系统的瞬态响应分析
机械控制工程基础第4章系统的瞬态响应与误差分析
C(t)
n 1
2
exp(nt) sin(d t).
(4 34)
(2) 临界阻尼 1
响应函数 C(s) G(s)R(s)
2 n
(s n )2
拉氏逆变换 c(t) n2t exp(nt)
(4 35) (4 36)
(3) 过阻尼 1
C(s)
2 n
(s n n 2 1)(s n n 2 1)
M
p
C(t p ) C() C()
100%
C(t p ) 1
exp( ) 1 2
可见,超调量仅与阻尼比有关。
(4)调整时间ts
对欠阻尼二阶系统,瞬态响应为
C
(t
)
1
exp(n2t 1 2
)
sin(d
t
arctan
1 2
), t 0.
(4 28)
其包络线方程为 f (t) 1 exp(nt) / 1 2
s
2 n
)(s
)
a1 y a0 y b0 x (2)对应方程 a2 y a1 y a0 y b0 x
a3y a2 y a1 y a0 y b0 x
(4 39)
(3)单位阶跃响应
C(s) G(s)R(s)
2 n
1,
(s 2
2n s
2 n
)(s
)
s
令 ,作拉氏逆变换,得 n
B 2 4mk 2m
n2
k m
,
2 n
B m
G(s) 1
n2
k
s
2
n
s
2 n
(4)二阶系统的标准形式及方块图
G(s)
Xo(s) Xi(s)
控制系统的瞬态响应及其稳定性分析
试验二 控制系统瞬态响应及其稳定性分析一.试验目1.了解掌握经典二阶系统过阻尼、 临界阻尼、 欠阻尼状态; 2.了解掌握经典三阶系统稳定状态、 临界稳定、 不稳定状态; 3.研究系统参数改变对系统动态性能和稳定性影响。
二.试验内容1.搭建经典二阶系统, 观察各个参数下阶跃响应曲线, 并统计阶跃响应曲线超调量σ% 、 峰值时间tp 以及调整时间ts, 研究其参数改变对经典二阶系统动态性能和稳定性影响;2.搭建经典三阶系统, 观察各个参数下阶跃响应曲线, 并统计阶跃响应曲线超调量σ% 、 峰值时间tp 以及调整时间ts, 研究其参数改变对经典三阶系统动态性能和稳定性影响。
三.试验步骤1. 经典二阶系统响应曲线图1-2-1是经典二阶系统原理方块图, 其中T 0=1S, T 1=0.2S 。
图1-2-1 经典二阶系统原理方块图开环传函: )12.0()1()(11+=+=S S K S T S K S G 其中K=K 1/T 0=K 1=开环增益闭环传函: 2nn 22nS 2S )S (W ωζωω++=其中011n T T /K =ω 110T K /T 21=ζ 表1-2-1列出相关二阶系统在三种情况(欠阻尼, 临界阻尼, 过阻尼)下具体参数表示上式,C(S)方便计算理论值。
至于推导过程请参考相关原理书。
表1-2-1一个情况 各参数10<<ζ 1=ζ 1>ζKK=K 1/T 0=Kn ω10115/K T T K n ==ω ζ1111025/21K K T K T ==ζ C(p t ) 21/P e1)t (C ζζπ--+=C(∞)1p M (%)21/P eM ζζπ--=p t (s)2n P 1t ζωπ-=s t (s)ns 4t ζω=经典二阶系统模拟电路如图1-2-2所表示100K100K R2图1-2-2经典二阶系统模拟电路图中: R1=100K 、 R2=100K 、 R3=100K 、 R4=500K 、 R6=200KR7=10K 、 R8=10K 、 C1=2.0uF 、 C2=1.0uF R5为可选电阻:R5=16K 时, 二阶系统为欠阻尼状态 R5=160K 时, 二阶系统为临界阻尼状态 R5=200K 时, 二阶系统为过阻尼状态输入阶跃信号, 经过示波器观察不一样参数下输出阶跃响应曲线,并统计曲线超调量σ% 、 峰值时间tp 以及调整时间ts 。
实验四三阶系统的瞬态响应及稳定性分析
实验四三阶系统的瞬态响应及稳定性分析引言:实际工程中经常遇到三阶系统,对三阶系统的瞬态响应及稳定性进行分析能够帮助我们更好地设计和优化控制系统。
本实验旨在通过实验,研究三阶系统的瞬态响应及稳定性,并加深对其理论知识的理解和掌握。
实验一:三阶系统的瞬态响应1.实验目的:通过三阶系统的瞬态响应实验,观察系统的输出响应情况,了解系统的动态特性。
2.实验仪器:示波器、波形发生器、三阶系统实验箱3.实验原理:三阶系统的瞬态响应是指系统在初始状态发生突变时,输出的响应情况。
三阶系统的瞬态响应主要涉及到系统阶跃响应、系统脉冲响应。
4.实验步骤:a.将波形发生器的正弦波信号输入三阶系统实验箱。
b.设置示波器的观测通道,将示波器的探头连接到三阶系统实验箱的输出端口。
c.调节波形发生器的频率和幅度,观察示波器上得到的输出响应波形。
5.数据处理:a.根据示波器上输出的响应波形,可以观察到系统的超调量、调整时间等指标,根据公式可以计算得到这些指标的具体数值。
b.将实验得到的数据记录下来,进行分析和比较。
1.实验目的:通过三阶系统的稳定性分析实验,了解系统的稳定性及稳定性判据。
2.实验仪器:示波器、三阶系统实验箱3.实验原理:三阶系统的稳定性是指系统在初始状态发生突变或受到外部扰动时,系统是否能够回到稳定状态。
常见的稳定性分析方法包括极点判据、频率响应法等。
4.实验步骤:a.将示波器的探头连接到三阶系统实验箱的输出端口。
b.调节系统的输入信号,观察示波器上得到的系统输出响应波形。
c.根据观察到的输出波形,分析系统的稳定性。
5.数据处理:a.根据实验得到的数据和观察到的波形,可以从输入输出关系中提取出系统的稳定性信息,比如振荡频率、稳定的输出值等。
b.根据提取出的信息,判断系统的稳定性。
实验三:实验结果和分析1.通过实验一,我们可以观察到三阶系统的瞬态响应,并根据输出波形,计算得到系统的超调量、调整时间等指标。
通过对比不同输入频率和幅度下的响应波形,可以分析系统的动态特性。
二阶系统的瞬态响应分析
试验二二阶系统的瞬态响应分析一、试验目的1.把握二阶系统的传递函数形式并能够设计出相应的模拟电路;2. 了解参数变化对二阶系统动态性能的影响。
二、试验设施1.THBDC-1型掌握理论•计算机掌握技术试验平台;2.PC机一台(含“THBDC-1”软件)、USB数据采集卡、37针通信线1根、16芯数据排线、USB接口线。
三、试验内容1.观测二阶系统在1和。
>1三种状况下的单位阶跃响应曲线;2.调整二阶系统的开环增益K,使系统的阻尼比ζ =0.707,测量此时系统的超调量八调整时间4(A= ±0.05);3. ζ为定值时,观测系统在不同①〃时的阶跃响应曲线。
四、试验原理1.二阶系统的瞬态响应用二阶微分方程描述的系统称为二阶系统。
其微分方程的一般形式为dc~ (t) ex dc( t) 2 / ∖ 2 / ∖——J + 2电--L+ COΠc(t) = ωn r(t)dr dt上式经拉普拉斯变换整理得到二阶系统的传递函数的一般形式为∖C(S)ωnW(s) = --------- =- ------------ --------- -R( s) s2+ 2ζωn s + ωtl^从式中可以看出,。
和①〃是打算二阶系统动态特性的两个特别重要的参数。
其中,ζ称为阻尼比;①〃称为无阻尼自然振荡频率。
由二阶系统传递函数的一般形式可知,二阶系统闭环特征方程为s2+ 2ζωll s + ωtj2 - 0解得闭环特征方程的根%2 =-疑〃±6。
〃犷二当阻尼比7不同范围内取值时,特征方程的根也不同,下面针对。
的三种不同取值范围进行争论。
1)Q<ζ<l(欠阻尼)系统特征根为一对具有负实部的共挽复根,即4,2 =S[±jsN'-L,系统的单位阶跃响应的时域表达式为1C(t) = ↑ - -7 -------- :e" sin(0J d t + β)√l-c2其阶跃响应曲线呈衰减震荡过程,如图2・1 (a)所示。
控制系统的瞬态响应及其稳定性分析
控制系统的瞬态响应及其稳定性分析控制系统的瞬态响应及其稳定性分析是控制理论的重要内容之一、瞬态响应描述了一个控制系统在输入信号改变时的响应情况,稳定性分析则是评估系统响应的稳定性和可靠性。
下面将从瞬态响应和稳定性分析两个方面进行探讨。
一、瞬态响应分析瞬态响应指的是一个控制系统在输入信号发生改变时,系统在一定时间范围内达到稳态的过程。
常见的瞬态响应包括过渡过程和超调量等指标。
1.过渡过程:在一个控制系统中,当输入信号发生改变时,系统输出信号不会立即达到稳定状态,而是经历一个从初值到最终稳定状态的过渡过程。
过渡过程的主要指标有上升时间、峰值时间和调整时间。
-上升时间(Tr):指的是信号从初始值开始,达到其最终稳定值之间的时间间隔。
上升时间越短,系统的响应越快速。
-峰值时间(Tp):指的是信号首次超过最终稳定值所需的时间。
峰值时间越短,响应越快。
-调整时间(Ts):指的是信号从初始值到最终值之间的时间。
调整时间越短,系统的响应越快。
2.超调量:超调量是指在过渡过程中系统输出信号超过最终稳定状态的幅度。
超调量的大小可以直接反映系统的稳定性。
一般来说,超调量越小,系统的稳定性越好。
瞬态响应分析是评估系统性能的重要工具。
通过对瞬态响应的分析,可以了解系统的响应速度、稳定性和鲁棒性,并对系统进行优化和改进。
稳定性分析是评估控制系统稳态响应和稳定性的重要方法。
一个稳定的控制系统应该满足输入信号的变化不会引起系统输出信号的不稳定或震荡。
常见的稳定性分析方法有频域分析法和时域分析法。
1.频域分析法:频域分析主要利用系统的频率特性来分析系统的稳定性。
通过绘制系统的频率响应曲线,可以得到系统的增益和相位特性。
稳定性条件为系统的增益在截止频率处不为负值,即系统的增益曲线应该位于0dB线以上。
2.时域分析法:时域分析主要关注系统的时间响应曲线。
稳定性条件为系统在有限时间内达到并保持在稳定状态。
稳定性分析是评估控制系统性能的关键环节,它不仅可以帮助设计者理解系统的稳定性和鲁棒性,还可以为系统的优化和改进提供指导。
第3章_时域瞬态响应分析_3.2一阶系统的瞬态响应
(t ≥ 0)
1 斜率 − 2 T
1 0.368 T
1 − t /T xo (t ) = e T
T
一阶系统三种典型输入信号及响应关系: 一阶系统三种典型输入信号及响应关系:
xi (t ) = t
输 入
xt (t ) = t − T + Te x1 (t ) = 1 − e 1 1 −T t xδ (t ) = e T
x0(t) 1
1/T
xo(t)=1-e-t/T
86.5%
0
63.2%
95.0%
98.2%
T
2T
3T
4T
t
特点 一阶惯性系统总是稳定的,无振荡。 (1)一阶惯性系统总是稳定的,无振荡。 曲线上升到0.632的高度 。 反过来 , 的高度。 ( 2 ) 经过时间 T , 曲线上升到 的高度 反过来, 如果用实验的方法测出响应曲线达到0.632的时间 , 的时间, 如果用实验的方法测出响应曲线达到 的时间 即是惯性环节的时间常数。 即是惯性环节的时间常数。 经过时间3 响应曲线达稳定值的95 95% (3)经过时间 3T~ 4T,响应曲线达稳定值的95%~ 98% 可以认为其调整过程已经完成, 98 % , 可以认为其调整过程已经完成 , 故一般取调 整时间( 整时间(3~4)T。 响应曲线的切线斜率为1/T。 (4)在t=0处,响应曲线的切线斜率为 。
注意: 该性质只适用于线性定常系统, 注意 : 该性质只适用于线性定常系统 , 不适用于 线性时变系统和非线性系统。 线性时变系统和非线性系统。
1 T T = 2− + s s s+ 1 T
单位斜坡响应为 x0 (t ) = t − T + Te
6.系统的瞬态响应分析
三峡大学机械与材料学院
第六章 系统的瞬态响应分析
College of Mechanical & Material Engineering
三峡大学机械与材料学院
第六章 系统的瞬态响应分析
2)ξ一定时,ωn越大,瞬态响应分量衰减越迅速, 系统能够更快达到稳态值,响应的快速性越 好。
1 − t T
(t≥0)
三峡大学机械与材料学院
第六章 系统的瞬态响应分析
性质: 1)经过足够长的时间 (≥4T),输出增长速率近 似与输入相同; 2)输出相对于输入滞后 时间T; 3)稳态误差=T。
College of Mechanical & Material Engineering
三峡大学机械与材料学院
c(t ) = t − T + Te
1 − t T
输入信号微分 响应微分 输入信号积分 响应积分 积分时间常数由零初始条件确定。
College of Mechanical & Material Engineering
例
三峡大学机械与材料学院
第六章 系统的瞬态响应分析
例:水银温度计近似可以认为一阶惯性环节,用 其测量加热器内的水温,当插入水中一分钏时 才指示出该水温的98%的数值(设插入前温度 计指示0度)。如果给加热器加热,使水温以 10度/分的速度均匀上升,问温度计的温态指 示误差是多少? 解:一阶系统,对于阶跃输入,输出响应达 98%,费时4T=1分,则T=0.25分。 一价系统对于单位斜波信号的稳态误差是T, 故当水温以10度/分作等速变换,稳态指示误 差为10×T=2.5度。
系统的瞬态响应与误差分析
稳态响应:t T 瞬态响应:Tet T
xi (t) t
➢ 一阶系统单位速度响应的特点
t
x0 (t)
xo (t) t T Te T , t 0
xi (t)
T T
经过足够长的时间(稳态时,
如:t 4T),输出增长速率近似 0 与输入相同,此时输出为:t –
t t 4T
T,即输出相对于输入滞后时
Xi (s) G(s) X0(s)
凡是能够用一阶微分方程描述的系统。
典型形式:G(s) 1 Ts 1
极点(特征根):-1/T
一、一阶系统的单位阶跃响应
1
X
i
(s)
1 s
s 1 T
X
o
(s)
G(s)
X
i
(s)
1 Ts 1
1 s
1 s
T Ts
1
t
xo (t) 1 e T , t 0
t
xo (t) 1 e T , t 0
间T;
系统响应误差为: e(t) xi (t) xo (t) T (1 et T ) e() T
三、 一阶系统的单位脉冲响应
x0 (t)
1 T
斜率: 1 T2
0.368 1 T
Xi (s) 1
X o (s)
G(s)
1 T
s
1
1 T
xo
(t)
1 T
t
eT
,
t0
t
0T
➢ 一阶系统单位脉冲响应的特点
重点:二阶系统的时域响应及其性能指标。 难点:二阶系统时域响应的数学表达式。
时间响应
任一系统的时间响应都是由瞬态响应或 稳态响应两部分组成。
控制工程第4章_系统的瞬态响应与误差分析
准确性。
*
17
4-1 时间响应
➢ 求系统时间响应的方法:
➢系统的快速性
快速性是指输出量和输入量产生偏差时,系统消除 这种偏差的快慢程度。
*
4
引言
➢ 二阶系统G(s)=ωn2/(s2+2ζωns+ωn2)的单位阶跃响应曲线
二阶系统 G (s) n 2/(s2 2 n s n 2)的单位阶跃响应曲线
2
=0
1.8
1.6
1.4
允 差
=0.4 =0.7 =1
y(t) 输出 Y(s)
Y (s)G (s)X (s)
系统对任意输入的响应
y ( t) L 1 [ Y ( s ) ] L 1 [ G ( s ) X ( s ) ]
*
零状态响应
18
4-2 一阶系统的时间响应
1. 一阶系统的数学模型 2. 一阶系统(惯性环节)的单位阶跃响应 3. 一阶系统(惯性环节)的单位脉冲响应 4. 一阶系统(惯性环节)的单位斜坡响应
*
14
4-1 时间响应
➢瞬态响应ctr(t):对稳定的系统,瞬态响应是指时 间响应中随着时间的增加而逐渐减小,最终趋于0 的那部分响应。
➢教材中的定义:系统受到外加作用激励后,从初 始状态到最终状态的响应过程称为瞬态响应。指 的是稳定状态之前的整个时间响应过程。
➢稳态响应css(t):是指当时间趋于无穷大时系统的 输出状态。
实验二 二阶系统的瞬态响应分析
姓名:学号:年级专业:实验二二阶系统的瞬态响应分析一、实验目的1、熟悉二阶模拟系统的组成。
2、研究二阶系统在不同参数状态下的单位阶跃响应,并分别测量出系统的超调量σp、峰值时间t p和调整时间t s。
3、研究增益K对二阶系统阶跃响应的影响。
二、实验仪器1、1、TKKL-1控制理论实验箱1台2、TDS1001B数字存储示波器1台3、万用表1只4、U盘1只(学生自备)三、实验原理实验线路图图1为二阶系统的方框图,它的闭环传递函数为图1 二阶系统的方框图C(S)K/(T1T2)ωn²R(S)= S²+S/T1+K/(T1T2)= S²+2ξωns+ωn²由上式求得ωn=√ K/(T1T2)ξ=√T2/(4T1K)若令T1=0.2S,T2=0.5S,则ωn=√10K ,ξ=√0.625/K因此只要改变K值,就能同时改变ωn和ξ的值,由此可以得到过阻尼(ξ>1)、临界阻尼(ξ=1)和欠阻尼(ξ<1)三种情况下的阶跃响应曲线。
四、实验内容与步骤1、按开环传递函数G(S)= K/(0.5S(0.2S+1))的要求,设计相应的实验线路图。
令r(t)=1V,在示波器上观察不同K(K=10,5,2,1,0.625,0.5,0.312,其中K=10,5,1,0.625必做,其他K值选做)下闭环二阶系统的瞬态响应曲线,并由图求得相应的σp、t p和t s的值。
2、调节K值,使该二阶系统的阻尼比ξ=1/√ 2 ,观察并记录阶跃响应波形。
3、实验前按所设计的二阶系统,计算K=10,K=1,K=0.625三种情况下的ξ和ωn值。
据此,求得相应的动态性能指标σp、t p和t s,并与实验所得出的结果作比较。
4、写出实验心得与体会五、实验思考题1、在电子模拟系统中如何实现负反馈及单位负反馈?六、报告的形式与要求:1、完成实验并画出二阶系统在不同K值下的瞬态响应曲线,并注明时间坐标轴。
《二阶系统的瞬态响应分析实验报告》
《二阶系统的瞬态响应分析实验报告》
二阶系统的瞬态响应分析实验旨在分析静态系统的瞬态响应及分析系统对瞬态信号的响应特性,它可以帮助我们了解系统容积特性,确定系统回路元件数量。
本实验使用模拟电路设计了一个二阶系统,它由一个阻容耦合放大器组成,并采用正弦信号进行测试。
实验中,首先用方程式通过调节输入不同频率的正弦输入信号计算出阻尼比和谐振频率,经参数校准后,设计一个小型电路,用模拟示波器采样测量系统的实时响应的。
然后设置空状态,采用编程的方法,以1KHz的频率来触发输入信号,经过决策保持该频率,再通过变频信号调节��成慢速步进,如数组[20KHz, 10KHz, 8KHz, 6KHz,
4KHz],衡量系统响应速率。
最后,通过数据分析,分析瞬态信号的响应特性,捕获系统的变化以及它们伴随而来的影响,从而更好地描述系统行为规律。
本实验研究了二阶系统及其瞬态响应结果,了解了其过程及其对瞬态信号的改变,这也为进一步的实验准备提供了基础。
机械振动学基础知识振动系统的瞬态响应分析
机械振动学基础知识振动系统的瞬态响应分析引言机械振动学是研究物体在受到外力作用时产生的振动现象以及振动特性的一门学科。
振动系统在受到外部激励时会产生瞬态响应,瞬态响应是指系统在初始时刻受到外部干扰后,振动幅值和相位都发生变化的过程。
了解振动系统的瞬态响应对于分析系统的动态特性和设计控制策略至关重要。
一、单自由度系统的瞬态响应分析单自由度系统是机械振动学中最基本的振动系统之一,通常由质点和弹簧-阻尼器构成。
在受到外部激励时,单自由度系统的瞬态响应可以通过拉普拉斯变换等方法进行分析。
振动系统的瞬态响应主要包括自由振动和受迫振动两种情况,其中自由振动是指在没有外部激励的情况下系统的振动响应,而受迫振动是指在受到外部激励时系统的振动响应。
二、多自由度系统的瞬态响应分析多自由度系统是由多个质点和弹簧-阻尼器构成的振动系统,具有更加复杂的动力学特性。
在受到外部激励时,多自由度系统的瞬态响应需要通过矩阵计算等方法进行分析。
多自由度系统的振动模态是研究系统振动特性的重要方法,通过振动模态分析可以得到系统的固有频率和振动模型。
三、瞬态响应分析在工程应用中的意义瞬态响应分析在工程实践中具有重要的应用意义,可以帮助工程师了解系统在受到外部干扰时的振动特性,并设计合适的控制策略。
工程领域中的许多振动问题都需要进行瞬态响应分析,例如建筑结构的地震响应、风力作用下桥梁的振动响应等。
结论机械振动学是一门研究物体振动现象和振动特性的重要学科,瞬态响应分析是分析振动系统动态特性的关键方法。
通过对振动系统的瞬态响应进行深入研究,可以更好地理解系统的振动机制,为工程实践提供重要参考依据。
我们需要不断深化对振动系统的瞬态响应分析,推动机械振动学领域的进步与发展。
系统的瞬态响应资料课件
瞬态响应还可以用于信号去噪,通过分析信号的瞬态特征,可以识别出噪声成分,从而 进行有效的去噪处理。
在通信系统中的应用
01
调制解调
通信系统的调制解调过程中,瞬态响应用于实现信号的调制和解调,以
实现信号的传输和处理。
02
信号同步
在通信系统中,瞬态响应用于信号的同步处理,通过对接收到的信号进
行瞬态特征分析,可以实现信号的快速同步和稳定传输。
实时仿真技术
发展高精度、高效率的实时仿真技术,以模拟和预测系统的瞬态响 应,为系统的设计和优化提供有力支持。
多学科协同仿真技术
结合多学科知识,发展协同仿真技术,以实现多物理场、多尺度、 多目标优化的系统瞬态响应仿真。
THANKS
[ 感谢观看 ]
鲁棒性分析
通过比较不同系统在瞬态响应下 的性能差异,可以对系统的鲁棒 性进行分析,从而优化系统设计 。
在信号处理中的应用
信号滤波
瞬态响应在信号处理中可用于实现信号滤波,通过设计适当的滤波器,可以提取出所需 频率范围的信号,抑制噪声和干扰。
信号识别
瞬态响应可以用于信号的识别和分类,通过分析信号的瞬态特征,可以对信号进行分类 和识别,这在语音识别、图像识别等领域有广泛应用。
特点
瞬态响应具有非线性和时变性的 特点,其表现形式包括幅度响应 、相位响应和频率响应等。
瞬态响应的重要性
保证系统稳定性
瞬态响应的好坏直接影响到系统的稳定性,如果 瞬态响应不良,可能导致系统失稳。
提高系统性能
良好的瞬态响应可以提高系统的性能,如快速跟 踪ห้องสมุดไป่ตู้减小超调和震荡等。
保护系统元件
瞬态响应不良可能对系统元件造成过大的冲击, 影响其寿命和可靠性。
二阶系统的瞬态响应实验报告
二阶系统的瞬态响应实验报告二阶系统的瞬态响应实验报告引言:在控制系统中,瞬态响应是指系统在受到外部激励后,从初始状态到达稳定状态所经历的过程。
而二阶系统是一类常见的动态系统,其特点是具有两个自由度。
本次实验旨在通过对二阶系统的瞬态响应进行实验研究,探索其特性和性能。
实验目的:1. 理解二阶系统的结构和特性;2. 掌握二阶系统的瞬态响应分析方法;3. 通过实验验证理论模型的准确性。
实验装置与方法:本次实验采用了一台二阶系统实验装置,其中包括了一个二阶系统模块、信号发生器、示波器等设备。
实验步骤如下:1. 搭建实验装置,确保各设备连接正确并稳定;2. 设定信号发生器的输入信号频率和幅值;3. 通过示波器观察和记录系统的输出响应;4. 改变输入信号的频率和幅值,重复步骤3。
实验结果与分析:通过实验观察和记录,我们得到了二阶系统在不同输入信号条件下的瞬态响应曲线。
根据实验数据,我们可以进行以下分析:1. 频率对瞬态响应的影响:在实验中,我们分别设定了不同频率的输入信号,并观察了系统的瞬态响应。
结果显示,当输入信号的频率较低时,系统的瞬态响应较为迟缓,需要较长时间才能达到稳定状态。
而当输入信号的频率较高时,系统的瞬态响应较为迅速,能够更快地达到稳定状态。
这说明在二阶系统中,频率对瞬态响应具有显著影响。
2. 幅值对瞬态响应的影响:我们还通过改变输入信号的幅值,观察了系统的瞬态响应。
实验结果显示,当输入信号的幅值较小时,系统的瞬态响应较为平缓,没有明显的过冲现象。
而当输入信号的幅值较大时,系统的瞬态响应会出现过冲现象,并且需要更长的时间才能达到稳定状态。
这表明在二阶系统中,幅值对瞬态响应同样具有重要影响。
结论:通过本次实验,我们深入了解了二阶系统的瞬态响应特性。
实验结果表明,频率和幅值是影响二阶系统瞬态响应的重要因素。
频率较低和幅值较小的输入信号可以使系统的瞬态响应更加平缓和稳定。
而频率较高和幅值较大的输入信号则会导致系统瞬态响应更快和过冲现象的出现。
二阶系统的瞬态响应分析实验报告
. WORD 格式整理. .. .专业知识分享. .课程名称: 控制理论乙 指导老师: 成绩: 实验名称: 二阶系统的瞬态响应分析 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得一、实验目的和要求1. 谁二阶模拟系统的组成2. 研究二阶系统分别工作在1=ξ、10<<ξ、1>ξ三种状态下的单位阶跃响应3. 分析增益K 对二阶系统单位阶跃响应的超调量Pσ、峰值时间t p 和调整时间t s4. 研究系统在不同K 值对斜坡输入的稳态跟踪误差 二、实验内容和原理 1. 实验原理实验电路图如下图所示:上图为二阶系统的模拟电路图,它是由三部分组成。
其中,R1、R2和C1以及第一个运放共同组成一个惯性环节发生器,R3、C2与第二个运放共同组成了一个积分环节发生器,R0与第三个运放组合了一个反相发生器。
所有的运放正输入端都接地,负输入端均与该部分电路的输入信号相连,并且输入和输出之间通过元件组成了各种负反馈调节机制。
最后由最终端的输出与最初端的输入通过一个反相器相连,构成了整体电路上的负反馈调节。
惯性函数传递函数为:111/1/)(1212122121+=+⋅=+==s T K Cs R R R R Cs R Cs R Z Z s G 比例函数的传递函数为sT s C R R sC Z Z s G 22332122111)(====反相器的传递函数为1)(00123-=-==R R Z Z s G 电路的开环传递函数为sT s T T Ks T s T K s G s G s H 2221212111)()()(+=⋅+=⋅= 电路总传递函数为22221122122212)(nn n s s T T K s T s T T K K s T s T T Ks G ωξωω++=++=++= 其中12R R K =、121C R T =、232C R T =、21T T K n =ω、KT T 124=ξ 实验要求让T1=0.2s ,T2=0.5s ,则通过计算我们可以得出K n 10=ω、K625.0=ξ 调整开环增益K 值,不急你能改变系统无阻尼自然振荡平率的值,还可以得到过阻尼、临界阻尼好欠阻尼三种情况下的阶跃响应曲线。
二阶系统的瞬态响应分析实验报告doc
二阶系统的瞬态响应分析实验报告.doc二阶系统的瞬态响应分析实验报告一、实验目的1. 了解二阶系统的瞬态响应特性;2. 掌握二阶系统瞬态响应的参数计算方法;3. 通过实验验证理论计算结果。
二、实验原理二阶系统是指系统的传递函数为二次多项式的系统,常用的二阶系统有二阶低通滤波器和二阶谐振器等。
二阶系统的传递函数一般表示为:G(s) = K / (s^2 + 2ξωns + ωn^2)其中,K为系统增益,ξ为阻尼比,ωn为系统的固有频率。
二阶系统的瞬态响应特性主要表现为过渡过程和稳态过程。
过渡过程主要包括上升时间、峰值时间、峰值超调量和调节时间等指标,稳态过程主要包括超调量和调节时间等指标。
三、实验步骤1. 搭建二阶系统实验平台,包括信号源、二阶系统和示波器等设备;2. 将信号源接入二阶系统的输入端,将示波器接入二阶系统的输出端;3. 设置信号源输出为阶跃信号,并调节信号源的幅值和频率;4. 观察示波器上的输出波形,并记录信号源的参数和示波器上的波形参数;5. 根据实验结果,计算二阶系统的瞬态响应特性指标。
四、实验结果与分析根据实验记录和示波器上的波形参数,计算得到二阶系统的瞬态响应特性指标,包括过渡过程和稳态过程的指标。
过渡过程指标:1. 上升时间:从阶跃信号开始到达其稳态值的时间。
2. 峰值时间:过渡过程中输出波形的峰值出现的时间。
3. 峰值超调量:输出波形的峰值与稳态值之间的差值除以稳态值的百分比。
4. 调节时间:从阶跃信号开始到输出波形稳定在稳态值附近的时间。
稳态过程指标:1. 超调量:输出波形的峰值与稳态值之间的差值除以稳态值的百分比。
2. 调节时间:从阶跃信号开始到输出波形稳定在稳态值附近的时间。
根据实验结果,可以对二阶系统的特性进行分析和评估。
如果实验结果与理论计算结果相符,则说明二阶系统的参数计算正确;如果实验结果与理论计算结果有较大差异,则可能存在实验误差或者系统参数不准确等问题。
实验三 高阶系统的瞬态响应和稳定性分析
实验三 高阶系统的瞬态响应和稳定性分析一、实验目的1. 通过实验,进一步理解线性系统的稳定性仅取决于系统本身的结构和参数,它与外作用及初始条件均无关的特性;2. 研究系统的开环增益K 或其它参数的变化对闭环系统稳定性的影响。
二、实验设备同实验一。
三、实验内容观测三阶系统的开环增益K 为不同数值时的阶跃响应曲线;四、实验原理三阶系统及三阶以上的系统统称为高阶系统。
一个高阶系统的瞬态响应是由一阶和二阶系统的瞬态响应组成。
控制系统能投入实际应用必须首先满足稳定的要求。
线性系统稳定的充要条件是其特征方程式的根全部位于S 平面的左方。
应用劳斯判断就可以判别闭环特征方程式的根在S 平面上的具体分布,从而确定系统是否稳定。
本实验是研究一个三阶系统的稳定性与其参数K对系统性能的关系。
三阶系统的方框图和模拟电路图如图3-1、图3-2所示。
图3-1 三阶系统的方框图图3-2 三阶系统的模拟电路图(电路参考单元为:U 3、U 8、U 5、U 6、反相器单元)图3-1的开环传递函数为 系统开环传递函数为:)15.0)(11.0()1)(1()(2121++=++=S S S K K S T S T S K s G τ 式中τ=1s ,S T 1.01=,S T 5.02=,τ21K K K =,11=K ,5102XK R =(其中待定电阻R x 的单位为K Ω),改变R x 的阻值,可改变系统的放大系数K 。
由开环传递函数得到系统的特征方程为020201223=+++K S S S由劳斯判据得0<K<12 系统稳定K =12 系统临界稳定K>12 系统不稳定 其三种状态的不同响应曲线如图3-3的a)、b)、c)所示。
a) 不稳定 b) 临界 c)稳定图3-3三阶系统在不同放大系数的单位阶跃响应曲线五、实验步骤根据图3-2所示的三阶系统的模拟电路图,设计并组建该系统的模拟电路。
当系统输入一单位阶跃信号时,在下列几种情况下,用上位软件观测并记录不同K 值时的实验曲线。
实验二线性定常系统的瞬态响应
实验二线性定常系统的瞬态响应一、实验目的2、掌握瞬态响应的测量方法及实验操作技能。
3、熟练掌握 Matlab 仿真平台的应用及实验中常用函数的使用方法。
4、通过实验,深化对线性定常系统的理解,提高实验技能和分析问题的能力。
二、实验原理1、线性时不变系统线性时不变系统在同一时刻作用于不同的信号,其输出的响应相互独立。
线性时不变系统可以用输入与输出之间的关系来描述,即系统的输入信号与输出信号之间存在线性关系,而且系统对同一输入信号的响应与系统的工作时间无关。
2、瞬态响应瞬态响应是指当输入信号由零变为非零时,系统输出信号在一段时间内的响应,这个时间段叫做瞬间响应时间。
瞬态响应包括超调、上升时间、峰值时间、定态误差等,通过测量系统的瞬态响应特性,可以评价系统的性能和稳定性。
3、系统特征方程假设线性时不变系统的输入输出关系可以用某种函数 f(t) 表示,在时域中可以表示为:y(t)=f(t)*x(t)其中 y(t) 为系统的输出信号,x(t) 为系统的输入信号,符号 * 表示卷积运算。
在复域中,系统可以表示为:Y(s)=G(s)X(s)其中 G(s) 为系统的传递函数,Y(s)、X(s) 分别为系统的输出与输入的拉氏变换,传递函数可以表示为:D(s)+a1D(s-1)+a2D(s-2)…..+apD(s-p)=b0X(s)+b1X(s-1)+b2X(s-2)…..bnX(s-n)其中 D(s) 为复域中的微分算子,a1-a2…ap 和 b1-b2…bn 为常数系数。
三、实验内容1、绘制系统阶跃响应曲线1)将 RC 阻塞放入实验板上,按下 RESET 按键,使运算放大器处于初始状态。
2)将 DC 发生器的正负极分别连接到实验板中的 VCC 和地,调整 DC 发生器的电压,使其输出为 3V。
3)将信号发生器的正极连接到实验板的输入端,负极连接到地,信号发生器输出一个幅值为 1V,频率为 1kHz 的方波信号。
自动控制原理实验-典型系统的瞬态响应和稳定性分析
图三 T1=1 T2=2 K1=0.5 K2=3 K=K1K2=1.5 由图可知系统一直在做等幅振荡 系统不稳定:
图四 T1=1 T2=2 K1=0.5 K2=4 K=K1K2=2 由图可知系统的幅值一直在增大,是一种不稳定状态。
图五 T1=1 T2=2 K1=0.5 K2=5 K=K1K2=2.5 由图可知系统的幅值一直在增大,是一种不稳定状态。
打好基础。学习瞬态性能指标的测试技巧,了解参数对系统瞬态性能及 稳定性的影响,认识典型系统阶跃响应曲线特点,及其环节参数与瞬态 性能指标关系。 2、 实验内容
(1)进一步熟悉自动控制实验教学系统软件包的使用方法。 (2)进行典型系统瞬态性能指标的测试技巧,了解参数对系统瞬 态性能及稳定性的影响。 三、实验装置 (1)微型计算机。 (2)自动控制实验教学软件包。 四、实验原理 1、典型二阶系统
六误差分析1对二阶系统分析可知当01时峰值时间tp理论计算值与实际测量值有一定的误差这是因为理论上当曲线在终值的2以内就可以但实验中较难取到系统曲线刚好到达2处的点所以是以刚好达到终值时的时间作为调节时间此结果比计算值大些
实验二 典型系统的瞬态响应和稳定性分析
1、 实验目的 进一步熟悉自动控制实验教学系统软件包的使用方法,为后续实验
(2)从图中取点,会存在一定的人为取点误差,但与实际结果较 为接近。
七、思考与讨论 1、在前面二阶系统的原理图中,改变增益K会发生不稳定现象吗? 答:会,因为改变开环增益K时,ξ将发生变化,可能使ξ的值大于
1,从而使系统不稳定。 2、 有哪些措施能增加系统的稳定度?他们对系统的性能还有什么影 响?
答:可以增加比例微分环节或者是测速反馈环节以改变系统的性 能。
图七 已知条件:ξ=0.8 ωn=0.8 K=0.5 T=0.781 由图可知:c(tp)=1.017 c(∞)=1.003 tp=6.651s tr=5.162s ts=9.475s 理论计算值: δ%=0.015 tp=6.545s tr=4.734s ts=6.875s 衰减比n:n=1.017/1=1.017
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三峡大学机械与材料学院
第六章 系统的瞬态响应分析
一阶系统的单位斜坡响应
1 R(s) 2 s
C (s) 1 1 2 Ts 1 s 1 T T 2 s s s 1 T
1 t T
c ( t) t T Te
College of Mechanical & Material Engineering
R(s) 1
1 R(s) s
1 T t c(t) e T
1
c(t) 1e
1 t T
1 R(s) 2 s
c ( t) t T Te
1 t T
闭环极点(特征根):-1/T 衰减系数:1/T
College of Mechanical & Material Engineering
1 t T
输入信号微分响应微分 输入信号积分响应积分 积分时间常数由零初始条件确定。
College of Mechanical & Material Engineering
例
三峡大学机械与材料学院
第六章 系统的瞬态响应分析
例:水银温度计近似可以认为一阶惯性环节,用 其测量加热器内的水温,当插入水中一分钏时 才指示出该水温的98%的数值(设插入前温度 计指示0度)。如果给加热器加热,使水温以 10度/分的速度均匀上升,问温度计的温态指 示误差是多少? 解:一阶系统,对于阶跃输入,输出响应达 98%,费时4T=1分,则T=0.25分。 一价系统对于单位斜波信号的稳态误差是T, 故当水温以10度/分作等速变换,稳态指示误 差为10T=2.5度。
College of Mechanical & Material Engineering
三峡大学机械与材料学院
第六章 系统的瞬态响应分析
4)ln[1-c(t)]与时间t成线性关系
c(t) 1e
1 t T
e
1 t T
1c(t)
1 t ln[ 1 c (t)] T
判别系统是否为惯性环节 测量惯性环节的时间常数
College of Mechanical & Material Engineering
一阶系统的单位 脉冲响应
1 1 C(s) 1 T 1 Ts 1 s T
1 t T
R(s) 1
1 c(t) e T
(t0)
只包含瞬态分量
College of Mechanical & Material Engineering
三峡大学机械与材料学院
第六章 系统的瞬态响应分析
6.7 Matlab求取瞬态响应
College of & Material Engineering School ofMechanical Mechanical & Material Engineering
三峡大学机械与材料学院
第六章 系统的瞬态响应分析
系统的阶跃响应: 1.强烈振荡过程 2.振荡过程 3.单调过程 4.微振荡过程
College of Mechanical & Material Engineering
时间响应
稳态响应 瞬态响应:
系统在某一输入信号作下, 其输出量从初始状态到进入 稳定状态前的响应过程。
三峡大学机械与材料学院
第六章 系统的瞬态响应分析
6.1 一阶系统的瞬态响应
一阶系统的形式
C(s) 1 R(s) Ts 1
闭环极点(特征根):-1/T
College of Mechanical & Material Engineering
三峡大学机械与材料学院
第六章 系统的瞬态响应分析
一阶系统的单位阶跃响应
1 R(s) s
1 11 T C ( s ) Ts 1 s s Ts 1
c(t) 1e
三峡大学机械与材料学院
第六章 系统的瞬态响应分析
线性定常系统的一个性质
对于一阶系统 r ( t) ( t) R(s) 1
r(t) 1
1 R(s) s
1 T t c(t) e T
1
c(t) 1e
1 t T
r(t) t
1 R(s) 2 s
c ( t) t T Te
t dc ( t ) 1 1 T | e | t 0 t 0 dt T T 1
t=T c(t)=63.2% 实验法求T t=3T c(t)=95% 允许误差 5% 调整时间ts=3T t=4T c(t)=98.2% 允许误差 2% 调整时间ts=4T
College of Mechanical & Material Engineering
1 t T
(t0)
College of Mechanical & Material Engineering
三峡大学机械与材料学院
第六章 系统的瞬态响应分析
时间增长,无稳态误差
College of Mechanical & Material Engineering
三峡大学机械与材料学院
第六章 系统的瞬态响应分析
c(t) 1e
1 t T
(t0)
性质: 1)T 暂态分量 瞬态响应时间 极点距离虚轴 2)T 暂态分量 瞬态响应时间 极点距离虚轴
Байду номын сангаас
College of Mechanical & Material Engineering
三峡大学机械与材料学院
第六章 系统的瞬态响应分析
3)斜率:
第六章 系统的瞬态响应分析
系统的瞬态响应 分析
College of Mechanical & Material Engineering
三峡大学机械与材料学院
第六章 系统的瞬态响应分析
第六章 系统的瞬态响应分析
6.1 一阶系统的瞬态响应 6.2 二阶系统的瞬态响应 6.3 瞬态响应指标及其与系统参数的关系 6.4 具有零点的二阶系统的瞬态响应 6.5 高阶系统的瞬态响应 6.6 瞬态响应指标与频域指标的关系
(t0)
三峡大学机械与材料学院
第六章 系统的瞬态响应分析
性质: 1)经过足够长的时间 (≥4T),输出增长速率近 似与输入相同; 2)输出相对于输入滞后 时间T;
3)稳态误差=T。
College of Mechanical & Material Engineering
三峡大学机械与材料学院
第六章 系统的瞬态响应分析