正弦和余弦PPT教学课件
合集下载
高中数学必修五 1.1 正弦定理和余弦定理 教学课件 PPT (4)
C
b
a=?
A
c
B
三、证明问题
C
b
a=?
A
c
B
向量法:
C
b
a
A
c
B
四、余弦定理
三角形中任何一边的平方等于其他两边的平方的和减去这两边与 它们的夹角的余弦的积的两倍。
b A
或 (推论)
C a=?
c
B
五、余弦定理基本应用
1.已知两边及它们的夹角,求第三边;
2.已知三边,求三个角。
例1:隧道工程设计,经常需要测算山脚的长度,工程技术人 员先在地面上选一适当位置A,量出A到山脚B,C的距离,再 利用经纬仪(测角仪)测出A对山脚BC的张角,最后通过计 算求出山脚的长度BC。
转化:在 △ABC中,
B
AB 8km, AC 3km, A 600,
求a。
C A
例2:在△ABC中,已知 a=2,b= , 求A。
解:
∴A=45°
例3:在△ABC中,已知 a=2 ,b= , 解三角形。
解:由例2可知 A=45°
方法一:
方法二:
思考
在解三角形的过程中,求某一个角有时 既可以用余弦定理,也可以用正弦定理,两种方法有 什么利弊呢?
1:1: 3
变式训练
在ABC中,角A、B、C的对边分别 为a、b、c,若AB AC = BA BC = 1,c = 2.
(1)判断ABC的形状; (2)若 AB AC 6,求ABC的面积
答案:等腰三角形
3
2
小结:
一、正弦定理: a b c 2R sin A sin B sin C
其中,R是△ABC的外接圆的半径
正弦函数与余弦函数的图像PPT ppt课件
正弦函数与余弦函数的图像PPT
• 那么,在精确度要求不太高时,应该抓住 哪些关键点做出y=sinx x ∈ [0,2π]的图像呢。
• 观察可以发现,我们可以找到在一个周期 里找出最高点,最低点,以及三个平衡点, 也就是 (0,0), ( π /2, 1), (π,0) , (3 π/2,-1) , (2 π,0)找出这五个关键点,再 用光滑的曲线将它们连接起来,就得到函 数的简图,这就叫“五点作图法”,这在 以后我们的做题中是非常实用的。
正弦函数与余弦函数的图像PPT
我们通过平移正弦线来解决
正弦函数与余弦函数的图像PPT
• 这是y=sinx x ∈ [0,2π]的图像,那么, • 当x ∈ R时,如何画出y=sinx 其他范围的图
像呢? • 可以根据学过的诱导公式吗? • 请同学们讨论一下
正弦函数与余弦函数的图像PPT
• 因为终边相同的三角函数值相等,所以把 y=sinx 在[0,2π]的图像向左、向右平行移动, 每次平移2π个单位长度,就能得到y=sinx x ∈ R的图像
• 在作图之前,我们先来复习一下正弦线, 弦线的画法,大家还记得吗
正弦函数与余弦函数的图像PPT
• 设任意角α的终边与单位圆 • 交于点P,过点P做x轴的 • 垂线,垂足为M • 则有向线段MP叫做角α的正弦线, • 有向线段OM叫做角α的余弦线
正弦函数与余弦函数的图像PPT
• 下面作图,可是做函数图像最基本的方法 是描点法,通常描点要知道图像上点的坐 标,由于三角函数的特殊性,当X任取值时, 函数值不容易求出,怎样解决这个问题呢, 刚复习过,正弦线可以看做是正弦值的几 何表示,可否转换呢。请小组讨论一下, 如何画出y=sinx x ∈ [0,2π]的图像
• 那么,在精确度要求不太高时,应该抓住 哪些关键点做出y=sinx x ∈ [0,2π]的图像呢。
• 观察可以发现,我们可以找到在一个周期 里找出最高点,最低点,以及三个平衡点, 也就是 (0,0), ( π /2, 1), (π,0) , (3 π/2,-1) , (2 π,0)找出这五个关键点,再 用光滑的曲线将它们连接起来,就得到函 数的简图,这就叫“五点作图法”,这在 以后我们的做题中是非常实用的。
正弦函数与余弦函数的图像PPT
我们通过平移正弦线来解决
正弦函数与余弦函数的图像PPT
• 这是y=sinx x ∈ [0,2π]的图像,那么, • 当x ∈ R时,如何画出y=sinx 其他范围的图
像呢? • 可以根据学过的诱导公式吗? • 请同学们讨论一下
正弦函数与余弦函数的图像PPT
• 因为终边相同的三角函数值相等,所以把 y=sinx 在[0,2π]的图像向左、向右平行移动, 每次平移2π个单位长度,就能得到y=sinx x ∈ R的图像
• 在作图之前,我们先来复习一下正弦线, 弦线的画法,大家还记得吗
正弦函数与余弦函数的图像PPT
• 设任意角α的终边与单位圆 • 交于点P,过点P做x轴的 • 垂线,垂足为M • 则有向线段MP叫做角α的正弦线, • 有向线段OM叫做角α的余弦线
正弦函数与余弦函数的图像PPT
• 下面作图,可是做函数图像最基本的方法 是描点法,通常描点要知道图像上点的坐 标,由于三角函数的特殊性,当X任取值时, 函数值不容易求出,怎样解决这个问题呢, 刚复习过,正弦线可以看做是正弦值的几 何表示,可否转换呢。请小组讨论一下, 如何画出y=sinx x ∈ [0,2π]的图像
正弦定理和余弦定理课件PPT
直角三角形的一个锐角的对边与斜边的比叫做这个 角的正弦.
【即时练习】
在△ABC 中,AB= 3,A=45°,C=75°,则 BC
等于( A )
A.3- 3
B. 2
C.2
D.3+ 3
[解析] 由sAinBC=sBinCA得,BC=3- 3.
探究点3 解三角形
1.一般地,把三角形的三个角A,B,C和它们的对 边a,b,c叫做三角形的元素. 2.已知三角形的几个元素,求其他元素的过程叫做 解三角形.
A. 3
B.2
C. 5
D. 7
【解析】选D.因为a2=b2+c2-2bccosA=22+32-2×2×3×
cos 60°=7,所以a=
7.
3.在△ABC中,a=3,b=4,c= ,则此三角形的最大角为
37
.
【解析】由c>b>a知C最大,
因为cosC=
a2
所以C=120°.
b2 c2 2ab
32 42 37 234
【拓展延伸】利用平面图形的几何性质和 勾股定理证明余弦定理 ①当△ABC为锐角三角形时,如图, 作CD⊥AB,D为垂足,则CD=bsinA, DB=c-bcosA,则a2=DB2+CD2=(c-bcosA)2+(bsinA)2 =b2+c2-2bccosA,其余两个式子同理可证;
b
b 2R, a 2R. 即得 :
A
sin B
sin A
C′
a b c 2R. R为三角形外接圆的半径
sin A sin B sin C
A
C
c
b aO
B
C
B`
Ob a B A` A c
【即时练习】
在△ABC 中,AB= 3,A=45°,C=75°,则 BC
等于( A )
A.3- 3
B. 2
C.2
D.3+ 3
[解析] 由sAinBC=sBinCA得,BC=3- 3.
探究点3 解三角形
1.一般地,把三角形的三个角A,B,C和它们的对 边a,b,c叫做三角形的元素. 2.已知三角形的几个元素,求其他元素的过程叫做 解三角形.
A. 3
B.2
C. 5
D. 7
【解析】选D.因为a2=b2+c2-2bccosA=22+32-2×2×3×
cos 60°=7,所以a=
7.
3.在△ABC中,a=3,b=4,c= ,则此三角形的最大角为
37
.
【解析】由c>b>a知C最大,
因为cosC=
a2
所以C=120°.
b2 c2 2ab
32 42 37 234
【拓展延伸】利用平面图形的几何性质和 勾股定理证明余弦定理 ①当△ABC为锐角三角形时,如图, 作CD⊥AB,D为垂足,则CD=bsinA, DB=c-bcosA,则a2=DB2+CD2=(c-bcosA)2+(bsinA)2 =b2+c2-2bccosA,其余两个式子同理可证;
b
b 2R, a 2R. 即得 :
A
sin B
sin A
C′
a b c 2R. R为三角形外接圆的半径
sin A sin B sin C
A
C
c
b aO
B
C
B`
Ob a B A` A c
正弦余弦正切函数PPT课件
2 在Rt△ABC中,∠ACB=90°,CD为斜边AB上的 高,若BC=4,sinA= ,则2 BD的长为______. 3
3 如图,∠α的顶点为O,它的一边在x轴的正半轴上,
另一边OA上有一点P b,4 ,若sin α= ________.
,则4 b=
5
4 如图,在Rt△ABC中,∠C=90°,AB=6,
2. 作一个50°的∠A 图1-3 ,在角的边上任意取一点B,作 BC丄AC于点C.量出AB , AC,BC的长 精确到1mm ,计 算 BC , AC , BC 的值 精确到0.01 , AB AB AC 并将所得的结果与你的同
伴所得的结果作比较. 通过上面两个实践操作,
你发现了什么
3.如图l-4,B,B1是∠α一边上的任意两点,作BC丄AC于 点C, B1C1丄AC1于点C1判断比值 B C与 B 1C 1,A C与 A C 1,B C与 B 1C 1 A B A B 1 A B A B 1 A C A C 1 是否相等,并说明理由.
A. 3
B. 4
C. 3
D. 5
解析:在R5 t△ABC中,∠5 C=90°,则4 ∠A+∠B=5 90°,
则cos
B=sin
A=
4 5
.故选B.
总结
本题考查了互余两角的正弦值、余弦值之间的关 系.或者利用设参数法,也就是设三角形的斜边长是 5k,一条直角边长是4k,利用勾股定理求出另一条直 角边的长度,从而得出结果.
正弦余弦正切函数
Add the author and the accompanying title
1 课堂讲解 2 课时流程
正弦、余弦、正切函数的定义 正弦、余弦、正切函数的应用 同角三角函数间的关系
3 如图,∠α的顶点为O,它的一边在x轴的正半轴上,
另一边OA上有一点P b,4 ,若sin α= ________.
,则4 b=
5
4 如图,在Rt△ABC中,∠C=90°,AB=6,
2. 作一个50°的∠A 图1-3 ,在角的边上任意取一点B,作 BC丄AC于点C.量出AB , AC,BC的长 精确到1mm ,计 算 BC , AC , BC 的值 精确到0.01 , AB AB AC 并将所得的结果与你的同
伴所得的结果作比较. 通过上面两个实践操作,
你发现了什么
3.如图l-4,B,B1是∠α一边上的任意两点,作BC丄AC于 点C, B1C1丄AC1于点C1判断比值 B C与 B 1C 1,A C与 A C 1,B C与 B 1C 1 A B A B 1 A B A B 1 A C A C 1 是否相等,并说明理由.
A. 3
B. 4
C. 3
D. 5
解析:在R5 t△ABC中,∠5 C=90°,则4 ∠A+∠B=5 90°,
则cos
B=sin
A=
4 5
.故选B.
总结
本题考查了互余两角的正弦值、余弦值之间的关 系.或者利用设参数法,也就是设三角形的斜边长是 5k,一条直角边长是4k,利用勾股定理求出另一条直 角边的长度,从而得出结果.
正弦余弦正切函数
Add the author and the accompanying title
1 课堂讲解 2 课时流程
正弦、余弦、正切函数的定义 正弦、余弦、正切函数的应用 同角三角函数间的关系
《正弦余弦函数》PPT课件全文
2.正弦函数是奇函数,余弦函数是偶函 数.一般地,y=Asinωx是奇函数, y=Acosωx(Aω≠0)是偶函数.
3.正、余弦函数有无数个单调区间和无 数个最值点,简单复合函数的性质应转 化为基本函数处理.
作业:P40-41练习:1,2,3,5,6.
1.4.3 正切函数的图象与性质
问题提出
1.正、余弦函数的图象是通过什么方法 作出的?
思切2 值考时如8,:何正当变切x化大值?于又当如2x且何小无变于限化2接?且近由无此限2 接分时近析,正 , 正切函数的值域是什么?
-6π -4π -2π -5π -3π
y 1
-π
O
-1
π
3π 5π
2π 4π
6πx
思考7:函数y=sinx,x∈R的图象叫做正 弦曲线,正弦曲线的分布有什么特点?
-6π -4π -2π -5π -3π
y 1
-π
O
-1
π
3π 5π
2π 4π
6πx
知识探究(二):余弦函数的图象
思考1:观察函数y=x2与y=(x+1)2 的图 象,你能发现这两个函数的图象有什么 内在联系吗?
2.正、余弦函数的最小正周期是多少?
函数
y Asin( x和 ) y Acos( x )
(A 0, 0) 的最小正周期是多少?
3.周期性是正、余弦函数所具有的一个 基本性质,此外,正、余弦函数还具有 哪些性质呢?我们将对此作进一步探究.
探究(一):正、余弦函数的奇偶性和单调性
思考1:观察下列正弦曲线和余弦曲线的
2
数,能否认为正弦函数在第一象限是增 函数?
探究(二):正、余弦函数的最值与对称性
思考1:观察正弦曲线和余弦曲线,正、 余弦函数是否存在最大值和最小值?若 存在,其最大值和最小值分别为多少?
3.正、余弦函数有无数个单调区间和无 数个最值点,简单复合函数的性质应转 化为基本函数处理.
作业:P40-41练习:1,2,3,5,6.
1.4.3 正切函数的图象与性质
问题提出
1.正、余弦函数的图象是通过什么方法 作出的?
思切2 值考时如8,:何正当变切x化大值?于又当如2x且何小无变于限化2接?且近由无此限2 接分时近析,正 , 正切函数的值域是什么?
-6π -4π -2π -5π -3π
y 1
-π
O
-1
π
3π 5π
2π 4π
6πx
思考7:函数y=sinx,x∈R的图象叫做正 弦曲线,正弦曲线的分布有什么特点?
-6π -4π -2π -5π -3π
y 1
-π
O
-1
π
3π 5π
2π 4π
6πx
知识探究(二):余弦函数的图象
思考1:观察函数y=x2与y=(x+1)2 的图 象,你能发现这两个函数的图象有什么 内在联系吗?
2.正、余弦函数的最小正周期是多少?
函数
y Asin( x和 ) y Acos( x )
(A 0, 0) 的最小正周期是多少?
3.周期性是正、余弦函数所具有的一个 基本性质,此外,正、余弦函数还具有 哪些性质呢?我们将对此作进一步探究.
探究(一):正、余弦函数的奇偶性和单调性
思考1:观察下列正弦曲线和余弦曲线的
2
数,能否认为正弦函数在第一象限是增 函数?
探究(二):正、余弦函数的最值与对称性
思考1:观察正弦曲线和余弦曲线,正、 余弦函数是否存在最大值和最小值?若 存在,其最大值和最小值分别为多少?
正弦定理和余弦定理ppt课件
总结词
正弦定理和余弦定理在物理学中有着 广泛的应用。
详细描述
在物理学中,许多现象可以用三角函数来描 述,如重力、弹力等。通过正弦定理和余弦 定理,我们可以更准确地计算这些力的作用 效果,从而更好地理解和分析物理现象。
06 总结与展望
总结正弦a、b、c与对应的角A、B、C 的正弦值之比都相等,即$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$。
表达式形式
正弦定理的表达式形式简洁,易于理解和记 忆。相比之下,余弦定理的表达式较为复杂
,需要更多的数学基础才能理解和应用。
定理间的互补性
要点一
解决问题时的互补性
在解决三角形问题时,正弦定理和余弦定理常常是互补使 用的。对于一些问题,使用正弦定理可能更方便;而对于 另一些问题,使用余弦定理可能更合适。通过结合使用两 种定理,可以更全面地理解三角形的性质和关系,从而更 好地解决各种问题。
深入研究正弦定理和余弦定理的性质
可以进一步研究正弦定理和余弦定理的性质,如推广到多边形、高维空间等。
开发基于正弦定理和余弦定理的算法和软件
可以开发基于正弦定理和余弦定理的算法和软件,用于解决实际问题。
如何进一步深化理解与应用
深入理解正弦定理和余弦定理的证明过程
01
理解证明过程有助于更好地理解和应用正弦定理和余弦定理。
02 正弦定理
正弦定理的定义
总结词
正弦定理是三角形中一个重要的定理,它描述了三角形各边与其对应角的正弦值 之间的关系。
详细描述
正弦定理是指在一个三角形中,任意一边与其相对角的正弦值的比值都相等,即 $frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$,其中$a, b, c$分别代表三角形 的三边长度,$A, B, C$分别代表与三边相对应的角。
正弦定理和余弦定理在物理学中有着 广泛的应用。
详细描述
在物理学中,许多现象可以用三角函数来描 述,如重力、弹力等。通过正弦定理和余弦 定理,我们可以更准确地计算这些力的作用 效果,从而更好地理解和分析物理现象。
06 总结与展望
总结正弦a、b、c与对应的角A、B、C 的正弦值之比都相等,即$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$。
表达式形式
正弦定理的表达式形式简洁,易于理解和记 忆。相比之下,余弦定理的表达式较为复杂
,需要更多的数学基础才能理解和应用。
定理间的互补性
要点一
解决问题时的互补性
在解决三角形问题时,正弦定理和余弦定理常常是互补使 用的。对于一些问题,使用正弦定理可能更方便;而对于 另一些问题,使用余弦定理可能更合适。通过结合使用两 种定理,可以更全面地理解三角形的性质和关系,从而更 好地解决各种问题。
深入研究正弦定理和余弦定理的性质
可以进一步研究正弦定理和余弦定理的性质,如推广到多边形、高维空间等。
开发基于正弦定理和余弦定理的算法和软件
可以开发基于正弦定理和余弦定理的算法和软件,用于解决实际问题。
如何进一步深化理解与应用
深入理解正弦定理和余弦定理的证明过程
01
理解证明过程有助于更好地理解和应用正弦定理和余弦定理。
02 正弦定理
正弦定理的定义
总结词
正弦定理是三角形中一个重要的定理,它描述了三角形各边与其对应角的正弦值 之间的关系。
详细描述
正弦定理是指在一个三角形中,任意一边与其相对角的正弦值的比值都相等,即 $frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$,其中$a, b, c$分别代表三角形 的三边长度,$A, B, C$分别代表与三边相对应的角。
正弦定理和余弦定理-PPT课件
22
类型一
正弦定理和余弦定理的应用
解题准备:
1.正弦定理和余弦定理揭示的都是三角形的边角关系,根据题 目的实际情况,我们可以选择其中一种使用,也可以综合起 来运用.
2.在求角时,能用余弦定理的尽量用余弦定理,因为用正弦定 理虽然运算量较小,但容易产生增解或漏解.
23
3.综合运用正、余弦定理解三角形问题时,要注意以下关系式
32
∵0<A<π,0<B<π,∴sin2A=sin2B
∴2A=2B或2A=π-2B,即A=B或A+B= .
2
∴△ABC是等腰三角形或直角三角形.
33
解法二:同解法一可得2a2cosAsinB=2b2cosBsinA,
由正、余弦定理得
a2b•
b2
c2
a
2
=b2a•
a2 c2 b2
2bc
2ac
1 2 3 2 1 3.
2
2
(2)当|BC|=4时,S△=
1 2
|AB|·|BC|·sinB
1 2 3 4 1 2 3.
2
2
∴△ABC的面积为 2 3 或 3.
27
[反思感悟]本题主要考查正弦定理、三角形面积公式及分类 讨论的数学思想,同时也考查了三角函数的运算能力及推 理能力.
28
40
设云高CM x m,则CE x h,
DE x h, AE x h .
tan
又AE x h , x h x h
tan tan tan
解得x tan tan gh hgsin( ) m.
tan tan
sin( )
41
[反思感悟]在测量高度时,要理解仰角、俯角的概念.仰角和俯 角都是在同一铅垂面内,视线与水平线的夹角,当视线在水 平线之上时,称为仰角;当视线在水平线之下时,称为俯角.
《正弦定理余弦定理》课件
THANKS
感谢观看
REPORTING
基础习题2
基础习题3
已知三角形ABC中,角A、B、C所对 的边分别为a、b、c,若$a = 8, b = 10, C = 45^{circ}$,求边c。
在三角形ABC中,已知A=60°,a=3, b=4, 求角B的大小。
进阶习题
进阶习题1
在三角形ABC中,已知A=45°, a=5, b=5sqrt{2}, 求边c。
详细描述
正弦定理是指在一个三角形中,任意一边与其对应角的正弦值的比等于其他两边的平方和与该边的平方的差的平 方根。余弦定理则是指在一个三角形中,任意一边的平方等于其他两边的平方和减去两倍的另一边与其对应角的 余弦值的乘积。
定理的推导过程
总结词
正弦定理和余弦定理的推导过程涉及到三角函数的定义、性质以及一些基本的 代数运算。
进阶习题2
已知三角形ABC中,角A、B、C所 对的边分别为a、b、c,若$a = 10, b = 8, C = 120^{circ}$,求 边c。
进阶习题3
已知三角形ABC中,角A、B、C所 对的边分别为a、b、c,若$a = 6, b = 8, C = 60^{circ}$,求边c。
综合习题
综合习题1
面积求解
总结词
余弦定理还可以用于计算三角形的面积,通过已知的两边及其夹角,使用面积公式进行计算。
详细描述
已知边a、边b和夹角C,可以使用余弦定理结合面积公式计算三角形ABC的面积,公式为:S = 1/2 ab sin(C)。
PART 04
正弦定理与余弦定理的对 比与联系
REPORTING
定理的异同点
详细描述
首先,利用三角函数的定义和性质,我们可以得到一些基本的等式。然后,通 过一系列的代数运算,将这些等式转化为正弦定理和余弦定理的形式。
正弦,余弦函数的图像PPT教学课件
y= sinx,x[0, 2]
和
y=
cosx,x[
2
,
3 2
]的简图:
x
0 2
20
csionsx
10
01
3
3
2
2
22
-01
0-1
10
向左y平移 个单位长度 22
1
o
2
-1
3
2
2
y= cosx,x[ , 3 ]
22
y=sinx,x[0, 2]
2
x
正弦、余弦函数的图象
几何画法
小 1. 正弦曲线、余弦曲线 五点法 结
2 ,0)
( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0)
正弦、余弦函数的图象
y
1
-4 -3
-2
- o
-1
2
3
4
5 6 x
正弦函数的图象 y=cosx=sin(x+ ), xR
2
正弦曲 线
形状完全一样 只是位置不同
余弦函数的图象
y
余弦曲
-4 -3
-2
(0,11)
正弦、余弦函数的图象
X
正弦、余弦函数的图象
三角函数
三角函数线
正弦函数 余弦函数 正切函数
-1
sin=MP
正弦线MP cos=OM 余弦线OM tan=AT 正切线AT
y PT
O
M A(1,0) x
注意:三角 函数线是有 向线段!
正弦、余弦函数的图象
问题:如何作出正弦、余弦函数的图象?
途径:利用单位圆中正弦、余弦线来解决。
正弦,余弦函数的图像PPT课件
途径:利用单位圆中正弦、余弦线来解决。
描图:用光滑曲线
y
B
1
将这些正弦线的 终点连结起来
A
O1
O
2
4
5
2
x
3
3
3
3
-1
y=sinx
终边相同角的三角函数值相等 即: sin(x+2k)=sinx, kZ
x[0,2]
f(x2k)f(x)利用图象平移
y=sinx xR
正弦、余弦函数的图象
y 1
o
2
2
-1
y=sinx x[0,2]
y
y=sinx xR
1
-4 -3
-2
- o
-1
3
2
x
2
正弦曲 线
2
3
4
5 6 x
正弦、余弦函数的图象
如何作出正弦函数的图象(在精确度要求不太高时)?
y
五点画图法
1
(2
,1)
( 2 ,1)
( ,0)
( 2 ,0)
五点法——
2
(
(0,0)o
(0,0)
2
(0,0)
-1
(0,0)
汇报人:XXX 汇报日期:20XX年10月10日
2 ,0) x
2 ,0)
( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0)
正弦、余弦函数的图象
y
1
-4 -3
-2
- o
-1
2
3
4
5 6 x
正弦函数的图象 y=cosx=sin(x+ ), xR
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
cos(90º-A)=sinA
(2)把sin(90º-A)写成∠A的余弦. sin(90º-A)=cosA
2020/12/09
6
例3
(1)已知sinA= 1 且∠B=90º—∠A,求cosB; 2
(2)已知sin35º=0.5736,求cos55º;
(3)已知cos47º6’=0.6807,求sin42º54’.
2020/12/09
9
sinA= cosB = cos B(90º-A)
∠B=90º-∠A 任意锐角的正弦值等于它的余角的余弦值; 任意锐角的余弦值等于它的余角的正弦值.
2s02i0/n12/A09 =cos(90º-A), cosA=sin(90º-A) 5
已知∠A和∠B都是锐角, (1)把cos(90º-A)写成∠A的正弦.
B
2
3Байду номын сангаас°
A
3
1
sin30º=
2
sin60º= 3 .
2
1
2
1
C
45° A
1
C
3
cos30º= 2
2
sin45º= 2
1
2
cos60º= 2 . cos45º= 2
2020/12/09
3
观察以下各式,从中你能发现什么特征?
1
sin30º=
2
sin60º= 3 .
2
3
cos30º= 2
2
sin45º= 2
B
B
30°
A
C
sinA= A的对边 斜边
2020/12/09
45°
A
C
A的邻边 cosA= 斜边
1
1.结合图形回答:什么是∠A的正弦、什么 是∠A的余弦,怎样表示?
sinA= A的对边
B
斜边
A的邻边 cosA= 斜边
A
C
2020/12/09
2
2.30º、45º、60º角的正、余弦值分别为多少?
B
1
2
cos60º=
2
.
cos45º=
2
sin30º=cos60º sin60º=cos30º sin45º=cos45º,
2020/12/09
根据这一特征, 对于任意锐角的 正弦值,是否也 能等于它的余角 的余弦值? 4
sinA= A的对边 斜边
=
a c
cosB=
B的邻边 斜边
=
a c
A
B
c
a
b
C
2020/12/09
7
练习P.9 2.
(1)已知cosA= 2 ,且∠B=90º—∠A,求sinB; 2
(2)已知sin67º18’=0.9225,求cos22º42’;
(3)已知cos4º24’=0.9971,求sin86º36’.
2020/12/09
8
PPT精品课件
谢谢观看
Thank You For Watching
(2)把sin(90º-A)写成∠A的余弦. sin(90º-A)=cosA
2020/12/09
6
例3
(1)已知sinA= 1 且∠B=90º—∠A,求cosB; 2
(2)已知sin35º=0.5736,求cos55º;
(3)已知cos47º6’=0.6807,求sin42º54’.
2020/12/09
9
sinA= cosB = cos B(90º-A)
∠B=90º-∠A 任意锐角的正弦值等于它的余角的余弦值; 任意锐角的余弦值等于它的余角的正弦值.
2s02i0/n12/A09 =cos(90º-A), cosA=sin(90º-A) 5
已知∠A和∠B都是锐角, (1)把cos(90º-A)写成∠A的正弦.
B
2
3Байду номын сангаас°
A
3
1
sin30º=
2
sin60º= 3 .
2
1
2
1
C
45° A
1
C
3
cos30º= 2
2
sin45º= 2
1
2
cos60º= 2 . cos45º= 2
2020/12/09
3
观察以下各式,从中你能发现什么特征?
1
sin30º=
2
sin60º= 3 .
2
3
cos30º= 2
2
sin45º= 2
B
B
30°
A
C
sinA= A的对边 斜边
2020/12/09
45°
A
C
A的邻边 cosA= 斜边
1
1.结合图形回答:什么是∠A的正弦、什么 是∠A的余弦,怎样表示?
sinA= A的对边
B
斜边
A的邻边 cosA= 斜边
A
C
2020/12/09
2
2.30º、45º、60º角的正、余弦值分别为多少?
B
1
2
cos60º=
2
.
cos45º=
2
sin30º=cos60º sin60º=cos30º sin45º=cos45º,
2020/12/09
根据这一特征, 对于任意锐角的 正弦值,是否也 能等于它的余角 的余弦值? 4
sinA= A的对边 斜边
=
a c
cosB=
B的邻边 斜边
=
a c
A
B
c
a
b
C
2020/12/09
7
练习P.9 2.
(1)已知cosA= 2 ,且∠B=90º—∠A,求sinB; 2
(2)已知sin67º18’=0.9225,求cos22º42’;
(3)已知cos4º24’=0.9971,求sin86º36’.
2020/12/09
8
PPT精品课件
谢谢观看
Thank You For Watching