线性代数课本第三章习题详细答案

合集下载

线性代数习题答案第三章

线性代数习题答案第三章
所以当10时 方程组无解. 要使方程组有无穷多解 必须R(A)R(B)3 即必须 (1)(10)0且(1)(4)0
所以当1时 方程组有无穷多解此时,增广矩阵为
B~ 方程组的解为
或 (k1 k2为任意常数) 18 证明R(A)1的充分必要条件是存在非零列向量a及非零行向量bT
使T 证明 必要性 由R(A)1知A的标准形为
3 试利用矩阵的初等变换 求下列方阵的逆矩阵
(1) 解~ ~~ ~ 故逆矩阵为 (2)
解 ~ ~ ~ ~ ~
故逆矩阵为 4 (1)设 求X使AXB 解 因为
所以 (2)设 求X使XAB 解 考虑ATXTBT 因为
所以 从而
5 设 AX 2XA 求X 解 原方程化为(A2E)X A 因为
所以 6 在秩是r 的矩阵中,有没有等于0的r1阶子式? 有没有等于0的r阶子式? 解 在秩是r的矩阵中 可能存在等于0的r1阶子式 也可能存在等于0的r
第三章 矩阵的初等变换与线性方程组
1 把下列矩阵化为行最简形矩阵 (1) 解 (下一步 r2(2)r1 r3(3)r1 )
~(下一步 r2(1) r3(2) ) ~(下一步 r3r2 ) ~(下一步 r33 ) ~(下一步 r23r3 ) ~(下一步 r1(2)r2 r1r3 ) ~ (2) 解 (下一步 r22(3)r1 r3(2)r1 ) ~(下一步 r3r2 r13r2 ) ~(下一步 r12 ) ~ (3) 解 (下一步 r23r1 r32r1 r43r1 ) ~(下一步 r2(4) r3(3) r4(5) ) ~(下一步 r13r2 r3r2 r4r2 ) ~ (4) 解 (下一步 r12r2 r33r2 r42r2 ) ~(下一步 r22r1 r38r1 r47r1 ) ~(下一步 r1r2 r2(1) r4r3 ) ~(下一步 r2r3 ) ~ 2 设 求A 解 是初等矩阵E(1 2) 其逆矩阵就是其本身 是初等矩阵E(1 2(1)) 其逆矩阵是 E(1 2(1))

线性代数第三章习题及答案

线性代数第三章习题及答案

习 题 3-11.设)1,0,2(-=α,)4,2,1(-=β,求32-αβ.解:)11,4,8()8,4,2()3,0,6()4,2,1(2)1,0,2(323--=---=---=-βα 2.设)4,3,2,1(=α,)3,4,1,2(=β,且324+=αγβ,求γ. 解:由324+=αγβ得αβγ232-= 所以)0,27,1,25()6,29,3,23()6,8,2,4()4,3,2,1(23)3,4,1,2(2-=-=-=γ。

3.试问下列向量β能否由其余向量线性表示,若能,写出线性表示式:(1))1,2(-=β,)1,1(1=α,)4,2(2-=α;(2))1,1(-=β,)1,1(1=α,)1,0(2=α,)0,1(3=α; (3))1,1,1(=β,)1,1,0(1-=α,)2,0,1(2=α,)0,1,1(3=α;(4))1,2,1(-=β,)2,0,1(1=α,)0,8,2(2-=α,0α(5)),,,(4321k k k k =β,)0,0,0,1(1=e ,)0,0,1,0(2=e ,)0,1,0,0(3=e ,)1,0,0,0(4=e . 解:(1)设2211ααβx x +=,即)4,2()4,2()1,1()1,2(212121x x x x x x -+=-+=-从而⎩⎨⎧-=-=+14222121x x x x ,解得⎪⎩⎪⎨⎧==21121x x所以β能由21,αα线性表示,表示式为2121ααβ+=。

(2)设332211αααβx x x ++=,即),()0,1()1,0()1,1()1,1(2131321x x x x x x x ++=++=-从而⎩⎨⎧-=+=+112131x x x x ,有无穷解⎪⎩⎪⎨⎧-=--==cx c x cx 11321所以β能由321,,ααα线性表示,表示式不唯一,为321)1()1(αααβc c c -+--+= (c 为任意常数)(3)设332211αααβx x x ++=即)2,,()0,1,1()2,0,1()1,1,0()1,1,1(213132321x x x x x x x x x +-++=++-=从而⎪⎩⎪⎨⎧=+-=+=+1211213132x x x x x x ,因为010********≠=-,所以有唯一解,解为⎪⎩⎪⎨⎧===011321x x x所以β能由321,,ααα线性表示,且表示式为3210αααβ⋅++=(4)设2211ααβx x +=,即)2,8,2()0,8,2()2,0,1()1,2,1(222121x x x x x x -+=-+=-从而⎪⎩⎪⎨⎧-==-=+1228121221x x x x ,由②,③式得211-=x ,412-=x 代入①式11)41(221≠-=-⋅+-所以该方程组无解, 即β不能由21,αα线性表示。

线性代数课后习题解答第三章习题解答

线性代数课后习题解答第三章习题解答

第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2) ⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020********* )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫ ⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---000000000022********(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~r r r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r rr --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。

线代第3章习题答案

线代第3章习题答案

第3章1. 34(30,10,20,16)γαβ=-=---.2. (1) 能,唯一一种表示:12323βααα=--. (2) 不能.(3) 能,很多种表示:123(21)(35)c c c βααα=-+-++,c 为任意常数. 3. 证明略,唯一表达式为:12123234344()()()b b b b b b b βαααα=-+-+-+. 4. (1) 线性无关. (2) 线性相关.(3) 线性相关,因为4个向量,每个向量维数3维. (4) 若a ,b ,c 均不相等,线性无关,否则线性相关. 5. (1) 线性无关 (2) 线性无关 (3) 线性相关.6. 解:设112223334441()()()()0k k k k αααααααα+++++++=,整理可得141122233344()()()()0k k k k k k k k αααα+++++++=,因为已知1234,,,αααα是线性无关的,故有 141223340,0,0,0,k k k k k k k k +=⎧⎪+=⎪⎨+=⎪⎪+=⎩系数矩阵1001100111000101011000110011000A ⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,则()3r A =. 故12233441,,,αααααααα++++是线性相关的.7. 证:因为任意1n +个n 维向量必线性相关,故12,,,,n αααβ 线性相关,存在 不全为零的1n +个数121,,,n k k k + ,使得112210n n n k k k k αααβ+++++= . 若10n k +=,12,,,n ααα 线性相关,矛盾.所以10n k +≠,β可由12,,,n ααα 线 性表出.下证表达式唯一,类似于定理3.5的证明.8. 证:(反证法即得).假设1234,,,k k k k 不全为零,其中某个为零,其他的不为零.不妨假设10k =,则2233440k k k ααα++=,其中234,,k k k 均不为零,则可推出 234,,ααα是线性相关的,这与已知任意三个向量都线性无关矛盾,故假设不成 立.由假设的任意性可知112233440k k k k αααα+++=,其中1234,,,k k k k 全不为 零.9. 证:设前一向量组的秩为r ,则显然r s ≤,又后一组的秩也为r ,则有1r s s ≤<+,故后一向量组是线性相关的.若r s =,则前一组是线性无关 的,后一组是线性相关的,则由定理3.5知,β可由1α,2α, ,s α线性表出, 且表达式唯一.若r s <,则两组均是线性相关的,且两个向量组的秩是相等 的,也可推出β可由1α,2α, ,s α线性表出. 10. 证:因为12,,n εεε 能由12,,n a a a 线性表示, 所以 1212(,,,)(,,,)n n r r a a a εεε≤ ,而12(,,,)n r n εεε= ,12(,,,)n r a a a n ≤ ,所以12(,,,)n r a a a n = ,从而 12,,n a a a 线性无关.11. 证:因为任一向量β可由12,,,s ααα 线性表出,故n 维基本向量组12,,s εεε能由12,,,s ααα 线性表出,又知12,,,s ααα 可由基本向量组12,,s εεε 表出,故12,,,s ααα 与12,,s εεε 等价,所以12,,,s ααα 的秩为s ,即 12,,,s ααα 线性无关.12. 证:由于123,,ααα线性无关,而1234,,,αααα线性相关,故一定存在123,,k k k , 使得4112233k k k αααα=++.若其中某个i k 不为零,假定10k ≠,则1422331()/k k k αααα=--,知423,,ααα也是极大线性无关组,唯一性矛盾. 故一定有1230k k k ===,即40α=.13. 证:必要性.若12,,,s βββ 线性无关,则12,(,,)s r s βββ= ,又因为 12,12(,,)min{(),(,,,)}s s r r A r βββααα≤ ,而12(,,,)s r s ααα= ,故12,(,,)()s r s r A βββ=≤ ,又因为()r A s ≤,则一定有()r A s =,即矩阵A 可 逆.充分性,若矩阵A 可逆,则在等式两边左乘1A -,然后根据矩阵秩的不等 式可得11212,(,,,)min{(),(,,)}s s r r A r αααβββ-≤ ,显然有112(,,,)()s r s r A s ααα-=≤= ,可推出1212,(,,,)(,,)s s r s r αααβββ=≤ , 又12,(,,)s r s βββ≤ ,故只能12,(,,)s r s βββ= ,即12,,,s βββ 线性无关. 14. 证:因为向量组12,,,s ααα 的秩为1r ,则其中有1r 个线性无关的向量,设为 112,,,r c c c .向量组12,,,t βββ 的秩为2r ,则其中有2r 个线性无关的向量,设 为212,,,r d d d .则向量组1212,,,,,,s t αααβββ 中线性无关的向量一定在 121212,,,,,,r r c c c d d d 中选取,所以312r r r ≤+. 15. 定义即得.16. (例题)12(,,,)s r r ααα= ,且12,,,r i i i ααα 为其中r 个线性无关的向量.设 k α是向量组中任意一个向量,则12,,,,r i i i k αααα 线性相关,否则向量组的 秩会大于r .所以,由定理3.5,k α可由12,,,r i i i ααα 线性表出,故 12,,,r i i i ααα 为向量组的一个极大线性无关组.17. (1) 11311322601003000004000A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,故123()(,,)2r A r ααα==, 1α 2α 3α故一个极大线性无关组是1α,2α.(2) 24611231123100013691000012310000A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥---⎢⎥⎢⎥⎣⎦⎣⎦,1234()(,,,)2r A r αααα==, 故一个极大线性无关组是1α,4α.(3) 12341234234501233456000045670000A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,1234()(,,,)2r A r αααα==, 故一个极大线性无关组是1α,2α.18. (1) 11511151112302743181000013970000A ----⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=→⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦,于是得阶梯形方程组 123423450,2740,x x x x x x x ⎧-+-=⎨-+=⎩方程组的一般解为:34343432722x x x x X x x ⎡⎤--⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 可得方程组的一个基础解系为:137,,1,022Tη⎡⎤=-⎢⎥⎣⎦,[]21,2,0,1T η=--.通解为1122X k k ηη=+,1k ,2k 为常数.(3) 212112133112054736290010A ---⎡⎤⎡⎤⎢⎥⎢⎥=--→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦,于是得阶梯形方程组12342343230,5470,0,x x x x x x x x ---=⎧⎪++=⎨⎪-=⎩方程组的一般解为44417,,0,55TX x x x ⎡⎤=-⎢⎥⎣⎦,可得方程组的一个基础解系:117,,0,155Tη⎡⎤=-⎢⎥⎣⎦,通解为11X k η=.(4) 方程组本身即为一个阶梯形方程组,其一般解为:()23423413,,,4TX x x x x x x ⎡⎤=-+-⎢⎥⎣⎦,可得方程组的一个基础解系:11,1,0,04Tη⎡⎤=-⎢⎥⎣⎦,23,0,1,04Tη⎡⎤=⎢⎥⎣⎦,31,0,0,14Tη⎡⎤=-⎢⎥⎣⎦.通解为112233X k k k ηηη=++,1k ,2k ,3k 为常数.19. 证:首先由定理3.9知AX O =的基础解系含有n r -个线性无关的解向量.设 12,,,r ηηη 是AX O =的任意n r -个线性无关的解向量,要证12,,,r ηηη 是 AX O =的基础解系,只需证AX O =的任一解向量β都可由12,,,r ηηη 线性 表出.事实上,12,,,,r ηηηβ 必线性相关(否则AX O =的基础解系至少含有 1n r -+个线性无关的解向量,与已知矛盾),所以β都可由12,,,r ηηη 线性 表出,故12,,,r ηηη 是AX O =的基础解系.20. 证:假定一个基础解系为12,,s ηηη ,向量组12,,,s βββ 与其等价,故也含 有s 个向量.已知向量组12,,,s βββ 满足线性无关性,又因为每一个解向量 都可以由12,,s ηηη 线性表出,而12,,s ηηη 和12,,,s βββ 是等价向量组, 根据线性表出的传递性,每个解向量都可以由12,,,s βββ 线性表出,故 12,,,s βββ 也是一个基础解系.21. 证:先证122331,,ηηηηηη+++线性无关.设存在123,,k k k ,使得 112223331()()()0k k k ηηηηηη+++++=,即131122233()()()0k k k k k k ηηη+++++=,又因为123,,ηηη线性无关,则1312230,0,0,k k k k k k +=⎧⎪+=⎨⎪+=⎩ 可得只能1230k k k ===,即122331,,ηηηηηη+++线性无关.由于112223331()()()X k k k ηηηηηη=+++++ 131122233()()()k k k k k k ηηη=+++++,可知任意一个向量都可由122331,,ηηηηηη+++线性表出, 即122331,,ηηηηηη+++也是AX O =的一个基础解系.22. 证:(1)反证法,若12,γγ线性相关,则12,γγ一定成倍数关系,不妨令12k γγ=. 又因为12γγ≠,故1k ≠.由于12γγ-为齐次线性方程组AX O =的解,并且 122(1)k γγγ-=-,所以有22(1)(1)A k k A O γγ-=-=,而1k ≠,则有2A O γ=, 这与2A γβ=矛盾,所以假设不成立,即12,γγ线性无关.(2)若()1r A n =-,则齐次线性方程组AX O =的基础解系中只有一个解向 量,又12()A O γγββ-=-=,故112()k γγ-即为基础解系,其中1k 为某个非 零常数,又已知η是齐次线性方程组AX O =的解,则一定有2112()k k ηγγ=-, 即说明12,,ηγγ是线性相关的.23. (1)[]27316121123522401151109417200000A β---⎡⎤⎡⎤⎢⎥⎢⎥=→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,于是得阶梯形方程组:123423422,11510,x x x x x x x --+=-⎧⎨+-=⎩取3x ,4x 为自由变量,则方程组一般解为:()()3434341129,105,,1111TX x x x x x x ⎡⎤=-+--+⎢⎥⎣⎦,可得一个特解为:0210,,0,01111Tη⎡⎤=-⎢⎥⎣⎦,一个基础解系为:115,,1,01111Tη⎡⎤=-⎢⎥⎣⎦,291,,0,11111Tη⎡⎤=-⎢⎥⎣⎦.则方程组的通解为:01122122191111111051111111010001X k k k k ηηη⎡⎤⎡⎤⎡⎤--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-=++=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,其中1k ,2k 为常数. (2) []15231115231131425021131901170091475361100000A β----⎡⎤⎡⎤⎢⎥⎢⎥-----⎢⎥⎢⎥=→⎢⎥⎢⎥----⎢⎥⎢⎥--⎣⎦⎣⎦, 于是得阶梯形方程组:12342343452311,23,9147,x x x x x x x x x -+-=⎧⎪--+=⎨⎪-=⎩取4x 为自由变量,可得方程组一般解为:()444431751,,714,29189TX x x x x ⎡⎤=---+⎢⎥⎣⎦,可得一个特解为:01770,,,099Tη⎡⎤=-⎢⎥⎣⎦,一个基础解系为:13514,,,12189T η⎡⎤=--⎢⎥⎣⎦.则方程组的通解为:011X k ηη=+,其中1k 为常数.(3) []211331321451010407551132121000152A β---⎡⎤⎡⎤⎢⎥⎢⎥=--→-⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦,于是得阶梯形方程组:12342344324,75511,152,x x x x x x x x -+-+=⎧⎪-+=⎨⎪-=⎩取3x 为自由变量,可得方程组一般解为:333131552,,,1573715TX x x x ⎡⎤=++-⎢⎥⎣⎦,可得一个特解为:01352,,0,15315Tη⎡⎤=-⎢⎥⎣⎦,一个基础解系为:115,,1,077Tη⎡⎤=⎢⎥⎣⎦.则方程组的通解为:011X k ηη=+,其中1k 为常数. (4) 方程组本身即为一个阶梯形方程组,其一般解为: []2345234544236,,,,TX x x x x x x x x =+-+-, 可得一个特解为:[]04,0,0,0,0Tη=, 一个基础解系:[]14,1,0,0,0Tη=,[]22,0,1,0,0Tη=-,[]33,0,0,1,0Tη=,[]46,0,0,0,1Tη=- 通解为011223344X k k k k ηηηηη=++++,1k ,2k ,3k ,4k 为常数.24. 解:[]2211230112302325012112020000A βλλλλλ--⎡⎤⎡⎤⎢⎥⎢⎥=-→-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦, 当20λλ-=,即0λ=或1λ=时有解. 当20λλ-≠,即0λ≠且1λ≠时无解.若有解,得阶梯形方程组:1234234230,2,x x x x x x x λ+-+=⎧⎨+-=⎩取3x ,4x 为自由变量,则方程组一般解为: []34343444,2,,TX x x x x x x λλ=-+--+, 可得一个特解为:[]0,,0,0Tηλλ=-,一个基础解系为:[]14,2,1,0Tη=-,[]24,1,0,1Tη=-. 则方程组的通解为:01122X k k ηηη=++,其中1k ,2k 为常数,0λ=或1λ=.25. 解:[]11321113211316301121151010001053115230002226A b b a a b β⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=→⎢⎥⎢⎥--+⎢⎥⎢⎥---+--⎣⎦⎣⎦,若220a -+=且260b --≠时,即1a =且3b ≠-时,无解. 若1a ≠时,有唯一解为:263420,6,5,11Tb b X b b b a a ++⎡⎤=--+-+⎢⎥--⎣⎦. 若1a =且3b =-时,有无穷多解.此时阶梯形方程组为:12342343321,21,2,x x x x x x x x +++=⎧⎪-+=⎨⎪=⎩取4x 为自由变量,可得方程组一般解为: []448,32,2,TX x x =--, 可得一个特解为:[]08,3,2,0Tη=-, 一个基础解系为:[]10,2,0,1T η=-.则方程组的通解为:011X k ηη=+,其中1k 为常数 26. 证法1:单位矩阵E 的每一列都是AX O =的解,故A AE O ==. 证法2:假设A O ≠,则()0r A r =≠,所以AX O =只有n r -个线性无关的解, 显然矛盾.27.证:已知齐次线性方程组AX O =的系数矩阵的秩为()r r n <,则AX O =的基 础解系中含有n r -个线性无关的解向量.反证法假设12(,,,)t r n r ααα>- , 则其中有大于n r -个线性无关的解向量,并且其中每个解向量都可由这 12(,,,)t r ααα 个解向量线性表出,这说明AX O =的基础解系中含有大于 n r -个线性无关的解向量,这与已知矛盾,故假设不成立.则 12(,,,)t r n r ααα≤-28.证:(1)AX O =的基础解系中含有()n r A -个线性无关的解向量,BX O =的基 础解系中含有()n r B -个线性无关的解向量.若AX O =的解均为BX O =的解,即有()()n r A n r B -≤-,故()()r A r B ≥.(2)若AX O =与BX O =同解,通过(1)的结论,基础解系中含有相同个数的 线性无关的解向量,则()()n r A n r B -=-,故()()r A r B =. (3)略.(4)不能.只能说基础解系中含有相同个数的线性无关的解向量,但这些解向 量不一定相等.。

线性代数第三 四章答案

线性代数第三 四章答案

解:由3(α1 − α) + 2(α2 + α) = 5(α3 + α) 可得6α = −5α3 + 2α2 + 3α1, 即α = (−5α3 + 2α2 + 3α1)/6 = (1, 2, 3, 4).
3-4. 设β1 = α1 + α2, β2 = α2 + α3, β3 = α3 + α4, β4 = α4 + α1, 证明向量组β1, β2, β3, β4线 性相关.
3v1 + 2v2 − v3 = 3(1, 1, 0) + 2(0, 1, 1) − (3, 4, 0) = (3, 3, 0) + (0, 2, 2) − (3, 4, 0) = (0, 1, 2).
3-2. 设3(α1 − α) + 2(α2 + α) = 5(α3 + α), 其中,α1 = (2, 5, 1, 3), α2 = (10, 1, 5, 10), α3 = (4, 1, −1, 1),求α.
证明:因为β1−β2 = α1−α3, β4−β3 = α1−α3. 所以β1−β2 = β4−β3, 即β1−β2+β3−β4 = 0,向量组β1, β2, β3, β4线性相关。
3-5. 设β1 = α1, β2 = α1 + α2, · · · , βr = α1 + α2 + · · · αr, 且向量组α1, α2, · · · , αr线性无
4-11.
若方程组
x1 + 2x2 + x3 = 0 2x1 + x2 + λx3 = 0
存在基础解系,则λ等于【5】
4-12. 设A为m × n矩阵,则齐次线性方程组AX = 0有结论【若A有n阶子式不为0,则

《线性代数》第3章习题解答(rr)

《线性代数》第3章习题解答(rr)

1.已知向量:112[5,1,3,2,4],34[3,7,17,2,8],T T ααα=--=-- 求1223αα+ 解:∵ 21{[3,7,17,2,8][15,3,9,6,12]}4T T α=----- 1[12,4,8,8,4][3,1,2,2,1]4T T=-----=-∴ 1223[10,2,6,4,8][9,3,6,6,3][19,1,0,10,11]TTTαα+=-+-=2.设 12[2,5,1,3],[10,1,5,10],T T αα==3123[4,1,1,1],3()2()5()0T ααααααα=--++-+=并且 求 α解:∵ 1236325αααα=+-[6,15,3,9][20,2,10,20][20,5,5,5][6,12,18,24],T T TT=+--=∴ [1,2,3,4].T α=3.判断下列命题是否正确,为什么? (1)如果当 120m k k k ==== 时, 11220m m k k k ααα+++= 成立, 则向量组12,,m ααα 线性相关解:不正确.如:[][]121,2,3,4T Tαα==,虽然 12000,αα+=但12,αα线性无关。

(2) 如果存在m 个不全为零的数12,,,,m k k k 使11220,m m k k k ααα+++≠ 则向量组12,,,m ααα 线性无关。

解: 不正确. 如[][]11121,2,2,4,1,2,TTk αα====存在k 使121220,,.αααα+≠但显然线性相关(3) 如果向量组12,,,m ααα 线性无关,则其中任何一个向量都不能由其余向量线性表出. 解: 正确。

(反证)如果组中有一个向量可由其余向量线性表示,则向量组 12,,,m ααα 线性相关,与题没矛盾。

(4) 如果向量组123,,ααα线性相关,则3α一定可由12,αα线性表示。

解:不正确。

例如:[][][]1230,0,0,0,1,0,0,0,1,TTTααα===向量组123,,ααα线性相关,但3α不能由12,αα线性表示。

线代第三章习题解答

线代第三章习题解答

第三章 行列式习题3.13-1-6.用定义计算行列式(1)()2,1,0,,,0000000222211114=≠=i d c b a d c b a d c b a D i i i i解:设444⨯=ija D 则4D 中第1行的非0元为113111,b a a a ==,故11,3j =同法可求:2342,4;1,3;2,4j j j ===∵4321,,,j j j j 可组成四个4元排列 1 2 3 4,1 4 3 2,3 2 1 4,3 4 1 2,故4D 中相应的非0项有4项,分别为2211d b c a ,,2211c b d a -2211d a c b -,2211c a d b 其代数和即为4D 的值,整理后得 ()()122112214d c d c b a b a D --=(2)010...0002 0000...000 0n D n =M M MM解:由行列式的定义121212()12(1)n n nj j j n j j nj j j j D a a a τ=-∑L L L仅当12,,,n j j j L 分别取2,3,…,n-1,n,1 时,对应项不为零,其余各项都为零12121()(231)1212231(1)(1)(1)(1)(1)12(1)!n n n j j j n n j j nj n n n n D a a a a a a a n n ττ---=-=-=-⋅=-⋅L L L L L习题3.23.2-2.证明(1)0sin cos 2cos sin cos 2cos sin cos 2cos 222222=γγγβββααα证明:22222222222222132222222cos sin cos sin cos cos sin cos sin cos sin cos cos sin cos sin cos sin cos cos sin c c αααααααβββββββγγγγγγγ-=-+-左0= (2) 322)(11122b a b b a a b ab a -=+证明:23222212()()2()11001c c a ab ab b b a a b b a b a b c c a ba b b a b a b a b --------==---左右=-=3)(b a(3) 121211221100001000001n n n n n n n n x x x a x a x a x a x a a a a a x-------=+++++-+L L M M MO M M L L L证明: 按最后一行展开,得1211000000010001000(1)(1)0001000010010001n n n n x x a a x x x ++----=-+-----L L LL O M M M M M O M M L L LL 左321220000100000000100(1)(1)000100000000100001n n n x x x x a a x x +----+-++----L L LL L M M M OM M M M M O M M L L LL211000010()(1)00010000n x x x a x x--++--L LM MM O M M L L 222222121221(1)(1)(1)(1)()(1)n n n n n n n n n n a a x a x a x x a x ----=-+-+-++-++-L 2211221n n n n n n a a x a x a x a x x ----=++++++=L 右3=2-3.计算下列行列式 (1)11111100((1))((1))0x a a a x a a x a x a x n a x n a a a xa a xx a-=+-=+--L L L L L LM M O M M M O M M M O M LLL])1([)(1a n x a x n -+-=-(2)()()()()()()111(1)211111111()1(1)(1)111111nnnn n n n n n n n n nnna a a n a a a n a a a n D a a a n a a a n a a a n ---++---------==-------L L L LM MOMMM O ML L LL(最后一行(n+1)行依次与第n,n-1,…,2,1行交换,经过n 次交换;再将新的行列式的最后一行(即原来的n 行)依次换到第二行,经过n-1次交换;。

线性代数课后习题详细解答 (袁晖坪版)第三章 线性方程组

线性代数课后习题详细解答 (袁晖坪版)第三章 线性方程组

1 2 3 1⎞ 1 1 −4 1 ⎟ ⎟ 得 r ( A) ≠ r ( A) ,因此原方程组 0 −6 −3 10 ⎟ ⎟ 0 0 0 3⎠
无解。 ⎛ 1 −2 3 −4 4 ⎞ ⎜ 0 1 −1 1 −3 ⎟ ⎟ (3) 由方程组的增广矩阵 A = ( A, β ) = ⎜ ⎜1 3 0 1 1 ⎟ ⎜ ⎟ ⎝ 0 −7 3 1 −3 ⎠
r3 − 2 r2 r2 ↔ r3 r3 + 3r2
1 r3 ×( − ) 6 r2 + 3 r3 r1 − r3
r1 − r2
r2 − 2 r1 r3 − 2 r1
4 ⎧ x1 = − x4 , 4 ⎧ ⎪ 3 ⎪ x1 + 3 x4 = 0, ⎪ ⎪ ⎪ x = − x4 , 得 ⎨ x2 + x4 = 0, ,所以 ⎨ 2 ( x4为自由未知量) ,令 x4 =k ,得原方程组 2 ⎪ ⎪ x = −2 − x4 2 ⎪ x3 + x4 = −2; ⎪ 3 3 3 ⎩ ⎪x = x ⎩ 4 4 4 ⎧ ⎪ x1 = − 3 k , ⎪ ⎪ x = −k , 得通解为: ⎨ 2 (k ∈ R) 2 ⎪ x = −2 − k ⎪ 3 3 ⎪x = k ⎩ 4
11 1 ⎧ ⎪ x1 = 5 + k1 + 5 k 2 , ⎪ ⎪ x2 = k1 , 得原方程组得通解为: ⎨ (k1 , k2 ∈ R) ⎪x = 2 + 2 k ⎪ 3 5 5 2 ⎪x = k ⎩ 4 2 (5) 由方程组的增广矩阵: 1 1 1 1 0⎞ 2 −5 r 1 ⎛1 ⎛1 1 1 1 1 0⎞ r ⎜ ⎟ r3 − r2 ⎜ ⎟ A = ( A, β ) = ⎜ 3 2 1 1 −3 0 ⎟ → ⎜ 0 −1 −2 −2 −6 0 ⎟ ⎜ 5 4 −3 3 −1 0 ⎟ ⎜ 0 0 −6 0 0 0 ⎟ ⎝ ⎠ ⎝ ⎠

线性代数课本第三章习题详细答案

线性代数课本第三章习题详细答案

第三章 课后习题及解答将1,2题中的向量α表示成4321,,,αααα的线性组合:1.()()()()().1,1,1,1,1,1,1,1,1,1,1,1,,1,1,11,,1,12,1T4T3T21T--=--=--===αααααT2.()()()()().1,1,1,0,0,0,1,1,1,3,1,2,1,0,1,1,1,0,0,04321--=====ααααα解:设存在4321,,,k k k k 使得44332211αααααk k k k +++=,整理得14321=+++k k k k24321=--+k k k k14321=-+-k k k k14321=+--k k k k解得.41,41,41,454321-=-===k k k k 所以432141414145ααααα--+=. 设存在 4321,,,k k k k 使得44332211αααααk k k k +++=,整理得02321=++k k k ,04321=+++k k k k ,0342=-k k ,1421=-+k k k .解得 .0,1,0,14321=-===k k k k 所以31ααα-=.判断3,4题中的向量组的线性相关性: 3. ()()().6,3,1,5,2,0,1,1,1T3T2T1===ααα4. ()().3,0,7,142,1,3,0,)4,2,1,1(T3T2T 1==-=βββ,解:3.设存在 321,,k k k 使得0332211=++αααk k k ,即⎪⎩⎪⎨⎧=++=++=+065032032132131k k k k k k k k ,由0651321101=,解得321,,k k k 不全为零, 故321,,ααα线性相关.4.设存在 321,,k k k 使得0332211=++βββk k k ,即⎪⎪⎩⎪⎪⎨⎧=++=++=+-=+0142407203033213212131k k k k k k k k k k 可解得321,,k k k 不全为零,故321,,βββ线性相关. 5.论述单个向量)(n a a a ,,,21 =α线性相关和线性无关的条件.解:设存在k 使得0=αk ,若0≠α,要使0=αk ,当且仅当0=k ,故,单个向量线性无关的充要条件是0≠α;相反,单个向量)(n a a a ,,,21 =α线性相关的充要条件是0=α.6.证明:如果向量组线性无关,则向量组的任一部分组都线性无关. 证:设向量组n n αααα,,,,121- 线性无关,利用反证法,假设存在该向量组的某一部分组)(,,,21n i r i i i r ≤ααα 线性相关,则向量组n n αααα,,,,121- 线性相关,与向量组n n αααα,,,,121- 线性无关矛盾, 所以该命题成立.7.证明:若21,αα线性无关,则2121,αααα-+也线性无关.证:方法一,设存在21,k k 使得0)()(212211=-++ααααk k ,整理得,0)()(221121=-++ααk k k k ,因为21,αα线性无关,所以⎩⎨⎧=-=+02121k k k k ,可解得021==k k ,故2121,αααα-+线性无关.方法二,因为=-+)(2121,αααα⎪⎪⎭⎫⎝⎛-1111,21)(αα, 又因为021111≠-=-,且21,αα线性无关,所以向量组2121,αααα-+的秩为2,故2121,αααα-+线性无关.8.设有两个向量组s ααα,,,21 和,,,,21s βββ 其中,13121111⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k a a a a α,3222122⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ks a a a a α ,,321⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ks s s s s a a a a αs βββ,,,21 是分别在s ααα,,,21 的k 个分量后任意添加m 个分量mj j j b b b ,,,21),,2,1(s j =所组成的m k +维向量,证明:(1) 若s ααα,,,21 线性无关,则s βββ,,,21 线性无关; (2) 若s βββ,,,21 线性相关,则s ααα,,,21 线性相关.证:证法1,(1)设()s A ααα,,,21 =,()s B βββ,,,21 =,因为s ααα,,,21 线性无关,所以齐次线性方程0=AX 只有零解,即,)(s A r = 且s B r =)(,s βββ,,,21 线性无关.证法2,因为s ααα,,,21 线性无关,所以齐次线性方程0=AX 只有零解,再增加方程的个数,得0=BX ,该方程也只有零解,所以s βββ,,,21 线性无关.(2) 利用反证法可证得,即假设s ααα,,,21 线性无关,再由(1)得s βββ,,,21 线性无关,与s βββ,,,21 线性相关矛盾.9. 证明:133221,,αααααα+++线性无关的充分必要条件是321,,ααα线性无关.证:方法1,(133221,,αααααα+++)=(321,,ααα)⎪⎪⎪⎭⎫ ⎝⎛110011101因为321,,ααα线性无关,且02110011101≠=,可得133221,,αααααα+++的秩为3所以133221,,αααααα+++线性无关.线性无关;反之也成立.方法2,充分性,设321,,ααα线性无关,证明133221,,αααααα+++线性无关.设存在321,,k k k 使得0)()()(133322211=+++++ααααααk k k ,整理得,0)()()(332221131=+++++αααk k k k k k因为321,,ααα线性无关,所以⎪⎩⎪⎨⎧=+=+=+000322131k k k k k k ,可解得0321===k k k ,所以133221,,αααααα+++线性无关. 必要性,(方法1)设133221,,αααααα+++线性无关,证明321,,ααα线性无关,假设321,,ααα线性相关,则321,,ααα中至少有一向量可由其余两个向量线性表示,不妨设321,ααα可由线性表示,则向量组133221,,αααααα+++可由32,αα线性表示,且23>,所以133221,,αααααα+++线性相关,与133221,,αααααα+++线性无关矛盾,故321,,ααα线性无关.方法2,令133322211,,ααβααβααβ+=+=+=,设存在321,,k k k 使得0332211=++αααk k k ,由133322211,,ααβααβααβ+=+=+=得)()()(32133212321121,21,21βββαβββαβββα---=-+=+-=,代入 0332211=++αααk k k 得,0212121321332123211=++-+-+++-)()()(βββββββββk k k ,即 0)()()(332123211321=+-+++-+-+βββk k k k k k k k k因为321,,βββ线性无关,所以⎪⎩⎪⎨⎧=+-=++-=-+000321321321k k k k k k k k k可解得0321===k k k ,所以321,,ααα线性无关.10.下列说法是否正确?如正确,证明之;如不正确,举反例:(1)m ααα,,,21 )(2>m 线性无关的充分必要条件是任意两个向量线性无关; 解:不正确,必要条件成立,充分条件不成立,例:2维向量空间不在一条直线的3个向量,虽然两两线性无关,但这3个向量线性相关。

线性代数第三章习题及解答

线性代数第三章习题及解答

43

3 5 5
2 2 1 5 2 0 0 0 −1 1 0 0
−1 3 0
1

3
6. 设 α1 , α2 , . . . , αn 是一组 n 维向量,已知 n 维单位坐标向量 e1 , e2 , . . . , en 能由它们线性表示, 证明 α1 , α2 , . . . , αn 线性无关.
4 1 −1 1 −2 −22 1 −2 −1 3 6
−24 −11 3 −2 1 −2 −1 0 11 −→ 10 5 −20 0 0 0

10 0
5 9 1 T T 齐次方程的基础解系为 ξ1 = ( 21 11 , 11 , 1, 0) , ξ2 = (− 11 , 11 , 0, 1)
α4 = 8 α − α2 + 2α3 5 1 1 1 2 2 1 0 2 1 5 −1 (2) 3 2 0 3 −1 1 1 0 4 −1 1 1 2 2 1 1 1 0 2 1 5 −1 0 2 解: 2 0 3 −1 3 −→ 0 0 1 1 0 4 −1 0 0 α1 α2 α3 α4 α5 1 1 0 4 −1 1 0 0 1 0 1 0 3 −1 3 −→ 0 1 0 0 0 1 −1 1 0 0 1 −1 0 0 0 0 0 0 0 0 0 于是最大线性无关向量组之一为 α1 , α2 , α3 α4 = α1 + 3α2 − α3 , α5 = α3 − α2
T
− 20 83
5 83

− 17 83

线性代数第3章习题解答

线性代数第3章习题解答
一、主要内容
Cauchy 中值定理
F(x)x
洛必达法则

f g1g1 f 1g1 f
0型 0 型
00,1,0型
令y f g 取对数
0型
f g f 1g
Lagrange f(a)f(b)
中值定理
Rolle 定理
n0
Taylor 中值定理
泰勒公式
导数的应用
,极值与最值, 凹凸性,拐点,函数 图形的描绘; 曲率;求根方法.
几何解释: 曲线 y = f (x) 至少有一条切线平行于
连接曲线端点的弦。
.
线性代数第3章习题解答
柯西中值定理:
若 f(x若 )和 F 1f((x x)):: (1)在 闭 区[a间 ,b]上 连 续 ;
(2在 ) 开区 (a,间 b)内可导;
(F 3 (x ) 0 x ( a ,b ).
.
则 至 少 存在 (一 a,b), 点使 得
定 理2 如 果 f(x)在 (x0,x0)内 存 在 二 阶 导 数,则点x0,f(x0)是拐点的必要条件是
f"(x0)0.
线性代数第3章习题解答
方法1: 设函f数 (x)在x0的邻域内二, 阶可导 且f(x0)0, (1 )x 0 两f近 (x )变 ,点 旁 (x 号 0 ,f(x 0 )即 ) 为 ; (2 )x 0 两f( 近 x ) 不 旁 ,点 变 (x 0 ,f(x 0 ) 号 不 ) .是
线性代数第3章习题解答
函数的极大值与极小值统称为极值,使函数取得 极值的点称为极值点. 极值是函数的局部性概念:极大值可能小于极小 值,极小值可能大于极大值.
定理(必要条件) 设 f(x )在 点 x 0 处 具 有 导 数 ,且 在 x 0 处 取 得 极 值 ,那 末 必 定 f'(x 0 ) 0 .

[整理版]线性代数习题三答案

[整理版]线性代数习题三答案

第三章 线性方程组一、温习巩固1. 求解齐次线性方程组⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x解: 化系数矩阵为行最简式⎪⎪⎪⎭⎫⎝⎛−−→−⎪⎪⎪⎭⎫ ⎝⎛----=000001001-0215110531631121行变换A因此原方程同解于⎩⎨⎧=+-=023421x x x x 令2412,k x k x ==,可求得原方程的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1001001221k k x ,其中21,k k 为任意常数。

2. 求解非齐次线性方程组⎪⎩⎪⎨⎧=+=+-=-+8311102322421321321x x x x x x x x解:把增广矩阵),(b A 化为阶梯形⎪⎪⎪⎭⎫⎝⎛−−→−⎪⎪⎪⎭⎫ ⎝⎛---−−→−⎪⎪⎪⎭⎫ ⎝⎛--=-6-000341110-08-3-318031110213833180311102132124),(21行变换r r b A因此3),(2)(=<=b A R A R ,所以原方程组无解。

3. 设)1,2,1,3(),1,1,2,3(--=--=βα。

求向量γ,使βγα=+32。

解:⎪⎭⎫ ⎝⎛--=-=31,0,35,3)2(31αβγ4. 求向量组,)0,2,1,1(,)14,7,0,3(,)2,1,3,0(,)4,2,1,1(4321T T T T -===-=ααααT )6,5,1,2(5=α的秩和一个极大线性无关组。

解:将51,αα 作为列向量构成矩阵,做初等行变换⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫⎝⎛--=44000000010110213012422101103033021301601424527121103121301A 所以向量组的秩为3,421,,ααα是一个极大线性无关组。

二、练习提高⒈ 判断题⑴ 初等变换总是把方程组变成同解方程组,这也是消元法的理论基础。

线代第三章习题解答

线代第三章习题解答

第三章 行列式习题3.13-1-6.用定义计算行列式(1)()2,1,0,,,0000000222211114=≠=i d c b a d c b a d c b a D i i i i解:设444⨯=ija D 则4D 中第1行的非0元为113111,b a a a ==,故11,3j =同法可求:2342,4;1,3;2,4j j j ===∵4321,,,j j j j 可组成四个4元排列 1 2 3 4,1 4 3 2,3 2 1 4,3 4 1 2,故4D 中相应的非0项有4项,分别为2211d b c a ,,2211c b d a -2211d a c b -,2211c a d b 其代数和即为4D 的值,整理后得 ()()122112214d c d c b a b a D --=(2)010...0002 0000...000 0n D n =M M MM解:由行列式的定义121212()12(1)n n nj j j n j j nj j j j D a a a τ=-∑L L L仅当12,,,n j j j L 分别取2,3,…,n-1,n,1 时,对应项不为零,其余各项都为零12121()(231)1212231(1)(1)(1)(1)(1)12(1)!n n n j j j n n j j nj n n n n D a a a a a a a n n ττ---=-=-=-⋅=-⋅L L L L L习题3.23.2-2.证明(1)0sin cos 2cos sin cos 2cos sin cos 2cos 222222=γγγβββααα证明:22222222222222132222222cos sin cos sin cos cos sin cos sin cos sin cos cos sin cos sin cos sin cos cos sin c c αααααααβββββββγγγγγγγ-=-+-左0= (2) 322)(11122b a b b a a b ab a -=+证明:23222212()()2()11001c c a ab ab b b a a b b a b a b c c a ba b b a b a b a b --------==---左 右=-=3)(b a(3) 121211221100001000001n n n n n nn n x x x a x a x a x a x a a a a a x-------=+++++-+L L M MM O M M L L L证明: 按最后一行展开,得1211000000010001000(1)(1)00010000100101n n n n x x a a x x x ++----=-+-----L L L L O M M M M M O M M L L LL左321220000100000000100(1)(1)0001000000001001n n n x x x x a a x x +----+-++----LL L L L M M M O M M M M M O M M L L LL21100100()(1)000100nx x x a x x--++--LL M M M O M M L L222222121221(1)(1)(1)(1)()(1)n n n n n n n n n n a a x a x a x x a x ----=-+-+-++-++-L 2211221n n n n n n a a x a x a x a x x ----=++++++=L 右3=2-3.计算下列行列式 (1)11111100((1))((1))0x a a a x a a x a x a x n a x n a a a xa a xx a-=+-=+--LL L LLLM M O M M M OM M M OM LLL])1([)(1a n x a x n -+-=-(2)()()()()()()111(1)211111111()1(1)(1)111111nnnn n n n n n n n n nnna a a n a a a n a a a n D a a a n a a a n a a a n ---++---------==-------L L L LM MOMMM O ML L LL(最后一行(n+1)行依次与第n,n-1,…,2,1行交换,经过n 次交换;再将新的行列式的最后一行(即原来的n 行)依次换到第二行,经过n-1次交换;。

高等数学 线性代数 习题答案第三章

高等数学 线性代数 习题答案第三章

第三章习题3-11. 设s =12gt 2,求2d d t s t=.解:22221214()(2)2lim lim 22t t t g g ds s t s dt t t t →→=-⨯-==-- 21lim (2)22t g t g →=+= 2. 设f (x )=1x,求f '(x 0) (x 0≠0). 解:1211()()()f x x x x--'''===00201()(0)f x x x '=-≠ 3.试求过点(3,8)且与曲线2y x =相切的直线方程。

解:设切点为00(,)x y ,则切线的斜率为002x x y x ='=,切线方程为0002()y y x xx -=-。

由已知直线过点(3,8),得 00082(3)y x x -=- (1)又点00(,)x y 在曲线2y x =上,故200y x = (2)由(1),(2)式可解得002,4x y ==或004,16x y ==,故所求直线方程为44(2)y x -=-或168(4)y x -=-。

也即440x y --=或8160x y --=。

4. 下列各题中均假定f ′(x 0)存在,按照导数定义观察下列极限,指出A 表示什么:(1) 0limx ∆→00()()f x x f x x-∆-∆=A ;(2) f (x 0)=0, 0limx x →0()f x x x-=A ; (3) 0limh →00()()f x h f x h h+--=A .解:(1)0000000()()[()]()limlim ()x x f x x f x f x x f x f x x x→-→--+--'=-=--0()A f x '∴=- (2)00000()()()limlim ()x x x x f x f x f x f x x x x x →→-'=-=---0()A f x '∴=-(3)000()()limh f x h f x h h→+--00000[()()][()()]lim h f x h f x f x h f x h→+----=000000()()[()]()lim lim h h f x h f x f x h f x h h→-→+-+--=+-000()()2()f x f x f x '''=+= 02()A f x '∴=5. 求下列函数的导数: (1) y (2) y ;(3) y 322x .解:(1)12y x x ==11221()2y x x -''∴=== (2)23y x -=225133322()33y x x x ----''∴==-=-=(3)2152362y xx xx -==15661()6y x x-''∴===6. 讨论函数y x =0点处的连续性和可导性. 解:30lim 0(0)x x f →==000()(0)0lim lim 0x x x f x f x x →→→-===∞-∴函数y =0x =点处连续但不可导。

线性代数第三章习题答案

线性代数第三章习题答案

线性代数 (同济四版) 习题参考答案
1 2 3
35
列变换, 即: 两边分别左乘、 右乘了相应的初等矩阵, 那么矩阵 4 5 6 也要进行相应的行变换、 7 8 9 1 0 1 =⇒ 0 0 1 =⇒ 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 4 7 4 1 7 2 5 8 5 2 8 5 2 8 3 6 9 6 3 9 2 2 2 0 A 1 0 0 A 1 1 0 = 0 1 0 1 1 0 = 0 1 1 0
4 1 7
5 2 8
6
3 9
0 0 0 1 4 5 2 1 2 2 7 8 2

A= 1 2 2 7 8 2
或者有下面的解法 . 1 2 3 记B= 4 5 6 . 注意到 A 两边乘以的是初等矩阵, 可知矩阵 B 是把 A 进行初等变换 r1 ↔ r2 7 8 9 和 c3 + c1 得到的. 所以要得到 A, 需要将 B 进行初等变换 c3 − c1 和 r1 ↔ r2 . 即 1 2 3 1 2 2 4 5 2 c3 − c1 4 5 2 r1 ↔ r2 1 2 2 = A B= 4 5 6 7 8 9 7 8 2 7 8 2
1 0 0 0 0 1 0 0 1 1 4 7 1 0 0 4 1 7 2 3 1
0 1
r1 ↔ r2 0 5 6 8 9 0 0 1 0 5 2 8 0 1 c3 − c1 6 3 9 4 5 2 1 1 0

线性代数(同济版) 课后习题答案 第三章

线性代数(同济版) 课后习题答案 第三章

第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) −−340313021201; (2) −−−−174034301320;(3) −−−−−−−−−12433023221453334311; (4) −−−−−−34732038234202173132.解 (1) −−3403130212011312)3()2(~r r r r −+−+−−−020*********)2()1(32~−÷−÷r r −−01003100120123~r r −−−300031001201 33~÷r −−100031001201323~r r +−1000010012013121)2(~r r r r +−+100001000001(2)−−−−174034301320 1312)2()3(2~r r r r −+−+×−−−310031001320 21233~r r r r ++ 000031001002021~÷r000031005010(3)−−−−−−−−−12433023221453334311 141312323~r r r r r r −−−−−−−−−−−1010500663008840034311 )5()3()4(432~−÷−÷−÷r r r−−−−−221002210022*******12423213~rr r r r r −−−−−−0000000000221003211(4)−−−−−−34732038234202173132 242321232~r r r r r r −−−−−−−−1187701298804202111110 141312782~r r r r r r −−+−−4100041000202011111034221)1(~r r r r r −−×↔−−−−0000041000111102021 32~r r +−−00000410003011020212.在秩是r 的矩阵中,有没有等于0的1−r 阶子式?有没有等于0的r 阶 子式?解 在秩是r 的矩阵中,可能存在等于0的1−r 阶子式,也可能存在等 于0的r 阶子式.例如,=00000000010000100001α3)(=αR 同时存在等于0的3阶子式和2阶子式.3.从矩阵A 中划去一行得到矩阵B ,问B A ,的秩的关系怎样? 解 )(A R ≥)(B R设r B R =)(,且B 的某个r 阶子式0≠D r .矩阵B 是由矩阵A 划去一行得到的,所以在A 中能找到与D r 相同的r 阶子式D r ,由于0≠=D D r r , 故而)()(B R A R ≥.4.求作一个秩是4的方阵,它的两个行向量是)0,0,1,0,1(,)0,0,0,1,1(− 解 设54321,,,,ααααα为五维向量,且)0,0,1,0,1(1=α,)0,0,0,1,1(2−=α,则所求方阵可为,54321=αααααA 秩为4,不妨设===)0,0,0,0,0(),0,0,0,0()0,,0,0,0(55443αααx x 取154==x x 故满足条件的一个方阵为−00000100000100000011001015.求下列矩阵的秩,并求一个最高阶非零子式:(1) −−−443112112013; (2)−−−−−−−815073131213123; (3) −−−02301085235703273812.解 (1) −−−443112112013r r 21~↔−−−443120131211−−−−−−564056401211~12133r r r r 2000056401211~23秩为 −−−−r r 二阶子式41113−=−.(2) −−−−−−−815073131223123−−−−−−−−−15273321059117014431~27122113r r r r r r 200000591170144313~23秩为−−−−−r r .二阶子式71223−=−. (3)−−−02301085235703273812434241322~r r r r r r −−−−−−−−−02301024205363071210 131223~r r r r ++−0230114000016000071210344314211614~r r r r r r r r −÷÷↔↔−0000010000712100231秩为3 三阶子式07023855023085570≠=−=−.6.求解下列齐次线性方程组:(1) =+++=−++=−++;0222,02,02432143214321x x x x x x x x x x x x (2) =−++=−−+=−++;05105,0363,02432143214321x x x x x x x x x x x x(3) =−+−=+−+=−++=+−+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (4)=++−=+−+=−+−=+−+.0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x 解 (1) 对系数矩阵实施行变换:−−212211121211−−−3410013100101~即得 ==−==4443424134334x x xx x x x x 故方程组的解为−=1343344321k x x x x(2) 对系数矩阵实施行变换:−−−−5110531631121 −000001001021~ 即得===+−=4432242102x x x x x x x x故方程组的解为+ −=10010012214321k k x x x x (3) 对系数矩阵实施行变换:−−−−−74216314721351321000010000100001~即得 ====00004321x xxx故方程组的解为====00004321x x xx (4) 对系数矩阵实施行变换:−−−−−3127161311423327543−−000000001720171910171317301~ 即得==−=−=4433432431172017191713173x x x x x x x x x x故方程组的解为 −−+=1017201713011719173214321k k x x x x7.求解下列非齐次线性方程组:(1)=+=+−=−+;8311,10213,22421321321x x x x x x x x (2) −=+−=−+−=+−=++;694,13283,542,432z y x z y x z y x z y x(3) =−−+=+−+=+−+;12,2224,12w z y x w z y x w z y x (4)−=+−+=−+−=+−+;2534,4323,12w z y x w z y x w z y x解 (1) 对系数的增广矩阵施行行变换,有−−−−−−60003411100833180311102132124~2)(=A R 而3)(=B R ,故方程组无解.(2) 对系数的增广矩阵施行行变换:−−−−−69141328354214132−−0000000021101201~ 即得=+=−−=zz z y z x 212亦即 −+ −= 021112k z y x(3) 对系数的增广矩阵施行行变换:−−−−111122122411112−000000100011112~ 即得===++−=0212121w z z y y z y x 即 + + −=00021010210012121k k w z y x(4) 对系数的增广矩阵施行行变换:−−−− −−−−−000007579751025341253414312311112~−−−−000007579751076717101~ 即得 ==−−=++=w w z z w z y w z x 757975767171 即 −+ −+=00757610797101757121k k w z y x8.λ取何值时,非齐次线性方程组=++=++=++2321321321,,1λλλλλx x x x x x x x x (1)有唯一解;(2)无解;(3)有无穷多个解?解 (1) 0111111≠λλλ,即2,1−≠λ时方程组有唯一解.(2) )()(B R A R <=21111111λλλλλB+−+−−−−22)1)(1()2)(1(00)1(11011~λλλλλλλλλλ由0)1)(1(,0)2)(1(2≠+−=+−λλλλ 得2−=λ时,方程组无解.(3) 3)()(<=B R A R ,由0)1)(1()2)(1(2=+−=+−λλλλ, 得1=λ时,方程组有无穷多个解.9.非齐次线性方程组=−+=+−−=++−23213213212,2,22λλx x x x x x x x x 当λ取何值时有解?并求出它的解.解+−−−−− −−−−=)2)(1(000)1(321101212111212112~2λλλλλλB方程组有解,须0)2)(1(=+−λλ得2,1−==λλ当1=λ时,方程组解为+ =001111321k x x x当2−=λ时,方程组解为+ =022111321k x x x10.设−−=−+−−=−−+=−+−,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解时求解.解−−−−−−−−−154224521222λλλλ初等行变换~−−−−−−−−−2)4)(1(2)10)(1(00111012251λλλλλλλλ当0≠A ,即02)10()1(2≠−−λλ 1≠∴λ且10≠λ时,有唯一解.当02)10)(1(=−−λλ且02)4)(1(≠−−λλ,即10=λ时,无解.当02)10)(1(=−−λλ且02)4)(1(=−−λλ,即1=λ时,有无穷多解.此时,增广矩阵为−000000001221原方程组的解为+ + −=00110201221321k k x x x (R k k ∈21,)11.试利用矩阵的初等变换,求下列方阵的逆矩阵:(1)323513123; (2)−−−−−1210232112201023. 解 (1) 100010001323513123−−−101011001200410123~−−−−10121121023200010023~−−−−2102121129227100010003~−−−−21021211233267100010001~故逆矩阵为 −−−−2102121123326711(2)−−−−−10000100001000011210232112201023 −−−−00100301100001001220594012102321~ −−−−−−−−20104301100001001200110012102321~ −−−−−−−106124301100001001000110012102321~ −−−−−−−−−−10612631110`1022111000010000100021~−−−−−−−106126311101042111000010000100001~ 故逆矩阵为−−−−−−−1061263111010421112.(1) 设−−= −−=132231,113122214B A ,求X 使B AX =;12 (2) 设−= −−−=132321,433312120B A ,求X 使B XA =. 解 (1) () −−−−=132231113122214B A 初等行变换~ −−412315210100010001−−==∴−4123152101B A X (2)−−−−= 132321433312120B A 初等列变换~−−−474112100010001−−−==∴−4741121BA X .。

线性代数第三章习题答案

线性代数第三章习题答案

习题三 A 组1. 设1232()3()2()αααααα-++=+,求α,其中1110α⎛⎫ ⎪= ⎪⎪⎝⎭, 2011α⎛⎫ ⎪= ⎪⎪⎝⎭,3340α⎛⎫ ⎪= ⎪⎪⎝⎭。

解123103423221312430103αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+-=+-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2. 判定下列向量组是线性相关还是线性无关。

(1)131-⎛⎫ ⎪ ⎪ ⎪⎝⎭,210⎛⎫ ⎪ ⎪⎪⎝⎭,141⎛⎫ ⎪ ⎪⎪⎝⎭;(2)230⎛⎫ ⎪⎪⎪⎝⎭,140-⎛⎫⎪⎪⎪⎝⎭,002⎛⎫ ⎪ ⎪⎪⎝⎭解(1)121121121101101314077011011011101022000000000-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭::::, R(A)=2,线性相关(2)210210*********00102002000002-⎛⎫-⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭::, R(A)=3,线性无关 3. a 取什么值时,下列向量组线性相关?111a α⎛⎫ ⎪= ⎪ ⎪⎝⎭, 211a α-⎛⎫⎪= ⎪ ⎪⎝⎭,311a α⎛⎫ ⎪=- ⎪ ⎪⎝⎭ 解 (法一)求系数行列式3211112(1)(2)11a a a a a a a a-=-+=+-+,令其为0,得1a =-。

由此可知,当1a =-时,R(A)<3,即题给向量组线性相关。

(法二)()23121212311110110101,,111101101111111111r r r r r r a a a a a a a a a a a a a a a a a ααα-+--+-+-++⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=-------- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭:::向量组线性相关,所以10a +=,即1a =-4. 设123,,ααα线性无关,证明:1α,12αα+,123ααα++也线性无关. 证明:设112123123()()0,k k k αααααα+++++=即123123233()()0.k k k k k k ααα+++++=由123,,ααα线性无关,有1232330,0,0.k k k k k k ++=⎧⎪+=⎨⎪=⎩ 所以1230k k k ===,即112123,,αααααα+++线性无关. 5.设1(1,1,1)α=,2(1,2,3)α=,3(1,3,)t α=,问: (1) t 为何值时向量组123,,ααα线性相关。

线性代数第三章习题及解答

线性代数第三章习题及解答
T
− 20 83
5 83

− 17 83
0 1 0
0 0 1
−2
0
−7 2 − 21 4
−1 2

ξ = (2, 14, −21, 4)
10. 求下列非齐次线性方程组的一般解 2x + 7x2 + 3x3 + x4 =6 1 (1) 3x1 + 5x2 + 2x3 + 2x4 = 4 9x + 4x + x + 7x =2 1 2 3 4 2 7 3 1 6 2 7 解 3 5 2 2 4 −→ 1 −2 1 9 4 −2 1 7 5 −10 2 1 −1 2 0 11 0 −22 −1 1
性表示为
(β1 , β2 , . . . , βr ) = (α1 , α2 , . . . , αs )K,
其中 K 为 s × r 矩阵,且 A 向量组线性无关,证明:向量组 B 线性无关的充分必要条件是矩阵 K 的秩为 r 证明: (=⇒) 因为向量组 B 线性无关, 于是 R(β1 , . . . , βr ) = r, 注 意到 r = R(B ) ≤ R(K ) ≤ r 那么 R(K ) = r
一个向量 αk (2 ≤ k ≤ m) 使得 αk 能由 α1 , α2 , . . . , αk−1 线性表示. 证明:反证若 ∀αk 都不能被 α1 , α2 , . . . , αk−1 线性表示,于是对 于 k1 α1 + k2 α2 + · · · + km αm = 0,则 km = 0, 若否 αm 可以被前面
43

3 5 5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) 利用反证法可证得,即假设1,2 ,, s 线性无关,再由(1)得 1, 2 ,, s 线性无 关,与 1, 2 ,, s 线性相关矛盾.
9. 证明:1 2 ,2 3,3 1 线性无关的充分必要条件是1,2 ,3 线性无关.
1 0 1 证:方法 1,(1 2 ,2 3,3 1 )=(1,2 ,3 ) 1 1 0
(k1 k3 )1 (k1 k2 ) 2 (k2 k3 ) 3 0
因为1,2 ,3 线性无关,所以
kk11
k3 k2
0 0
,可解得 k1
k2
k3
0 ,所以1
2 , 2
3 ,3
1 线性无关.
k2 k3 0
必要性,(方法 1)设1 2 ,2 3,3 1 线性无关,证明1,2 ,3 线性无关,
所以
5 4
1
1 4
2
1 4
3
1 44Βιβλιοθήκη .设存在 k1, k2 , k3 , k4 使得 k11 k2 2 k3 3 k4 4 ,整理得
k1 2k2 k3 0 , k1 k2 k3 k4 0 ,
3k2 k4 0 , k1 k2 k4 1 .
解得 k1 1, k2 0, k3 1, k4 0. 所以 1 3 .
0 1 1 101 因为 1,2,3 线性无关,且 1 1 0 2 0 ,可得 1 2,2 3,3 1的秩为 3 011 所以1 2 ,2 3,3 1 线性无关.线性无关;反之也成立.
方法 2,充分性,设1,2 ,3 线性无关,证明1 2 ,2 3,3 1 线性无关.
设存在 k1, k2 , k3 使得 k1 (1 2 ) k2 ( 2 3 ) k3 ( 3 1 ) 0 ,整理得,
判断 3,4 题中的向量组的线性相关性:
3. 1 1,1,1T ,2 0,2,5T ,3 1,3,6T.
4. 1 (1,1,2,4)T , 2 0,3,1,2T,3 3,0,7,14T.
解:
3.设存在 k1, k2 , k3 使得 k11 k2 2 k3 3 0 ,即
k1 k1
第三章 课后习题及解答
将 1,2 题中的向量 表示成1,2 ,3,4 的线性组合:
1. 1,2,1,1T ,1 1,1,1,1T ,2 1,1,1,1T ,3 1,1,1,1T ,4 1,1,1,1T. 2. 0,0,0,1,1 1,1,0,1,2 2,1,3,1,3 1,1,0,0,4 0,1,1,1.
假设1,2 ,3 线性相关,则1,2 ,3 中至少有一向量可由其余两个向量线性表示,不妨 设 1可由2 ,3 线性表示,则向量组 1 2 ,2 3,3 1 可由 2 ,3 线性表示,且 3 2 ,所以1 2 ,2 3,3 1 线性相关,与1 2 ,2 3,3 1 线性无关矛 盾,故1,2 ,3 线性无关.
k3 0 2k2 3k3
0
1 ,由 1
0 2
1 3 0 ,解得 k1, k2 , k3 不全为零,
k1 5k2 6k3 0
15 6
故1,2 ,3 线性相关.
4.设存在 k1, k2 , k3 使得 k11 k2 2 k33 0 ,即
k1 3k3 0
k1
2k1
3k2 k2
解:设存在 k1, k2 , k3 , k4 使得 k11 k2 2 k3 3 k4 4 ,整理得
k1 k2 k3 k4 1
k1 k2 k3 k4 2
k1 k2 k3 k4 1
k1 k2 k3 k4 1
解得 k1
5 4 ,k2
1 4 ,k3
1 4 ,k4
1. 4
aks
1, 2 ,, s 是分别在1,2 ,, s 的 k 个分量后任意添加 m 个分量 b1 j , b2 j ,, bmj
( j 1,2,, s) 所组成的 k m 维向量,证明:
(1) 若1,2 ,, s 线性无关,则 1, 2 ,, s 线性无关; (2) 若 1, 2 ,, s 线性相关,则1,2 ,, s 线性相关.
证:方法一,设存在 k1, k2 使得 k1 (1 2 ) k2 (1 2 ) 0 ,
整理得, (k1 k2 )1 (k1 k2 ) 2 0 ,
因为
1
,
2
线性无关,所以
k1 k1
k2 k2
0 0 ,可解得 k1
k2
0,
故1 2 ,1 2 线性无关.
方法二,因为(1 2 ,1 2)(1,2)11 11 ,
证:证法 1,(1)设 A 1,2 ,,s , B 1, 2 ,, s ,因为1,2 ,,s 线性无
关,所以齐次线性方程 AX 0 只有零解,即 r( A) s, 且 r(B) s , 1, 2 ,, s 线性
无关.
证法 2,因为 1,2 ,, s 线性无关,所以齐次线性方程 AX 0 只有零解,再增加方程 的个数,得 BX 0 ,该方程也只有零解,所以 1, 2 ,, s 线性无关.
6.证明:如果向量组线性无关,则向量组的任一部分组都线性无关.
证:设向量组1,2 ,,n1,n 线性无关,利用反证法,
假设存在该向量组的某一部分组i1 ,i2 ,,ir (ir n) 线性相关,
则向量组1,2 ,,n1,n 线性相关,与向量组1,2 ,,n1,n 线性无关矛盾,
所以该命题成立.
7.证明:若1,2 线性无关,则1 2 ,1 2 也线性无关.
0 7k3
0
可解得 k1, k2 , k3 不全为零,故 1, 2 , 3 线性相关.
4k1 2k2 14k3 0
5.论述单个向量 (a1, a2 ,, an)线性相关和线性无关的条件.
解:设存在 k 使得 k 0 ,若 0 ,要使 k 0 ,当且仅当 k 0 ,故,单个向量线 性无关的充要条件是 0 ;相反,单个向量 (a1, a2 ,, an)线性相关的充要条件是 0.
1
又因为
1
1 1
2
0
,且 1 , 2
线性无关,所以向量组 1
2 ,1
2
的秩为
2,
故1 2 ,1 2 线性无关.
8.设有两个向量组1,2 ,, s 和 1, 2 ,, s , 其中
a11
a12
a1s
a21
a22
a2s
1
a31
,
2
a32
,
, s
a3s
,
a
k1
aks
相关文档
最新文档