空间向量练习题
空间向量部分基础练习题

16一、选择题1.下列说法中不正确的是( )A. 平面α的法向量垂直于与平面α共面的所有向量B. 一个平面的所有法向量互相平行C. 如果两个平面的法向量垂直,那么这两个平面也垂直D. 如果a 、b 与平面α共面且n ⊥a ,n ⊥b ,那么n 就是平面α的一个法向量2.已知a =(cos α,1,sin α),b =(sin α,1,cos α),则向量a +b 与a -b 的夹角是( )A. 90°B. 60°C. 30°D. 0° 3.已知A 、B 、C 三点的坐标分别为A (4,1,3),B (2,-5,1),C (3,7,λ),若AB⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ ,则λ等于( ) A. 28 B. -28 C. 14 D. -144.若向量{a ,b ,c }是空间的一个基底,则一定可以与向量p =2a +b ,q =2a -b 构成空间的另一个基底的向量是( )A. aB. bC. cD. a +b5.若直线l 的方向向量为a ,平面α的法向量为n ,则能使l ∥α的是( )A. a =(1,0,0),n =(-2,0,0)B. a =(1,3,5),n =(1,0,1)C. a =(0,2,1),n =(-1,0,-1)D. a =(1,-1,3),n =(0,3,1)6.已知a ,b 是两异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b 且AB =2,CD =1,则直线a ,b 所成的角为( )A. 30°B. 60°C. 90°D. 45° 7.已知正方体ABCD -A 1B 1C 1D 1中,若点F 是侧面CD 1的中心,且AF ⃗⃗⃗⃗⃗ =AD⃗⃗⃗⃗⃗ +mAB ⃗⃗⃗⃗⃗ −nAA 1⃗⃗⃗⃗⃗⃗⃗ 则m ,n 的值分别为( ) A.11,22- B. 11,22-- C. 11,22- D. 11,228.已知A (-1,1,2),B (1,0,-1),设D 在直线AB 上,且AD ⃗⃗⃗⃗⃗ =2DB ⃗⃗⃗⃗⃗⃗ ,设C (λ,13+λ,1+λ),若CD ⊥AB ,则λ的值为( )A. 116B. -116C. 12D. 13 9.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=√2,E 、F 分别是面A 1B 1C 1D 1、面BCC 1B 1的中心,则E 、F 两点间的距离为( )A. 1B. √52C. √62D. 32 10.如图,在空间直角坐标系中有长方体ABCD -A 1B 1C 1D 1,AB =1,BC =2,AA 1=3,则点B 到直线A 1C 的距离为( )A. 27B. 2√357C. √357D. 111.如图所示,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E是棱AB 的中点,则点E 到平面ACD 1的距离为( )A. 12B. √22C. 13D. 16 12.如图所示,正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是正方形ADD 1A 1和ABCD 的中心,G 是CC1的中点,设GF ,C 1E 与AB 所成的角分别为α,β,则α+β等于( )A. 120°B. 60°C. 75°D. 90°二、填空题13.已知A (1,2,0),B (0,1,-1),P 是x 轴上的动点,当AP ⃗⃗⃗⃗⃗ ⋅BP⃗⃗⃗⃗⃗ 取最小值时,点P 的坐标为__________.14.已知正四棱台ABCD -A 1B 1C 1D 1中,上底面A 1B 1C 1D 1边长为1,下底面ABCD 边长为2,侧棱与底面所成的角为60°,则异面直线AD 1与B 1C 所成角的余弦值为__________.15.三棱锥P -ABC 中,PA =PB =PC =AB =AC =1,∠BAC =90°,则直线PA 与底面ABC 所成角的大小为________________.16.已知矩形ABCD 中,AB =1,BC =,将矩形ABCD 沿对角线AC 折起,使平面ABC 与平面ACD 垂直,则B 与D 之间的距离为__________.三、解答题17.若e 1、e 2、e 3是三个不共面向量,则向量a =3e 1+2e 2+e 3,b =-e 1+e 2+3e 3,c =2e 1-e 2-4e 3是否共面?请说明理由.18.如图,在正四棱柱ABCD-A1B1C1D1中,已知AB=2,AA1=5,E、F分别为D1D、B1B上的点,且DE=B1F =1.(1)求证:BE⊥平面ACF;(2)求点E到平面ACF的距离.19.如图,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=√2.(1)证明:AC⊥平面BCDE;(2)求直线AE与平面ABC所成的角的正切值.20.如图,四边形ABCD与BDEF均为菱形,设AC与BD相交于点O,若∠DAB=∠DBF=60°,且F A=FC.(1)求证:FC∥平面EAD;(2)求二面角A-FC-B的余弦值.21.如图,在四棱锥中,侧面为钝角三角形且垂直于底面,,点是的中点,,,.(Ⅰ)求证:平面平面;(Ⅱ)若直线与底面所成的角为60°,求二面角余弦值.22. 如图,在边长为4的菱形ABCD 中,60BAD ∠=,AC 与BD 交于点O ,将ADB ∆沿直线DB 折起到PDB ∆的位置(点P 不与A ,C 两点重合).(1)求证:不论PDB ∆折起到何位置,都有BD ⊥平面PAC ;(2)当PO ⊥平面ABCD 时,点M 是线段PC 上的一个动点,若OM 与平面PBC 所成的角为30,求PM MC 的值.。
高二数学空间向量必刷的练习题

高二数学空间向量必刷的练习题在高二数学中,空间向量是一个重要而又复杂的概念,它在解决空间几何问题时起到了重要的作用。
为了帮助同学们更好地掌握和应用空间向量的知识,下面将介绍几道必刷的空间向量练习题。
练习题一:已知向量A=10A+6A+5A,向量A=A−A+3A,向量A=4A−2A+A,求向量A=(2A+5A−A)的模长。
解析:首先,计算向量A=(2A+5A−A)的具体数值。
将已知向量代入得到:A=2(10A+6A+5A)+5(A−A+3A)−(4A−2A+A)=20A+12A+10A+5A−5A+15A−4A+2A−A=21A+9A+24A然后,计算向量A的模长:|A|=sqrt((21A)^2+(9A)^2+(24A)^2)=sqrt(441A^2+81A^2+576A^2)练习题二:已知向量A=A−2A+2A,向量A=−A+4A−4A,向量A=A−6A+6A,求向量A=(A+2A−3A)的方向向量。
解析:首先,计算向量A=(A+2A−3A)的具体数值。
将已知向量代入得到:A=(A−2A+2A)+2(−A+4A−4A)−3(A−6A+6A)=A−2A+2A−2A+8A−8A−3A+18A−18A=−4A+24A−24A然后,根据向量的性质,可以知道向量A的方向与其具体数值无关,方向向量为:(−4, 24, −24)练习题三:已知三点A(1,2,3)、A(4,5,6)和A(7,8,9),求向量AA和向量AA的数量积。
解析:首先,根据已知点的坐标,可以计算出向量AA和向量AA的具体数值:向量AA=(4−1,5−2,6−3)=(3,3,3)向量AA=(7−1,8−2,9−3)=(6,6,6)然后,计算向量AA和向量AA的数量积:AA·AA=3×6+3×6+3×6=54练习题四:已知三点A(-1,1,2)、A(2,3,4)和A(3,2,0),求向量AA和向量AA的向量积。
空间向量与立体几何练习题(带答案)

空间向量与立体几何练习题(带答案)一、选择题1.若空间向量a与b不相等,则a与b一定()A.有不同的方向B.有不相等的模C.不可能是平行向量D.不可能都是零向量【解析】若a=0,b=0,则a=b,这与已知矛盾,故选D.【答案】D图2-1-72.如图2-1-7所示,已知平行六面体ABCD-A1B1C1D1,在下列选项中,CD→的相反向量是()A.BA→B.A1C1→C.A1B1→D.AA1→【解析】由相反向量的定义可知,A1B1→是CD→的相反向量.【答案】C图2-1-83.在如图2-1-8所示的正三棱柱中,与〈AB→,AC→〉相等的是() A.〈AB→,BC→〉B.〈BC→,CA→〉C.〈C1B1→,AC→〉D.〈BC→,B1A1→〉【解析】∵B1A1→=BA→,∴〈BA→,BC→〉=〈AB→,AC→〉=〈BC→,B1A1→〉=60°,故选D.【答案】D4.在正三棱锥A-BCD中,E、F分别为棱AB,CD的中点,设〈EF→,AC→〉=α,〈EF→,BD→〉=β,则α+β等于()A.π6B.π4C.π3D.π2【解析】如图,取BC的中点G,连接EG、FG,则EG∥AC,FG∥BD,故∠FEG=α,∠EFG=β.∵A-BCD是正三棱锥,∴AC⊥BD.∴EG⊥FG,即∠EGF=π2.∴α+β=∠FEG+∠EFG=π2.【答案】D5.如图2-1-9所示,正方体ABCD-A1B1C1D1中,以顶点为向量端点的所有向量中,直线AB的方向向量有()图2-1-9A.8个B.7个C.6个D.5个【解析】与向量AB→平行的向量就是直线AB的方向向量,有AB→,BA→,A1B1→,B1A1→,C1D1→,D1C1→,CD→,DC→,共8个,故选A.【答案】A二、填空题6.在正方体ABCD-A1B1C1D1中,若E为A1C1的中点,则向量CE→和BD→的夹角为________.【解析】∵BD→为平面ACC1A1的法向量,而CE在平面ACC1A1中,∴BD→⊥CE→.∴〈BD→,CE→〉=90°.【答案】90°7.下列命题正确的序号是________.①若a∥b,〈b,c〉=π4,则〈a,c〉=π4.②若a,b是同一个平面的两个法向量,则a=B.③若空间向量a,b,c满足a∥b,b∥c,则a∥c.【解析】①〈a,c〉=π4或3π4,①错;②a∥b;②错;③当c=0时,推不出a∥c,③错;④由于异面直线既不平行也不重合,所以它们的方向向量不共线,④对.【答案】④8.在棱长为1的正方体中,S表示所有顶点的集合,向量的集合P={a|a =P1P2→,P1,P2∈S},则在集合P中模为3的向量的个数为________.【解析】由棱长为1的正方体的四条体对角线长均为3知:在集合P 中模为3的向量的个数为8.【答案】8三、解答题图2-1-109.如图2-1-10所示,在长、宽、高分别为AB=3、AD=2、AA1=1的长方体ABCD-A1B1C1D1的八个顶点的两点为始点和终点的向量中,(1)单位向量共有多少个?(2)试写出模为5的所有向量;(3)试写出与AB→相等的所有向量.【解】(1)由于长方体的高为1,所以长方体4条高所对应的AA1→,A1A→,BB1→,B1B→,CC1→,C1C→,DD1→,D1D→这8个向量都是单位向量,而其他向量的模均不为1,故单位向量共8个.(2)由于这个长方体的左右两侧的对角线长均为5,故模为5的向量有AD1→,D1A→,A1D→,DA1→,BC1→,C1B→,B1C→,CB1→共8个.(3)与向量AB→相等的所有向量(除它自身之外)共有A1B1→,DC→及D1C1→3个.图2-1-1110.如图2-1-11所示,正四棱锥S-ABCD中,O为底面中心,求平面SBD的法向量与AD→的夹角.【解】∵正四棱锥底面为正方形,∴BD⊥AC,SO⊥AC又∵BD∩SO=O∴AC⊥平面SBD.∴AC→为平面SBD的一个法向量.∴〈AC→,AD→〉=45°.图2-1-1211.如图2-1-12,四棱锥P—ABCD中,PD⊥平面ABCD,底面ABCD 为正方形且PD=AD,E、F分别是PC、PB的中点.(1)试以F为起点作直线DE的一个方向向量;(2)试以F为起点作平面PBC的一个法向量.【解】(1)取AD的中点M,连接MF,连接EF,∵E、F分别是PC、PB的中点,∴EF綊12BC,又BC綊AD,∴EF綊12AD,则由EF綊DM知四边形DEFM是平行四边形,∴MF∥DE,∴FM→就是直线DE的一个方向向量.(2)∵PD⊥平面ABCD,∴PD⊥BC,又BC⊥CD,∴BC⊥平面PCD,∵平面PCD,∴DE⊥BC,又PD=CD,E为PC中点,∴DE⊥PC,从而DE⊥平面PBC,∴DE→是平面PBC的一个法向量,由(1)可知FM→=ED→,∴FM→就是平面PBC的一个法向量.。
空间向量练习卷

《空间向量》练习卷1、空间直角坐标系中,点关于轴对称的点的坐标是()A.B.C.D.2、设平面的一个法向量为,平面的一个法向量为,若,则k=()A.2 B.-4 C.-2 D.43、设点M是Z轴上一点,且点M到A(1,0,2)与点B(1,-3,1)的距离相等,则点M的坐标是( )A.(-3,-3, 0)B.(0,0,-3)C.(0,-3,-3)D.(0,0,3)4、已知空间四面体的每条边都等于1,点分别是的中点,则等于()A.B.C.D.5、如图,在正方体,若,则的值为()A.3 B.1 C.-1 D.-36、的三个内角的对边分别为,已知,向量,。
若,则角的大小为()A.B.C.D.7、在ΔABC中,已知=(2,4,0),=(-1,3,0),则∠ABC大小为().A.45°B.90°C.120°D.135°8、已知向量=(2,4,x),=(2,y,2),若||=6,⊥,则x+y的值是()A.-3或1 B.3或-1 C.-3 D.19、如果正方体的棱长为,那么四面体的体积是:A.B.C.D.10、已知向量a=(3,5,-1),b=(2,2,3),c=(4,-1,-3),则向量2a-3b+4c的坐标为( )A.(16,0,-23) B.(28,0,-23) C.(16,-4,-1) D.(0,0,9)分卷II 注释一、填空题(每小题5分共25分)11、已知,则的最小值是___ ____________.12、与A(-1,2,3),B(0,0,5)两点距离相等的点P(x,y,z)的坐标满足的条件为__________.13、已知,且//(),则k=__ ____.14、正方体的棱长为,若动点在线段上运动,则的取值范围是______________.15、已知正方体中,E为的中点,则异面直线AE与BC所成角的余弦值为 .二、解答题(12+12+12+12+13+14)16、如图,在直四棱柱中,底面为平行四边形,且,,,为的中点.(Ⅰ)证明:∥平面;(Ⅱ)求直线与平面所成角的正弦值.17、如图所示,直三棱柱ABC—A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点. (1)求的长;(2)求cos< >的值;(3)求证:A1B⊥C1M.18、长方体中,(1)求直线所成角;(2)求直线所成角的正弦.19、在边长是2的正方体-中,分别为的中点.应用空间向量方法求解下列问题.(1)求EF的长(2)证明:平面;(3)证明: 平面.20、如图,三棱柱ABC-A1B1C1中,BC⊥侧面AA1C1C,AC=BC=1,CC1=2,∠CAA1=,D、E分别为AA1、A1C的中点.(1)求证:A1C⊥平面ABC;(2)求平面BDE与平面ABC 所成角的余弦值.21、如图所示,四边形为直角梯形,,,为等边三角形,且平面平面,,为中点.(1)求证:;(2)求平面与平面所成的锐二面角的余弦值;(3)在内是否存在一点,使平面,如果存在,求的长;如果不存在,说明理由.。
高二数学空间向量的练习题

高二数学空间向量的练习题在高二数学学习中,空间向量是一个重要的知识点,它与平面向量有许多相似之处,同时也具备一些特殊的性质和运算规则。
为了提高对空间向量的理解和应用能力,以下是一些空间向量的练习题,供大家进行巩固和练习。
练习题一:已知空间向量 a = 3i + 4j - 2k,b = i - 2j + 5k,c = 2i - j + 3k,求:1. a + b - c;2. |a × b|;3. ∠(a, b) 的大小。
练习题二:已知平面内的向量 u = 3i + 4j - k,v = 2i - 6j + 3k,w = -7i + 8j - k,求:1. u × v 的大小和方向;2. 建立平面向量 u, v, w 的三角形 ABC,求三角形 ABC 的面积。
练习题三:已知空间向量 a = 3i - j + 4k,b = 2i + 3j - 5k,c = ai + bj + ck,且 |c| = √27,则 a, b, c 为何种关系?练习题四:已知空间向量 d = 4i + 2j - k,e = 3i - j + k,f = 5i + 3j + 2k,求实数λ,使得 d + λe = λf。
练习题五:已知空间向量 a = 3i + 4j - k,b = 2i - j - 4k,c = 4i + 2j - 2k,d = 2i + j + 2k,求向量组 {a, b, c, d} 的线性相关性与线性无关性。
练习题六:已知空间向量 a, b, c 满足 |a| = 3,|c| = 2,且 a × b = c,则向量组 {a, b, c} 的线性相关性与线性无关性如何?练习题七:已知空间向量 a = i + j - k,b = 2i + 3j + k,c = xi + yj + zk,如果向量组 {a, b, c} 线性无关,则实数 x 和 y 的取值范围是什么?练习题八:已知空间向量 a = 2i + j + 4k,b = i + 3j + k,c = 3i - 2j + 5k,d = xi + yj + zk,且向量组 {a, b, c, d} 线性相关,则实数 x 和 y 的取值范围是什么?练习题九:已知坐标为 A(1, 2, -1),B(-3, 5, 6),C(2, -1, 3),求向量 BA × BC 的大小和方向。
空间向量练习题

空间向量练习题1一、选择题:1.已知A 、B 、C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A 、B 、C 一定共面的是( )A .OM ++=B .OM --=2C .3121++= D .313131++=2.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( )A .n m //B . n m ⊥C .也不垂直于不平行于,D .以上三种情况都可能3.设向量},,{是空间一个基底,则一定可以与向量-=+=,构成空间的另一个基底的向量是( )A .B .C .D .或4.设A 、B 、C 、D 是空间不共面的四点,且满足0,0,0=⋅=⋅=⋅AD AC AD AB AC AB 则△BCD 是( )A .钝角三角形B .直角三角形C .锐角三角形D .不确定5.在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 和N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值是( )A .52-B .52C .53D .1010二.解答题:6.如图:ABCD为矩形,PA⊥平面ABCD,PA=AD,M、N分别是PC、AB中点,求证:MN⊥平面PCD7.一条线段夹在一个直二面角的两个面内,它和两个面所成的角都是30°,求这条线段与这个二面角的棱所成的角。
8.长方体1111ABCD A B C D -中,4AB BC ==,E 为11A C 与11B D 的交点,F 为1BC 与1B C 的交点,又AF BE ⊥,求长方体的高1BB .9.在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为BB 1、D 1B 1的中点, 求证:EF ⊥平面B 1AC_1_ A _A _B_ G_ F_ E_ A _ B_ C_ D_ A _1_ B _1 _ C _1_ D _1AC BPEF10.在正方体1111ABCD A B C D -中,E 为11A B 的中点,求异面直线1D E 和1BC 间的距离.11.已知边长为ABC 中,E 、F 分别为BC 和AC 的中点,PA ⊥面ABC ,且2PA =,设平面α过PF 且与AE 平行,求AE 与平面α间的距离.。
高二空间向量练习题及答案

高二空间向量练习题及答案空间向量是高中数学的一个重要内容,掌握空间向量的概念和运算方法对于解决几何问题有着重要的作用。
下面是一些高二空间向量的练习题及其答案,帮助大家巩固和提升空间向量的学习。
一、选择题1. 设向量a=2i-j+3k,向量b=-3i+j+2k,则a·b的值为:A. -11B. 11C. -9D. 9答案:A2. 设向量a=2i-3j+k,向量b=-i+2j-3k,则a与b的夹角为:A. 60°B. 90°C. 120°D. 150°答案:C3. 已知向量a=2i-j+3k,向量b=3i+2j-4k,则a与b的数量积等于:A. -17B. 17C. -3D. 3答案:B4. 设向量a=3i+4j-2k,向量b=i-3j+5k,则a×b的结果为:A. 23i+2j-13kB. -23i-12j+13kC. 23i-12j+13kD. -23i+2j+13k答案:C5. 向量a=3i+j+k,向量b=2i-4j-2k,求向量a与向量b的和向量c,并求c的模长。
A. 向量c=5i-3j-k,|c|=√35B. 向量c=5i-3j-k,|c|=√33C. 向量c=5i-5j-3k,|c|=√31D. 向量c=5i-3j-k,|c|=√31答案:D二、填空题1. 向量a=2i+3j-4k,向量b=5i-2j+k,求a+b的结果为________。
答案:7i+j-3k2. 向量a=2i-3j+k,向量b=-i+j+2k,求a与b的夹角的余弦值为________。
答案:-1/√143. 设向量a=3i-4j+2k,向量b=2i-3j+k,求a×b的结果为________。
答案:-5i-4j-1k4. 设向量a=-i+2j+k,d是一条过点A(1,2,3)且与向量a垂直的直线方程,则d的方程为_______。
答案:x-2y+z-3=05. 已知平行四边形的两条对角线的向量分别为a=2i-j+k和b=-3i+4j-2k,求平行四边形的面积为_______。
空间向量练习题

1.若A(0,2,),B(1,﹣1,),C(﹣2,1,)是平面α内的三点,设平面α的法向量=(x,y,z),则x:y:z=()A.2:3:(﹣4)B.1:1:1 C.﹣:1:1 D.3:2:42.若=(1,﹣2,2)是平面α的一个法向量,则下列向量能作为平面α法向量的是()A.(1,﹣2,0)B.(0,﹣2,2) C.(2,﹣4,4)D.(2,4,4)3.已知平面α的法向量为=(2,﹣2,4),=(﹣3,1,2),点A不在α内,则直线AB与平面的位置关系为()A.AB⊥αB.AB⊂αC.AB与α相交不垂直D.AB∥α4.若平面α、β的法向量分别为=(2,﹣3,5),=(﹣3,1,﹣4),则()A.α∥βB.α⊥βC.α、β相交但不垂直D.以上均不正确5.平面α的法向量为(1,0,﹣1),平面β的法向量为(0,﹣1,1),则平面α与平面β所成二面角的大小为.6.如图,直三棱柱ABC﹣A1B1C1中,AC⊥AB,AB=2AA1,M是AB的中点,△A1MC1是等腰三角形,D为CC1的中点,E为BC上一点.(1)若DE∥平面A1MC1,求;(2)求直线BC和平面A1MC1所成角的余弦值.7.在三棱柱ABC﹣A1B1C1中,侧面ABB1A1为矩形,AB=2,AA1=2,D是AA1的中点,BD与AB1交于点O,且CO⊥ABB1A1平面.(1)证明:BC⊥AB1;(2)若OC=OA,求直线CD与平面ABC所成角的正弦值.8.如图,在直三棱柱ABC﹣A1B1C1中,底面△ABC为等腰直角三角形,∠ABC=90°,AB=4,AA1=6,点M时BB1中点.(1)求证;平面A1MC⊥平面AA1C1C;(2)求点A到平面A1MC的距离.9.如图,四棱锥P﹣ABCD中,PD⊥底面ABCD,AB∥CD,∠BAD=,AB=1,CD=3,M为PC上一点,MC=2PM.(Ⅰ)证明:BM∥平面PAD;(Ⅱ)若AD=2,PD=3,求点D到平面PBC的距离.10.如图,已知平面QBC与直线PA均垂直于Rt△ABC所在平面,且PA=AB=AC.(Ⅰ)求证:PA∥平面QBC;(Ⅱ)PQ⊥平面QBC,求二面角Q﹣PB﹣A的余弦值.11.如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.12.如图,正方体ABCD﹣A1B1C1D1,边长为1,E为CC1上一点,且EC=(1)证明:B1D1∥平面BDE;(2)求二面角E﹣BD﹣C大小;(3)证明:平面ACC1A1⊥平面BDE.13.如图,直三棱柱ABC﹣A1B1C1中,AB=AC=AA1=2,∠ABC=45°.(1)求直三棱柱ABC﹣A1B1C1的体积;(2)若D是AC的中点,求异面直线BD与A1C所成的角.14.如图,在正方体ABCD﹣A1B1C1D1中,(1)证明:BC1⊥面A1B1CD;(2)求直线A1B和平面A1B1CD所成的角.15.如图,正方形ABED、直角梯形EFGD、直角梯形ADGC所在平面两两垂直,AC∥DG∥EF.且DA=DE=DG=2,AC=EF=1.(Ⅰ)求证:四点B、C、G、F共面;(Ⅱ)求二面角D﹣BC﹣F的大小.16.如图,在直三棱柱ABC﹣A1B1C1中,AB=2,AC=AA1=2,∠ABC=.(1)证明:AB⊥A1C;(2)求二面角A﹣A1C﹣B的正弦值.17.如图,在四棱锥O﹣ABCD中,OA⊥底面ABCD,底面ABCD是边长为2的正方形,OA=2,M、N、Q分别为OA、BC、CD的中点.(Ⅰ)证明:DN⊥平面OAQ;(Ⅱ)求点B到平面DMN的距离.18.如图,在棱长AB=AD=2,AA1=3的长方体ABCD﹣A1B1C1D1中,点E是平面BCC1B1内动点,点F是CD的中点.(Ⅰ)试确定E的位置,使D1E⊥平面AB1F;(Ⅱ)求平面AB1F与平面ABB1A1所成的锐二面角的大小.19.如图,边长为1的正三角形SAB所在平面与直角梯形ABCD所在平面垂直,且AB∥CD,BC⊥AB,BC=1,CD=2,E、F分别是线段SD、CD的中点.(I)求证:平面AEF∥平面SBC;(Ⅱ)求二面角S﹣AC﹣F的大小.20.如图,在三棱锥D﹣ABC中,△ADC,△ACB均为等腰直角三角形AD=CD=,∠ADC=∠ACB=90°,M为线段AB的中点,侧面ADC⊥底面ABC.(Ⅰ)求证:BC⊥平面ACD;(Ⅱ)求异面直线BD与CM所成角的余弦值;(Ⅲ)求二面角A﹣CD﹣M的余弦值.21.如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=6,PD=3,E、F分别是PB、CB上靠近点B的一个三等分点.(Ⅰ)求证:AC⊥DE;(Ⅱ)求EF与平面PAB所成角的正弦值.22.如图,在正方体ABCD﹣A1B1C1D1中,E、F分别是A1D1和A1B1的中点.(1)求异面直线AE和BF所成角的余弦值;(2)求平面BDD1与平面BFC1所成二面角的正弦值.23.已知正四棱柱ABCD﹣A1B1C1D1.AB=1,AA1=2,点E为CC1中点,点F为BD1中点.(1)证明EF为BD1与CC1的公垂线;(2)求点D1到面BDE的距离.24.如图,长方体ABCD﹣A1B1C1D1中,AA1=AD=a,AB=2a,E为A1B1的中点在.(Ⅰ)求证:AE⊥平面BCE;(II)求二面角D﹣BE﹣C的余弦值.1.若A(0,2,),B(1,﹣1,),C(﹣2,1,)是平面α内的三点,设平面α的法向量=(x,y,z),则x:y:z=()A.2:3:(﹣4)B.1:1:1 C.﹣:1:1 D.3:2:4选A.2.若=(1,﹣2,2)是平面α的一个法向量,则下列向量能作为平面α法向量的是()A.(1,﹣2,0)B.(0,﹣2,2) C.(2,﹣4,4)D.(2,4,4)选C.3.已知平面α的法向量为=(2,﹣2,4),=(﹣3,1,2),点A不在α内,则直线AB与平面的位置关系为()A.AB⊥αB.AB⊂αC.AB与α相交不垂直D.AB∥α选:D.4.若平面α、β的法向量分别为=(2,﹣3,5),=(﹣3,1,﹣4),则()A.α∥βB.α⊥βC.α、β相交但不垂直D.以上均不正确选;C.5.平面α的法向量为(1,0,﹣1),平面β的法向量为(0,﹣1,1),则平面α与平面β所成二面角的大小为或.解:设平面α的法向量为=(1,0,﹣1),平面β的法向量为=(0,﹣1,1),则cos<,>==﹣,∴<,>=.∵平面α与平面β所成的角与<,>相等或互补,∴α与β所成的角为或.6.如图,直三棱柱ABC﹣A1B1C1中,AC⊥AB,AB=2AA1,M是AB的中点,△A1MC1是等腰三角形,D为CC1的中点,E为BC上一点.(1)若DE∥平面A1MC1,求;(2)求直线BC和平面A1MC1所成角的余弦值.解:(1)取BC中点N,连结MN,C1N,…(1分)∵M,N分别为AB,CB中点∴MN∥AC∥A1C1,∴A1,M,N,C1四点共面,且平面BCC1B1∩平面A1MNC1=C1N,又DE∩平面BCC1B1,且DE∥平面A1MC1,∴DE∥C1N,∵D为CC1的中点,∴E是的中点,∴.(2)连结B1M,因为三棱柱ABC﹣A1B1C1为直三棱柱,∴AA1⊥平面ABC,∴AA1⊥AB,即四边形ABB1A1为矩形,且AB=2AA1,∵M是AB的中点,∴B1M⊥A1M,又A1C1⊥平面ABB1A1,∴A1C1⊥B1M,从而B1M⊥平面A1MC1,∴MC1是B1C1在平面A1MC1内的射影,∴B1C1与平面A1MC1所成的角为∠B1C1M,又B1C1∥BC,∴直线BC和平面A1MC1所成的角即B1C1与平面A1MC1所成的角…(10分)设AB=2AA1=2,且三角形A1MC1是等腰三角形∴,则MC 1=2,,∴cos=,∴直线BC和平面A1MC1所成的角的余弦值为.…(12分)7.在三棱柱ABC﹣A1B1C1中,侧面ABB1A1为矩形,AB=2,AA1=2,D是AA1的中点,BD与AB1交于点O,且CO⊥ABB1A1平面.(1)证明:BC⊥AB1;(2)若OC=OA,求直线CD与平面ABC所成角的正弦值.【解答】(I)证明:由题意,因为ABB1A1是矩形,D为AA1中点,AB=2,AA1=2,AD=,所以在直角三角形ABB1中,tan∠AB1B==,在直角三角形ABD中,tan∠ABD==,所以∠AB1B=∠ABD,又∠BAB1+∠AB1B=90°,∠BAB1+∠ABD=90°,所以在直角三角形ABO中,故∠BOA=90°,即BD⊥AB1,又因为CO⊥侧面ABB1A1,AB1⊂侧面ABB1A1,所以CO⊥AB1所以,AB1⊥面BCD,因为BC⊂面BCD,所以BC⊥AB1.(Ⅱ)解:如图,分别以OD,OB1,OC所在的直线为x,y,z轴,以O为原点,建立空间直角坐标系,则A(0,﹣,0),B(﹣,0,0),C(0,0,),B1(0,,0),D(,0,0),又因为=2,所以所以=(﹣,,0),=(0,,),=(,,),=(,0,﹣),设平面ABC的法向量为=(x,y,z),则根据可得=(1,,﹣)是平面ABC的一个法向量,设直线CD与平面ABC所成角为α,则sinα=,所以直线CD与平面ABC所成角的正弦值为.…(12分)8.如图,在直三棱柱ABC﹣A1B1C1中,底面△ABC为等腰直角三角形,∠ABC=90°,AB=4,AA1=6,点M时BB1中点.(1)求证;平面A1MC⊥平面AA1C1C;(2)求点A到平面A1MC的距离.【解答】证明:(1)以B为原点,BC为x轴,BA为y轴,BB1为z轴,建立空间直角坐标系,由题意A1(0,4,6),M(0,0,3),C(4,0,0),A(0,4,0),=(0,4,3),=(4,0,﹣3),=(0,0,6),=(4,﹣4,0),设平面A1MC的法向量为=(x,y,z),则,取x=3,得=(3,﹣3,4),设平面AA1C1C的法向量=(a,b,c),∴平面A1MC⊥平面AA1C1C.解:(2)∵=(0,0,6),平面A1MC的法向量=(3,﹣3,4),∴点A到平面A1MC的距离:d===.9.如图,四棱锥P﹣ABCD中,PD⊥底面ABCD,AB∥CD,∠BAD=,AB=1,CD=3,M为PC上一点,MC=2PM.(Ⅰ)证明:BM∥平面PAD;(Ⅱ)若AD=2,PD=3,求点D到平面PBC的距离.【解答】证明:(1)过M作MO⊥CD,交CD于O,连结BO,∵四棱锥P﹣ABCD中,PD⊥底面ABCD,AB∥CD,∠BAD=,AB=1,CD=3,M为PC上一点,MC=2PM,∴MO∥PD,OD=,∴OD AB,∴AD∥BO,∵AD∩PD=D,BO∩MO=O,AD、PD⊂平面ADP,BO、MO⊂平面BOM,∴平面ADP∥平面BOM,∵BM⊂平面BOM,∴BM∥平面PAD.解:(2)∵AD=2,PD=3,AB∥CD,∠BAD=,AB=1,CD=3,∴BD==,∴BD2+AB2=AD2,以D为原点,DB为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,B(,1,0),P(0,0,3),C(0,3,0),D(0,0,0),=(),=(),=(0,3,﹣3),设平面PBC的法向量=(x,y,z),∴点D到平面PBC的距离d===.10.图,已知平面QBC与直线PA均垂直于Rt△ABC所在平面,且PA=AB=AC.(Ⅰ)求证:PA∥平面QBC;(Ⅱ)PQ⊥平面QBC,求二面角Q﹣PB﹣A的余弦值.解:(I)证明:过点Q作QD⊥BC于点D,∵平面QBC⊥平面ABC,∴QD⊥平面ABC,又∵PA⊥平面ABC,∴QD∥PA,又∵QD⊂平面QBC,PA⊄平面QBC,∴PA∥平面QBC.(Ⅱ)方法一:∵PQ⊥平面QBC,∴∠PQB=∠PQC=90°,又∵PB=PC,PQ=PQ,∴△PQB≌△PQC,∴BQ=CQ.∴点D是BC的中点,连接AD,则AD⊥BC,∴AD⊥平面QBC,∴PQ∥AD,AD⊥QD,∴四边形PADQ是矩形.设PA=2a,∴,PB=2a,∴.过Q作QR⊥PB于点R,∴QR==,==,取PB中点M,连接AM,取PA的中点N,连接RN,∵PR=,,∴MA∥RN.∵PA=AB,∴AM⊥PB,∴RN⊥PB.∴∠QRN为二面角Q﹣PB﹣A的平面角.连接QN,则QN===.又,∴cos∠QRN===.即二面角Q﹣PB﹣A的余弦值为.(Ⅱ)方法二:∵PQ⊥平面QBC,∴∠PQB=∠PQC=90°,又∵PB=PC,PQ=PQ,∴△PQB≌△PQC,∴BQ=CQ.∴点D是BC的中点,连AD,则AD⊥BC.∴AD⊥平面QBC,∴PQ∥AD,AD⊥QD,∴四边形PADQ是矩形.分别以AC、AB、AP为x、y、z轴建立空间直角坐标系O﹣xyz.不妨设PA=2,则Q(1,1,2),B(0,2,0),P(0,0,2),设平面QPB的法向量为.∵=(1,1,0),=(0,2,﹣2).∴令x=1,则y=z=﹣1.又∵平面PAB的法向量为.设二面角Q﹣PB﹣A为θ,则|cosθ|===又∵二面角Q﹣PB﹣A是钝角∴.11.如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.【解答】(Ⅰ)证明:∵B1C=A1D且A1B1=CD,∴四边形A1B1CD为平行四边形,∴B1C∥A1D,又∵B1C⊄平面A1EFD,∴B1C∥平面A1EFD,又∵平面A1EFD∩平面B1CD1=EF,∴EF∥B1C;(Ⅱ)解:以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz 如图,设边长为2,∵AD1⊥平面A1B1CD,∴=(0,2,2)为平面A1B1CD的一个法向量,设平面A1EFD的一个法向量为=(x,y,z),又∵=(0,2,﹣2),=(1,1,0),∴,,取y=1,得=(﹣1,1,1),∴cos<,>==,∴二面角E﹣A1D﹣B1的余弦值为.12.如图,正方体ABCD﹣A1B1C1D1,边长为1,E为CC1上一点,且EC=(1)证明:B1D1∥平面BDE;(2)求二面角E﹣BD﹣C大小;(3)证明:平面ACC1A1⊥平面BDE.【解答】(1)证明:在正方体ABCD﹣A1B1C1D1,DD1∥BB1且DD1=BB1则:四边形DD1B1B是平行四边形.BD∥B1D1B1D1⊄平面BDE,BD⊂平面BDE,所以:B1D1∥平面BDE.(2)连接AC和BD交于点O,连接OE,所以:AC⊥DB,又EC⊥平面ABCD,DB⊂平面ABCD 所以:BD⊥平面COE则:OE⊥BD则:∠EOC是二面角E﹣BD﹣C的平面角.由于正方体的边长为1,EC=,解得:则:tan∠EOC=1则:∠EOC=45°即二面角E﹣BD﹣C大小为45°.(3)在正方体中,A1A⊥平面ABCD,AC⊥BD,则:BD⊥平面A1ACC1BD⊂平面BDE所以:平面ACC1A1⊥平面BDE.13.如图,直三棱柱ABC﹣A1B1C1中,AB=AC=AA1=2,∠ABC=45°.(1)求直三棱柱ABC﹣A1B1C1的体积;(2)若D是AC的中点,求异面直线BD与A1C所成的角.解:(1)∵AB=AC=2,∠ABC=45°,∴∠BAC=90°,∴.又AA1=2,∴直三棱柱ABC﹣A1B1C1的体积V=S△ABC×AA1=2×2=4.∴直三棱柱ABC﹣A1B1C1的体积为4.(2)取AA1的中点M,连接DM,BM,∵D是AC的中点,∴DM∥A1C,∴∠BDM是异面直线BD与A1C所成的角.在△BDM中,,.即.∴异面直线BD与A1C所成的角为.14.(2014秋•XX期中)如图,在正方体ABCD﹣A1B1C1D1中,(1)证明:BC1⊥面A1B1CD;(2)求直线A1B和平面A1B1CD所成的角.解:(1)连接B1C交BC1于点O,连接A1O.在正方体ABCD﹣A1B1C1D1中因为A1B1⊥平面BCC1B1.所以A1B1⊥BC1.又∵BC1⊥B1C,又BC1∩B1C=O∴BC1⊥平面A1B1CD(2)因为BC1⊥平面A1B1CD,所以A1O为斜线A1B在平面A1B1CD内的射影,所以∠BA1O为A1B与平面A1B1CD所成的角.设正方体的棱长为a在RT△A1BO中,A1B=a,BO=a,所以BO=A1B,∠BA1O=30°,即直线A1B和平面A1B1CD所成的角为30°.15.如图,正方形ABED、直角梯形EFGD、直角梯形ADGC所在平面两两垂直,AC∥DG∥EF.且DA=DE=DG=2,AC=EF=1.(Ⅰ)求证:四点B、C、G、F共面;(Ⅱ)求二面角D﹣BC﹣F的大小.【解答】(Ⅰ)证明:取DG的中点M,连接AM,∵正方形ABED、直角梯形EFGD、直角梯形ADGC所在平面两两垂直,AC∥DG∥EF.且DA=DE=DG=2,AC=EF=1∴BF∥AM,AM∥CG,∴BF∥CG,∴四点B、C、G、F共面.(Ⅱ)以DE为x轴,以DG为y轴,以DA为z轴,建立空间直角坐标系,∵正方形ABED、直角梯形EFGD、直角梯形ADGC所在平面两两垂直,AC∥DG∥EF.且DA=DE=DG=2,AC=EF=1∴D(0,0,0),B(2,0,2),C(0,1,2)F(2,1,0),∴,,,,设平面DBC的法向量,则,,∴,解得=(1,2,﹣1),设平面FBC的法向量,则,,∴,解得=(1,2,1),设二面角D﹣BC﹣F的平面角为θ,则cosθ=|cos<,>|=||=.∴二面角D﹣BC﹣F的大小为arccos.16.如图,在直三棱柱ABC﹣A1B1C1中,AB=2,AC=AA1=2,∠ABC=.(1)证明:AB⊥A1C;(2)求二面角A﹣A1C﹣B的正弦值.解:(1)证明:在△ABC中,由正弦定理可求得∴AB⊥AC以A为原点,分别以AB、AC、AA1为x、y、z轴,建立空间直角坐标系,如图则A(0,0,0)B(2,0,0)即AB⊥A1C.(2)由(1)知设二面角A﹣A1C﹣B的平面角为α,=∴17.如图,在四棱锥O﹣ABCD中,OA⊥底面ABCD,底面ABCD是边长为2的正方形,OA=2,M、N、Q分别为OA、BC、CD的中点.(Ⅰ)证明:DN⊥平面OAQ;(Ⅱ)求点B到平面DMN的距离.解:(Ⅰ)由题意,可知AO,AB,AD两两垂直,于是可如图建立空间直角坐标系,从而可得以下各点的坐标:A(0,0,0),B(2,0,0),D(0,2,0),O(0,0,2),M(0,0,1),N(2,1,0),Q(1,2,0),∵.∴.即AQ⊥DN.又知OA⊥DN,∴DN⊥平面OAQ.(Ⅱ)设平面DMN的法向量为,由.得即,令x=1,得平面DMN的法向量,∴点B到平面DMN的距离.18.如图,在棱长AB=AD=2,AA1=3的长方体ABCD﹣A1B1C1D1中,点E是平面BCC1B1内动点,点F是CD的中点.(Ⅰ)试确定E的位置,使D1E⊥平面AB1F;(Ⅱ)求平面AB1F与平面ABB1A1所成的锐二面角的大小.解:(Ⅰ)以A为原点,AB、AD、AA1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,A(0,0,0),F(1,2,0),B1(2,0,3),D1(0,2,3),设E(2,y,z),则,.(4分)由D1E⊥平面AB1F∴∴E(2,1,)为所求.…(6分)(Ⅱ)方法一:当D1E⊥平面AB1F时,=,又是平面A 1AB1的法向量,且.(8分).∴面AB1F与平面ABB1A1所成的锐二面角的大小.(12分)方法二:取AB的中点G,可证:FG⊥平面ABB1A1,过点G作GH⊥AB1于H点,连接FH,则FH⊥AB1,所以∠GHF为所求二面角的平面角.…(9分)在△GHF中,FG=2,FH.∴面AB1F与平面ABB1A1所成的锐二面角的大小.(12分)19.如图,边长为1的正三角形SAB所在平面与直角梯形ABCD所在平面垂直,且AB∥CD,BC⊥AB,BC=1,CD=2,E、F分别是线段SD、CD的中点.(I)求证:平面AEF∥平面SBC;(Ⅱ)求二面角S﹣AC﹣F的大小.【解答】证明:(Ⅰ)∵fF别是CD的中点,∴FC=CD=1.又AB=1,所以FC=AB.∵FC∥AB,∴四边形ABCF四边形.∴AF∥BC∵E是SD的中点∴EF∥SC又∵AF∩EF=F,BC∩SC=C∴平面AEF∥平面SBC解:(II)取AB的中点O,连接SO,∵SO⊥△SAB,以O为原点,建立如图所示的空间坐标系O﹣xyz则有A(0,﹣,0),C(1,,0),S(0,0,),F(1,﹣,0),=(1,1,0),=(0,,),(7分)设平面SAC的法向量为=(x,y,z),由,即取x=1,,得=(1,﹣1,),平面FAC的法向量为=(0,0,1).(10分)∴cos<m,n>==而二面角二面角S﹣AC﹣F的大小为钝角,∴二面角二面角S﹣AC﹣F的大小为π﹣arccos.20.如图,在三棱锥D﹣ABC中,△ADC,△ACB均为等腰直角三角形AD=CD=,∠ADC=∠ACB=90°,M为线段AB的中点,侧面ADC⊥底面ABC.(Ⅰ)求证:BC⊥平面ACD;(Ⅱ)求异面直线BD与CM所成角的余弦值;(Ⅲ)求二面角A﹣CD﹣M的余弦值.解:(Ⅰ)证明:因为AC⊥BC,平面ADC⊥平面ABC,平面ADC∩平面ABC=AC,BC⊂平面ABC,所以BC⊥平面ACD.(Ⅱ)取AC的中点为O,连接DO,OM.建立空间直角坐标系O﹣xyz如图所示.则A(1,0,0),C(﹣1,0,0),D(0,0,1),B(﹣1,2,0),M(0,1,0).,所以异面直线BD与CM所成角的余弦值为(Ⅲ)平面ACD的法向量为,设平面MCD的法向量为,,由,得,取x=﹣1,得y=z=1,所以所以,二面角A﹣CD﹣M的余弦值为21.如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=6,PD=3,E、F分别是PB、CB上靠近点B的一个三等分点.(Ⅰ)求证:AC⊥DE;(Ⅱ)求EF与平面PAB所成角的正弦值.【解答】证明:(Ⅰ)∵PD⊥面ABCD,AC⊂面ABCD∴PD⊥AC∵四边形ABCD是菱形,∴BD⊥AC又∵PD∩BD=D,PD,BD⊂面PBD∴AC⊥面PBD又∵DE⊂面PBD∴AC⊥DE(Ⅱ)以点O为坐标原点,OB、OC所在的直线为x轴、y轴,建立空间直角坐标系,则∵AC=6,BD=6,PD=3,E、F分别是PB、CB上靠近点B的一个三等分点.∴P(﹣3,0,3),A(0,﹣3,0),B(3,0,0),C(0,3,0),∴==(2,0,﹣),==(﹣1,,0),∴=+=(1,,﹣),设平面PAB的法向量=(x,y,z),由=(3,﹣3,﹣3),=(6,0,﹣3)得,,即令z=2,则=(,,2)则EF与平面PAB所成角θ满足sinθ===,即为EF与平面PAB所成角的正弦值…(8分)22.如图,在正方体ABCD﹣A1B1C1D1中,E、F分别是A1D1和A1B1的中点.(1)求异面直线AE和BF所成角的余弦值;(2)求平面BDD1与平面BFC1所成二面角的正弦值.解:以A为坐标原点,AB,AD,AA1分别为X,Y,Z轴正方向,建立空间坐标系,设正方体ABCD﹣A1B1C1D1的棱长为2,则A(0,0,0),B(2,0,0),E(0,1,2),F(1,0,2),C1(2,2,2)(1)则=(0,1,2),=(﹣1,0,2)设异面直线AE和BF所成角为θ则cosθ==即异面直线AE和BF所成角的余弦值为(2)∵=(2,0,0)为平面BDD1的一个法向量,设向量为平面BFC 1的一个法向量则,即令z=1,则向量为平面BFC1的一个法向量∵cos==∴sin=∴平面BDD1与平面BFC1所成二面角的正弦值为23.已知正四棱柱ABCD﹣A1B1C1D1.AB=1,AA1=2,点E为CC1中点,点F为BD1中点.(1)证明EF为BD1与CC1的公垂线;(2)求点D1到面BDE的距离.解:(1)取BD中点M.连接MC,FM.∵F为BD1中点,∴FM∥D1D且FM=D1D.又EC CC1且EC⊥MC,∴四边形EFMC是矩形∴EF⊥CC1.又FM⊥面DBD1.∴EF⊥面DBD1.∵BD1⊂面DBD1.∴EF⊥BD1.故EF为BD1与CC1的公垂线.(Ⅱ)解:连接ED1,有V E﹣DBD1=V D1﹣DBE.由(Ⅰ)知EF⊥面DBD1,设点D1到面BDE的距离为d.则.∵AA 1=2,AB=1.∴,,∴.∴故点D1到平面DBE的距离为.24.如图,长方体ABCD﹣A1B1C1D1中,AA1=AD=a,AB=2a,E为A1B1的中点在.(Ⅰ)求证:AE⊥平面BCE;(II)求二面角D﹣BE﹣C的余弦值.解:(Ⅰ)证明:∵在长方体ABCD﹣A1B1C1D1中,BC⊥侧面ABB1A1,AE⊂侧面ABB1A1,∴AE⊥BC,在△ABE中,AB=2a,a,则有AB2=AE2+BE2,∴∠AEB=90°,∴AE⊥EB,又BC∩EB=B∴AE⊥平面BCE(6分)(II)以点D为坐标原点,建立如图所示的坐标系D﹣xyz.则D(0,0,0),B(2a,a,0),E(a,a,a,),A(0,a,0),=(a,a,a),设平面BDE的法向量为,则由=0,得,,令x=1,得,又由(I)AE⊥平面BCE,=(a,0,a)为平面BCE的法向量,cos<即所求二面角D﹣BE﹣C的余弦值为..。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间向量的概念解析
例1、下列说法中正确的是( )
A.若|a |=|b |,则a,b 的长度相同,方向相同或相反
B.若向量a 是向量b 的相反向量,则|a |=|b |
C.空间向量的减法满足结合律
D.在四边形ABCD 中,一定有AB AD AC +=
练习
1、给出下列命题:①零向量没有方向;②若两个空间向量相等,则它们的起点相同,终点相同;③若空间向量a,b 满足|a |=|b |,则a=b ;④若空间向量m,n,p 满足m=n,n=p,则m=p ;⑤空间中任意两个单位向量必相等,其中正确命题的个数为( )
A.4
B.3
C.2
D.1
2、下列四个命题:
(1)方向相反的两个向量是相反向量
(2)若a,b 满足|a |>|b |,且a,b 同向,则a >b
(3)不相等的两个空间向量的模必不相等
(4)对于任何向量a,b ,必有|a+ b |≤|a |+|b |
其中正确命题的序号为( )
A.(1)(2)(3)
B.(4)
C.(3)(4)
D.(1)(4)
空间向量的线性运算
例1、 已知长方体ABCD-A ’B ’C ’D ’,化简下列向量表达式,并标出化简结果的向量
(1)AA CB '-(2)AB B C C D '''''++(3)
111222
AD AB A A '+- 练习
1、如图所示,在正方体ABCD-A 1B 1C 1D 1中,下列各式中运算的结果为向量的共有( ) ①1()AB BC CC ++②11111()AA A D DC ++ ③111()AB BB BC ++④11111()AA A B BC ++
A.1个
B.2个
C.3个
D.4 个
2、如图所示,在平行六面体ABCD-A 1B 1C 1D 1中,M 为AC 与BD 的交点,若
11111,,A B a A D b A A c ===,则下列向量中与1B M 相等的向量是( ) A.1122a b c -++ B. 1122a b c ++ C. 1122a b c -+ D.1122
a b c --+
用已知向量表示未知向量
例1、已知ABCD 为正方形,P 是ABCD 所在平面外一点,P 在平面ABCD 上的射影恰好是正方形ABCD 的中心O ,Q 是CD 的中点,求下列各式中x,y 的值:
(1)OQ PQ xPC yPA =++
(2)PA xPO yPQ PD =++
练习:
1、本例中若PQ xBA yBC zBP =++,则x,y,z 为何值?
2、如图所示,在平行六面体ABCD-A 1B 1C 1D 1中, 1,,AB a AD b AA c
===M 是C 1D 1的中点,点N 是CA 1上的点,且CN:NA 1=4:1,用a, b, c 表示以下向量:
(1)AM (2)AN
共线向量定理
例1、 如图所示,已知四边形ABCD,ABEF 都是平行四边形且不共面,M,N 分别是AC,BF 的
中点,判断CE 与MN 是否共线
练习: 1、已知空间向量a,b ,且2,56,72AB a b BC a b CD a b =+=-+=-,则一定共线的三点是( )
A. A,B,D
B.A,B,C
C.B,C,D
D.A,C,D
2、已知四边形ABCD 是空间四边形,E,H 分别是边AB,AD 的中点,F,G 分别是边CB,CD 上的点,且22,33
CF CB CG CD ==求证:四边形EFGH 是梯形
共面向量定理
例1、 对于任意空间四边形ABCD ,E,F 分别是AB,CD 的中点,试证:EF 与,BC AD 共面 _
练习: 1、 在下列条件下,使M 与A,B,C 一定共面的是( )
A. 32OM OA OB OC =--
B. 0OM OA OB OC +++=
C. 0MA MB MC ++=
D. 1142
OM OB OA OC =-+ 2、已知A,B,C 三点不共线,平面ABC 外一点M 满足111333OM OA OB OC =
++ (1)判断,,MA MB MC 三个向量是否共面
(2)判断M 是否在平面ABC 内
基底的判断
例1、若{a, b, c }是空间的一个基底,试判断{a+b,b+c,c+a }能否作为该空间的一个基底
练习:
1、设x=a+b,y=b+c,z=c+a,且{a, b, c }是空间的一个基底,给出下列向量组:
①{a, b, x }, ②{x, y, z }, ③{b, c, z }, ④{x, y, a+b+c }
其中可以作为空间的基底的向量组有______个
2、已知{e 1, e 2, e 3}是空间的一个基底,且1231232,32OA e e e OB e e e =+-=-++123,OC e e e =+-,试判断{}
,,OA OB OC 能否作为空间的一个基底?
空间向量分解定理及应用
例1、空间四边形OABC 中,G,H 分别是△ABC ,△OBC 的重心,设,,OA a OB b OC c ===,试用向量a,b,c 表示向量OG GH 和
练习
1、本例题中条件不变,若E 为OA 的中点,试用a,b,c 表示DE EG 和
2、四棱锥P-OABC 的底面为一矩形,PO ⊥平面OABC,设,,OA a OC b OP c ===,E,F 分别是PC 和PB 的中点,试用a,b,c 表示:,,,BF BE AE EF
数量积的运算
例1、如图所示,已知正四面体OABC 的棱长为1,点E,F 分别是OA,OC 的中点,求下列向量的数量积:
(1)OA OB • (2)EF CB • (3)()()OA OB CA CB +•+
练习
1、如图,已知空间四边形每条边和对角线长都等于a,点E,F,G 分别是AB 、AD 、DC 的中点,
则下列向量的数量积等于a 2的是( )
.2.2.2.2A BA AC
B AD BD
C FG CA
D EF CB
••••
2、已知长方体ABCD-A 1B 1C 1D 1中,AB=AA 1=2,AD=4,E 为侧面AA 1B 1B 的中心,F 为A 1D 1的中心,求下列向量的数量积11(1);(2)BC ED BF AB ••
用数量积求夹角
例1、如图,在直三棱柱ABC-A 1B 1C 1中,∠ABC=90°,AB=BC=1,AA 1
,求异面直角BA 1与AC 所成角的余弦值
练习:
1、已知a,b 是异面直线,A ∈a,B ∈a,C ∈b,D ∈b,AC ⊥b,BD ⊥b,且AB=2,CD=1,则a 与b 所成的角是( )
A.30°
B.45°
C.60°
D.90°
2、已知空间四边形OABC 各边及对角线长相等,E 、F 分别为AB 、OC 的中点,求OE BF 与所成角的余弦值
利用数量积求两点间距离
例1、如图所示,平行六面体ABCD-A1B1C1D1中,从同一顶点出发的三条棱的长都等于1,且
彼此的夹角都是60°,求对角线AC1和BD1的长
练习:
1、如图,已知PA⊥平面ABC,∠ABC=120°,PA=AB=BC=6,则PC等于()
A.
2、在平行四边形ABCD中,AB=AC=1,∠ACD=90°,将它沿对角线AC折起,使AB与CD
成60°角,求B,D间的距离
利用数量积证明垂直问题
例1、已知空间四边形ABCD中,AB⊥CD,AC⊥BD,求证:AD⊥BC
练习:1、已知向量a,b是平面α内两个不相等的非零向量,非零向量c在直线l 上,则==
且是l⊥α的()
c a c b
0,0
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
2、已知空间四边形OABC中,∠AOB=∠BOC=∠AOC,且OA=OB=OC,M,N分别是OA、BC的中点,G是M、N的中点,求证:OG⊥BC。