理论力学08第六章 点的合成运动(1)

合集下载

理论力学:第6章 点的合成运动

理论力学:第6章 点的合成运动


2 2 r

aeτ 0 ,解出 aa=142r。所以小环 M 的加速度为 142r。
6-23 已知 O1 A O2 B l 1.5 m,且 O1A 平行于 O2 B ,题 6-23 图所示位置,
滑道 OC 的角速度=2 rad/s,角加速度 =1 rad/s2,OM = b =1 m。试求图示位置
第 6 章 点的合成运动
6-7 题 6-7 图所示曲柄滑道机构中,杆 BC 为水平,而杆 DE 保持铅直。 曲柄长 OA=10 cm,以匀角速度 = 20 rad/s 绕 O 轴转动,通过滑块 A 使杆 BC 作 往复运动。求当曲柄与水平线的交角为 = 0、30、90时,杆 BC 的速度。
·8·
由图得 vr=ve=b=2 m/s, va O1 l 。
得到 O1

l
b cos 45
21
1.5
2 2
1.89 rad/s 。
(2)求加速度。动点,动坐标系的选择不变,则动点 M 的加速度图如图(c)
所示。由加速度合成定理
aa ae ar aC
即 aan aaτ aeτ aen ar aC
时 O1A 的角速度和角加速度。
M
45 45
vr
ve
va
x
ae
ane
ana
45
ar
aC
aa
(a)
(b)
(c)
题 6-23 图
解:(1)求速度。
选取 M 为动点,动坐标系固连于滑道 OC 上,则动点 M 的速度图如图(b)
所示。由速度合成定理
va=ve+vr
沿 OC 轴的垂直方向投影得

理论力学习题册答案

理论力学习题册答案

第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体.还适用于变形体。

()2、作用于刚体上三个力的作用线汇交于一点.该刚体必处于平衡状态。

()3、刚体是真实物体的一种抽象化的力学模型.在自然界中并不存在。

()4、凡是受两个力作用的刚体都是二力构件。

()5、力是滑移矢量.力沿其作用线滑移不会改变对物体的作用效果。

()二.选择题1、在下述公理、法则、原理中.只适于刚体的有()①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。

未画重力的物体不计自重.所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

b(杆ABa(球A ))d(杆AB、CD、整体)c(杆AB、CD、整体))e(杆AC、CB、整体)f(杆AC、CD、整体四.画出下列图中指定物体受力图。

未画重力的物体不计自重.所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

)a(球A、球B、整体)b(杆BC、杆AC、整体第一章 静力学公理与受力分析(2)一.画出下列图中指定物体受力图。

未画重力的物体不计自重.所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

WADB CE Original FigureAD B CEWWFAxF AyF BFBD of the entire frame)a (杆AB 、BC 、整体)b (杆AB 、BC 、轮E 、整体)c (杆AB 、CD 、整体 )d (杆BC 带铰、杆AC 、整体)e(杆CE、AH、整体)f(杆AD、杆DB、整体)g(杆AB带轮及较A、整体)h(杆AB、AC、AD、整体第二章平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F= - F’.所以力偶的合力等于零。

()2、用解析法求平面汇交力系的合力时.若选用不同的直角坐标系.则所求得的合力不同。

()3、力偶矩就是力偶。

()二.电动机重P=500N.放在水平梁AC的中央.如图所示。

理论力学 第6章 点的合成运动

理论力学 第6章 点的合成运动
求:杆OA的角速度。 分析:相接触的两个物体的接触点位置都随时间而变化,
因此两物体的接触点都不宜选为动点,否则相对运动的分析 就会很困难。这种情况下,需选择满足上述两条原则的非接 触点为动点。
18
解: 取凸轮上C点为动点, 动系固结于OA杆上, 静系固结于基座。
绝对运动: 直线运动, 绝对速度: va v, 方向
们的方向不变,是常矢量,所以
di ' dt

0,
dy' dt

0,
dz' dt

0


dvO' dt
aO' ae ,
ar

d2 dt
x'i'
2
d2 dt
y'
2
j' d 2z'k' dt 2
aa ae ar —牵连运动为平动时点的加速度合成定理 即当牵连运动为平动时,动点的绝对加速度等于牵连加速度 与相对加速度的矢量和。
2r 2r 3 6r
()
19
§6-3 牵连运动为平动时点的加速度合成定理
设有一动点M按一定规律沿着固连于动系O'x'y'z' 的曲线AB
运动, 而曲线AB同时又随同动系O'x'y'z' 相对静系Oxyz平动。
由于牵连运动为平动,故
ve vO' , ae aO'
由速度合成定理 va ve vr
相对运动中,动点的速度和加速度称为相对速度 vr 与相对加速度ar
牵连运动中,牵连点的速度和加速度称为牵连速度 ve与牵连加速度 ae
牵连点:在任意瞬时,动坐标系中与动点相重合的点,也就是 设想将该动点固结在动坐标系上,而随着动坐标系一起运动时 该点叫牵连点。

理论力学基础点的合成运动

理论力学基础点的合成运动

1
平动和转动的区别
2
它们之间的关系对于理解合成运动具有
重要意义;
3
运动学基本公式
4
位置、速度、加速度等运动学基本公式 是研究合成运动的基础知识。
牛顿第二定律
合力产生加速度,加速度与力成正比。 一切合成运动都符合牛顿第二定律;
匀速圆周运动的分解
它是所有曲线合成运动的基础,掌握分 解方法可以为其他曲线合成运动的研究 提供启示;
结论和总结
合成运动是力学基础点之一,但不同于其他运动,它是由多个运动步骤组 成的复杂过程,因此有其独特的研究方法和工具。对合成运动理论及其实 际应用的深度理解和掌握,具有重要意义。 ——陈晓明,中国科技大学教授
机器人动作设计
机器人动作设计中需要进行多种复杂的合成运动分析与控制。合成运动理论可以指导机器人 的运动规划、轨迹跟踪和动作执行。
运动传感设计
合成运动分解是一种重要的运动测量技术。在车辆安全、物流配送、航空监控等领域,合成 运动传感器为复杂运动测量提供了有效手段。
合成运动的实验方法和技术
1
高速相机
观测高速运动的一种重要方法。运用指定的曝光时间和快门速度,拍摄合成运动 过程中的关键帧。
2
追踪仪器
用于测量运动物体的位置、速度和加速度等多种参数,对于合成运动的分析和控 制有着重要作用。
3
动力学仿真软件
自动地计算合成运动的轨迹、速度、加速度等参数。可以模拟物体的运动过程, 为结构设计和工艺分析提供有力支持。
合成运动的分类和特点
线性合成运动
由两个或两个以上直线运动叠 加而成;
圆周合成运动
由两个或两个以上曲线运动叠 加而成;
复合合成运动
由不同类型直线运动或曲线运 动叠加而成。

点的合成运动

点的合成运动

种位移之间的关系为
MM'' =MM' + M' M''
目录
刚体的运动\点的合成运动
将上式两边分别除以Δt ,并取Δt→0 时的极限,得
y Ox
lim lim lim MM
MM
M M
t0 t
t0 t
t0 t
式在中绝:对lit运m0动M中Mt 的 表速示度动,点称在为瞬动时点t的、
y
vr
va
系相固结的物体的运动,因而是指一个刚体的运动,它可以是平移、
转动或其他复杂的运动。
目录
刚体的运动\点的合成运动
1.2 点的速度合成定理
以图示桥式起重机为例,研究
y Ox
绝对运动、相对运动和牵连运动三
者速度之间的关系。设在瞬时t,动 点在位置M。假如动点不作相对运
y
M''
动,则经Δt时间后,动点随动系运
理论力学
刚体的运动\点的合成运动
点的合成运动
在研究刚体的平面运动之前,先介绍点的合成运动的有关概念 及点的速度合成定理,这既是研究点的运动的又一种方法,又是研 究刚体复杂运动的基础。
1.1 点的合成运动的概念
在不同的物体上观察同一物体的运动时,会得出不同的结果。 例如,当火车行驶时,在车厢上观察车轮上一点的运动是圆周运动, 在地面上观察则是复杂的曲线运动,若在车轮上观察则是静止的。 因此,在研究一个物体的运动时,必须指明是相对于哪个物体而言, 即必须选定参考体或参考系。在工程上如果没有特别的说明,都是 以地面作为参考系。
目录
刚体的运动\点的合成运动 【例6.5】 凸轮机构(如图)中,导
杆AB可在铅垂管D内上下滑动,其下端 与凸轮保持接触。凸轮以匀角速度ω绕O 轴逆时针转动,在图示瞬时OA=a ,凸轮

理论力学第六章 点的合成运动 [同济大学]

理论力学第六章 点的合成运动 [同济大学]

解: 从例6-2已知得: 1 =
vr r 3 , 2
ω 4
O
解: 从上例已知得: 1 =
r
M
ω 4
va
A
aaτ =0 ,
3 , 4
aan=2r aen=
ωr 8
x’
2
ac 21vr 2 r
va
30°
3 1 1/ s2 8
2
动点取A,
va v A

ar
dvr d 2 x ' ' d 2 y ' ' d 2 z ' ' 2 r 2 j 2 k dt dt dt dt
dx ' di ' dy ' dj' dz ' dk ' dt dt dt dt dt dt
ar ω vr
a a ae a r ac; ac= 2vr
ve
a n a ae a rn a rτ
矢量
1.瞬时状态; 2.可解两个未知量 (大小,方向)。
例6-5 曲柄滑道机构,OA=01A=r=10cm, =30°,=4, 求: 转到30°时直杆的加速度a。 va vr 动点取A; 绝对:圆周; ve 解:相对:圆周;牵连:直线。 [速度] =
a a ae a r ac; aa a an ae aen ar arn ac;
例6-8 曲柄绕O转动,並通过滑块M带动滑槽绕O′摆动, ’ y 求摆动到30°时的角加速度1。
例6-9 将例6-8滑槽改变为图示牛头刨床机构,MA=2r, 求:刨床刨刀的速度,加速度。
vr
dv e dω dr r ω dt dt dt α r ω v e ω v r ae ω v r

理论力学点的合成运动

理论力学点的合成运动

例 8-4 曲柄OA以匀角速度 w绕O轴转动,其上
套有小环 M,而小环 M又在固定的大圆环上运动,大 圆环的半径为 R。
试求当曲柄与水平线成的角 j ωt 时,小环 M
的绝对速度和相对曲柄 OA 的相对速度。
A
M w
R
O
j
C
解:(1)选择动点及 动系: 小环M为动点,动系固连在 OA上。
(2)分析三种运动:绝 对运动为圆周运动,相对运 动为沿OA的直线运动,牵连 运动为定轴转动。
y
OA杆转动的角速度为
O
wOA
ve OC
ve 2r
3u 6r
y
wOA B
j va vr
A
r ve C
x
u x
8.3 牵连运动是平动时点的加速度合成定理
在图8-9中,设 Oxyz为定系,Oxyz为动系且作平
动,M为动点。动点M在动系中的坐标为 x、y 、z, 动系单位矢量为 i、 j、k。动系平动,i、j、k 的
Oxyz 作某种运动,在瞬时t,动系连同相对轨迹AB在
定系中的I位置,动点则在曲线 AB
上的 M 点。经过时间间 隔 t ,动系运动到定系 中的II位置,动点运动到
点 M。 如果在动系上观
察点M 的运动,则它沿 曲线 AB 运动到点 M2。
z B
M2
vr
z
M O
A
O I
x
va
M B
ve M1
z
O x A
例 8-1 汽车以速度 v1 沿直线的道路行驶,雨滴 以速度 v2 铅直下落,试求雨滴相对于汽车的速度。
v1
解: 因为雨滴相对运动的汽车有运动,所以本题 为点的合成运动问题,可应用点的速度合成定理求解。

理论力学(第6章)

理论力学(第6章)

t 已知:O1A=O2B=18cm,AB=O1O2=2R,R=18cm , 18 t2 求: va , aa s BM
π
加速度合成定理的矢量形式向 直角坐标轴x、y上投影,得:
π aax a a cos 6.67cm / s 2 6 π n n aay ar ae sin 20cm / s 2 6
绝对:大圆周(半径R)
相对:沿OA的直线运动 牵连:定轴转动(绕o轴)
2.速度分析 v a ve 大小 ? 方向 √
ve va 2Rω cos

vr
OM√?√ Nhomakorabeavr ve tan 2 R ω sin ω t
6.3 牵连运动为平移时点的加速度合成定理
点的加速度合成定理:
解:(1) 动点:取顶杆AB的A点 动系:固连在凸轮上。 绝对运动:沿AB竖直方向 的平移。 相对运动:A点沿凸轮边 缘的圆周运动。 牵连运动:动系凸轮沿水 平面向右平移。
已知:
v0
30
2.速度分析
va ve vr
由几何关系可以得到:

3 vB vA v tan 30 v 3
例6-5 平面机构中直杆O1A、O2B平行且等长,分别 绕O1、O2轴转动,直杆的A、B连接半圆形平板,动 点M沿半圆形平板ABD边缘运动,起点为点B。已知 π t, O1A=O2B=18cm,AB=O1O2=2R,R=18cm , 18 t2 。 s BM
求:当 t 3s 时, 动点M的绝对速度 和绝对加速度。

方向竖直向上
例6-2 刨床的急回机构如图所示。曲柄OA的一端 A与滑块用铰链连接。当曲柄OA以匀角速度ω绕固 定轴O转动时,滑块在摇杆O1B上滑动,并带动杆 O1B绕定轴O1摆动。设曲柄长为OA=r,两轴间距 离OO1=l。 B 求: O ① 曲柄在水平位 A 置时摇杆的角 速度 1 。 ② 滑块A对于摇 杆 的相对角 O1 速度

点的合成运动

点的合成运动

2013年7月5日
理论力学CAI
42
1.牵连运动为转动时点的加速度合成定理
设一圆盘以匀角速度 绕 定轴O顺时针转动,盘上圆槽 内有一点M以大小不变的速度 vr 沿槽作圆周运动,那么M点
相对于定系的绝对加速度应是
多少呢?
2013年7月5日
理论力学CAI
43
选点M为动点,动系固结于圆盘上,
则M点的牵连运动为匀速转动, 为常数
y'
y u
x'
M
O
M O
y'
x'
x
O'
2013年7月5日
理论力学CAI
4
车刀以匀速横向走刀,卡盘匀角速度转动,求刀尖相对工件的轨迹。
2013年7月5日
理论力学CAI
5
§8-1 相对运动、牵连运动、绝对运动
归纳为:一点,两系,三种运动
一点
动点:做合成运动的点。
两系
定参考系(定系):固结于地面(地球)。如机座。 动参考系(动系):固结于某运动着的刚体上。
ar = 2l sin
理论力学CAI
37
课后作业1(浙大)
作业题 7-7 7-8 7-9
2013年7月5日
理论力学CAI
38
课后作业1
思考题 8-1 8-2 作业题 8-7 8-8
8-3
8-10
2013年7月5日
理论力学CAI
39
例题
例 曲柄滑杆机构
= 45o 时,, a ; 已知: OA=l ,
例题
已知:AB匀角速度转动。 求:M在导槽EF及BC中运动的速度与加速度。
E
B
C M

理论力学《点的合成运动》答案

理论力学《点的合成运动》答案
0 0 0 0
4
动系:固连于CBDE上的坐标系。 动系平动, v A = v CBDE = v BC 静系:固连于地面的坐标系。 绝对速度:A相对于地面的速度。 相对速度:A相对于DE的速度。 牵连速度:CBDE相对于地面的速度。
→ → →
vr
900 − ϕ A
120 0
va
ϕ
ve = vBC
ϕ O
5
相对速度:C相对于OC杆的速度。 牵连速度:OC杆相对于地面的速度。
ve = OC ⋅ ω =
→ → →
0.4 × 0.5 = 0.231( m / s ) cos 30 0
va = ve + vr va = ve 0.2 = = 0.267( m / s ) 0 cos 30 cos 2 30 0
BC作平动,故
v BC = v a = 1.155lω 0
[习题7-9] 一外形为半圆弧的凸轮A,半径r=300mm,沿水平方向向右作匀加速运动, 其加速度aA=800mm/s 。凸轮推动直杆BC沿铅直导槽上下运动。设在图所示瞬时, vA=600mm/s,求杆BC的速度及加速度。 解: 动点:B。 动系:固连于凸轮A上的坐标系。 静系:固连于地面的坐标系。 绝对速度:B相对于地面的速度。 相对速度:B相对于凸轮的速度。 牵连速度:B相对于凸轮的速度。
θ = 40.930
→ →
即 v 与 v1 之间的夹角为 θ = 40.93 。 种子走过的水平距离为:
0
s = v x t = v cos θ ⋅ t h = vyt +
1 2 gt 2 1 2 gt 2
h = v sin θt +
0.25 = 2.65 sin 40.930 t + 0.5 × 9.8t 2

理论力学 第6章 点的合成运动

理论力学 第6章 点的合成运动
相对速度vr:大小未知,方向沿摇杆O1B 。
牵连速度ve:ve为所要求的未知量,方向垂直于O1B 。
va
ve
vr
作出速度矢量图
因为
所以
设摇杆在此瞬时的角速度为ω1,则
其中
所以可得
va
ve
vr
例题3
如图所示,半径为R,偏心距为e的凸轮,以匀角速度ω绕O轴转动,杆AB能在滑槽中上下平动,杆的端点A始终与凸轮接触,且OAB成一直线。求在图示位置时,杆AB的速度。
把固定在地球上的坐标系称为定参考坐标系Oxyz。
定系
动系
6.1.2 三种运动
*
6.1.3 三种速度和加速度
动点在相对运动中的速度和加速度 称为:相对速度和相对加速度 记作:vr 和 ar (Relative Motion)
动点在绝对运动中的速度和加速度 称为:绝对速度和绝对加速度 记作:va 和 aa (Absolute Motion)
组坐标系
1
个动点
明确求解的那一点(或对求解最有帮助的一点),选这一点为动点。
选择ቤተ መጻሕፍቲ ባይዱ
1
2
3
区分
搞清绝对运动、相对运动和牵连运动
种运动
3
绝对运动 相对运动 牵连运动
区分三种运动应注意:
站在什么地方看物体的运动; 看什么物体的运动
动点与定参考系的运动为绝对运动;
绝对运动
动点与动参考系的运动为相对运动;
3
动点的绝对运动和相对运动都是指点的运动, 直线运动, 曲线运动。
还有什么?
三种速度和加速度
*
动参考系中,与动点重合的那一点的速度和加速度 称为:牵连速度和牵连加速度 记作:ve 和 ae (Carrier Motion)

理论力学 点的合成运动

理论力学 点的合成运动

例1. 梯子 AB 长 L , 重 P,一端 B 靠在光滑的铅垂墙上, 另一端 A 放在摩擦系数为 f 的水平地面上,问梯子与水 平线所成的倾角 多大时,梯子能处于平衡?
y
解:
对象:梯子 P , NB , NA , FAmax
B
P m NA RAmax
分析力:
NB
L 列方程: m A ( F ) N B L sin P cos 0 2
摩擦角和自锁现象
2.利用摩擦角判断物体是否平衡的两条规律
全约束力的作用线范围
0 m
m

m
R
若某接触面上的主动力的合力作用线在摩 擦角的范围之内,则不论此力有多大,物体 将永远平衡。--自锁现象
螺旋千斤顶 tg 1 f
m
f 0.1
5 43
例2. 已知排挡齿轮宽为 b,自重忽略不计,能在直径为 d 的轴上左右滑动。若齿轮与轴之间的摩擦系数为 f,求不 使齿轮被卡住,水平推力 P 的作用线离轴线的距离 a 的 y 范围。
解:
对象:排挡齿轮
d
NA A
P
a FA b
B m
分析力: P , NB , NA , FB , FA
FB NB
x
列方程:


Y N N 0 Y P F F 0
A B A B
RBmax
d mA ( F ) P(a ) N Bb FB d 0 2 FB fN B 摩擦定律: FA fN A
由式得 NA = NB 代入式
b a 2f
由式得 FA = FB = P/2 齿轮平衡
B A RBAmax RAmax RAmax RBAx 画封闭力三角形:

理论力学:第6章 点的合成运动

理论力学:第6章 点的合成运动

·1·第6章 点的合成运动6.1 主要内容6.1.1 点的绝对运动、相对运动和牵连运动1.定系和动系若存在两个有相对运动的坐标系,则可指定其中一个为定系,另一个即为动系。

但工程上一般以固定在地面上的坐标系为定系,相对于定系运动着的坐标系称为动系。

2.动点和牵连点动点为研究的对象,牵连点是动点在动系上的重合点,随动点的相对运动而变,是动系上的点,不同瞬时,有不同的牵连点。

3.三种运动的关系动点相对于定系的运动定义为绝对运动;动点相对于动系的运动定义为相对运动;动系相对于定系的运动定义为牵连运动。

本章的主要任务就是建立这三者之间的定量关系,从而用来解决工程实际某些运动分析问题。

6.1.2 点的速度合成定理动点的绝对速度等于它的牵连速度与相对速度的矢量和。

这就是点的速度合成定理。

a e r =+v v v6.1.3 牵连运动为平移时,点的加速度合成定理当牵连运动为平移时,动点的绝对加速度等于牵连加速度与相对加速度的矢量和。

a e r =+a a a6.1.4 牵连运动为转动时,点的加速度合成定理当牵连运动为转动时,动点的绝对加速度等于牵连加速度、相对加速度与科氏加速度的矢量和,这就是牵连运动为转动时点的加速度合成定理。

a e r C =++a a a a其中r C v a ⨯=ω2。

当取平动动系时0=e ω;0=C a 。

6.2 基本要求1.掌握运动合成与分解的基本概念和方法,准确理解本章阐述的若干概念。

2.明确动点与动系的选择原则,能在具体问题中恰当地选择动点与动系,并正确地分析三种运动。

3.熟练掌握点的速度合成定理和牵连运动为平动时的加速度合成定理及其应用。

4.掌握科氏加速度的概念和计算,准确应用牵连运动为转动时的加速度合成定理及其应用。

6.3 重点讨论应用点的合成运动理论解决实际问题时,其关键是正确地选择动点和动系。

选择原则因具体情况不同而略有区别。

常见的问题有三种题型。

1.两个独立运动的物体,研究两者的相对运动。

第6章 点的合成运动理论力学

第6章 点的合成运动理论力学

33
例 题 6-5
已知:凸轮半径R ,v0 , a0 ,试求:j =60o时, 顶杆AB的加速度。
解:取杆AB上的点A为 动点,动系与凸轮 固连。
理论力学电子教案
点的运动合成
34
例 题 6-5
绝对速度va = ? , 方向∥AB ; 相对速度vr = ? , 方向CA; 牵连速度ve=v0 , 方向 → ; 由速度合成定理
上面的推导过程中,动参考系并未限制作何运动, 因此点的速度合成定理对任意的牵连运动都适用。
点的速度合成定理是瞬时矢量式,每一速度包 括大小‚方向两个元素,总共六个元素,已知任意四 个元素,就能求出其余两个。
理论力学电子教案
点的运动合成
15
例 题 6-1
凸轮顶杆机构中半径 为 R 的半圆形凸轮以等速 度 v0沿水平轨道向右运动, 带 动 顶 杆 AB 沿 铅 垂 方 向 运动,如图所示,试求 j = 60º 时,顶杆 AB 的速 度。
va ve vr
v0 cot 60 0.577v0 v AB va
此瞬时杆AB的速度方向 向上。
理论力学电子教案
点的运动合成
19
例 题 6-2
军舰以速度 v=37.04 km/h 的速度前进,直
升 飞 机 以 每 小 时 18
km/h 的速度垂直降落。
点的运动合成
21
3. 速度分析 绝对速度 va:大小已知,方 向沿铅垂方向向下。 牵连速度 ve :大小已知,方 向水平向右。 相对速度 vr :大小方向均 未知,为所要求的量。 应用速度合成定理 va ve vr
2 vr ve va 41.18 km / h , 2

点的合成运动理论力学课件

点的合成运动理论力学课件
总结词
根据速度和加速度的合成定理,一个点的速度和加速度可以由其相对于不同参考系的速度和加速度进行合成。具体来说,点的速度可以由绝对速度、相对速度和牵连速度进行合成,点的加速度可以由绝对加速度、相对加速度和牵连加速度进行合成。
详细描述
速度和加速度的合成定理在解决实际运动问题中具有广泛的应用。
总结词
通过应用速度和加速度的合成定理,可以解决各种复杂的运动问题,例如行星运动、卫星轨道、机械运动等。该定理可以帮助我们更好地理解点的运动规律,并预测其在不同参考系下的运动轨迹。
03
点的合成运动的应用
刚体的平面运动是指刚体在平面内的运动,包括平移和旋转。点的合成运动理论力学在刚体的平面运动中有着广泛的应用,如分析刚体的速度和加速度、计算刚体的动能和势能等。
刚体的平移运动是指刚体在平面内沿直线或曲线移动,其速度和加速度可以通过点的合成运动理论力学中的速度和加速度合成定理进行分析。
概念
物体在平面内运动,点在该平面内跟随物体一起运动。
平面运动
空间运动
刚体运动
物体在三维空间中运动,点在该空间内跟随物体一起运动。
物体的各部分之间没有相对运动,点跟随整个物体一起做刚体运动。
03
02
01
02
点的合成运动的基本定理
速系的定理。
该理论广泛应用于航天、航海、车辆工程等领域。通过理解和应用点的合成运动理论,工程师们能够更准确地预测和控制物体的运动轨迹。
尽管点的合成运动理论在许多情况下非常有效,但它也有局限性。例如,在处理高速或微观尺度的运动时,该理论可能会出现误差。
点的合成运动理论与经典力学、相对论、量子力学等其他理论有密切的联系。深入理解这些联系有助于推动物理学的发展。
详细描述

06点的合成运动 一点二系三运动

06点的合成运动 一点二系三运动


O2
A1
相对运动: 直线运动 牵连运动: 定轴转动 绝对运动: 圆周运动
PAG 11
4
B
动点:AB杆上的A点
动系:在凸轮上
定系:在地面上;
A
O

曲线运动 相对运动:
定轴转动 牵连运动: 绝对运动: 直线运动
PAG 12
六、两种坐标系下的运动方程 变换
PAG 13
PAG 14
PAG 15
绝对运动与相对运动轨迹分析题目计算步骤 1. 选择动点、动系
PAG 3
第七章 点的合成运动
1
相对运动 ·牵连运动 ·绝对运动
2
点的速度合成定理 加速度合成定理
3
PAG 4
§7-1
相对运动 ·牵连运动 ·绝对运动
一、点的运动轨迹对于不同的参考系是不同的
y'
y
M
O
O'
x' x

旋轮线
PAG 5
二、动点、动系、定系的概念
动点: 车轮上的M点 动系: 在汽车上 定系: 在地面上
PAG 7
四、相对运动、牵连运动、绝对运动的概念 绝对运动:动点相对于定系的运动 相对运动:动点相对于动系的运动 牵连运动:动系相对于定系的运动 — 刚体的运动 点的运动
一个动点;
两个坐标系;
三种运动。
PAG 8
五、举例熟悉
一点、两系、三运动
y'
1
y
M
O
x'
O'
x
动点:车轮上的M点 定系:在地面上; 动系:在汽车上
圆周运动 相对运动: 平移 牵连运动:
PAG 9

理论力学第六章点的合成运动

理论力学第六章点的合成运动

PDF 文件使用 "pdfFactory Pro" 试用版本创建
例6-6:三角楔块可在光滑地面滑动,现在楔块上放一物块可
沿光滑斜面滑下,当t=0,x=0,y=h,v2=0,a1=10cm/s2 , a2=10 2cm/s2,试求:物块轨迹方程。
解: aax= a1+ a2 cos450 =20cm/s2;
υϖa = υϖe +υϖr
绝对速度
相对速度
牵连速度
速度合成定理 —— 动点的绝对速度等于其牵连速 度与相对速度的的矢量和。
22
PDF 文件使用 "pdfFactory Pro" 试用版本创建
例6-1:雨铅垂下落,客车以匀速v行驶,在无风时下雨打在 窗玻璃上 的夹角为θ,试求:雨的速度。
10
PDF 文件使用 "pdfFactory Pro" 试用版本创建
运动的分解:动点动系的选择
11
PDF 文件使用 "pdfFactory Pro" 试用版本创建
若选杆为动系,圆上一点为动点
12
PDF 文件使用 "pdfFactory Pro" 试用版本创建
例6-5:曲柄滑道机构,OA=O1A=r=10cm, θ= ϕ , ω=4π, 试求:ϕ 转到300时直杆的加速度a。
解:动点取A; 绝对:圆周;
va
vr
相对:圆周;牵连:平动;
ve
ω
[速度]
y: vacos300=vrcos300;
va= ω r=40 π; vr= va= ω r=40 π ,
选法2 Х
19
PDF 文件使用 "pdfFactory Pro" 试用版本创建

理论力学-点的合成运动

理论力学-点的合成运动

第六章点的合成运动一、是非题1、不论牵连运动的何种运动,点的速度合成定理a=e+r皆成立。

()2、在点的合成运动中,动点的绝对加速度总是等于牵连加速度与相对加速度的矢量和。

()3、当牵连运动为平动时,相对加速度等于相对速度对时间的一阶导数。

()4、用合成运动的方法分析点的运动时,若牵连角速度ωe≠0,相对速度υr≠0,则一定有不为零的科氏加速度。

()5、若将动坐标取在作定轴转动的刚体上,则刚体内沿平行于转动轴的直线运动的动点,其加速度一定等于牵连加速度和相对加速度的矢量和。

()6、刚体作定轴转动,动点M在刚体内沿平行于转动轴的直线运动,若取刚体为动坐标系,则任一瞬时动点的牵连加速度都是相等的。

()7、当牵连运动定轴转动时一定有科氏加速度。

()8、如果考虑地球自转,则在地球上的任何地方运动的物体(视为质点),都有科氏加速度。

()二、选择题1、长L的直杆OA,以角速度ω绕O轴转动,杆的A端铰接一个半径为r的圆盘,圆盘相对于直杆以角速度ωr,绕A轴转动。

今以圆盘边缘上的一点M为动点,OA为动坐标,当AM垂直OA时,点M的相对速度为。

①υr=Lωr,方向沿AM;②υr=r(ωr-ω),方向垂直AM,指向左下方;③υr=r(L2+r2)1/2ωr,方向垂直OM,指向右下方;④υr=rωr,方向垂直AM,指向在左下方。

2、直角三角形板ABC,一边长L,以匀角速度ω绕B轴转动,点M以S=Lt的规律自A向C运动,当t=1秒时,点M的相对加速度的大小αr= ;牵连加速度的大小αe = ;科氏加速度的大小αk = 。

方向均需在图中画出。

①Lω2;②0;③3Lω2;④23 L ω2。

3.圆盘以匀角速度ω0绕O 轴转动,其上一动点M 相对于圆盘以匀速u 在直槽内运动。

若以圆盘为动系,则当M 运动到A 、B 、C 各点时,动点的牵连加速度的大小 ,科氏加速度的大小 。

①相等;②不相等;③处于A ,B 位置时相等。

4.一动点在圆盘内运动,同时圆盘又绕直径轴x以角速度ω转动,若AB ∥OX ,CD ⊥OX ,则当动点沿 运动时,可使科氏加速度恒等于零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Theoretical Mechanics
ve
ae
第六章 点的合成运动
刘习军
动点的选择原则: 一般选择主动件与从动件的连接点,它是 对两个坐标系都有运动的点。 动坐标系的选择原则: 动点对动坐标系有相对运动,且相对运 动的轨迹是已知的,或者能直接看出的。
Theoretical Mechanics
第六章 点的合成运动
§ 6-2 点的速度合成定理
刘习军
板K上开槽,动点M 沿槽相对于板运动, 同时板也运动。设t瞬 时点M与板上点M重 合,经过△t瞬时后, K板运动到K‘处,M ︵ 沿 MM1 运动M1'到, ︵ MM 板M上点沿 运动 到M1。
1
t
t t
Theoretical Mechanics
第六章 点的合成运动
刘习军
3.牵连运动、牵连速度和牵连加速度 动坐标系相对于静坐标系的运动称为牵连运动。 (1)牵连点的概念 定义:在任一瞬时,动坐标系上与动点相重合的那一点即为 动点的牵连点。
(2)牵连速度 定义:某瞬时牵连点 的速度称为动点的牵连 速度。用ve表示。 (3)牵连加速度 定义:某瞬时牵连点 的加速度称为动点的牵 连加速度,ae用表示。
Theoretical Mechanics
第六章 点的合成运动
其中
si n OA O1 A r l r l
2 2
刘习军
, ,
va cos 0 vr va sin ve 0
rl l2 r2
1
OO1 cos O1 A
l2 r2
a r
得 因为
z
z
O
y
Oanics
第六章 点的合成运动
动点
刘习军
动点是指相对于静坐标系和动坐标系均有运 动的点。本章就是研究动点相对于静坐标系和动坐 标系的运动。如图中任选车轮上的一点作为动点。
z
z
O
y
O x
y
x
Theoretical Mechanics
第六章 点的合成运动
Theoretical Mechanics
第六章 点的合成运动
刘习军
1.动点的绝对运动· 绝对速度和绝对加速度 (1)绝对运动:动点相对于静坐标系的运动。 (2)绝对速度:动点绝对运动的速度,用va表示。 (3)绝对加速度:动点绝对运动的加速度,用aa表示。
va
aa
Theoretical Mechanics
刘习军
︵ 则:MM1 为动点M的绝
对轨迹,MM1 为绝对位 移。 ︵ M M 为动点 M 的相对 轨迹, M M 为相对位移 。 ︵ MM 1 为 牵 连 点 的 轨 迹 , MM1 为牵连位移。
1 1
1 1
t
t t
Theoretical Mechanics
第六章 点的合成运动
于是有:
第六章 点的合成运动
刘习军
第六章 点的合成运动
§6–1 点的合成运动的概念 §6–2 点的速度合成定理 §6–3 点的加速度合成定理
Theoretical Mechanics
第六章 点的合成运动
刘习军
研究方法 首先将复杂运动分解为两个简单的运动,然后分 别进行研究,并得到各自的运动,再求合成运动。 解题思路:先分解、再合成。
1
Theoretical Mechanics
第六章 点的合成运动
解:取曲柄OA端点A为动 点,动坐标系与摇杆固连 ,由点的速度合成定理。
刘习军
va ve vr
? √ ? √
va
vr
大小 √ 方向 √
ve
画速度矢量图,如图 所示。将矢量方程分别向 x' 、y'轴上投影,得
1
va cos 0 vr va sin ve 0
第六章 点的合成运动
刘习军
2.动点的相对运动· 相对速度和相对加速度 (1)相对运动:动点相对于动坐标系的运动。 (2)相对速度:动点相对运动的速度,用vr表示。 (3)相对加速度:动点相对运动的加速度,用ar表示。
vr
a r arn
Theoretical Mechanics
第六章 点的合成运动
Theoretical Mechanics
va v e v r
第六章 点的合成运动
刘习军
例:刨床的急回机构如图所 示。曲柄OA的一端与滑块 A用铰链连接。当曲柄OA 以匀角速度绕固定轴O转 动时,滑块在摇杆O1B上 滑动,并带动摇杆O1B绕 固定轴O1摆动。OA= r, OO1=l。求当曲柄在水平位 置时摇杆的角速度 1。
MM1 M1M1 MM1
刘习军
则 当 t 0 时,取极限
MM1 MM1 M1 M1 lim lim lim t 0 t t 0 t t 0 t
t t
MM1 M1 M1 MM1 t t t
t 即 定理:某瞬时动点的绝对速度等于该瞬时动点的相 对速度和牵连速度之矢量和。
三种运动 绝对运动:动点相对于静坐标系的运动。 相对运动:动点相对于动坐标系的运动。
刘习军
牵连运动:动坐标系相对于静坐标系的运动。
Theoretical Mechanics
第六章 点的合成运动
几 点 说 明
刘习军
动点的绝对运动和相对运动都是点的运动,它可 能是直线运动,也可能是曲线运动。 牵连运动则是动坐标系的运动,属于刚体的运动, 有平移、定轴转动和其它形式的运动。 动坐标系作何种运动取决于与之固连的刚体的运 动形式。
Theoretical Mechanics
第六章 点的合成运动
刘习军
§6-1相对运动· 牵连运动· 绝对运动 研究点的合成运动问题,总要涉及到两个参考 坐标系。建立在运动的物体上的坐标系称为动坐标 系,以Oxyz表示。一般固结在地球表面的坐标系 称为静坐标系,或定坐标系,以Oxyz表示,如图所 示。
e
r 2 l r
2 2
,
r
e O1 A 1 l 2 r 2 1
所以,摇杆在此瞬时的角速度为
Theoretical Mechanics
r 1 2 2 l r
2
第六章 点的合成运动
刘习军
例: 如图所示,半径为R、偏心距为e的凸轮,以匀 角速度 绕轴转动,杆AB能在滑槽中上下平移,杆的 端点 A 始终与凸轮接触,且 OAB 成一直线。求在图示 位置时,杆AB的速度。
相关文档
最新文档