插值MATLAB实现(牛顿差商插值误差龙格现象切比雪夫插值)
第二章 插值法及其matlab实现 (1)-文档资料

y = a a x a x 0 0 1 0
y = a a x a x 1 0 1 1
y = a a x a x 2 0 1 2
2 20 2 21 2 22
方程组的解是否存在? 若存在解,是否唯一?!
当 x0 , x1 , x2互异时,方程组的解存在且唯一.
注:显然有, 求n 次插值时, 由n +1个点可有n +1个方程, 联立方程组即可求出插值多项式的n +1个系数.
然而,方程组的求解也并不是一件容易的事。
对于线性插值的两种形式解进行适当的分析, 从中寻求 规律而得到启发,就有了所谓的拉格朗日插值法(公式)和牛 顿插值(公式).
我们先来看看如何得到二次拉格朗日插值公式。
1.2.2 基函数法 首先, 线性插值的两点式可看作是两个特殊的一次式 的一种线性组合. 1 x - x0 x - x1 y0 + y1 = l i ( x ) y i 两点式 P1 ( x ) =
x 0 - x1 x1 - x 0
i =0
l0(x) l1(x) 这里, l0(x)和l1(x)具有如下性质: l0(x0)=1, l0(x1)=0, l1(x0)=0, l1(x1)=1, 显然有l0(x)+ l1(x)≡1. )即是满足函数表 实质上 l( )和 l( 0 x 1 x
x
y
称为拉氏基函 数 ,满足 li(xj)=ij
x0
1
x1
x
y
x0
0
x1
0
1
的一次插值多项式 ,称l0(x)和l1(x)为以x0,x1为节点的基本插 值多项式,也称为线性插值的插值基函数 。 于是,线性插值即是用基函数的线性组合来构造的.
牛顿插值MATLAB算法

MATLAB程序设计期中作业——编程实现牛顿插值成员:刘川(P091712797)签名_____汤意(P091712817)签名_____王功贺(P091712799)签名_____班级:2009信息与计算科学学院:数学与计算机科学学院日期:2012年05月02日牛顿插值的算法描述及程序实现一:问题说明在我们的实际应用中,通常需要解决这样的问题,通过一些已知的点及其对应的值,去估算另外一些点的值,这些数据之间近似服从一定的规律,于是,这就引入了插值法的思想。
插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。
如果这特定函数是多项式,就称它为插值多项式。
利用插值基函数很容易得到拉格朗日插值多项式,公式结构紧凑,在理论分析中甚为方便,但当插值节点增减时全部插值基函数均要随之变化,整个公式也将发生变化,这在实际计算中是很不方便的,为了克服这一缺点,提出了牛顿插值。
二:算法分析newton 插值多项式的表达式如下:010011()()()()()n n n N x c c x x c x x x x x x -=+-+⋅⋅⋅+--⋅⋅⋅-其中每一项的系数c i 的表达式如下:12011010[,,,][,,,][,,,]i i i i i f x x x f x x x c f x x x x x -⋅⋅⋅-⋅⋅⋅=⋅⋅⋅=- 即为f (x)在点01,,,i x x x ⋅⋅⋅处的i 阶差商,([]()i i f x f x =,1,2,,i n =),由差商01[,,,]i f x x x ⋅⋅⋅的性质可知: ()01001[,,,]()i i i j j k j k k j f x x x f x x x ==≠⋅⋅⋅=-∑∏ 牛顿插值的程序实现方法:第一步:计算[][][][]001012012,,,,,,,n f x f x x f x x x f x x x x 、、、、。
matlab实现newton差值和hermite差值

(一)实验目的掌握并能够利用newton差值和hermite差值方法解决问题。
(二)问题描述问题四插值。
上述函数的导数为采用三种方法中最好的方法计算这一积分(1)利用数值积分的方法给出在(可以直接计算精确值的,用精确值),用Newton插值方法得到5个椭圆的周长(2)利用数值积分的方法给出在(可以直接计算精确值的,用精确值),用Hermite插值方法得到5个椭圆的周长(3) 选做题:利用以及导数更多的值来进行插值,插值误差会有什么变化?(4)选做题:采用其它的插值方法改进插值的效果。
(三)算法介绍a确定,对于给定的b值都对应着一个椭圆,在本问题中用newton插值法和hermite得到的多项式代替椭圆周长公式中的进行积分,首先画出图像,选择初始点。
图像的实现代码见picture1.m。
newton插值法迭代公式:;Hermite法迭代公式:。
(四)程序建立picture.m文件画出和其导数图像。
(注:此图像为b=0.5时)x=0:0.1:2;y=sqrt(1+(0.5^2-1).*cos(x).^2);yyy=.750./(1-.75.*cos(x).^2).^(1/2).*cos(x).*sin(x);plot(x,y,'r');hold on;plot(x,yyy);hold off;legend('sqrt(1+(0.5^2-1).*cos(x).^2)','.750./(1-.75.*cos(x).^2).^(1/2).*cos(x).*sin(x)');所画图像为:我们选取0,0.3,0.6,0.9,1.2,1.5为初始点。
问题四(1)建立newtondedai1.m文件。
function z=newtondedai1(f,n)syms xia=zeros(n,n);x=[0 0.3 0.6 0.9 1.2 1.5];y=feval(f,x);a(:,1)=y;for i=2:nfor j=2:ia(i,j)=(a(i,j-1)-a(i-1,j-1))/(x(1,i)-x(1,i-j+1)); endendt=xi-x(1,1);p=a(1,1);for i=2:np=p+a(i,i)*t;t=t*(xi-x(1,i));endp=collect(vpa(p))问题四(2)建立hermite3.m文件。
数值计算方法实验之Newton多项式插值(MATLAB代码)

数值计算⽅法实验之Newton多项式插值(MATLAB代码)⼀、实验⽬的在⼰知f(x),x∈[a,b]的表达式,但函数值不便计算或不知f(x),x∈[a,b]⽽⼜需要给出其在[a,b]上的值时,按插值原则f(x i)=y i (i=0,1,……, n)求出简单函数P(x)(常是多项式),使其在插值基点x i处成⽴(x i)= y i(i=0,1,……,n),⽽在[a,b]上的其它点处成⽴f(x)≈P(x).⼆、实验原理三、实验内容求f(x)=x4在[0,2]上按5个等距节点确定的Lagrange插值多项式四、实验程序(1).m⽂件%输⼊的量:X是n+1个节点(x_i,y_i)(i = 1,2, ... , n+1)横坐标,Y是纵坐标,%x是以向量形式输⼊的m个插值点,M在[a,b]上满⾜|f~(n+1)(x)|≤M%注:f~(n+1)(x)表⽰f(x)的n+1阶导数%输出的量:向量y是向量x处的插值,误差限R,n次⽜顿插值多项式L及其系数向量C,%差商的矩阵Afunction[y,R,A,C,L] = newton(X,Y,x,M)n = length(X);m = length(x);for t = 1 : mz = x(t);A = zeros(n,n);A(:,1) = Y';s = 0.0; p = 1.0; q1 = 1.0; c1 = 1.0;for j = 2 : nfor i = j : nA(i,j) = (A(i,j-1) - A(i-1,j-1))/(X(i)-X(i-j+1));endq1 = abs(q1*(z-X(j-1)));c1 = c1 * j;endC = A(n, n); q1 = abs(q1*(z-X(n)));for k = (n-1):-1:1C = conv(C, poly(X(k)));d = length(C);C(d) = C(d) + A(k,k);%在最后⼀维,也就是常数项加上新的差商endy(t) = polyval(C,z);R(t) = M * q1 / c1;endL = poly2sym(C); (2)命令窗⼝输⼊X = [0 0.5 1.0 1.5 2.0];Y = [0 0.0625 1 5.0625 16];x = linspace(0,pi,50);M = 1;[y,R,A,C,L] = newton(X, Y, x, M);y1 = x.*x.*x.*x; %可根据所给函数更改errorbar(x,y,R,'.g')hold onplot(X, Y, 'or', x, y, '.k', x, y1, '-b');legend('误差','样本点','⽜顿插值估算','x^4');五、运算结果(1) 图像(2) 运算结果第⼀列为所得多项式系数:。
牛顿插值法matlab程序例题

牛顿插值法是一种常用的数值分析方法,用于构造一个多项式函数,以便在给定的数据点上进行插值。
这个主题在数学和工程领域中有着广泛的应用,特别是在数据拟合和函数逼近方面。
牛顿插值法的核心思想是通过不断地添加新的数据点来构造一个多项式,并利用已知数据点来确定多项式的系数,从而实现对未知数据点的插值预测。
在Matlab中,实现牛顿插值法并不困难,我们可以利用已有的函数和工具来简化计算过程。
下面,我们将通过一个具体的例题来讲解如何使用Matlab编写牛顿插值法的程序,并分析其结果。
我们需要明确牛顿插值法的数学原理。
给定n个互不相同的节点\(x_0, x_1, ... , x_n\),以及在这些节点上的函数值\(f(x_0), f(x_1), ... , f(x_n)\),我们希望构造一个n次插值多项式p(x),满足p(x_i) = f(x_i),i=0,1,...,n。
牛顿插值多项式的一般形式为:\[p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + ... + a_n(x -x_0)(x - x_1)...(x - x_{n-1})\]其中,\[a_i\]表示插值多项式的系数。
通过牛顿插值法的迭代过程,可以逐步求解出这些系数,进而得到插值多项式的表达式。
接下来,我们将以一个具体的例题来演示如何在Matlab中实现牛顿插值法。
假设我们有如下的数据点和函数值:\(x = [1, 2, 3, 4]\)\(f(x) = [1, 4, 9, 16]\)我们希望利用这些数据点来构造一个插值多项式,并在给定的区间上进行插值计算。
在Matlab中,可以通过interp1函数来进行插值计算,该函数支持多种插值方法,包括牛顿插值法。
下面是一个简单的Matlab程序示例:```matlabx = [1, 2, 3, 4];y = [1, 4, 9, 16];xi = 2.5;yi = interp1(x, y, xi, 'spline');disp(['在x=',num2str(xi),'处的插值结果为:',num2str(yi)]);```在这段代码中,我们首先定义了给定的数据点x和对应的函数值y,然后利用interp1函数对x=2.5处的插值结果进行计算。
Langrage和Newton插值法的matlab实现

仅供参考1.已知数据如下:(1)用MATLAB语言编写按Langrage插值法和Newton插值法计算插值的程序,对以上数据进行插值;(2)利用MATLAB在第一个图中画出离散数据及插值函数曲线。
(1.1)langrage插值法编程实现syms xx0=[0.2,0.4,0.6,0.8,1.0];y0=[0.98,0.92,0.81,0.64,0.38];for i=1:5a=1;for j=1:5if j~=ia=expand(a*(x-x0(j)));endendb=1;for k=1:5if k~=ib=b*(x0(i)-x0(k));endendA(i)=expand(a/b);endL=0;for p=1:5L=L+y0(p)*A(p);endLL =-25/48*x^4+5/6*x^3-53/48*x^2+23/120*x+49/50(1.2)Newton插值程序实现clear allclcsyms xx0=[0.2,0.4,0.6,0.8,1.0];y0=[0.98,0.92,0.81,0.64,0.38];for k=1:5for i=1:ka=1;b=0;for j=1:kif j~=ia=a*(x0(i)-x0(j));endendb=b+y0(i)/a;endA(k)=b;endB=[1,(x-x0(1)),(x-x0(1))*(x-x0(2)),(x-x0(1))*(x-x0(2))*(x-x0(3)),(x-x 0(1))*(x-x0(2))*(x-x0(3))*(x-x0(4))];L1=A.*B;l=0;for m=1:5l=l+L1(m);endL=expand(l)L =61/100+13/30*x+383/48*x^2-155/24*x^3+475/48*x^4(2)画图x0=[0.2,0.4,0.6,0.8,1.0];y0=[0.98,0.92,0.81,0.64,0.38];subplot(1,2,1);plot(x0(1),y0(1),'+r',x0(2),y0(2),'+r',x0(3),y0(3),'+r',x0(4),y0(4),' +r',x0(5),y0(5),'+r')x=0:0.05:1;y=-25/48.*x.^4+5/6.*x.^3-53/48.*x.^2+23/120.*x+49/50;subplot(1,2,2);plot(x,y)2.给定函数21(),[1,1]125f x x x ,利用上题编好的Langrage 插值程序(或Newton 插值程序),分别取3个,5个、9个、11个等距节点作多项式插值,分别画出插值函数及原函数()f x 的图形,以验证Runge 现象、分析插值多项式的收敛性。
matlab数据插值运算

matlab数据插值运算Matlab是一种强大的科学计算软件,用于数值计算、数据分析和可视化等应用。
在许多科研和工程项目中,我们经常需要对数据进行插值运算,以填补缺失值或对离散数据进行平滑处理。
本文将介绍如何使用Matlab进行数据插值运算。
数据插值是一种通过已知数据点来估计未知数据点的方法。
在Matlab中,有多种插值算法可以选择,包括线性插值、拉格朗日插值、样条插值等。
这些插值方法各有特点,根据不同的数据特征和需求,我们可以选择合适的插值算法。
我们需要准备好待插值的数据。
假设我们有一组离散的数据点,用来描述某个函数在一定范围内的取值情况。
为了方便演示,我们可以生成一组简单的数据点。
```Matlabx = 0:0.5:10;y = sin(x);```上述代码中,我们生成了一个从0到10的等间隔数据点,然后计算了对应的正弦函数值。
这样,我们就得到了一组离散的数据点。
接下来,我们可以使用Matlab提供的插值函数进行插值运算。
以线性插值为例,使用`interp1`函数可以实现对数据的线性插值。
```Matlabxi = 0:0.1:10;yi = interp1(x, y, xi, 'linear');```上述代码中,我们指定了插值的目标点`xi`,然后使用`interp1`函数对原始数据进行线性插值。
最后,我们得到了一组新的插值数据`yi`。
除了线性插值,Matlab还提供了其他插值方法,如拉格朗日插值和样条插值。
这些方法可以通过设置插值函数的参数来选择。
```Matlabyi = interp1(x, y, xi, 'spline');```上述代码中,我们使用`spline`参数来指定样条插值方法。
通过调整参数,我们可以根据数据的特点选择最合适的插值方法。
有时候我们还需要对插值结果进行进一步的平滑处理,以减少插值误差。
Matlab提供了一些平滑滤波函数,如`smoothdata`和`smooth`等。
matlab实现牛顿差分及等距节点插值公式

题目:探究matlab中牛顿差分及等距节点插值公式的实现在计算数学问题时,插值是一种常见的数值分析方法,它常常用于估计在已知数据点之间的数值。
而牛顿差分及等距节点插值公式,则是其中的一种重要方法。
本文将从简单到复杂,由浅入深地探讨matlab 中牛顿差分及等距节点插值公式的实现方法,以便读者更深入地理解这一主题。
1. 牛顿插值方法牛顿插值是一种使用多项式进行插值的数值方法,利用了拉格朗日插值多项式的一般形式,其在实际应用中具有良好的稳定性和精确度。
在matlab中,我们可以通过编写函数来实现牛顿插值方法,并根据所给定的数据点计算出插值多项式。
2. 差分及等距节点插值公式差分及等距节点插值公式是牛顿插值的一种具体形式,它通过相邻节点的差分来递推计算插值多项式的系数,从而实现对给定数据点的插值。
在matlab中,我们可以编写代码来实现这一方法,通过对数据点的差分计算来得到插值多项式的系数,并最终得到插值结果。
3. matlab中的实现步骤在matlab中,实现牛顿差分及等距节点插值公式主要包括以下几个步骤:3.1 准备数据点:首先需要准备好给定的数据点,这些数据点将作为插值的依据。
3.2 计算差商:利用给定的数据点,我们可以计算出插值多项式的系数,即差商。
这一步骤可以通过递推计算来实现。
3.3 构建插值多项式:根据得到的插值多项式的系数,我们可以构建出完整的插值多项式。
3.4 计算插值结果:我们可以利用构建好的插值多项式来计算任意点的插值结果。
4. 个人观点和理解在我看来,牛顿差分及等距节点插值公式是一种非常实用和有效的插值方法,在实际工程和科学计算中都有着广泛的应用。
在matlab中,通过编写相应的代码,我们可以很方便地实现这一方法,并得到高质量的插值结果。
掌握牛顿插值及其在matlab中的实现方法对我们来说是非常重要的。
总结回顾本文从简到繁,由浅入深地探讨了matlab中牛顿差分及等距节点插值公式的实现方法。
Matlab程序Newton插值函数

编写程序构造区间上的以等分结点为插值结点的Newton插值公式,假设结点数为(包括两个端点),给定相应的函数值,插值区间和等分的份数,该程序能快速计算出相应的插值公式。
以,为例计算其对应的插值公式,分别取不同的值并画出原函数的图像以及插值函数的图像,观察当增大时的逼近效果.解:Matlab计算程序为:clearclcf=input('请输入函数表达式:f(x)=','s');%测试公式为:1/(1+25*x^2)a=input('请输入区间左端值a:');%-1b=input('请输入区间右端值b:');%1n=input('请输入区间结点数(包括两个端点)n:');%取不同n值比较for i=1:nx(i)=a+(b-a)/(n-1)*(i-1);y(i,1)=eval(subs(f,'x','x(i)'));endfor j=1:n-1for k=j:n-1temp=y(k+1,j)-y(k,j);y(k+1,j+1)=temp/(x(k+1)-x(k+1-j));endc(j)=y(j,j);c(j+1)=y(j+1,j+1);endp=c(1);q=1;syms Xfor i=2:nq=q*(X-x(i-1));p=p+c(i)*q;endp=simple(p)for i=1:301t(i)=a+(b-a)/300*(i-1);Nn(i)=eval(subs(p,'X','t(i)'));endfor i=1:301h(i)=a+(b-a)/300*(i-1);yy(i)=eval(subs(f,'x','h(i)'));endplot(h,yy,'r')hold onplot(t,Nn,'b')hold ongrid onlegend('ÔʼÇúÏßf(x)','²åÖµÇúÏßN(x)')title('Å£¶Ù²åÖµ') xlabel('x') ylabel('f(x)')当n=5时,Newton插值公式为:p =(1250*X^4)/377 - (3225*X^2)/754 + 1 Matlab绘制的拟合图像为:由上图可见,n取较小值时,拟合误差较大当n=10时,Newton插值公式为:p = (84*X^9 + *X^8 - 112*X^7 - 4*X^6 + 136*X^5 + *X^4 + 44*X^3 - *X^2 + 4*X + 9741593257)/2706126848Matlab绘制的拟合图像为:由上图可见,随着n的增加,曲线拟合情况变好,且曲线两端拟合情况不如中间好。
Langrage和Newton插值法的matlab实现

仅供参考1.已知数据如下:(1)用MATLAB语言编写按Langrage插值法和Newton插值法计算插值的程序,对以上数据进行插值;(2)利用MATLAB在第一个图中画出离散数据及插值函数曲线。
(1.1)langrage插值法编程实现syms xx0=[0.2,0.4,0.6,0.8,1.0];y0=[0.98,0.92,0.81,0.64,0.38];for i=1:5a=1;for j=1:5if j~=ia=expand(a*(x-x0(j)));endendb=1;for k=1:5if k~=ib=b*(x0(i)-x0(k));endendA(i)=expand(a/b);endL=0;for p=1:5L=L+y0(p)*A(p);endLL =-25/48*x^4+5/6*x^3-53/48*x^2+23/120*x+49/50(1.2)Newton插值程序实现clear allclcsyms xx0=[0.2,0.4,0.6,0.8,1.0];y0=[0.98,0.92,0.81,0.64,0.38];for k=1:5for i=1:ka=1;b=0;for j=1:kif j~=ia=a*(x0(i)-x0(j));endendb=b+y0(i)/a;endA(k)=b;endB=[1,(x-x0(1)),(x-x0(1))*(x-x0(2)),(x-x0(1))*(x-x0(2))*(x-x0(3)),(x-x 0(1))*(x-x0(2))*(x-x0(3))*(x-x0(4))];L1=A.*B;l=0;for m=1:5l=l+L1(m);endL=expand(l)L =61/100+13/30*x+383/48*x^2-155/24*x^3+475/48*x^4(2)画图x0=[0.2,0.4,0.6,0.8,1.0];y0=[0.98,0.92,0.81,0.64,0.38];subplot(1,2,1);plot(x0(1),y0(1),'+r',x0(2),y0(2),'+r',x0(3),y0(3),'+r',x0(4),y0(4),' +r',x0(5),y0(5),'+r')x=0:0.05:1;y=-25/48.*x.^4+5/6.*x.^3-53/48.*x.^2+23/120.*x+49/50;subplot(1,2,2);plot(x,y)2.给定函数21(),[1,1]125f x x x ,利用上题编好的Langrage 插值程序(或Newton 插值程序),分别取3个,5个、9个、11个等距节点作多项式插值,分别画出插值函数及原函数()f x 的图形,以验证Runge 现象、分析插值多项式的收敛性。
Newton插值(MATLAB)

例:编写程序构造区间上的以等分结点为插值结点的Newton插值公式,假设结点数为(包括两个端点),给定相应的函数值,插值区间和等分的份数,该程序能快速计算出相应的插值公式。
以,为例计算其对应的插值公式,分别取不同的值并画出原函数的图像以及插值函数的图像,观察当增大时的逼近效果.1)Newton插值公式源程序:function newtoncz(a,b,n,f)ln=length(n); %给定n的个数for k=1:lnm=n(k)-1; %等分份数y=zeros(1,m+1);A=zeros(m+1);w=zeros(1,m+1);h=(b-a)/m;for i=1:m+1x(i)=a+(i-1)*h;y(i)=subs(f,findsym(f),x(i)); %插值节点函数值endA(:,1)=y';for i=2:m+1for j=i:m+1A(j,i)=(A(j,i-1)-A(j-1,i-1))/(x(j)-x(j-i+1));endendp=A(1,1);w=vpa(w,4);syms X;w(1)=X-x(1);for i=2:m+1w(i)=w(i-1)*(X-x(i));p=A(i,i)*w(i-1)+p;p=simplify(p);endp=vpa(p,4);fprintf('n=%d的newton插值多项式为:',n(k));disp(p);h=ezplot(p,[a,b]);if k==1set(h,'color','r');elseif k==2set(h,'color','b');elseif k==3set(h,'color','g');elseset(h,'color','m');endhold onendh=ezplot(f,[a,b]);set(h,'linewidth,2,'color,'k');2)在命令窗口输入a,b,n,f,得到Newton插值公式以及原函数、差值函数的图像:>> a=-1;>> b=1;>>n=[5,7,10,13];>> syms X;>> f=1/(1+25*X.^2);>> newtoncz(a,b,n,f)运行结果:n=5的newton插值多项式为:3.316*X^4-4.277*X^2+1.n=7的newton插值多项式为:-13.13*X^6+20.96*X^4+.3475e-14*X^3-8.784*X^2-.2420e-15*X+1.n=10的newton插值多项式为:.3730e-13*X^9+21.62*X^8-.6948e-13*X^7-44.92*X^6+.4163e-13*X^5+30. 73*X^4+.7857e-14*X^3-8.261*X^2+.1321e-14*X+.8615n=13的newton插值多项式为:909.9*X^12-.3411e-12*X^11-2336.*X^10+.6632e-12*X^9+2202.*X^8-.1573e-12*X^7-955.4*X^6+.2341e-12*X^5+198.7*X^4-.3535e-13*X^3-19.58*X^2+.7881e-15*X+1.000------红色(n=5)------蓝色(n=7)-----绿色(n=10)-----紫红色(n=13)-----黑色(原函数)分析:由程序可知,当插值节点个数变化时,Newton插值多项式的结构不改变,插值多项式易于构造。
matlab 拉格朗日插值法和牛顿插值法 -回复

matlab 拉格朗日插值法和牛顿插值法-回复问题:matlab中的拉格朗日插值法和牛顿插值法是什么?如何实现?引言:插值法是一种数值分析技术,用于找出一系列已知数据点之间的未知数据点的近似值。
在实际应用中,我们常常需要根据有限个离散数据点来推断出连续函数的性质,这就是插值的问题。
拉格朗日插值法和牛顿插值法是常用的插值方法之一,本文将一步一步地介绍这两种方法的原理及其在Matlab中的实现过程。
一、拉格朗日插值法拉格朗日插值法是通过一个多项式来逼近一组已知数据点,然后利用该多项式求解未知位置的近似值。
拉格朗日插值法的主要思想是利用Lagrange插值多项式来拟合给定的数据,具体步骤如下:1. 根据已知数据点的个数n,构造n次拉格朗日插值多项式。
多项式的一般形式如下:来拟合给定的数据,具体步骤如下:1. 根据已知数据点的个数n,构造n次牛顿插值多项式。
多项式的一般形式如下:-文档资料

主讲教师:牛晓颖
河北大学质监学院
第二章 插值(Interpolati物之间的数量关系:函数。 有两种情况: 一是表格形式——一组离散的数据来表示函数关系;另 一种是函数虽然有明显的表达式,但很复杂,不便于研究和 使用。 从实际需要出发:对于计算结果允许有一定的误差,可 以把函数关系用一个简单的便于计算和处理的近似表达式来 代替,从而使问题得到简化。 插值法就是一种基本方法 一般地,构造某种简单函数代替原来函数。
(x - xj ) li (x) = (xi - xj ) ji
n j=0
L ) = li (x )y n(x i
i= 0
n
与 节点 有关,而与 f 无关
拉格朗日 多项式
定理
(唯一性) 满足 P 的 n 阶插值 ( x ) = y = 0 , ... , n i i,i
L ) = li (x )y n(x i
然而,方程组的求解也并不是一件容易的事。
对于线性插值的两种形式解进行适当的分析, 从中寻求 规律而得到启发,就有了所谓的拉格朗日插值法(公式)和牛 顿插值(公式).
我们先来看看如何得到二次拉格朗日插值公式。
1.2.2 基函数法 首先, 线性插值的两点式可看作是两个特殊的一次式 的一种线性组合. 1 x - x0 x - x1 y0 + y1 = l i ( x ) y i 两点式 P1 ( x ) =
1 l0(x)= 0(x -x1)(x -x2), 0= (x0-x1)(x0-x2) 同理可得 1 l1(x)= 1(x -x0)(x -x2), 1= (x1-x0)(x1-x2) 1 l2(x)= 2(x -x0)(x -x1), 2= (x2-x0)(x2-x1) (x -x0)(x -x1) (x -x0)(x -x2) P2(x)= y0 + y1 + y2 (x0-x1)(x0-x2) (x2-x0)(x2-x1) (x1-x0)(x1-x2) 此即二次拉格朗日插值公式, 其中, l0(x), l1(x), l2(x)是满足 (2.1)的特殊(基本)二次插值多项式;称为二次插值基函数. (x -x1)(x -x2)
matlab中的牛顿插值

matlab中的牛顿插值在MATLAB中,你可以使用牛顿插值方法来生成一个多项式,用于逼近一组离散数据点。
牛顿插值多项式通常用于曲线拟合和数据插值的任务。
以下是在MATLAB中执行牛顿插值的步骤:1.准备数据:首先,准备你的离散数据点,包括x值和相应的y值。
这些数据点将用于生成插值多项式。
2.计算差商:使用牛顿插值的关键是计算差商(divided differences)。
差商用于构建插值多项式的系数。
在MATLAB中,你可以使用`divdif`函数来计算差商。
```matlabx=[x1,x2,x3,...];%x值y=[y1,y2,y3,...];%相应的y值coefficients=divdif(x,y);```3.构建插值多项式:一旦你计算出差商,你可以使用这些差商来构建牛顿插值多项式。
可以使用`poly2sym`函数将差商转化为多项式对象。
```matlabp=poly2sym(coefficients,x);```4.绘制插值曲线:你可以使用插值多项式对象`p`来绘制插值曲线,以查看如何逼近原始数据。
```matlabx_interp=linspace(min(x),max(x),100);%用于插值的新x值y_interp=subs(p,x_interp);%计算插值多项式的y值plot(x,y,'o',x_interp,y_interp);```这些步骤将帮助你在MATLAB中执行牛顿插值,以生成一个多项式,用于逼近给定的离散数据点。
这个插值多项式可以用于估算原始数据点之间的值,以获得更平滑的曲线。
MATLAB中的插值运算

MATLAB中的插值运算在数学中,有时需要查表,如对数表。
在具体查表时,需要的数据表中可能没有,这时一般可以先找出它相邻的数,再从表中查出其相应结果,然后按一定的关系把这些相邻的数以及它相应的结果加以修正,就可求出要查数的数据结果的近似值,这个修正关系就是一种插值。
在实践中,常常需要测量某些数据,但由于客观条件的限制,所测得的数据可能不够细密,满足不了实践的需要,这时便可以通过插值方法对数据进行加密处理。
此外,对于给定的离散数据对,如果要找一个函数来近似描述其对应关系,常常也需要插值。
与插值有关的MATLAB 函数(一) POLY2SYM 函数主要功能:把多项式的系数向量转换为符号多项式。
调用格式一:poly2sym (C)调用格式二:f1=poly2sym(C,'V') 或f2=poly2sym(C, sym ('V') ), (二) POLYVAL 函数主要功能:估计多项式的值。
调用格式:Y = polyval(P,X)(三) POLY 函数主要功能:把根转换为多项式的系数向量。
调用格式:Y = poly (V)(四) CONV 函数主要功能:计算卷积和多项式的和。
调用格式:C =conv (A, B)(五) DECONV 函数主要功能:计算逆卷积和多项式的除法、商和余式。
调用格式:[Q,R] =deconv (B,A)(六) roots(poly(1:n))命令调用格式:roots(poly(1:n))(七) det(a*eye(size (A)) - A)命令调用格式:b=det(a*eye(size (A)) - A)grange 插值方法介绍 对给定的n 个插值点12x ,,...n x x 及对应的函数值12,,...,n y y y ,利用n 次Lagrange 插值多项式,则对插值区间内任意x 的函数值y 可通过下式求的:11y()()n n j k k j k j j k x x x y x x ==≠-=-∑∏MATLAB 中没有直接实现拉格朗日算法的函数所以需建立M 文件:function y=lagrange (a,b,x)y=0;for i=1:length(a)l=1;for j=1:length(b)if j==il=l;elsel=l.*(x-a(j))/(a(i)-a(j));endendy=y+l*b(i);end算例:给出f(x)=ln(x)的数值表,用Lagrange计算ln(0.54)的近似值。
牛顿插值法matlab

牛顿插值法matlab
牛顿插值法是一种基于牛顿多项式的插值方法,它要求给定的插值点必须满足某种差分公式,且牛顿插值法的误差收敛速度非常快。
牛顿插值法的Matlab实现分为以下几步:
1.给定插值点和插值函数的值。
2.确定多项式的阶数n。
3.根据牛顿插值法,构造一个n×n矩阵A,其中Aij等于第i个点处对x的第j次导数。
4.构造一个n×1矩阵B,其中Bi等于第i个点处的函数值。
5.通过消元法求解矩阵方程组Ax=B,从而求出牛顿插值法的系数。
6.应用求出的系数,构造出牛顿插值多项式。
7.根据牛顿插值多项式进行插值计算。
Newton插值的matlab实现

Newton插值的matlab实现成员:黄全P092314746 28%付吉P091712737 24%颜学俭P091712716 24%罗国庭P091712739 24%指导老师:刘华2012年5月2日目录Newton插值的matlab实现 ....................................................................................................... - 1 - 一过程整理...................................................................................................................... - 3 - Newton插值的基本原理 ............................................................................................ - 3 - 二流程图............................................................................................................................ - 4 - 三算法设计...................................................................................................................... - 6 -3.1、Newton插值的matlab实现 .............................................................................. - 6 -3.2、程序..................................................................................................................... - 6 -3.3、例题..................................................................................................................... - 6 -3.4、命令执行图...................................................................................................... - 7 - 四参考文献........................................................................................................................ - 7 -一 过程整理Newton 插值的基本原理假设有n+1个不同的节点及函数在节点上的值(x 0,y 0),……(x n ,y n ),插值多项式有如下形式:)())(()()()(n 10n 102010n x -x )(x -x x -x x P x x x x x x -⋯⋯-+⋯⋯+-++=αααα(1)其中系数i α(i=0,1,2……n )为特定系数,可由插值样条i i n y x P =)((i=0,1,2……n )确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
插值MATLAB实现(牛顿差商插值误差龙格现象切比雪夫
插值)
插值是数值分析中的一种方法,通过已知数据点的函数值来估计函数
在其他点的值。
MATLAB提供了多种方法来实现插值,包括牛顿差商插值、插值误差分析、龙格现象和切比雪夫插值。
下面将详细介绍这些方法的实
现原理和MATLAB代码示例。
1.牛顿差商插值:
牛顿差商插值是一种基于多项式插值的方法,其中差商是一个连续性
的差分商。
该方法的优势在于可以快速计算多项式的系数。
以下是MATLAB代码示例:
```matlab
function [coeff] = newton_interpolation(x, y)
n = length(x);
F = zeros(n, n);
F(:,1)=y';
for j = 2:n
for i = j:n
F(i,j)=(F(i,j-1)-F(i-1,j-1))/(x(i)-x(i-j+1));
end
end
coeff = F(n, :);
end
```
该代码中,输入参数x和y分别表示已知数据点的x坐标和y坐标,返回值coeff表示插值多项式的系数。
2.插值误差分析:
插值误差是指插值函数与原始函数之间的差异。
一般来说,通过增加插值节点的数量或使用更高次的插值多项式可以减小插值误差。
以下是MATLAB代码示例:
```matlab
function [error] = interpolation_error(x, y, x_eval)
n = length(x);
p = polyfit(x, y, n-1);
y_eval = polyval(p, x_eval);
f_eval = sin(pi*x_eval);
error = abs(f_eval - y_eval);
end
```
该代码中,输入参数x和y分别表示已知数据点的x坐标和y坐标,x_eval表示插值节点的x坐标,error表示插值误差。
3.龙格现象:
龙格现象是插值多项式在等距插值节点上错误增长的现象。
为了减小龙格现象,可以使用切比雪夫节点进行插值。
以下是MATLAB代码示例:```matlab
function [nodes] = chebyshev_nodes(n)
nodes = cos((2*(0:n-1)+1)*pi/(2*n));
end
```
该代码中,输入参数n表示插值节点的数量,nodes表示切比雪夫节点的x坐标。
切比雪夫插值是一种在切比雪夫节点上进行插值的方法,可以减小龙格现象。
以下是MATLAB代码示例:
```matlab
function [coeff] = chebyshev_interpolation(x, y)
n = length(x);
T = zeros(n, n);
for i = 1:n
T(:, i) = cos((i-1)*acos(x));
end
coeff = T\y';
end
```
该代码中,输入参数x和y分别表示已知数据点的x坐标和y坐标,返回值coeff表示插值多项式的系数。
以上是牛顿差商插值、插值误差分析、龙格现象和切比雪夫插值的MATLAB实现。
这些方法可以在数值分析和科学计算中广泛应用,用于估计未知函数在给定数据点上的值。