态特性指标;a灵敏度:若系统的输入x增量△x,引起输出y发生变化△y时,定义灵敏度S为: S=△y/△xb线性度:对测试系统输入输出线性关系的一种度量;c回程误差:描述系统的输出与输入变化方向有关的特性;d重复性:衡量测量结果分散性的指标,即随机误差大小的指标;e精度:评定测试系统产生的测量误差大小的指标;f 稳定性和漂移:系统在一定工作条件下,当输入量不变时,输出量随时间变化的程度;g 分辨力率:测试装置分辨输入量微小变化的能力;h 可靠性:评定测试装置无故障工作时间长短的指标;分别列举位移、温度、转速测量传感器各一种并简述其原理;位移传感器:变气隙式自感传感器——电磁感应原理;温度传感器:热电偶——热电效应;转速测量传感器:霍尔式转速测量传感器——霍尔效应;测试系统的基本特性是什么静态特性:灵敏度、线性度、回程误差、重复性、精度、稳定性和漂移、分辨力率、可靠性等;动态特性负载特性抗干扰特性简述常用温度测试方法及相应传感器原理;接触式测温法:膨胀式:根据热胀冷缩原理设计,如液体、气体和金属膨胀式温度计;电阻式:根据电阻温度效应设计,如电阻式、半导体温度计;热电偶:根据热电效应设计;非接触式测温法:基于热辐射效应,如红外式温度计;一阶系统和二阶系统主要涉及哪些动态特性参数这些动态特性参数的取值对系统性能有何影响一般采用怎样的取值原则一阶系统:时间常数τ;时间常数τ决定着一阶系统适用的频率范围,τ越小测试系统的动态范围越宽,反之,τ越大则系统的动态范围就越小;为了减小一阶系统的稳态响应动态误差,增大工作频率范围,应尽可能采用时间常数τ小的测试系统;二阶系统:阻尼比ξ、固有频率ω0;二阶系统幅频特性曲线是否出现峰值取决于系统的阻尼比ξ的大小;当二阶系统的阻尼比ξ不变时,系统固有频率越大,保持动态误差在一定范围内的工作频率范围越宽,反之,工作频率范围越窄;对二阶系统通常推荐采用阻尼比ξ=左右,且可用频率在0~ 范围内变化,测试系统可获得较好的动态特性,其幅值误差不超过 5%,同时相频特性接近于直线,即测试系统的动态特性误差较小;传感器采用差动形式有什么优点试举例;1改善非线性;2提高灵敏度;3对电源电压、频率的波动及温度变化等外界影响有补偿作用;4对电磁吸力有一定的补偿作用,从而提高测量的准确性;若调制信号的最高频率为fm,载波频率为f0,那么fm与f0应满足什么关系原因何在若调制信号为瞬态信号连续谱,信号最高频率fm,则调幅波的频谱也是连续谱,位于f0± fm之间;只有f0>>fm,频谱不会产生交叠现象;为了正确进行信号调制,调幅信号的频宽2fm相对于中心频率载波频率f0应越小越好,实际载波频率通常f0≥10fm;测量、测试、计量的概念有什么区别测量:以确定被测对象属性和量值为目的的全部操作;测试:意义更为广泛的测量——具有试验性质的测量;计量:实现单位统一和量值准确可靠的测量;何谓测量误差通常测量误差是如何分类、表示的说明各类误差的性质、特点及其对测量结果的影响;测量误差:测量结果与被测量真值之差;误差分类:随机误差由特定原因引起、具有一定因果关系并按确定规律产生,再现性、系统误差因许多不确定性因素而随机产生、偶然性、粗大误差系统各组成环节发生异常和故障等引起;误差表示:绝对误差、相对误差真值相对误差、示值相对误差、引用误差;准周期信号与周期信号有何异同之处与非周期信号有何异同之处满足什么要求简谐信号才能叠加成周期信号该信号的周期如何确定准周期信号: 由多个周期信号合成,各信号周期没有最小公倍数;频谱离散;周期信号:按一定时间间隔重复出现的信号,由多个周期信号合成,各信号周期有最小公倍数;频谱离散;非周期信号:不会重复出现的信号,包括准周期信号、瞬态信号;其中准周期信号频谱离散,瞬态信号频谱连续;各简谐信号周期有最小公倍数才能叠加成周期信号;该信号周期为各信号周期的最小公倍数;金属电阻应变片与半导体应变片在工作原理上有何区别各有何优缺点应如何针对具体情况选用金属电阻应变片的工作原理基于其敏感栅发生几何尺寸改变,使金属丝的电阻值随其变形而改变,即电阻应变效应,产生1+2μεx项;而半导体应变片的工作原理是利用半导体材料沿某一方向受到外加载荷作用时,由应力引起电阻率的变化,即压阻效应,产生πL Eεx 项;两种应变片相比,半导体应变片最突出的优点是灵敏度高,另外,由于机械滞后小、横向效应小及本身的体积小等特点,扩大了半导体应变片的使用范围,最大缺点是温度稳定性差、灵敏度离散度大,在较大应变作用下,非线性误差大等,给使用带来困难;当测量较小应变值时,应选用根据压阻效应工作的半导体应变片,而测量大应变值时应选用根据应变效应工作的金属电阻应变片;电阻应变片产生温度误差的原因有哪些怎样消除误差由温度引起应变片电阻变化的原因主要有两个:一是敏感栅的电阻值随温度的变化而改变,即电阻温度效应;二是由于敏感栅和试件线膨胀系数不同而产生的电阻变化;进行温度补偿,消除误差的方式主要有三种:温度自补偿法、桥路补偿法和热敏电阻补偿法;温度自补偿法是通过精心选配敏感栅材料与结构参数来实现温度补偿;桥路补偿法是利用电桥的和差特性来达到补偿的目的;热敏电阻补偿法是使电桥的输入电压随温度升高而增加,从而提高电桥的输出电压;涡流的形成范围和渗透深度与哪些因素有关被测体对涡流传感器的灵敏度有何影响涡流形成范围:径向为线圈外径的~倍,且分布不均匀,与线圈外径D有关;涡流贯穿深度有限,深度一般可用经验公式求得,与导体电阻率、相对导磁率和激励频率有关;涡流效应与被测导体电阻率、导磁率、几何形状与表面状况有关,因此涡流传感器的灵敏度也与上述被测体的因素有关;涡流式传感器的主要优点是什么电涡流式传感器能对位移、厚度、表面温度、速度、应力、材料损伤等进行非接触式连续测量,另外还具有体积小,灵敏度高,频率响应宽等特点;非接触测量,抗干扰能力强;灵敏度高;分辨力高,位移检测范围:±1mm~±10mm,最高分辨率可达%;结构简单,使用方便,不受油液等介质影响压电式传感器的测量电路中为什么要加入前置放大器电荷放大器有何特点压电式传感器的前置放大器有两个作用:一是阻抗变换把压电式传感器输出的高阻抗变换成低阻抗输出;二是放大压电式传感器输出的微弱信号;电荷放大器的输出电压与外力成正比,与反馈电容Cf成反比,而与Ca、Cc和Ci无关,当制作线路时使Cf成为一个非常稳定的数值,则输出电压唯一的取决于电荷量,与外力成反比;电缆分布电容变化不会影响传感器灵敏度及测量结果是电荷放大器的突出优点,但电路复杂,造价较高;采取何种措施可以提高压电式加速度传感器的灵敏度选用压电系数大的压电材料做压电元件;增加压电晶片数目;合理的连接方法;如何减小电缆噪声对测量信号的影响使用特制的低噪声电缆;输出电缆应予以固紧,用夹子、胶布、腊等固定电缆以避免振摇;电缆离开试件的点应选在震动最小处;什么是霍尔效应为什么半导体材料适合于作霍尔元件霍尔效应:置于磁场中的通电半导体,在垂直于电场和磁场的方向产生电动势的现象;根据霍尔效应,霍尔元件的材料应该具有高的电阻率和载流子迁移率;一般金属的载流子迁移率很高,但其电阻率很小;绝缘体电阻率很高,但其载流子迁移率很低;只有半导体材料最适合做霍尔元件;霍尔元件的不等位电势的概念是什么产生不等位电势的主要原因有哪些如何进行补偿不等位电势:当磁感应强度B为零、激励电流为额定值IH时,霍尔电极间的空载电势;产生不等位电势的原因主要有:霍尔电极安装位置不正确不对称或不在同一等电位面上;半导体材料的不均匀造成了电阻率不均匀或是几何尺寸不均匀;激励电极接触不良造成激励电流不均匀分布等;补偿电路见P173;简述霍尔位移传感器的工作原理;当改变磁极系统与霍尔元件的相对位置时,即可得到输出电压,其大小正比于位移量;保持霍尔元件的控制电流I一定,使其在一个有均匀梯度的磁场中移动,则霍尔电势与位移量成正比;简述热电偶产生热电势的条件是什么热电偶的两个电极材料不同,两个接点的温度不同;简述热电偶冷端温度补偿的各种方法的特点0℃恒温法:将热电偶冷端放在冰和水混合的容器中,保持冷端为0℃不变;这种方法精度高,但在工程中应用很不方便,一般在实验室用于校正标准热电偶等高精度温度测量;修正法:实际使用中,设法使冷端温度保持不变放置在恒温器中,然后采用冷端温度修正的方法,可得到冷端为0℃时的热电势;根据中间温度定律,EABT,T0= EABT,Tn+EABTn,T ,因为保持温度Tn不变,因而EABTn,0 =常值,该值可以从热电偶分度表中查出;测量的热电势与查表得到的相加,就可得到冷端为0℃时的热电势,然后再查热电偶分度表,便可得到被测温度T;补偿导线法:将热电偶的自由端引至显示仪表,而显示仪表放在恒温或温度波动较小的地方;采用某两种导线组成的热电偶补偿导线,在一定温度范围内0~100℃具有与所连接的热电偶相同的热电性能;不同的热电偶要配不同的导线,极性也不能接错;补偿电桥法:利用不平衡电桥又称冷端补偿器产生不平衡电压来自动补偿热电偶因冷端温度变化而引起的热电势变化;。
自动检测技术(第二版)课后题答案

有关修改的说明红色字:建议删去的文字 绿色字:建议增加的文字黄色字:认为原稿中可能有问题的文字,请仔细考虑 灰色字:本人的说明性文字公式和图的带黄色的编号不用管他1.1 什么是检测装置的静态特性?其主要技术指标有哪些? 答:静态特性是指检测系统在被测量各值处于稳定状态时,输出量与输入量之间的关系特性。
静态特性的主要技术指标有:线性度、精度、灵敏度、迟滞、重复性、分辨力、稳定性、可靠性等。
1.2 什么是检测装置的动态特性?其主要技术指标有哪些?答:动态特性是指动态测量时,输出量与随时间变化的输入量之间的关系。
动态特性的主要技术指标有:动态误差、响应时间及频率特性等。
1.3 不失真测试对测量系统动态特性有什么要求?答:①输入信号中各频率分量的幅值通过装置时,均应放大或缩小相同的倍数,既幅频特性是平行于横轴的直线;②输入信号各频率分量的相角在通过装置时作与频率成正比的滞后移动,即各频率分量通过装置后均延迟相同的时间t ,其相频率特性为一过原点并有负斜率的斜线。
1.4 测量系统动态参数测定常采用的方法有哪些? 答:动态特性参数测定方法常因测量系统的形式不同而不完全相同,从原理上一般可分为正弦信号响应法、阶跃信号响应法、脉冲信号响应法和随机信号响应法等。
1.5 某位移传感器,在输入位移变化1mm 时,输出电压变化300mv ,求其灵敏度? 答:灵敏度可采用输出信号与输入信号增量比表示,即3001300==∆∆=x u k mv/mm1.6 用标准压力表来校准工业压力表时,应如何选用标准压力表精度等级?可否用一台0.2级,量程0~25MPa 的标准表来检验一台1.5级,量程0~2.5MPa 的压力表?为什么? 解:选择标准压力表来校准工业用压力表时,首先两者的量程要相近,并且标准表的精度等级要高于被校表精度等级,至少要高一个等级。
题中若标准表是0.2级,量程0~25MPa ,则该标准表可能产生的最大绝对误差为2.0)025(1max ⨯-=∆%=0.05MPa被校表是1.5等级,量程0~2.5MPa ,其可能产生的最大绝对误差为5.1)05.2(2max ⨯-=∆%=0.0375MPa显然1max ∆>2max∆,这种选择是错误的,因为虽然标准表精度等级较高,但是它的量程太大,故不符合选择的原则。
机械工程测试技术基础试题及答案

1、什么是测试装置的静态特性?常用哪几个特性参数来描述?答:测试装置的静态特性就是指在静态测量情况下描述实际测试装置及理想定常线性系统的接近程度。
常用的特性参数有灵敏度、线性度和回程误差等。
2、实现不失真测试的条件是什么?分别叙述一、二阶装置满足什么条件才能基本上保证不失真测试。
答:测试装置实现不失真测试的条件是A(ω)=A0=常数φ(ω)=-t0ω为满足上述条件,对于一阶装置,时间常数τ原则上越小越好,对于二阶装置一般选取ξ=0.6~0.8,ω=0~0.58ωn.3、调制波有哪几种?分别说明其含义,并指出常用的有哪两种。
答:调制波有调幅波、调频波和调相波三种。
载波信号的幅值受调制信号控制时,输出的已调波称为调幅波;载波信号的频率受调制信号控制时,输出的已调波称为调频波;载波信号的相位受调制信号控制时,输出的已调波称为调相波;常用的调制波有调幅波和调频波两种。
4、选用传感器时应考虑到哪些原则?答: 选用传感器时应考虑到以下原则:(1)灵敏度 (2)响应特性 (3)线性范围 (4)可靠性(5)精确度 (6)测量方法 (7)稳定性及其他5、电器式传感器包括哪几种,各自的工作原理如何? 答:包括电阻式、电感式、电容式三种。
电阻式传感器工作原理:把被测量转换为电阻变化的一种装置;电感式传感器工作原理:把被测量如位移转换为电感量变化的一种装置;电容式传感器工作原理:把被测物理量转换为电容量变化的一种装置。
一、计算题1、求图中周期性三角波的傅里叶级数。
解:在x(t)的一个周期中可表示为x(t)={A +2A T 0t − T 02≤t ≤0 A −2A T 0t 0≤ t ≤T 02常值分量a 0=1T 0∫x (t )dt T 02−T 02 = 2T 0∫(A −2A T 0t )dt T020 = A 2 余弦分量的幅值a n =2T 0∫x (t )cosnω0tdt T 02−T 02 = 4T 0∫(A −2A T 0t )cosnω0tdt T020=4An2π2sin2nπ2= {4An2π2n=1,3,5,0n=2,4,6,正弦分量的幅值b n = 2T0∫x(t)sinnω0tdtT02−T02= 02、求传递函数为H(s)=51+0.001S的系统对正弦输入x(t)=10sin(62.8t)的稳态响应y(t)。
《测试技术》教学课件 2.1 测试系统静态响应特性

二,灵敏度
当测试装置的输入
x 有一增量 X
, 引起输出 y
定义为: 发生相应变化 Y 时,定义为:
Y S= X
y △y △x x
三,回程误差
也称迟滞. 也称迟滞.测试装置在输入量由小增大和由大 减小的测试过程中, 对于同一个输入量所得到的两 减小的测试过程中 , 个数值不同的输出量之间差值最大者为h 个数值不同的输出量之间差值最大者为hmax,则定义 回程误差为: 回程误差为: (hmax/A)×100% /A)×100% y
一,线性度
衡量特性曲线与参考直线偏离程度的参数叫线性 度或直线性. 度或直线性.
max × 100%= 线形误差= =B/A×100% 线形误差= × Ymax Ymin
y
A B
x
线性度参考直线最常用的是最小二乘法回归直线法. 线性度参考直线最常用的是最小二乘法回归直线法. 最小二乘法回归直线法
∫
t 0
x (t ) dt = ∫ y (t ) dt
0
t
5)频率保持性 5)频率保持性 若系统的输入为某一频率的谐波信号, 若系统的输入为某一频率的谐波信号,则系统 的稳态输出将为同一频率的谐波信号, 的稳态输出将为同一频率的谐波信号,即 若 则 x(t)=Acos(ωt+φx) y(t)=Bcos(ωt+φy)
y = a1 x + a 2 x + a 3 x +
2 3
通常,为了简化输出输入关系, 通常,为了简化输出输入关系,总是希望输入输出 之间为线性: 之间为线性:
y = ax
测试系统的静态特性就是在静态测量情况下描述实 际测试装置与理想定常线性系统的接近程度. 际测试装置与理想定常线性系统的接近程度.
测试系统的静态特性

2.灵敏度
灵敏度是测试系统对被测量变化的反应能力,是反映系统特性的一个
基本参数。当系统输入x有一个变化量 x,引起输出y也发生相应的变化 量 y ,则输出变化量与输入变化量之比称为灵敏度,用S表示,即
S y x
在静态测量中,对于呈直线关系的线性系统,由公式得
S y b0 b x a0
在动态测量中,由于系统的频率特性影响,即使在适用的频率范围内, 系统的灵敏度也不相同。在实际工作中,常对适用频率范围内特性最为平 坦、具有代表性的频率点进行标定。
为了确定上述静态特性参数,通常用静态标准量作为输入,用实验 方法测出对应的输出量,这一过程称为静态标定。然后根据静态标定实 验数据求出拟合直线方程,并计算出各测得值与理论估计值(由拟合直 线方程计算得到)之间的偏差,由此即可求出静态特性参数值。
传感器与测试技术
精密度
精密度表示多次重复测量中,测量值彼此之间的重复性或分 散性大小的程度。它反映随机误差的大小,随机误差愈小,测量
测
值就愈密集,重复性愈好,精密度愈高。
试
正确度表示多次重复测量中,测量平均值与真值接近的程度。
系 统
正确度
它反映系统误差的大小,系统误差愈小,测量平均值就愈接近真
精
值,正确度愈高。
度
准确度
4.重复性
重复性表示输入量按同一 方向变化时,在全量程范围内 重复进行测量时所得到各特性 曲线的重复程度,如图所示。 一般采用输出最大不重复误差 Δ与满量程输出值A的百分比 来表示重复性,即
100%
A
y
A
O
x
重复性
重复性可反映测试系统的随机误差大小。
为了确保测量结果的准确可靠,要求测试系统的线性度好、灵敏度 高、滞后量和重复性误差小。实际上,线性度是一项综合性参数,滞后 量和重复性也都能反映在线性度上。因此,有关滞后量和重复性在动态 测量中的频率特性就不再作详细分析。
山东交通学院成人高等教育期末考试传感器与检测技术复习题精选全文完整版

可编辑修改精选全文完整版《传感与测试技术》A复习题7月无纸化考试复习专用一、单选题1.所指测试系统的输出与输入间实际曲线偏离所求直线的程度的描述。
A.灵敏度B.线性度C.重复性参考答案:B知识点:第3章难度:3解析:测试系统的静态特性定义之一。
2. 把被测量转换为感应电动势的常规传感器之一是:。
A. 电容传感器B. 压电传感器C. 变磁阻电感传感器参考答案:C知识点:第4章难度:3解析:传感器的分类方法。
3.测量值与被测量真值之差,称为。
A.测量残差B.测量标准差C.测量误差参考答案:C知识点:第6章难度:3解析:测量误差的定义。
4. 信号的幅值和独立变量均为连续量。
A. 模拟B. 数字C. 离散参考答案:A知识点:第2章难度:3解析:信号分类描述方法。
5. 随机误差的绝对值相等的正误差与负误差出现的次数相等,称为。
A. 单峰型B. 对称性C. 有界性参考答案:B知识点:第6章难度:3解析:第六章第二节关于随机误差的统计意义。
也是以算数平均值代替真值的依据。
6. 传感器将非电量转换为电能量。
A. 电阻B. 无源C. 有源参考答案:B知识点:第4章难度:3解析:传感器分类方法之一。
7.通过测量仪器,将被测量参数与同一物理量的标准量直接比较的测量是。
A. 直接测量B. 间接测量C. 感官测量参考答案:A知识点:第7章难度:3解析:测量依靠仪器,且进行直接比较所的结果,称为直接测量。
8.实现模拟量到数字量转换的装置称为 _____。
A. A/DB. D/AC. F/V参考答案:A知识点:第7章难度:3解析:计算机测试系统的核心部件定义。
二、填空题1.按滤波器的通频带分为: 滤波器、滤波器、滤波器和滤波器。
参考答案:低通、高通、带通和带阻知识点:第5章难度:3解析:第五章第三节关于滤波器的基本分类。
2.测量结果通常用、和来表达。
参考答案:数字、图形和经验公式知识点:第7章难度:2解析:第七章第一节关于测试结果的表示方法。
测试技术模拟题含答案.

3测量系统的特性3.1 单选题1、下列选项中,( )是测试装置静态特性的基本参数。
(A) 阻尼系数;(B)灵敏度;(C) 单应脉冲响时间;(D)时间常数2、对于二阶系统,用相频特性φ(ω)=–90º所对应的频率ω估计系统的固有频率ωn ,该ωn 值与系统阻尼比的大小( )。
(A)无关 ;(B)依概率完全相关;(C) 依概率相关;(D)成线性关系3、测试装置的频响函数H (j ω)是装置动态特性的( )描述。
(A) 幅值域; (B)频域 ;(C) 复频域;(D)相位域4、用一阶系统作测量装置,为了获得较佳的工作性能,其时间常数原则上( )。
(A)越大越好;(B) 越小越好;(C)应大于信号周期;(D) 应小于信号周期5、( )是一阶系统的动态特性参数。
(A) 固有频率;(B) 线性;(C) 时间常数;(D) 阻尼比6、线性度表示标定曲线( )的程度。
(A)接近真值;(B) 偏离其拟合直线;(C) 加载和卸载时不重合 ;(D) 在多次测量时的重复7、传感器的滞后表示标定曲线( )的程度。
(A)接近真值;(B) 偏离其拟合直线;(C) 加载和卸载时不重合 ;(D) 在多次测量时的重复8、已知一个线性系统的与输入x (t )对应的输出为y (t ),若要求该系统的输出为u (t )= k p [y (t )+tt y T t t y T t d )(d d )(10d i ⎰+](k p ,T i ,T d 为常数),那么相应的输入函数为( )。
(A) k p [x (t )+tt x T t t x T t d )(d d )(10d i ⎰+] (B) k p [x (t )+id T T ] (C) kk p [x (t+t 0)+tt x T t t x T t d )(d d )(10d i ⎰+] (k ,t 0为常数,t 0≠0) (D) kk p [x (t )+t t x T t t x T t d )(d d )(10d i ⎰+]3.2 填空题1、若线性系统的输入为某一频率的简谐信号,则其稳态响应必为()的简谐信号。
3-2 测试系统的特性-静态与动态特性1

3.3 测试系统的动态特性
机械工程测试技术
h (t )
M 超调量
时域性能指标
允许误差 ±Δ
1.0 h(∞) 0.9 h(∞ )
td
0 .5 h(∞)
延 时 时 间
0.05或0.02
0.1 h(∞) 0
t r 上升 时间 t p 峰值时间 t s 调整时间
t
3.3 测试系统的动态特性
机械工程测试技术
本课程中研究的测试系统都是定常线性系统,可以 用常系数线性微分方程来描述该系统以及输入x(t)和 输出y(t)间的关系。
对于一个线性系统如何更有效的描述 装置的特性与输出、输入的关系?
利用微分方程来描述有许多不便。如果通过拉氏变换 建立与其相应的“传递函数”,通过傅氏变换建立与 其相应的“频率特性函数”,就可更简单、有效地描 述装置的动态特性和输出与输入之间的关系。
0.5
1
1.5
2
2.5
0
0.5
1
1.5 (c)
2
2.5
3
3 t
叠加特性示例
3.3 测试系统的动态特性
机械工程测试技术
b)比例性 常数倍输入所得的输出等于原输入所得输出的常 数倍,即 若 x(t) → y(t) , 则 kx(t) → ky(t)
10 5
20 10 mm 0 -10
0 0.5 1 1.5 (a) 2 2.5 3
y
Y ( s ) bm s m bm 1 s m 1 b1 s b0 H ( s) X ( s) an s n an 1 s n1 a1 s a0
H(s)与输入及系统的初始状态无关,只表达测试 系统的传输特性。对于具体系统,H(s)不会因输 入变化而不同,但对于任一具体输入都能确定地 给出相应的、不同的输出。
测试技术 第二章 测试装置的基本特性

四、分辨力
定义: 定义 引起测量装置输出值产生一个可察觉变化的 最小输入量(被测量) 最小输入量(被测量)变化值称为分辨力 表征测量系统的分辨能力 说明: 说明 1、分辨力 --- 是绝对数值,如 0.01mm,0.1g,10ms,…… 、 是绝对数值, , , , 2、分辨率 --- 是相对数值: 、 是相对数值: 能检测的最小被测量的 变换量相对于 满量程的 百分数, 百分数,如: 0.1%, 0.02%
y
(a) 端点连线法 端点连线法: 算法: 检测系统输入输出曲线的两端点连线 算法: 特点: 简单、方便,偏差大, 特点: 简单、方便,偏差大,与测量值有关 (b) 最小二乘法 最小二乘法: 算法: 计算: 算法: 计算:有n个测量数据 (x1,y1), (x2,y2), … , (xn,yn), (n>2) 个测量数据: 个测量数据 , 残差: 残差平方和最小: 残差:∆i = yi – (a + b xi) 残差平方和最小:∑∆2i=min
线性 y 线性 y 非线性y
x
x
x
非线性原因: 非线性原因
外界干扰 温 度 湿 度 压 力 冲 击 振 动 电 磁 场 场
输入 x
检测系统
输入 y = f(x)
摩 擦
间 隙
松 动
迟 蠕 滞 变
变 老 形 化
误差因素
严格的说,很多测试装置是时变的 因为不稳定因素的存 严格的说 很多测试装置是时变的(因为不稳定因素的存 很多测试装置是时变的 但在工程上认为大多数测试装置是时不变线性系统 在),但在工程上认为大多数测试装置是时不变线性系统 但在工程上认为大多数测试装置是 (定常线性系统 该类测试装置的输入与输出的关系可 定常线性系统).该类测试装置的输入与输出的关系可 定常线性系统 用常系数线性微分方程来描述. 用常系数线性微分方程来描述
第2部分_测量系统的静态与动态特性

系统误差
在相同的测量条件下,多次测量同一物理量,误差不变或按 一定规律变化着,这样的误差称为系统误差。按误差的变化 规律可分为恒值误差和变值误差。变值误差又分为线性误差、 周期性误差和复杂规律变化的误差。
参考直线的选用方案
①端点连线 将静态特性曲线上的对应于测量范围 上、下限的两点的连线作为工作直线;
Y(t)
端点连 线
0
X(t)
②端点平移线 平行于端点连线,且与实际静态特性 (常取平均特性为准)的最大正偏差和最大负偏差的 绝对值相等的直线;
Y(t)
X(t)
③最小二乘直线 直线方程的形式为 yˆ a bx
②确定仪器或测量系统的静态特性指标; ③消除系统误差,改善仪器或测量系统的正确度
测量系统的静态特性可以用一个多项式方程表示,即
y a0 a1x a2 x2
称为测量系统的静态数学模型
工作曲线:方程 y a0 a1x a2 x2 称之为工作曲线或
静态特性曲线。实际工作中,一般用标定过程中静态平均特 性曲线来描述。
第二部分 测试系统的静态与动 态特性
静态特性:被测量处于稳定状态或缓慢变化状态时,反映测试 系统的输出值和输入值之间关系的特性。
动态特性:反映测试系统对随时间变化的输入量的响应特性。
①测试系统的静态特性与误差分析 ②测试系统的主要静态性能指标及计算 ③测量系统的动态特性 ④测量系统的动态性能指标
2.1测试系统的静态特性与误差分析
一、误差的分类
按误差的表达形式可分为绝对误差和相对误差;按误差出现的 规律可分为系统误差、随机误差、粗大误差(过失误差);按 误差产生的原因可分为原理误差、构造误差和使用误差
检测技术第二章测试系统特性

二 、线性系统的性质
●叠加性:x1(t),x2(t)引起的输出分别为 y1(t),y2(t)
如输入为 x1(t)x2(t)则输出为 y1(t)y2(t)
●比例特性(齐次性):如 x ( t ) 引起的输出为 y ( t ) ,
则 a x ( t ) 引起的输出为a y ( t ) 。
●微分特性: d x ( t ) 引起的输出为 d y ( t )
H (s) Y (s) X (s)
dnyt
dn1yt
an dtn an1 dtn1
a1dydtta0yt
dmxt
dm1xt
bm dtm bm1 dtm1
b1dxdttb0xt
输入量
x(t)
((b ba am m n nS S S Sm m n n a a b bm m n n 1 11 1S SS Sn nm m 1 11 1
静态测量时,测试装置表现出的响应特性称为静态响应特性。
1)基本功能特性
① 测量范围(工作范围)(Range):系统实现不失真测量时 的最大输入信号范围。是指测试装置能正常测量最小输入 量和最大输入量之间的范围。
示值范围:显示装置上最大与最小示值的范围。 标称范围:仪器操纵器件调到特定位置时所得的
示值范围。
动态测量—— 被测量本身随时间变化,而测量系统又能 准确地跟随被测量的变化而变化
例:弹簧秤的力学模型
二、测试系统的动态响应特性
无论复杂度如何,把测量装置作为一个系统 来看待。问题简化为处理输入量x(t)、系统传输 特性h(t)和输出y(t)三者之间的关系。
x(t)
h(t)
y(t)
输入量
系统特性
输出
则线性系统的频响函数为:
第3次课-第2章测试装置静态、动态特性

2.2 测试系统静态响应特性
2.3 测试系统动态响应特性
机械工程测试技术基础
2.1 概述
的加速度
第二章测试装置的基本特性
衡量乘坐舒适性的指标之一:坐椅处 加速度计
测试系统是执行测试任务的传感器、仪器和设备的总称。 当测试的目的、要求不同时,所用的测试装置差别很大。 简单的温度测试装置只需一个液柱式温度计,而较完整的动 液压振动台: 刚度测试系统,则仪器多且复杂。 模拟道路的颠簸
机械工程测试技术基础
第二章测试装置的基本特性
•传递函数与微分方程两者完全等价,可以相 互转化。 •考察传递函数所具有的基本特性,比考察微 分方程的基本特性要容易得多。这是因为传递 函数是一个代数有理分式函数,其特性容易识 别与研究。
机械工程测试技术基础
第二章测试装置的基本特性
传递函数有以下几个特点: 1)H(s)和输入x(t)的具体表达式无关。
机械工程测试技术基础
第二章测试装置的基本特性
(2) 频率响应特性 考虑到拉普拉斯变换中,s = σ + jω, 令σ=0,则有 s = jω,将其代入H(s),
得到
Y ( ) H ( ) X ( )
= P(ω)+ jQ(ω) = A(ω)ejφ(ω)
机械工程测试技术基础
第二章测试装置的基本特性
机械工程测试技术基础
第二章测试装置的基本特性
2.1.2 线性系统及其主要性质(补充内容)
若系统的输入x(t)和输出y(t)之间的关系可以用常系 数线性微分方程来描述
any(n)(t)+an-1y(n-1)(t)+…+a1y(1)(t)+a0y(t) = bmx(m)(t)+bm-1x(m-1)(t)+b1x(1)(t)+b0x(t)
机械工程测试基础_测量装置的基本特性

2、标准和标准传递
若标定结果有意义,输入和输出变量的测量必须精确; 用来定量输入、输出变量的仪器和技术统称为标准; 变量的测量精度以测量误差量化,即测量值与真值的差; 真值:用精度最高的最终标准得到的测量值; 标准传递和实例(图2-3)。
测试装置一般为稳定系统,则有n>m。
2、频率响应函数 传递函数在复数域描述和考察系统特性,优于时域的微分
方程形式,但工程中许多系统难以建立微分方程和传递函 数。 频率响应函数在频率域描述和考察系统特性。其优点: 物理概念明确; 易通过实验建立频率响应函数; 利用它和传递函数的关系,极易求传递函数。
频域 ,一个是在时间域,通常称h(t)为脉冲响应函数。
结论:
系 统 特 性 描 述
时域:脉冲响应函数h(t); 频域:频率响应函数H(ω); 复数域:传递函数H(S)。
4、环节的串联和并联
2-7
1、串联的传递函数和频率响应函数: 令s=jω,得
2-8
2、并联的传递函数和频率响应函数 令s=jω,得
静态特性
测试装置的特性
动态特性 负载特性
抗干扰特性
说明:测试装置各特性是统一的,相互关联的。例如:动态特性方程
一般可视为线性方程,但考虑静态特性的非线性、迟滞等因素,就成 为非线性方程。
1、测试装置的静态特性
静态特性是由静态标定来确定的; 静态标定:是一个实验过程,只改变测量装置的一个输入量,其他所
将输入和输出两者的拉普拉斯变换之比定义为传递函H(s),即
H
s
Y s X s
工程测试- 测试装置动静态特性

X(S)
H(s)
Y(S)
广东工业大学 机电工程学院 2007年5月24日12时15分
1
2007-5-24
2.3 测试系统的动态特性
2.3.3 动态特性——频率特性
机
x(t)
=
A
sin(ωt
+
ϕ 1
)
H(s)
y(t
)
=
B
sin(ωt
+
ϕ 2
)
械
工
程 测 试 技
设
H (s)
=
1 0.1s +1
,
A
=
100,
程
测
试 技
6. 静态特性的其他描述
术 精度:是与评价测试装置产生的测量误差大小有关的指标。
灵敏阀:又称为死区,用来衡量测量起始点不灵敏的程度。
测量范围:是指测试装置能正常测量最小输入量和最大输入 量之间的范围。
稳定性:是指在一定工作条件下,当输入量不变时,输出量 随时间变化的程度。
可靠性:是与测试装置无故障工作时间长短有关的一种描述。
试 技
的输入与输出之间动态关系的数学描述。
术
(1) 微分方程
(2) 传递函数
(3) 频响函数
(4) 单位脉冲响应函数
广东工业大学 机电工程学院 2006年3月9日星期四 00:13
2.1 概述
4. 负载特性/负载效应
机
测量装置接触被测物体时,要从被测物体中吸
械 工
收能量或产生干扰,使被测量偏离原有的量值,从
2.3.3 动态特性——频率特性
4. 频率特性的图示方法
机 (1) 乃奎斯特图:极坐标图
械
测试装置的静态特性

S= Δy/Δx=dy/dx
• 灵敏度越高,测量范围越窄,稳定性越差; • 灵敏度越高,测量精度越高,越便于检测者
读数。
2
§4.2 测试装置的静态特性
二、非线性度(直线度、直线性) 定度曲线:测试系统输入、输出间的实
际关系曲线。由实验求取。 非线性度:测试系统的定度曲线与其拟
9
四、表征测试装置静态误差的其他指标
可参考 刘智敏等《测量不确定度手册》中国计量出版社
10
四、表征测试装置静态误差的其他指标
3、分辨力:使测试装置示值发生变化的最小 输入变化值。
• 对示值变化的规定: (1)模拟仪表的分辨力规定为最小刻度分格
值的一半; (2)数字仪表的分辨力规定为仪表的最后一
位的一个字的值。
8
四、表征测试装置静态误差的其他指标
(2)用不确定度来表示 不确定度:在规定条件下测试系统测试时所得测
量结果不能肯定的程度。它是由于说明测量结果准 确度高低的一个可量化的表示值。不确定度由不确 定分析报告给出。不确定度报告包括以下8项内容:
①测量方法;②数学模型;③方差和传递系数; ④标准不确定一览表;⑤计算分量标准不确定度; ⑥合成标准不确定度;⑦计算有效自由度并确定覆 盖因子值;⑧计算扩展不确定度U。
合直线间的最大偏差B与系统的标称输出范 围(满量程)A的比值,即:
3
二、非线性度
1、理论非线性度 在测量的定度曲线上,通过零输入点和满
量程输入点的连线。 y —— 定度曲线 —— 理想拟合直线 —— 最小二乘拟合直线 x
4
二、非线性度
2、最小二乘非线性度 设拟合直线方程为y=kx+b,由最小二乘法得:
测试装置的静态特性

测试装置的静态特性
抱负的静态量的测试装置,其输出应单调、线性比例于输入,输出对输入的微分是常数。
静态特性主要以灵敏度、非线性度和回程误差为表征。
灵敏度:灵敏度S是装置的静态特性的一个基本参数。
S=ΔY/ΔX,输出的变化量和输入的变化量之比。
非线性装置的灵敏度就是该装置特性曲线的斜率,线性装置的灵敏度为常量。
灵敏度不肯定有单位,没有单位时称”放大倍数”,电测仪器中电子元件参数的变化或机械部件尺寸和材料特性的变化引起的灵敏度的变化,称为”灵敏度漂移”。
一般,灵敏度越高,测量范围越窄、稳定性也越差。
线性度:定度曲线偏离其拟合直线的程度就是非,是二线的最大偏差B与全量程A的比值,即,线性误差=(B/A)·100%
回程误差:也称滞后或变差。
对于同一个输入量,所得到的两个数值不同的输出量之间的差值中的最大者,称为回程误差,或滞后量。
一般由滞后现象引起(磁滞、受力变形),也可能反映着仪器的不工作区(死区)(输入变化对输出无影响的范围)的存在。
稳定度与漂移:零漂表示测量装置在零输入状态下,输出值的漂移。
分为时间零漂和温度漂移。
重复性:在同一测试条件下,对测量装置重复加入同样大小的输入量所得到的输出量之间的差异。
稳定性:表示测量装置在一个长时间内保持其性能参数的力量,也就
是在规定的条件下,测量装置的输出特性随时间的推移而保持不变的力量
精度:表征测量装置的测量结果y与被测真值μ的全都程度。
量程:指测量装置允许测量的输入量的上、下极限值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
△y
△x
2灵敏度
灵敏度增加,测量范围减小,示值稳定性 减小 外界环境条件对灵敏度的影响 y 灵敏度漂移用 小时 来表示
) 外界环境条件对灵敏度的影响 y * x yn y b0 a0
y 2 y1
x
y
灵敏度漂移 零漂
外界环境条件(温度等) 使 a02 1 x2 x x1 * 灵敏度漂移用“ y 小时”来表示
弹塑性材料的变形 高温蠕变 轴承摩擦,间隙, 元件腐蚀,灰尘积塞
hmax
x
4分辨力 分辨力与分辨率 分辨力(resolution):仪器可能检测到的输入 信号的最小变化能力。(X1: 有量纲) 分辨率(resolution ratio):分辨力与测量范 围上限之比的百分数。( X1/ Xn*100%:无 量纲) y yn
0
x1
xn
x
测试装置静态特性
案例:物料配重自动测量系统的静态参数测量
Text 2 Text 1
灵敏度=△y/△x 回程误差=(hmax/A)×100% 非线性度B/A×100%
测试装置的静态特性
对静态特性,因为输入量不随时间变化,测 量系统的输出―输入之间有一一对应的关系,而 且测量和记录过程不受时间限制。 当输入量随时间变化时,测试系统的输出也 随时间变化。动态特性是指输入量随时间变化时, 两者之间的关系。对动态测量,不仅需要精确地 测量输入量大小,而且需要测量输入量变化波形, 这就要求测量系统能迅速准确地测量和不失真地 再现输入量随时间变化的波形。
Thank You!
LOGO
测试装置静态特性
组员 机化2班: 陈龙云 王剑锋 李宇 区铤冲 林炜煌 201030500204 201030500224 201030500214 201030500223 201030500218 LOGO
测试装置静态特性 测试系统的静态特性:通过静态标定,可得到 测试系统的输出yi和输入xi之间的一一对应关系, 称为测试系统的静态特性。 测试系统的静态特性可以用一个多项式方程表 示,即
y a0 a1x a2 x
2
测试装置静态特性
1. 线性度 2. 灵敏度 3. 回程误差 4. 分辨力
5. 零点漂移和灵敏度漂移
1线性度
标定曲线 输入-输出关系曲线 理想线性装置的标定曲线应该是 直线 实际测试装置的标定曲线按最小 二乘法原理求出标定曲线的拟合 直线。
1线性度
•标定曲线与拟合直线的偏离程 度就是线性度。
线性度=B/A×100%
2灵敏度 灵敏度(增益或标度因子)
当测试装置的输入x有一增量△x,引起输出y发生相 应变化△y时,定义: S=△y/△x 线性装置的灵敏度S为常数,是输入-输出关系直线的 斜率 灵敏度的量纲由输入和输出的量纲决定
x
3回程误差 回程误差 测试装置在输入量由小增大和由大减小的测试过 程中,对于同一个输入量所得到的两个数值不同 的输出量之间差值最大者为hmax,则定义回程 误差为: (hmax/A)×100% y 回程误差产生的原因 磁性材料的磁滞 A