牛顿(newton)插值法
Newton插值法实例
Newton插值法求解梁的挠度实例学院:建筑工程学院学号:2111206052 姓名:王瑞峰一、问题来源求解梁弯曲时的挠度,通常采用积分法和叠加法.积分法是利用挠曲线近似微分方程进行积分求解,积分常数可由粱的边界条件或连续光滑条件来确定.但当粱所受载荷复杂时,就要分段积分并确定多个积分常数,计算相当繁琐。
而叠加法虽然比较简单,但需对梁所受的载荷进行分解,且必须分解成早已知道所产生挠度的单个载荷.若载荷作用位置不同,所用公式也不同,无规律可言,具有一定的局限性。
所以就需要一种更好普遍实用的方法来求解。
二、数学模型实例:图1所示简支梁AB受集度为q的均布载荷作用,其弯曲刚度为脚,长度为l并等分成四段,试求1、2、3三个等分点处的挠度。
三、方法选择牛顿插值法是一种数值计算方法,基本原理是利用牛顿插值方程代替挠曲线近似微分方程,然后用代数的方法求解.如果将梁分成较多的区段,则相应地求解较多的插值方程,且精度较高。
特别指出:当求解方程较多、运算繁琐时可用计算机解决。
下面从图形表示的一般函数y=f(x)入手,推出该方法.如图2所示,将x轴进行等分,各等分点从左到右标以号码,其间距a又称为步长。
如在等电处,其纵坐标分别为等。
现在讨论对应于的A点处函数y的一阶导数.因函数y在处的一阶导数与函数在点处的一阶差商相等,即(a)其二阶导数即一阶导数的变化率,可代表梁在处的挠度,等于f(x)在点处的二阶差商的2倍,即(b)结合梁的挠曲线微分方程,我们可以得到梁的牛顿插值方程:(c)方程中其弯矩M和弯曲刚度EI加上角标i表明这些量为梁在x轴上i点处所求算的量。
要应用该方程求解,需沿梁选择一系列的点写出插值方程,所得的方程组可以求解所选点处的挠度。
四、解答过程及其编程因为此梁对称,1、3两点处的挠度相等,即y1=y3,所以只有两个值y1和y2为方程中的未知量点1处(i=1):,弯矩,其牛顿插值方程为:又因为,上式简化为:(1)点2处(i=2):,弯矩,其牛顿插值方程为:又因为,所以上式简化为:(2)可以用Matlab分别求得y1,y2代码如下:A=[-2,1;1,-1];b=[3/512;1/256];y=inv(A)*b截图如下:可得挠度:0.0098,0.0137五、误差要求由积分法求得这些挠度的精确结果为:比较两种结果:点1处:点2处:点3处与点1处相同。
牛顿插值法原理及应用
牛顿插值法插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。
如果这特定函数是多项式,就称它为插值多项式。
当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。
为了克服这一缺点,提出了牛顿插值。
牛顿插值通过求各阶差商,递推得到的一个公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。
插值函数插值函数的概念及相关性质[1]定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。
若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数.称x1,x2,…xn 为插值节点,称[a,b]为插值区间。
定理:n次代数插值问题的解存在且唯一。
牛顿插值法C程序程序框图#include<stdio.h>void main(){float x[11],y[11][11],xx,temp,newton;int i,j,n;printf("Newton插值:\n请输入要运算的值:x=");scanf("%f",&xx);printf("请输入插值的次数(n<11):n=");scanf("%d",&n);printf("请输入%d组值:\n",n+1);for(i=0;i<n+1;i++){ printf("x%d=",i);scanf("%f",&x[i]);printf("y%d=",i);scanf("%f",&y[0][i]);}for(i=1;i<n+1;i++)for(j=i;j<n+1;j++){ if(i>1)y[i][j]=(y[i-1][j]-y[i-1][j-1])/(x[j]-x[j-i]);elsey[i][j]=(y[i-1][j]-y[i-1][j-1])/(x[j]-x[j-1]);printf("%f\n",y[i][i]);}temp=1;newton=y[0][0];for(i=1;i<n+1;i++){ temp=temp*(xx-x[i-1]);newton=newton+y[i][i]*temp;}printf("求得的结果为:N(%.4f)=%9f\n",xx,newton);牛顿插值法Matlab程序function f = Newton(x,y,x0)syms t;if(length(x) == length(y))n = length(x);c(1:n) = 0.0;elsedisp('x和y的维数不相等!');return;endf = y(1);y1 = 0;l = 1;for(i=1:n-1)for(j=i+1:n)y1(j) = (y(j)-y(i))/(x(j)-x(i));endc(i) = y1(i+1);l = l*(t-x(i));f = f + c(i)*l;simplify(f);y = y1;if(i==n-1)if(nargin == 3)f = subs(f,'t',x0);elsef = collect(f); %将插值多项式展开f = vpa(f, 6);endend牛顿插值法摘要:值法利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。
牛顿插值法ppt课件
为 在点
处的二阶差商
称
f[x 0 ,x 1 , x n ] f[x 0 ,x 1 , ,x x n 0 1 ] x n f[x 1 ,x 2 , x n ]
为f (x)在点
处的n阶差商。
--
9
差商表
x
f(x)
一阶差 商
二阶差商
三阶差商
x0
f(x0)
x1
f(x1) f [x0,x1]
x2
f(x2) f [x1,x2] f [x0,x1,x2]
--
14
例题分析(续1)
f
(x0, x1)
y1 x1
y0 x0
12 1(1)
1 2
f
(x1,
x2)
y2 x2
y1 x1
11 21
0
f
(x0, x1, x2)
f
(x1,x2) f (x0,x1) x2 x0
02((1/12))
1 6
--
15
例题分析(续2)
f (x)N2(x) f (x0)f[x0,x1](xx0)
令 xx0得: Nn(x0)c0y0f(x0); 令 xx1得: Nn(x1)c0c1(x1x0)y1f(x1); 由此可c0解 ,c1;c出 i 依: 次类推。
--
6
具有承袭性的插值公式
线性插值公式可以写成如下形式:
其中
p 1 x p 0 x c 1 x x 0
p0xfx0,其修正项的系数 c1
f
x1f x0
x1 x0
再修正 p1 x 可以进一步得到拋物插值公式
p 2 x p 1 x c 2 x x 0 x x 1
其中
牛顿插值法实验报告
牛顿插值法实验报告
1. 什么是牛顿插值法?
牛顿插值法是一种多项式插值的方法,利用差商的概念,通过给定的点求出一个n 次多项式,使得该多项式经过这些点并尽可能接近给定的函数。
2. 实验步骤是什么?
(1)利用MATLAB 编写程序,输入插值节点和函数值;
(2)求解差商表及插值多项式;
(3)将插值多项式绘制成图像,并与实际函数进行比较;
(4)通过调整插值节点的个数,观察插值多项式的变化情况。
3. 实验中遇到的主要问题是什么?
在实验过程中,需要注意细节问题,如插值节点的选择、差商的计算及程序的调试等。
此外,如果插值多项式的次数太高,可能会出现插值误差过大的情况。
4. 实验的结果有哪些?
实验结果表明,随着插值节点数的增加,插值多项式的精度会提高,并且能够较好地拟合原函数。
但是如果节点过于密集,可能出现龙格现象,插值多项式的误差反而会增大。
5. 实验的意义是什么?
牛顿插值法是计算数学中重要的一种方法,对于一些实际问题的模拟和数据处理有着广泛的应用。
了解其原理和实现方式,能够更好地理解插值问题,并为计算实践提供一些帮助。
牛顿插值法介绍
牛顿插值法介绍本文将介绍牛顿插值法的基本原理、计算过程、优缺点以及在实际问题中的应用。
首先,我们将简要介绍插值法的基本概念和牛顿插值法的由来,然后详细讨论牛顿插值法的计算步骤和算法,接着分析其优缺点以及适用范围,最后通过几个实际问题的例子展示牛顿插值法的应用场景。
一、插值法基本概念在数学和计算机领域,插值是指根据已知的离散数据点构造满足这些数据点的曲线或函数的过程。
假设我们有一组数据点{(x1, y1), (x2, y2), ..., (xn, yn)},我们想要通过这些数据点构建一个函数f(x),使得f(xi) = yi,其中i = 1, 2, ..., n。
这样的函数就是经过插值的函数,它代表了这些数据点的趋势和变化规律。
插值法通常用于寻找这样的函数,它能够通过已知的数据点来估计函数在其他位置的值。
常见的插值方法包括拉格朗日插值法、牛顿插值法和埃尔米特插值法等。
在这些方法中,牛顿插值法是最为广泛使用的一种,因为它的计算效率高、精度较高,并且易于编程实现。
二、牛顿插值法的由来牛顿插值法由艾萨克·牛顿在17世纪提出,他是一位英国著名的数学家、物理学家和天文学家,在微积分、物理学和光学等领域都做出了重大贡献。
牛顿发展了牛顿插值法的理论基础和计算方法,并将其应用于数据分析和天体运动等问题中。
牛顿插值法基于牛顿插值多项式的概念,该多项式利用差商(divided differences)来表示,并具有易于计算和分析的优势。
牛顿插值多项式能够在已知的数据点上进行插值,并且还可以通过添加新的数据点来动态地更新插值结果。
因此,牛顿插值法成为了一种非常有用的数值计算工具,被广泛应用于工程、科学和金融等领域。
三、牛顿插值法的计算步骤1. 确定数据点首先,我们需要确定一组离散的数据点{(x1, y1), (x2, y2), ..., (xn, yn)},这些数据点是我们已知的数据,我们要通过它们来构建插值函数。
4.2 牛顿插值公式
§2 差商、牛顿插值多项式在计算过程中,若需要再增加插值节点并求出新的插值函数,则Lagrange 插值公式所有的基函数都要重新计算,造成计算量的很大浪费。
而以下介绍的牛顿插值公式可以克服这一缺陷,可在原有插值多项式的基础上灵活的增加插值节点。
一、 差商及其性质: 1、相关定义设给出函数)(x f 在点0x ,1x ,… ,n x ,…上的函数值 ,则有:称],[10x x f 1010()()f x f x x x -=-为函数)(x f 在0x 、1x 点的一阶差商。
一阶差商的差商],,[210x x x f 121020],[],[x x x x f x x f --= 称为函数)(x f 在0x ,1x 和2x 点的二阶差商。
1-n 阶差商的差商],,,[10n x x x f 112020],,,[],,,[------=n n n n n n x x x x x f x x x f称为函数)(x f 在n x x x ,,,10 点的n 阶差商。
见插商表4-12、性质:性质1 :差商],,,[10n x x x f 可表示为函数值的线性组合,即 ∑==ni i i n x f a x x x f 010)(],,,[ ,其中:∏≠=-=nij j j ii x xa ,0)(/1。
该性质表明:差商与节点的排列次序无关,即:],,,[10n x x x f =],,,[01n x x x f =…=],,,[01x x x f n这就是差商的对称性。
性质 2101010[,,][,,][,,,]n n n n f x x f x x f x x x x x --=-01110[,,,][,,,]n n n f x x x f x x x x -=11100[,,][,,,]n n n f x x f x x x x x --=-10110[,,][,,,]n n n f x x f x x x x x --=-性质 3 设)(x f 在所含节点n x x x ,,,10 的区间],[b a 上有n 阶导数,则在该区间内至少有一点],[b a ∈ξ,使得:!/)(],,,[)(10n f x x x f n n ξ= 由该性质可知,若)(x f 为n 次多项式,则其n 阶差商为一常数。
牛顿插值法
f [ x, x0 , x1 ,, xk 1 ] f [ x0 , x1,, xk ] f [ x, x0 , x1 ,, xk ](x xk )
因此可得
f ( x) f0 f [ x, x0 ](x x0 )
f0 ( f [ x0 , x1 ] f [ x, x0 , x1 ](x x1 ))(x x0 ) f0 f [ x0 , x1 ](x x0 ) f [ x, x0 , x1 ](x x0 )(x x1 )
为f ( x)关于xi , x j , xk的二阶差商
依此类推
5
f [ xi0 , xi1 ,, xik 1 , xik ]
f [ xi0 , xi1 ,, xik ] f [ xi0 , xi1 ,, xik 2 , xik 1 ] xik xik 1
为f ( x)关于节点 xi0 , xi1 ,, xik1 , xik 的k阶差商
2 f i 2 f i 1 3 2h3 3 f i 3!h 3
20
3 fi 3 2 fi 2 2 fxi 3 3 3!h 3 3 2h
k ( x) ( x x j )
j 0
k 1
f0 f [ x0 , x1 ,, xk ]( x x j )
k 1
n
n
k 1 j 0
为k次多项式
f 0 f [ x0 , x1 ,, xk ] k ( x)
k 1
为f ( x)关于节点 xi 的n次Newton插值多项式
f 0
f 1
f 1 f 2
f 3
2 f0
2 f2
2 f3
3 f0
牛顿插值法原理及应用
牛顿插值法插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。
如果这特定函数是多项式,就称它为插值多项式。
当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。
为了克服这一缺点,提出了牛顿插值。
牛顿插值通过求各阶差商,递推得到的一个公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。
插值函数插值函数的概念及相关性质[1]定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。
若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数.称x1,x2,…xn 为插值节点,称[a,b]为插值区间。
定理:n次代数插值问题的解存在且唯一。
牛顿插值法C程序程序框图#include<stdio.h>void main(){float x[11],y[11][11],xx,temp,newton;int i,j,n;printf("Newton插值:\n请输入要运算的值:x=");scanf("%f",&xx);printf("请输入插值的次数(n<11):n=");scanf("%d",&n);printf("请输入%d组值:\n",n+1);for(i=0;i<n+1;i++){ printf("x%d=",i);scanf("%f",&x[i]);printf("y%d=",i);scanf("%f",&y[0][i]);}for(i=1;i<n+1;i++)for(j=i;j<n+1;j++){ if(i>1)y[i][j]=(y[i-1][j]-y[i-1][j-1])/(x[j]-x[j-i]);elsey[i][j]=(y[i-1][j]-y[i-1][j-1])/(x[j]-x[j-1]);printf("%f\n",y[i][i]);}temp=1;newton=y[0][0];for(i=1;i<n+1;i++){ temp=temp*(xx-x[i-1]);newton=newton+y[i][i]*temp;}printf("求得的结果为:N(%.4f)=%9f\n",xx,newton);牛顿插值法Matlab程序function f = Newton(x,y,x0)syms t;if(length(x) == length(y))n = length(x);c(1:n) = 0.0;elsedisp('x和y的维数不相等!');return;endf = y(1);y1 = 0;l = 1;for(i=1:n-1)for(j=i+1:n)y1(j) = (y(j)-y(i))/(x(j)-x(i));endc(i) = y1(i+1);l = l*(t-x(i));f = f + c(i)*l;simplify(f);y = y1;if(i==n-1)if(nargin == 3)f = subs(f,'t',x0);elsef = collect(f); %将插值多项式展开f = vpa(f, 6);endend牛顿插值法摘要:值法利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。
牛顿插值法的应用
牛顿插值法在处理磁化曲线和铁损曲线中的应用指导老师:李国霞院系:物理工程学院专业:物理电子学姓名:夏委委学号:201112131526一、牛顿插值法简介在科学研究与其他领域中所遇到的许多实际问题中,经常会出现函数不便于处理或计算的情形。
有时候函数关系没有明显的解析表达式,需要根据实验数据或其他方法来确定与自变量的某些值相对应的函数值;有时候函数虽有明显的解析表达式,但是使用很不方便。
因此,在实际应用中,往往需要对实际使用的函数建立一个简单的便于处理和计算的近似表达式,即用一个简单的函数表达式来近似替代原来复杂的函数。
与用近似数代替准确值一样,这也是计算法中最基本的概念和方法之一。
近似代替又称为逼近。
用多项式逼近列表函数的问题即为多项式插值问题。
根据函数)(x f 已有的数据表格来计算函数)(x f 在一些新的点x 处的函数值,这就是插值法所要解决的问题。
因此,所谓的插值法就是在所给定的函数表格中间在插入一些所需要的新的点上的函数值。
插值法的基本思想:首先设法根据表格中已有的函数值来构造一个简单的函数)(x y 作为)(x f 的近似表达式,然后再用)(x y 来计算新的点上的函数值作为)(x f 的近似值。
通常可以选用多项式函数作为近似函数)(x y ,因为多项式具有各阶的导数,求值比较方便。
用代数多项式作为工具研究插值问题,通常称为代数插值。
代数插值法问题的完整提法如下:设函数)(x f y =在区间[]b a ,上是连续的,且已知)(x f 在区间[]b a ,上1+n 个互异点处的函数值,即n i x f y i i ,......1,0),(== 其中,)(j i x x j i ≠≠。
寻找一个次数不高于n的多项式0111)(a x a x a x a x P n n n n n +++=-- 使满足条件n i x f x P i i n ,,1,0),()( ==称)(x P n 为)(x f 的插值多项式,),,1,0(n i x i =称为插值结点,[]b a ,称为插值区间。
53第三节-Newton插值多项式
差商的计算结果要做出一个数据表格
差商表
xk 函数值 一阶差商 二阶差商
三阶差商 ...
x0 f (x0)
f [ x0 , x1]
x1 f (x1)
f [x0, x1, x2]
f [ x1 , x2]
f [x0, x1, x2 , x3] ...
x2 f (x2)
f [x1, x2, x3]
f [ x2 , x3]
一、差商的概念
1. 差商的定义
定义1
称 f [ x0 , xk ]
f ( x0 ) f ( xk ) 为函数 f (x) x0 xk
关于点x0, xk的一阶差商. 一阶差商的差商(均差)
f [ x0 , x1 , xk ]
f [ x0 , xk ] f [ x0 , x1 ] xk x1
可表示为
P2( x) P1( x) a2( x x0 )( x x1 ).
显然它满足条件P2(x0)=f(x0)及P2(x1)=f(x1). 令
P2(x2)=f(x2),则得
f ( x2 ) f ( x0 ) f ( x1 ) f ( x0 )
a2
P2( x2 ) P1( x2 ) ( x2 x0 )( x2 x1 )
x2 x0
x1 x0
x2 x1
系数a2是函数f(x)的“差商的差商”.
一般情况已知f(x)在插值点上xi(i=0,1, …,n)的值 为f(xi)(i=0,1, …,n),要求n次插值多项式满足条件
Pn( xi ) f ( xi ), i 0,1, , n,
则Pn(x)可表示为
第三节 牛顿(Newton)插值多项式
牛顿(Newton)插值法
Newton插值C 的求法
i
Nn(x) = c0 + c1(x – x0) + c2(x – x0) (x – x1) + …..+ cn(x – x0) (x – x1) …. (x-xn)
令x = x0得:Nn(x0) = c0 = y0 = f(x0) x = x1得:Nn(x1) = c0 + c1(x1 –x0) = y1 = f(x1) 由此可解出:c0,c1;ci 依次类推。
x y x0 y0 x1 y1 …………. …………. xn-1 yn-1 xn yn xn+1 yn+1
Nn+1(x) = c0 + c1(x – x0) + c2(x – x0)(x – x1) + …. + cn(x – x0) (x – x1) …(x –xn-1) + cn+1(x – x0) (x –x1) ….(x – xn-1) (x - xn)
求n次多项式Nn(x)使得:
Nn(xi) = f(xi) = yi, i = 0,1,… ,n Nn(x) = c0 + c1(x – x0) + c2(x – x0) (x – x1) + …..+ cn(x – x0) (x – x1) …. (x-xn)
Newton插值的承袭性
增加一个点之后
p1xp0xc1xx0其中p0xfx0其修正项的系数01011xxxfxfc???再进一步修正p1x可以进一步得到抛物线插值公式p2xp1xc2xx0xx10201011212xxxxxfxfxxxfxf??????c2差商的概念差商的定义定义1
牛顿(Newton)插值法
Ch2_3均差与牛顿插值
f [ x0 , x1 ,, xk 1 , xk ]
f ( xi ) i 0 ( xi x0 )( xi xi 1 )( xi xi 1 )( xi xk )
k
(2) 差商具有对称性,即任意调换节点的次序,差商的值不变
如
f [ x0 , x1 , x2 ] f [ x0 , x2 , x1 ] f [ x2 , x1 , x0 ]
kn
f ( n 1) ( ) 另外 f [ x , x0 , x1 ,, xn ] ( n 1)!
f ( k ) ( ) f [ x0 , x1 ,, xk ] k!
Newton插值 估计误差的 重要公式
15
例2
给出 f (x)的函数表(见表2-2),求4次牛顿插
值多项式,并由此计算 f (0.596) 的近似值.
x2的二次插值和x0,x1,x2,x3的三次插值多项式.
解
[x0,x1,x2,x3]=-1,于是有
N1(x)=5-2(x+2)=1-2x N2(x)=1-2x+3(x+2)(x+1)=3x2+7x+7 N3(x)=3x2+7x+7-(x+2)(x+1)(x-1)=-x3+x2+8x+9 i xi (xi) 0 -2 5 1 -1 3 2 1 17 3 2 21
为f ( x)关于xi , x j , xk的二阶差商
依此类推
5
f [ xi0 , xi1 ,, xik 1 , xik ]
f [ xi0 , xi1 ,, xik 1 ] f [ xi0 , xi1 ,, xik 2 , xik ] xik 1 xik
第1章插值教案
第1章 插 值1.1 插 值插值问题的提出✌导入:插值法是函数逼近的重要方法之一,有着广泛的应用 。
在生产和实验中,函数f(x)或者其表达式不便于计算,或者无表达式而只有函数在给定点的函数值(或其导数值) ,例如,有很多的物理、化学的实验数据;又例如,温度问题、股票的变化问题等。
我们希望建立一个简单的而便于计算的函数g (x),使其近似的代替f (x)。
建立的方法可采用插值法,其中以拉格朗日(Lagrange)插值和牛顿(Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermit 插值,分段插值和样条插值。
基本概念由实验或测量的方法得到所求函数 )(x f y = 在互异点n x x x 10, 处的值n y y y ,,,10 构造一个简单函数 )(x φ作为函数 )(x f y = 的近似表达式)()(x x f y φ≈=,使得 n n y x y x y x ===)(,)(,)(2211φφφ (1)这类问题称为插值问题。
)(x f 称为被插值函数,)(x φ 称为插值函数, x 0 , x 1, ... , x n 称为插值节点。
(1)式称为插值条件。
✌插值的任务就是由已知的观测点,为物理量(未知量)建立一个简单的、连续的解析模型,以便能根据该模型推测该物理量在非观测点处的特性。
我们知道函数的类型很多,用来作插值函数的种类不同,所求得的插值函数 P(x)逼近f(x)的效果不同,常用的有代数多项式、三角函数式、和有理函数式等。
当选用的是代数多项式,相应的插值问题称为多项式插值。
在多项式插值中,最常见、最基本的函数是求一次数不超过n 的代数多项式:)1()(2210nn n x a x a x a a x P ++++=L这时插值问题变为:求n 次多项式P n (x),使满足插值条件)2(,,2,1,0,)(n i y x P i i n L ==只要求出P n (x)的系数a 0 ,a 1,…, a n 即可,为此由插值条件(2)知P n (x)的系数满足下列n+1个代数方程构成的线性方程组⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n n n n n n nn y x a x a x a a y x a x a x a a y x a x a x a a n n L L L L 22101212110022010100而a i (i=0,1,2,…,n)的系数行列式是Vandermonde 行列式xxx x xx x x x x x x n n2nnn1211n 0200n 10...1..................1...1),...,,V(=∏∏=-=-=n i i j j i x x 11)(由于x i 互异,所以(4)右端不为零,从而方程组(3)的解 a 0 ,a 1 ,…a n 存在且唯一。
数值分析牛顿插值法
因此可得
f(x ) f0 f[x ,x 0 ]x ( x 0 )
f 0 ( f [ x 0 , x 1 ] f [ x , x 0 , x 1 ] x ( x 1 )x ) x 0 ) (
f 0 f [ x 0 , x 1 ] x x ( 0 ) f [ x , x 0 , x 1 ] x x ( 0 ) x x ( 1 )
华长生制作
11
下面推导余项的另外一种形式 若x将 xi,(i0,1, ,n)视为一 ,则个节点
f[x 0,x 1, ,xk,x]f[x0,x1, ,xk]x kf [x x0,x1, ,xk 1,x] f[x 0,x 1 , ,x k 1 ,x ] f [ x 0 , x 1 , , x k ] f [ x 0 , x 1 , , x k , x ] x x k ( )
有 P(x0)f0a0
a0 f0
P (x 1 ) f1 a 0 a 1 (x 1 x 0 )
a1
f1 x1
f0 x0
P ( x 2 ) f 2 a 0 a 1 ( x 2 x 0 ) a 2 ( x 2 x 0 ) x 2 ( x 1 )
f2 f0 f1 f0
a2
x2
可以证明
mfk mfkm
如
fk fk1
2fk 2fk2 3fk 3fk3
华长生制作
16
差分表
xk fk 一阶差分 二阶差分
x0 f0
x1 f1 x2 f2 x3 f3 x4 f4
f0
f1
f1
f2
f2
f3
f 3 f4
2 f0
2 f2
f2
1 2 f3
f2 2 2 f4
三阶差分
牛顿插值java实现
牛顿插值java实现Newton插值是一种在数值计算中常用的插值方法之一,它是一种多项式插值方法,可以用来找出通过任意给定点的函数。
牛顿插值法用一个多项式去逼近已知的离散数据,并且不需要预先知道函数的解析式。
因此,它被广泛应用于计算机工程科学和其他领域。
在本文中,我们将介绍Newton插值的算法原理以及如何使用Java实现这种算法。
## 算法原理假设我们有n个数据点,存储在一组{x0, x1, ..., xn}的数据组中,我们也有一组对应的函数值{f0,f1, ..., fn}。
我们需要找出一种函数f(x),通过已知数据组中的数据点来建立这个函数f(x)。
通常,在任意两个数据点之间插值函数是一个一次或二次多项式,我们可以考虑通过这些多项式的组合来描述整个函数。
在牛顿插值法中,我们从k=0开始,选择两个相邻的点{xk, f(xk)}和{xk+1, f(xk+1)}。
我们可以通过连接这两个二次函数来建立一次函数f1(x)。
这个二次函数可以通过以下公式得到:f1(x) = f(xk) + (x - xk) * Δf(xk, xk+1)其中,Δf(xk, xk+1) = (f(xk+1) - f(xk)) / (xk+1 - xk)接下来,我们可以使用类似的方法得到一个三次函数通过连接两个二次函数。
这个三次函数可以通过以下公式得到:f2(x) = f1(x) + (x - xk) * (x - xk+1) *Δ2f(xk, xk+1)其中,Δ2f(xk, xk+1) = (Δf(xk+1, xk+2) -Δf(xk, xk+1)) / (xk+1 - xk)这个过程可以一直重复下去,直到n-1个函数组合成了一个n次函数f(x)。
f(x) = f(n-1)(x) + (x - xn-1) * Δn-1f(xn-2,xn-1)其中,Δn-1f(xn-2, xn-1) = (Δn-2f(xn-2, xn-1)- Δn-2f(xn-3, xn-2)) / (xn-1 - xn-2)最后,我们可以得到一个通过原始数据组拟合的函数。
牛顿插值系数
牛顿插值是数学上的一个概念,它是一种基于已知数据插值多项式的方法。
具体来说,给定一组数据点(xi, yi),其中i=0,1,...,n,牛顿插值会根据这些数据点来构造一个插值多项式,使得该多项式尽可能地接近于实际的数据曲线。
为了实现牛顿插值,我们需要找到一个未知函数f(x)在各个数据点xi处的斜率。
通过构造一个线性方程组,我们可以求解出这个斜率数组。
具体来说,假设f(x)在xi处的斜率为bi,那么当x=xi时,由于插值多项式为f(xi) = y[i],我们有b[i] = f'(xi) = (yi - yi-1) / (xi - xi-1),其中i=1,2,...,n。
这就是给定的插值基函数。
接下来,我们需要构造一个插值多项式。
由于插值基函数是线性无关的,我们可以使用这些基函数来构造一个插值多项式。
具体来说,我们选择一个未知系数数组c[i],使得当x=xi时,多项式的值为f(xi)。
为了求解这个系数数组,我们构造一个线性方程组。
具体来说,我们根据插值基函数和插值多项式的性质,可以得到c[i] = yi -Σ(xi-xi-i)^(-2*j) * c[i-j-1),其中j=0,1,...,n-i。
求解这个线性方程组后,我们就得到了牛顿插值多项式的系数数组c[i]。
当x=x[n]时,多项式的值为f(x),而这个数值就是原始数据点中对应位置的y[n]。
因此,牛顿插值就是通过已知数据点来求取未知函数值的一种方法。
牛顿插值的一个重要特点是它的光滑性和误差特性。
通过已知的数据点,它可以逼近数据曲线并呈现出光滑性。
此外,它的误差性质决定了它的稳健性和准确性,可以满足不同的应用需求。
在实际应用中,牛顿插值经常被用于解决各种工程和科学问题。
它可以用来模拟复杂的物理过程、预测市场趋势、优化算法参数等等。
由于它的优越性能和广泛适用性,牛顿插值已经成为现代科学和工程领域中不可或缺的工具之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿(newton)插值法
牛顿插值法是一种数值分析中的插值方法,它用于找到一个多项式函数,该函数会经过给定的一系列数据点。
该方法最初由英国数学家艾萨克·牛顿(Isaac Newton)发明并称为插值多项式,它也被称作差分插值法。
插值是数学和工程学中的一项重要任务,它是用于在给定数据点之间构建连续函数的一种数值方法。
插值方法通常涉及过渡从观察结果派生出抽象结果的过程,从而使得预测可能的结果取得更加准确。
下面介绍牛顿插值法的基本原理。
插值基础
插值基础是插值方法中的一个重要概念。
在这里,我们将对牛顿插值法中用到的插值基础进行简要介绍。
一个插值基础是指一个已知数据点的集合,通常是一个 x 坐标和对应的 y 坐标。
每个插值基础一般定义为一个数据点的函数,该函数包含了给定点的所有信息并将这些信息用于构建连续函数。
在牛顿插值法中,我们使用差分来定义插值基础。
差分是指两个相邻数据点之间 y 坐标的差值。
具体来说,若给定以下节点:
x0, y0
x1, y1
x2, y2
...
xn, yn
我们则通过以下的 "+" 符号所示的不断进行差分的方式来构建一个插值基础:
y0
y1-y0
…
yn-yn-1 yn-yn-1 yn-yn-2 ... yn-y0
上述图表所展示的差分的值即为定义插值基础的差商(divided difference)。
牛顿插值公式
基于上述插值基础和差商,我们现在可以使用牛顿插值公式来实现插值。
具体来说,牛顿插值公式可以表示为:
f(x) = y0 + d1*f[x0,x1] + d2*f[x0,x1,x2] + ... + dn*f[x0,x1,...,xn]
其中 f(x) 是插值函数,x0, x1, ..., xn 是给定的节点,y0, y1, ..., yn 是对应的 y 值,f[x0,x1] 是差商 f(x0,...,x1) 的值,d1, d2, ..., dn 也是差商。
请注意,插值函数的次数最高为 n - 1,这意味着插值函数与插值基础的次数相同。
函数 f(x) 的具体形式由差商的组合方式决定。
例如,f[x0,x1,x2] 表示我们使用三个节点 (x0, y0), (x1, y1), (x2, y2) 定义了一个差商,它的形式为:
这通常被称为二阶差商。
我们可以通过唯一确定的数学方式来计算任意阶数的差商。
牛顿插值法的优点
牛顿插值法有许多优点。
首先,它是一个非常简单的插值方法,易于实现。
其次,由于它是一个多项式插值方法,因此对于任何连续函数,我们都可以使用有限数量的插值基础来表示它。
此外,与其他插值方法相比,牛顿插值法的误差较小,因为它使用了一些特定的差商。
结论。