理论力学基本概念和受力分析
理论力学1-静力学的基本概念和受力分析
1 约束方程组
对于平面受力分析问题,受到各种约束条件影响的物体需要满足一组约束方程。
建立坐标系
1 惯性系
建立坐标系时,以固定于地面的参照物为基准。
2 非惯性系
当参考系在匀速直线运动或匀速转动时,坐标系需要相对于参考系建立。
牛顿第一定律:质点的平衡条件
1 平衡条件
质点处于平衡时,其合外力和合外力矩都为零。
牛顿第二定律:质点的运动规 律
当合外力不为零时,牛顿第二定律描述了质点加速度与合外力的关系: $F_{\text{合}}=m \cdot a$。
理论力学1-静力学的基本 概念和受力分析
本章将介绍静力学的基本概念和受力分析,包括静力学的定义与研究对象、 建立坐标系、牛顿第一定律和第二定律、力的合成与分解、力的作用点、约 束条件等。
静力学的定义与研究对象
1 定义
静力学是研究物体处于平衡状态时的力学性 质和相互作用的学科。
2 研究对象
研究静止或匀速直线运动的物体,排除了动 力学因素的影响。
等效力系统:力的合成与分解
1 合力
合力是多个力合成后的结果,可以用向量图形或数学方法计算。
2 分力
分力是力在坐标轴上的投影,可以将一个力分解成多个分力的合力。
力的作用点:单个力和力的矩
1 单个力
单个力作用于质点时,通过力的作用点可以 确定力矢量及其性质。
2 力的矩
力在质点上产生的力矩是力与力臂的乘积, 描述了力对物体的旋转效果。
理论力学—静力学的基本概念和受力分析
1.3.3 圆柱铰链和固定铰链支座
1.3.3 圆柱铰链和固定铰链支座
中间铰
FN
中间铰
FAy FAx
A
约束力过销中心,大小和方向不能确定, 通常用垂直的两个分力表示。
固定铰链支座
固定铰链支座
FR
FAy
A
FAx
约束力过销中心,方向不能确定,通常用 正交的两个分力表示。
1.3.4 滚动铰支座(辊轴支座)
1.3 约束和约束力物体的受力分析
自由体——位移不受限制的物体。
非自由体——位移受到限制而不能作任意运 动的物体。
约束——对非自由体的某些位移起限制作用 的周围物体。
约束反力——约束作用于非自由体的力。 (简称:约束力或反力)
除约束力外,非自由体上所受到的所有促使 物体运动或有运动趋势的力,称为主动力。
F1=F2
第一章 静力学公理与受力分析
说明:①对刚体来说,上面的条件是充要的。 ②对变形体(或多体中)来说,上面的条件 只是必要条件。
③二力杆:只在两个力作用下平衡的刚体 叫二力杆。
二力杆
第一章 静力学公理与受力分析
公理3 加减平衡力系原理
在作用于刚体上的已知力系上, 加上或去掉任一平衡力系,并不改变 原力系对刚体的作用效果。
1.3.4 滚动铰支座(辊轴支座)
或
FN
FN
1.3.5 球形铰支链
约束特点:构件可以绕球心任意转动,但构件 与球心不能有任何移动。 约束力:当忽略摩擦时,球与球座亦是光滑约 束问题。 约束力通过接触点,并指向球心,是一个不能 预先确定的空间力。可用三个正交分力表示。
1.3.6 轴承约束 (1) 径向轴承 (向心轴承)
大小和方向,由这两个力为边构成的平行四边
理论力学受力分析
理论力学受力分析目录一、内容概括 (3)1. 理论力学概述 (3)2. 受力分析的重要性 (4)3. 受力分析的基本方法和步骤 (5)二、基本力学原理 (6)1. 牛顿运动定律 (7)1.1 牛顿第一定律 (8)1.2 牛顿第二定律 (9)1.3 牛顿第三定律 (9)2. 力的分类与性质 (10)2.1 力的种类 (10)2.2 力的性质 (11)三、受力分析方法与技巧 (13)1. 受力图的绘制 (14)1.1 确定研究对象 (15)1.2 力的识别和表示 (15)1.3 力的方向和大小标注 (17)2. 力的分解与合成 (18)2.1 力的分解 (19)2.2 力的合成 (19)3. 受力平衡条件及应用 (21)3.1 受力平衡条件的概述 (22)3.2 受力平衡条件的应用实例 (23)四、复杂系统受力分析 (25)1. 柔体系统的受力分析 (26)1.1 柔体系统的特点 (28)1.2 柔体系统的受力分析方法 (29)2. 多刚体系统的受力分析 (30)2.1 多刚体系统的组成 (32)2.2 多刚体系统的受力分析步骤 (32)五、实践应用与案例分析 (33)1. 工程中的受力分析实例 (35)1.1 桥梁工程中的受力分析 (36)1.2 机械结构中的受力分析 (37)1.3 建筑结构中的受力分析 (38)2. 理论力学在其它领域的应用 (39)2.1 生物力学中的受力分析 (41)2.2 材料力学中的受力分析应用 (42)六、总结与展望 (43)1. 受力分析的总结与回顾 (44)2. 受力分析的发展趋势与展望 (45)一、内容概括理论力学受力分析是研究物体在受到外力作用下所表现出的运动规律和性质的一门学科。
本文档将详细介绍理论力学受力分析的基本原理、方法和应用,包括质点、刚体、平面运动、曲线运动、圆周运动等不同情况下的受力分析。
我们将从牛顿三定律出发,阐述物体在受到外力作用下的加速度与力的关系。
理论力学__受力分析
y
F
x
h
Fxy
mo F x mx F mo F y m y F mo F z mz F
Fxy
§1-4 力 偶 力偶:等值、反向、不共线的一对力 Z 1、力偶矩矢: F
大小、作用面方位、转向
m
m
F2 o
x
F1
1
c F2
a
y
F d
F
b
右手螺旋:
mF , F m Fd
2、力偶矩的性质: (1)、力偶无合力: (2)、力偶中的两个力对任意点之矩 的和等于力偶矩。
§1-4 物体的受力分析
(画受力图): 一、受力分析:
1、取分离体: (选取研究对象): 将物体从周围的约束中分离出来。 (画受力简图): 2、画所受力: (1)、画主动力。 (2)、解除约束、画约束力。
二、注意:只画外力、不画内力。
C
FCy
FCx
D
E
B
A
FNA
F
FCy FCx P F
Fy
o a
F F x b
Fx Fcos Fy Fsin
F asin bcos
3、力对轴之矩:
mz F mo Fxy Fxy h
z
力对轴之矩为零的条件: o (1)Fxy 0 力与轴平行 (2) h 0 力与轴相交 力与轴共面
4、力对点之矩与力对轴之矩的关系:
m x F yZ zY m y F zX xZ m z F xY yX
理论力学的基本概念与原理
理论力学的基本概念与原理理论力学是物理学的重要分支,它研究物体的运动规律和力的作用原理。
本文将介绍理论力学的基本概念与原理,包括质点与刚体的运动、牛顿三大定律、动能定理和动量守恒定律。
一、质点与刚体的运动在理论力学中,质点与刚体被认为是物体的简化模型。
质点是不具有大小和形状的点,刚体则是一个不变形的物体。
质点的运动可以用坐标表示,而刚体的运动则包括平动和转动。
二、牛顿三大定律牛顿三大定律是理论力学的基石,它们描述了物体的运动规律和力的作用原理。
1. 第一定律:也称为惯性定律,它表明物体在不受力作用时将保持静止或匀速直线运动。
2. 第二定律:也称为动力学定律,它表明物体的加速度与作用在物体上的力成正比,与物体的质量成反比。
即F=ma,其中F表示作用力,m表示物体的质量,a表示物体的加速度。
3. 第三定律:也称为作用-反作用定律,它表明任何两个物体之间都会相互施加大小相等、方向相反的作用力。
三、动能定理动能定理描述了力对物体进行功的过程。
根据动能定理,物体的变动动能等于作用在物体上的合外力所做的功。
动能定理可以用公式表示为:W=ΔKE,其中W表示外力所做的功,ΔKE表示物体动能的变化量。
四、动量守恒定律动量守恒定律是理论力学中的一个重要原理,它描述了系统的总动量在没有外力作用时将保持不变。
根据动量守恒定律,一个系统中各个物体的动量之和在碰撞或相互作用前后保持不变。
综上所述,理论力学的基本概念与原理包括质点与刚体的运动、牛顿三大定律、动能定理和动量守恒定律。
通过研究这些基本概念和原理,我们能够更好地理解和描述物体的运动规律和力的作用原理。
理论力学在解决力学问题、预测物体运动、设计工程等方面具有重要的应用价值。
希望本文对读者理解和掌握理论力学有所帮助。
理论力学 静力学的基本知识及受力分析
解: 1.杆AB 的受力图。 2. 活塞和连杆的受力图。
B
FBA
y
E
A
D
FA
F
B
A
C
l
l
3. 压块 C 的受力图。
y
FCB
C FCx x
FAB
B
x
FBC
FCy
小结
1、理解力、刚体、平衡和约束等重要概念 2、理解静力学公理及力的基本性质 3、明确各类约束对应的约束力的特征 4、能正确对物体进行受力分析
•受力图:画出物体受到的所有力,主动力和约束 力(被动力)。
画受力图步骤: 1、取所要研究物体为研究对象(隔离体),画出 其简图 2、画出所有主动力 3、按约束性质,画出所有约束(被动)力
例1-1 碾子重为 P ,拉
力为 F, A,B 处光滑接触, 画出碾子的受力图。
解:
1.画出简图 2.画出主动力 3.画出约束力
的受力图。
解: 1、杆BC 所受的力: 2、杆AB 所受的力:
NB
B
D
F
F
表示法一:NAAy
NAx
A NA
NB B
NB
B
D
H
D F
A
C
NC
表示法二:
B E C
E D
B
A
C
l
l
例题1-8 如图所示压榨机中,杆AB 和BC 的长度相等,自重忽略不计。 A ,B,C ,E 处为铰链连接。已知 活塞D上受到油缸内的总压力为F = 3kN,h = 200 mm,l =1500 mm。试 画出杆AB ,活塞和连杆以及压块C
销钉单独取出。
4、 固定铰支座
•某一构件固定 •约束力:与光滑圆柱铰链相同 •以上两种约束(光滑圆柱铰链、固定铰链支座) 其约束特性相同,均为轴与孔的配合问题,都可 称作光滑圆柱铰链。
理论力学基本概念和受力分析
精品文档
19
(2)二次投影法(间 接投影法)
当力与各轴正向夹 角不易确定时,可先将 F 投影到xy面上,然后 再投影到x、y轴上, 即
FxyFsin
X Fxycojs Fsin cojs YFxysinjFsin sinj Z Fcos
精品文档
20
4.若已知力在直角坐标轴上的投影X、Y、Z,则
力的大小: F X2Y2Z2
[例] 吊灯
精品文档
13
公理5 刚化原理
变形体在某一力系作用下处于平衡,如将此变形体 变成刚体(刚化为刚体),则平衡状态保持不变。
公理5告诉我们:处 于平衡状态的变形体, 可用刚体静力学的平 衡理论。
精品文档
14
§1-2 力的投影及荷载分类
一、力的投影 1.力F 在任一轴上的投影 (1)F力 与轴共面: 以X表示力F 在x轴上的投影,则 X=±ab。
精品文档
33
约束反力特点: ①大小是未知的。故称为被动力。 ②方向总是与所限制的物体的位移方向相反; ③作用点在物体与约束相接触的那一点。
精品文档
34
二、常见约束及约束反力: 1.柔索约束(不计重的绳索、链条或皮带等) 由于柔索只能阻碍物体沿柔索伸长的方向运动,故柔索的约 束力通过柔索与物体的连接点,方位沿柔索而指向背离物体。 即恒为拉力。
大小与力偶臂的乘积:
'
mm(F,F)Fd
规定:逆时针转向为正,反之为负 。
单位:N.m,kN.m
精品文档
29
(2)空间问题中的力偶矩是矢量,其对物体的作用决定于力 偶三要素:
●力偶矩的大小 :m Fd
●力偶作用面在空间的方位
●力偶在作用面内的转向:力偶 矩矢与力偶的转向符合右手螺旋 法则 。 力偶对刚体的作用完全决定于力偶矩矢。
理论力学复习详解
《理论力学》复习指南第一部分静力学第1章.静力学基本概念和物体的受力分析1.静力学基本概念力是物体间相互的机械作用,这种作用使物体运动状态发生变化或使物体产生变形。
前者称为力的运动效应,后者称为力的变形效应。
力对物体的作用决定力的三要素:大小、方向、作用点。
力是一定位矢量。
刚体是在力作用下不变形的物体,它是实际物体抽象化的力学模型。
等效若两力系对物体的作用效应相同,称两力系等效。
用一简单力系等效地替代一复杂力系称为力系的简化或合成。
2.静力学基本公理力的平行四边形法则给出了力系简化的一个基本方法,是力的合成法则,也是一个力分解成两个力的分解法则。
二力平衡公理是最简单的力系平衡条件。
加减平衡力系公理是研究力系等效变换的主要依据。
作用与反作用定律概括了物体间相互作用的关系。
刚化公理给出了变形体可看作刚体的条件。
3. 约束类型及其约束力限制非自由体位移的周围物体称为约束。
工程中常见的几种约束类型及其约束力4. 受力分析对研究对象进行受力分析、画受力图时,应先解除约束、取分离体,并画出分离体所受的全部已知载荷及约束力。
画受力图的要点第2章.平面力系[例]桁架结构0力杆(习题2-55)第3章.空间任意力系1. 物体的重心重心是物体重力的合力作用点。
均质物体的重心与几何中心――形心重合。
重心坐标的一般公式是⎪⎪⎪⎭⎪⎪⎪⎬⎫∆=∆=∆=∑∑∑P z P z P y P y P x P x i i C i i C ii C ; 对于均质物体⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⋅=⋅=⋅=⎰⎰⎰V dV z z V dV y y V dV x x VC V C V C第4章摩擦1.基本概念动滑动摩擦、静滑动摩擦 自锁当物体处于临界平衡状态时,静摩擦力的大小F 与相互接触物体之间的正压力大小与正比。
2.基本计算动滑动摩擦、静滑动摩擦的计算【例】物A 重100KN ,物B 重25KN ,A 物与地面 的摩擦系数为0.2,滑轮处摩擦不计。
理论力学的基本概念与应用研究
理论力学的基本概念与应用研究引言:理论力学是物理学的基础学科之一,研究物体在受力作用下的运动规律。
它是自然科学中最基本、最普遍的学科之一,对于解释宏观物体的运动、预测天体的运动以及设计工程结构等都具有重要的意义。
本文将从力学的基本概念入手,探讨理论力学的应用研究。
一、力学的基本概念1. 力的概念力是物体之间相互作用的结果,是导致物体发生运动或形状发生变化的原因。
力的大小用牛顿(N)作单位,方向用箭头表示。
2. 质点与刚体质点是指具有质量但无大小的物体,刚体是指在受力作用下,形状和大小不发生变化的物体。
3. 运动学与动力学运动学研究物体的运动状态,包括位置、速度和加速度等;动力学研究物体的运动原因,即受力和受力作用下的运动规律。
4. 牛顿三定律牛顿第一定律(惯性定律):物体在无外力作用下,保持静止或匀速直线运动。
牛顿第二定律(运动定律):物体的加速度与作用在其上的力成正比,与物体的质量成反比。
牛顿第三定律(作用反作用定律):任何两个物体之间的相互作用力,大小相等、方向相反。
二、理论力学的应用研究1. 天体力学天体力学是理论力学的重要应用领域之一,研究天体的运动规律。
通过应用牛顿力学,科学家们能够预测行星、卫星、彗星等天体的轨道和位置,为航天器的发射和行星探测提供了重要依据。
2. 结构力学结构力学是理论力学在工程领域的应用研究。
通过研究物体受力后的变形和破坏情况,工程师们能够设计出稳定可靠的建筑物、桥梁和机械结构。
结构力学的研究还包括弹性力学、塑性力学、疲劳力学等方面。
3. 动力学动力学研究物体在受力作用下的运动规律,对于机械系统的设计和优化具有重要意义。
通过分析物体的质量、惯性、加速度和受力等因素,工程师们能够确定机械系统的运动方式、速度和力学性能。
4. 流体力学流体力学研究流体的运动规律和性质,包括液体和气体。
通过应用理论力学的方法,科学家们能够研究流体的流动、湍流、压力和阻力等问题,为工程设计和自然现象的解释提供了理论基础。
理论力学基本概念和受力分析
(2)力与轴 过不力共F 面:的
起点和终
点分则别作 平面X垂=±直ABˊ
于(定若若x:3aaa轴)为为bF,正锐=负与角±号x,轴规则正X向=±的F夹co角s a,,则用X=观F察cos a
法确定正负,即:
26
27
2.力平面上的 投F ' 影为力F 在平面上的 投影,大小:
注Fˊ意=F:co力sj在轴上的
3
三、学习理论力学的目的
理论力学是一门理论性较强的技术基 础课 1.为了道直路接转或弯间接地解决生火产箭实发践射中的问 题
4
重力坝的稳 定问题
5
结构的静力 计算
6
2. 理论力学是很多专业课程的重要基础 例如:材料力学、机械原理、机械零
件、结构力学、弹性力学 、流体力学 、 机械振动等一系列后续课程的重要基础。
对刚体的效应。
因此,对刚体来说,力的三要素为:大 小力、是方滑向移、矢作量用线
21
公理3 力的平行四边形法则
作用于物体上同一点的
两个力可合成一个合力,此
合力也作用于该点,合R力F的1 F2
大小和方向由以原两力力矢三为角形 推邻论边2所:构三成力的平平衡行汇四交边定→形理的 当对刚角体线受来到表三示力。作即用而 平衡时,若有两力的作
方 平 个2.力力殊向行力偶偶力相但。矩是系反不:常。、重力见作合偶的用的对一线两物种特
体的转动效应用力偶 矩(度1)量平。面问题中的力偶矩是代数量,大 小等于力偶中' 的力的大小与力偶臂的乘积
m m(F, F ) F d
: 规定:逆时针转向为正,反之为负 。
单位:N.m,kN.m 39
(2)空间问题中的力偶矩是矢量,其对
2. 力的效应运:动①状运态动发效生应改(变外或效使应物) ②体变产形生效 (如无特别声明,本课程只研
理论力学知识点总结
理论力学知识点总结理论力学是一门研究物体机械运动一般规律的学科,它是许多工程技术领域的基础。
以下是对理论力学一些重要知识点的总结。
一、静力学静力学主要研究物体在力系作用下的平衡问题。
1、力的基本概念力是物体之间的相互作用,具有大小、方向和作用点三个要素。
力的表示方法包括矢量表示和解析表示。
2、约束与约束力约束是限制物体运动的条件,约束力则是约束对物体的作用力。
常见的约束类型有柔索约束、光滑接触面约束、光滑圆柱铰链约束等,每种约束对应的约束力具有特定的方向和特点。
3、受力分析对物体进行受力分析是解决静力学问题的关键步骤。
要明确研究对象,画出其隔离体,逐个分析作用在物体上的力,包括主动力和约束力,并画出受力图。
4、力系的简化力系可以通过平移和合成等方法进行简化,得到一个合力或合力偶。
力的平移定理指出,力可以平移到另一点,但必须附加一个力偶。
5、平面力系的平衡方程平面任意力系的平衡方程有三个:∑Fx = 0,∑Fy = 0,∑Mo(F) =0。
对于平面汇交力系和平面力偶系,平衡方程分别有所简化。
6、空间力系的平衡方程空间力系的平衡方程数量增多,需要考虑三个方向的力平衡和三个方向的力矩平衡。
二、运动学运动学研究物体的运动而不考虑引起运动的力。
1、点的运动学描述点的运动可以使用矢量法、直角坐标法和自然法。
在自然法中,引入了弧坐标、切向加速度和法向加速度的概念。
2、刚体的基本运动刚体的基本运动包括平动和定轴转动。
平动时,刚体上各点的运动轨迹相同、速度和加速度相同;定轴转动时,刚体上各点的角速度和角加速度相同。
3、点的合成运动点的合成运动是指一个动点相对于两个不同参考系的运动。
通过选取合适的动点、动系和定系,运用速度合成定理和加速度合成定理来求解问题。
4、刚体的平面运动刚体平面运动可以分解为随基点的平动和绕基点的转动。
平面运动刚体上各点的速度可以用基点法、速度投影定理和瞬心法求解,加速度则可以用基点法求解。
三、动力学动力学研究物体的运动与作用力之间的关系。
[工学]《理论力学》第一章 静力学公理和物体的受力分析
4. 刚体: 一级定义: 不变的物体.
在力的作用下, 其内部任意两点之间的距离 始 终保持
二级定义:
刚体是这样的一种点的集合, 即其上任意
两点的距离始终保持不变.
§1-2 静力学公理
公理一: 力的平行四边形法则( 合力矢等于二力矢的几何和)
F1
A
FR
FR F1 F2
F2
公理二: 二力平衡公理
注意: 不平行三力 共面汇交仅
是平衡的必要条件.
F3
C
FR
F3
公理四: 作用与反作用定律 作用力与反作用力总是同时存在, 两力等值、反向、共线, 且 分别作用在两个相互作用的物体上.( 牛顿第三定律) 公理五: 刚化公理 变形体在某一力系作用下处于平衡, 若将此变形体硬化为刚 体, 则平衡的状态保持不变.
( 2 ) 诸物体若以光滑铰链连接, 则每一个物体在铰链处 受到的约束反力应理解为铰链对此物体的力, 而不要笼 统理解为物体之间的‘ 相互作用力’. 这一点, 在铰链 连接三个和三个以上的物体时, 以及铰链本身承受外载 荷的情况下尤其要注意.
F F ' F1
A B
加一对平 衡力
F
A
减一对平 衡力
F1
F 减一对平
衡力 加一对平 衡力
'
F
A
B
'
B
F
推论二: 三力平衡汇交定理
设处于平衡的刚体受三个力的作用, 若其中两个力的作 用线汇交于一点, 则此三力必在同一平面内且第三力也 汇交于同一点.
B
F2
F1
A
O C
F3
F2 F2 F1
A O B
2019/2/16
理论力学中的基本概念和原理解析
理论力学中的基本概念和原理解析理论力学是研究物体运动的规律和力的作用的学科,它是物理学的基础和核心之一。
在理论力学中,有许多基本概念和原理,它们是我们理解和解释物体运动的重要工具。
本文将对理论力学中的一些基本概念和原理进行解析。
1. 质点和刚体在理论力学中,我们通常将物体简化为质点或刚体来进行研究。
质点是指物体的质量集中在一个点上,忽略物体的大小和形状。
刚体是指物体内部各点之间的相对位置保持不变,不发生形变。
2. 运动的描述为了描述物体的运动,我们需要引入坐标系和参考系。
坐标系是用来描述物体位置的系统,常见的有直角坐标系和极坐标系。
参考系是用来描述物体相对于其他物体的运动的系统,常见的有惯性参考系和非惯性参考系。
3. 牛顿定律牛顿定律是理论力学的基石,它描述了物体受力和运动之间的关系。
牛顿第一定律,也称为惯性定律,指出物体在没有外力作用时保持静止或匀速直线运动。
牛顿第二定律,也称为动力学定律,指出物体受力与加速度之间的关系,力等于质量乘以加速度。
牛顿第三定律,也称为作用-反作用定律,指出任何作用力都会有一个相等大小、方向相反的反作用力。
4. 动能和势能在理论力学中,我们还引入了动能和势能的概念。
动能是物体由于运动而具有的能量,它与物体的质量和速度有关。
势能是物体由于位置而具有的能量,它与物体的位置和力的性质有关。
在物体运动过程中,动能和势能可以相互转化。
5. 动量和角动量动量是物体运动的量度,它等于物体的质量乘以速度。
根据牛顿第二定律,力等于质量乘以加速度,所以力也可以理解为动量的变化率。
角动量是物体绕某一轴旋转时的量度,它等于物体的质量乘以角速度。
6. 能量守恒和动量守恒在理论力学中,能量守恒和动量守恒是非常重要的原理。
能量守恒指出在一个孤立系统中,能量的总量保持不变,只能从一种形式转化为另一种形式。
动量守恒指出在一个孤立系统中,动量的总量保持不变,只能在物体之间相互转移。
7. 平衡和稳定性在理论力学中,我们还研究物体的平衡和稳定性。
理论力学的基本概念与应用
理论力学的基本概念与应用理论力学是研究物体运动规律和相互作用的学科,是物理学的基础和重要组成部分。
它主要包括质点力学、刚体力学和连续介质力学等内容。
理论力学涉及的基本概念及其应用广泛应用于物理、工程、天文学等领域。
本文将介绍理论力学的基本概念,并探讨其在实际应用中的意义与作用。
一、质点力学质点力学是理论力学的基础,研究物体在力的作用下的运动规律。
其中,包括质点的运动学、动力学和力学定律等内容。
质点的运动学主要研究质点在力的作用下的速度、加速度和位移等物理量的关系。
动力学则研究质点在力的作用下的加速度与力的关系。
力学定律则是研究描述质点受力运动过程的数学表达式。
质点力学在物体运动研究以及航天、机械等领域的设计与控制中具有重要的应用价值。
二、刚体力学刚体力学研究刚体在力的作用下的平衡和运动规律。
刚体是指在运动过程中形状和体积保持不变的物体。
刚体力学主要包括静力学和动力学两个方面。
静力学研究刚体在平衡状态下受力的平衡条件,以及力的合成和分解等内容。
动力学研究刚体的运动规律,包括角动量、动量与能量等物理量的守恒定律。
刚体力学在工程、建筑等领域的结构分析和设计中有广泛应用。
三、连续介质力学连续介质力学研究物质在力的作用下的力学性质和运动规律。
它将物质视为连续的、无限细分的介质,研究介质的变形、流动、弹性和塑性等特性。
连续介质力学主要包括流体力学和固体力学两个分支。
流体力学研究液体和气体等流体在力的作用下的运动规律,包括流体的压强、流速和流量等物理量的关系。
固体力学则研究固体材料在外力作用下的弹性、塑性和断裂等力学性质。
在实际应用中,理论力学的基本概念与方法在物理、工程和天文学等领域具有重要的意义与应用价值。
通过研究物体的运动规律和相互作用,可以为航天、航空、交通运输等领域的设计与控制提供理论基础。
同时,理论力学也为工程、建筑和材料科学等领域的结构分析和设计提供重要的工具和方法。
此外,在天文学研究中,理论力学的运用也是不可或缺的,它可以帮助我们解释行星运动、天体力学现象等自然现象。
《理论力学》第一章静力学基本公理与受力分析详解
例 题 1
不计的理想滑轮C 和柔绳维持在
仰角是 的光滑斜面上,绳的一 端挂着重 G2 的物块 B 。试分析物 块B ,球A和滑轮C的受力情况, 并分别画出平衡时各物体的受力
A
F E
H C
G
D B
G2
G1
图。
例题
物体的受力分析 解:
1.物块 B 的受力图。
H G
例 题 1
FD
D
C E
A B G1
静力学公理
作用在刚体上的两个力,使刚体保持平衡的充分和必要
条件是:这两个力的大小相等,方向相反,且作用在同一直
线上。 使刚体平衡的充分必要条件
F1 F2
最简单力系的平衡条件
公理2
加减平衡力系原理
在已知力系上加上或减去任意的平衡力系,并不改 变原力系对刚体的作用。
推理1
力的可传性
作用于刚体上某点的力,可以沿着它的作用线移到 刚体内任意一点,并不改变该力对刚体的作用。
3 、光滑铰链约束(径向轴承、圆柱铰链、固 定铰链支座等) (1) 径向轴承(向心轴承)
约束特点: 轴在轴承孔内,轴为非自由体、 轴承孔为约束. 约束力: 当不计摩擦时,轴与孔在接触处 为光滑接触约束——法向约束力.约束力作用在 接触处,沿径向指向轴心.
当外界载荷不同时,接触点会变,则约束力的 大小与方向均有改变.
解: 绳子受力图如图(b)所示
梯子左边部分受力图 如图(c)所示
梯子右边部分受力图 如图(d)所示
整体受力图如图(e)所示
提问:左右两部分梯子在A处,绳子对左右两部分梯子均有 力作用,为什么在整体受力图没有画出?
例题
物体的受力分析
(完整版)力学基本概念
(4)在力偶三要素不改变的条件下,可以任意选定 组成力偶的两个等值、反向、平行力的大小或力偶 臂的长短。 由大小相等、方向相反,作用线平行但不共线的两
个力所组成的力系,称为力偶。同时作用在物体上 的一群力偶,称为力偶系。
在力偶系中,所有力偶的作用面均在同一平面内
的力偶系,称为平面力偶系;所有力偶的作用面不 全部在同一平面内的力偶系,称为空间力偶系。
即,合力为原两力的矢量和。 矢量表达式:FR= F1+F2
F2
FR
A
F1
§1–3 静力学公理
公理三(力平行四边形公理) 作用于物体上任一点的两个力可合成为作用于同一点的
一个力,即合力。合力的矢由原两力的矢为邻边而作出的力 平行四边形的对角矢来表示。
力三角形法
F2
FR
FR
F2
F1
F2
FR
A
F1
A
A F1
2、力的概念 力是力学中一个基本量。
1) 力的含义: (1)力是物体间的相互作用; (2)力是物体运动状态发生变化的原因; (3)力是物体形状发生变化的原因。 2) 力的效应:力使物体的运动状态发生改变以及 力使物体发生变形,称为力的效应。其中,力使物体
的运动状态发生改变的效应,称为力的外效应;而力 使物体发生变形的效应,则称为力的内效应。
个力,称为力偶。 在力偶作用面内,力偶使物体产生纯转动的效应。
2)力偶的三要素: (1)力偶矩的大
小; (2)力偶的转向; (3)力偶的作用
平面。
力偶的作用面:力偶中两反向平行力的作用线所在的 平面,称为力偶的作用面。
力偶臂:力偶中两反向平行力的作用线的垂直距离 称为力偶臂。
力偶矩:力偶中力的大小与力偶臂的乘积,称为力 偶矩。国际制单位中,力偶矩的单位是牛顿·米(N·m) 或千牛顿·米(kN·m)。在平面内,力偶矩是代数量。
基本概念及物体受力分析
F
F2 x
F2 y
cos
Fx c, os
Fy
F2 x
F2 y
Fx2 Fy 2
式中 cos和 cos 称为力 F 的方向余弦。
1.力在平面上投影是矢量
Fxy [F ]xoy •
Fxy | Fxy | F cos
2.力在轴上投影是标量 Fx
(1)直接投影
Fx F cos x
z
F
y
O
Fxy
度量。 M (F, F ') Fd 或 M Fd
2.同平面内力偶的等效定理
定理:在同平面内的两个力偶,如果力偶矩相 等,则两力偶彼此等效• 。
3. 力偶的性质 (1)力偶在任何坐标轴上的投影等于零; (2)力偶不能合成为一• 力,或者说力偶没有合 力,即它不能与一个力等效,因而也不能 被一个力平衡; (3)力偶对物体不产生移动效应,只产生转动 效应,既它可以也只能改变物体的转动状 态。
如下图(a)、(b)所示。
d A
F2
D
BA
F2
B
F1
F1
( a ) 其中 F1d F2D ( b)
第六节 约束和约束反力
一、约束的概念 •
1、 自由体与非自由体
自由体 在空间能向一切方向自由运动的 物体。如飞鸟等。
非自由体 当物体受到了其他物体的限制, 而不能沿某些方向运动时,这 种物体称为非自由体。如轨道 等。
二节 静力学基本原理 •
公理是人们在生活和生产实践中长期积累的经验总结, 又经过实践反复检验,被公认为是符合客观实际的最普遍、 最一般的规律。它们是静力学的理论基础。
公理1 二力平衡条件
作用在刚体上的两个力,• 使 刚体保持平衡的必要和充分条件 是这两个力的大小相等、方向相 反、且作用在同一直线上。如图 所示。
理论力学基础-受力分析
牛顿定律与受力分析
牛顿定律是力学的基本定律之一,它与受力分析密切相关。通过应用牛顿定 律,可以解决各种物体运动和力学问题。
力的合成与分解
力的合成是将多个力合成为一个等效力,力的分解是将一个力分解为多个分力。通过力的合成与分解可以更好 地描述物体所受到的力。
平衡条件和受力分析
通过平衡条件和受力分析可以确定物体的平衡状态以及作用在物体上的各个 力。这对于解决物体静力学问题非常重要。
自由体图和切线模型
自由体图是将物体与其周围环境分离开来进行受力分析的图示工具。切线模 型则是基于物体上的接触力和摩擦力进行分析和计算。
理论力学基础-受力分析
在力学中,受力分析是研究物体所受到的各种力以及力对物体运动和平衡的 影响的过程。通过受力分析,我们可以深入理解物体的受力情况和运动规律。
物体受力的基本概念
了解物体受力的基本概念是进行受力分析的第一步。包括考虑物体所受到的所有外力、内力以及它们对物体的 影响。
力的定义和分类
力是物体之间相互作用的结果,用来描述物体受到的作用或压力。力可以分 为接触力(摩擦力、弹力等)和非接触力(引力、电磁力等)。
理论力学的基本概念与应用
理论力学的基本概念与应用理论力学是物理学的基础学科之一,它研究物体运动的规律以及物体受力的原理。
在我们日常生活中,理论力学的应用无处不在,从机械工程到航空航天,从交通运输到建筑设计,都离不开理论力学的支持。
本文将从力、质点运动、牛顿运动定律和万有引力等方面,介绍理论力学的基本概念与应用。
力是理论力学的核心概念之一。
力的大小可以用牛顿(N)来表示,方向可以用矢量来表示。
力可以分为接触力和非接触力两类。
接触力是物体之间直接接触产生的力,如推、拉等;非接触力是物体之间不直接接触产生的力,如重力、电磁力等。
力的合成和分解是力学中的重要概念,通过合成和分解可以将一个力分解为多个力的合力,或将多个力合成为一个力的合力。
这在工程设计中有着重要的应用,比如在建筑设计中,通过合成多个力,可以计算出建筑物的承重能力。
质点运动是理论力学的另一个基本概念。
质点是指物体在运动过程中,可以忽略其大小和形状,只考虑其质量和位置的点。
质点运动可以分为直线运动和曲线运动两类。
直线运动是指物体在直线上运动,如自由落体运动;曲线运动是指物体在曲线上运动,如抛体运动。
质点运动的描述需要用到位移、速度和加速度等概念。
位移是指物体从一个位置到另一个位置的位移量,速度是指物体在单位时间内位移的大小,加速度是指物体在单位时间内速度的变化量。
这些概念在交通运输中有着广泛的应用,比如通过计算车辆的速度和加速度,可以评估车辆的行驶安全性。
牛顿运动定律是理论力学的基石。
牛顿第一定律,也称为惯性定律,指出物体在没有外力作用下,将保持静止或匀速直线运动的状态。
这一定律在航空航天中有着重要的应用,比如航天器在太空中没有空气阻力的作用,可以根据牛顿第一定律进行飞行轨迹的计算。
牛顿第二定律,也称为动力学定律,指出物体的加速度与作用在物体上的力成正比,与物体的质量成反比。
这一定律在机械工程中应用广泛,比如通过计算物体受到的力和加速度,可以确定机械装置的设计参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线分布力的大小及作用位置可由力系简化理论(后述)求得: 同向线分布力的合力的大小等于荷载图的面积,方向与分布 力的方向相同,作用线通过荷载图的形心。 常见分布力的合力及作用位置:
Q Q
ቤተ መጻሕፍቲ ባይዱ
2l/3
l/3
l/2
l/2
Q1 Q2 l/3
1 Q ql 2
Q ql
Q ql
1 1
1 Q (q q )l 2 25
偶可以在其作用面内任意移动,也可以移动
到与其作用面相互平行的平面中去;或同时 改变力偶中力和力偶臂的大小,而不改变力
偶对刚体的效应。 FF F
2
A
x
F
a a
a
B
x
F F
F 2
31
由此可知,力偶矩矢是自由矢量。
在研究力偶问题时可以不考虑力偶的作用位置及力偶中力 的大小和力偶臂的长度,而只需考虑力偶的力偶矩,故常在 力偶作用面内将力偶用带箭头的弧线表示,箭头表示力偶的 转向,旁边的数字表示力偶矩的大小。 40N 6cm 40N 60N
活载:随时间而变,如风压力
23
集中荷载(力):作用在极小的面积或 根据分布情况,荷载 体积上,可以认为作用在一点上。
分布荷载:分布作用于物体的体内或
表面,如重力、土压力、水压力。
2.分布荷载
线分布力或线荷载:沿一条直线连续分布且相互平行的力系。 线荷载集度q:单位长度上的线荷载,单位:N/m或kN/m。 匀布荷载:q=const,非匀布荷载:q≠const 荷载图:表示荷载集度分布的图形。
[例] 吊灯
13
公理5
刚化原理
变形体在某一力系作用下处于平衡,如将此变形体变成
刚体(刚化为刚体),则平衡状态保持不变。
公理5告诉我们:处
于平衡状态的变形体, 可用刚体静力学的平
衡理论。
14
§1-2 力的投影及荷载分类
一、力的投影
1.力 F 在任一轴上的投影
(1)力 F 与轴共面: 以X表示力 F 在x轴上的投影,则 X=±ab。
F
F
38
P
NB
NA
39
滑槽与销钉(双面约束) 约束力垂直于滑槽,指向可假设
结构图 受 力 图
简化图
40
3.光滑圆柱铰链约束 ①光滑圆柱铰链
销 钉 A
A、B互为 约束与被 约束体
简化图
41
42
约束力在垂直于销钉轴线 的平面内并通过销钉中心 ,方向待定。 常用两个正交的分力X、Y 表示。
或
受力图
点,而不改变该力对刚体的效应。
因此,对刚体来说,力的三要素为:大小、方向、作用线 力是滑移矢量
11
公理3
力的平行四边形法则
作用于物体上同一点的两个力可合成 一个合力,此合力也作用于该点,合力的 大小和方向由以原两力矢为邻边所构成的 平行四边形的对角线来表示。即 R F F 1 2 力三角形→ 推论2:三力平衡汇交定理 当刚体受到三力作用而平衡时,若 有两力的作用线相交,则此三力必 构成平面汇交力系。
33
约束反力特点: ①大小是未知的。故称为被动力。
②方向总是与所限制的物体的位移方向相反;
③作用点在物体与约束相接触的那一点。
34
二、常见约束及约束反力: 1.柔索约束(不计重的绳索、链条或皮带等) 由于柔索只能阻碍物体沿柔索伸长的方向运动,故柔索的约
束力通过柔索与物体的连接点,方位沿柔索而指向背离物体。
8
三、静力学公理
公理:是人类经过长期实践和经验而得到的结论,它被反复的
实践所验证,是无须证明而为人们所公认的结论。
公理1
二力平衡公理
作用于刚体上的两个力,使刚体平衡的必要与充分条件是:
这两个力大小相等、方向相反、作用线共线,作用于同一
个物体上。 (简称等值、反向、共线)
注意:
F1 F2 F 1 F 2
mO (F ) r F
①力对点之矩依赖于矩心的 位置,所以空间力对点的矩
是定位矢量。 ②力矩的大小
mO ( F ) F h 2OAB 面积
力对一点的矩不因力沿其作用线移动而改变。这再以次证明 了力是滑移矢量。
27
③矢量 mo ( F )
的指
向按右手法则确定。 ④力对点之矩的解析式 以O点为原点建立直角坐标系,则力
43
光滑圆柱铰链约束实例
44
②固定铰支座(铰链支座) 将光滑圆柱铰链其中一构件固定而得
光滑圆柱铰链
固定铰支座
45
46
47
或
简化图
受力图(同光滑圆柱铰链)
工 程 实 例
48
在分析铰链约束力时,通常将销钉固连在某个构件上。 如右图所示的三铰拱结 构中,如将铰链 C 处的销钉
固连在构件 AC 上,则构件
2 2 1
§1-3 力矩和力偶
力的效应:移动效应和转动效应
一、力对点的矩:度量力使刚体绕某点转动效应的物理量。
(1)在平面问题中,力对点的矩为代数量(因为所有力矩的作用 面都在同一平面内,只要确定了力矩的大小和转向,就可完全 表明力使物体绕矩心转动的效应)。大小等于力与力臂的乘积
mO (F ) Fh 2OAB 面积
大小与力偶臂的乘积:
m m( F , F ) F d
规定:逆时针转向为正,反之为负
单位:N.m,kN.m
'
。
29
(2)空间问题中的力偶矩是矢量,其对物体的作用决定于力 偶三要素: ●力偶矩的大小
m Fd :
●力偶作用面在空间的方位 ●力偶在作用面内的转向:力偶
矩矢与力偶的转向符合右手螺旋
1
一、静力学的研究对象:研究物体在力系作用下的平衡规律
的学科。
力系:是指作用在物体上的一群力。 平衡:是指物体相对于惯性参考系保持静止或作匀速直线运
动的状态。
若把与地球固结的参考系作为惯性参考系,则相对于地 球保持静止或作匀速直线运动的物体,就处于平衡状态。 注意:运动是绝对的平衡是相对的。 平衡力系:物体在力系作用下处于平衡,我们称这个力系为 平衡力系。
作用点的矢径及力可表示为解析式:
r xi y j z k
F Xi Y j Zk
于是:
mO (F ) r F
i
x X
j y Y
k z Z
28
注意:力作用点的坐标及力的投影有正负。
二、力偶 1.力偶:大小相等、方向相反、 作用线平行但不重合的两个力。 力偶是常见的一种特殊力系。 2.力偶矩:力偶对物体的转动效 应用力偶矩度量。 (1)平面问题中的力偶矩是代数量,大小等于力偶中的力的
Fx X
Fy Y
Fz Z
21
∵
∴
Fx Xi , Fy Yj , Fz Zk F Fx Fy FZ 力的解析表达式为: F X i Y j Zk
6.力的投影和力的分力的区别 力的投影和力的分力是两个不同的概念,不得混淆: 投影 代数量 只能求出力的大小和方向 分力 矢量 完全可以确定力的大小、方 向及作用点的位置
法则 。 力偶对刚体的作用完全决定于力偶矩矢。 3.力偶的基本性质 ①力偶只能使物体转动。因此,力偶不能与一个力等效,它既 不能合成一个力,也不能与一个力平衡。力偶只能用力偶来平衡 。
30
②力偶对任一点之矩恒等于力偶矩而与矩心位置无关,因此 力偶对物体的转动效应完全决定于力偶矩。 ③只要保持力偶矩矢的大小和方向不变,力
Fx X Fy Y Fz Z
力的投影是向轴作垂线而得,力的分力则是利用平行四边
形法则而得。关系式
22
仅对直角坐标系 成立,对斜坐标 系不成立。 二、荷载分类 1.荷载分类 主动力(又称荷载):使物体产生运动或运动趋势 力 的力,如 重力、风压力、水压力等, 约束反力 恒载:不随时间而变,如自重 根据作用时间,荷载
16
17
2.力平面上的投影
F ' 为力 F 在平面上的投影,大小:
Fˊ=Fcosj 注意:力在轴上的投影是代数
量,而在平面上的投影是矢量。
3.力在直角坐标轴上的投影
18
3.力在直角坐标轴上的投影 (1)一次投影法(直接投影法) 若已知力与坐标轴正向的 夹角α、β、γ,则
X F cosa , Y F cos , Z F cos
19
(2)二次投影法(间 接投影法) 当力与各轴正向夹 角不易确定时,可先将 F 投影到xy面上,然后 再投影到x、y轴上,
即
Fxy F sin
X Fxy cosj F sin cosj Y Fxy sin j F sin sin j Z F cos
2
二、静力学主要研究两个问题:
1.力系的简化:用最简单的力系代替复杂的力系。
用一个力系代替另一个力系,而不改变原力系对刚体的 效应,称此两力系等效或互为等效力系。
2.力系的平衡条件:物体平衡时,作用于其上的力系应满足
的条件。
3
4
第一章
§ 1–1
§ 1–2
静力学的基本概念和受力分析
基本概念
力的概念及荷载分类
=
4cm
=
m=240N· cm
60N
32
§1-4 约束与约束反力
一、概念 自由体:在空间的运动不受任何限制的物体。
非自由体:在空间的运动受到限制的物体,也称被约束体。
约束:阻碍物体某些方向运动的限制条件 。 (这里,约束是名词,而不是动词的约束。) 约束反力(或约束力、反力):约束给被约束物体的作用力。
20
4.若已知力在直角坐标轴上的投影X、Y、Z,则 力的大小: F