牛顿(newton)插值法

合集下载

Newton插值法实例

Newton插值法实例

Newton插值法求解梁的挠度实例学院:建筑工程学院学号:2111206052 姓名:王瑞峰一、问题来源求解梁弯曲时的挠度,通常采用积分法和叠加法.积分法是利用挠曲线近似微分方程进行积分求解,积分常数可由粱的边界条件或连续光滑条件来确定.但当粱所受载荷复杂时,就要分段积分并确定多个积分常数,计算相当繁琐。

而叠加法虽然比较简单,但需对梁所受的载荷进行分解,且必须分解成早已知道所产生挠度的单个载荷.若载荷作用位置不同,所用公式也不同,无规律可言,具有一定的局限性。

所以就需要一种更好普遍实用的方法来求解。

二、数学模型实例:图1所示简支梁AB受集度为q的均布载荷作用,其弯曲刚度为脚,长度为l并等分成四段,试求1、2、3三个等分点处的挠度。

三、方法选择牛顿插值法是一种数值计算方法,基本原理是利用牛顿插值方程代替挠曲线近似微分方程,然后用代数的方法求解.如果将梁分成较多的区段,则相应地求解较多的插值方程,且精度较高。

特别指出:当求解方程较多、运算繁琐时可用计算机解决。

下面从图形表示的一般函数y=f(x)入手,推出该方法.如图2所示,将x轴进行等分,各等分点从左到右标以号码,其间距a又称为步长。

如在等电处,其纵坐标分别为等。

现在讨论对应于的A点处函数y的一阶导数.因函数y在处的一阶导数与函数在点处的一阶差商相等,即(a)其二阶导数即一阶导数的变化率,可代表梁在处的挠度,等于f(x)在点处的二阶差商的2倍,即(b)结合梁的挠曲线微分方程,我们可以得到梁的牛顿插值方程:(c)方程中其弯矩M和弯曲刚度EI加上角标i表明这些量为梁在x轴上i点处所求算的量。

要应用该方程求解,需沿梁选择一系列的点写出插值方程,所得的方程组可以求解所选点处的挠度。

四、解答过程及其编程因为此梁对称,1、3两点处的挠度相等,即y1=y3,所以只有两个值y1和y2为方程中的未知量点1处(i=1):,弯矩,其牛顿插值方程为:又因为,上式简化为:(1)点2处(i=2):,弯矩,其牛顿插值方程为:又因为,所以上式简化为:(2)可以用Matlab分别求得y1,y2代码如下:A=[-2,1;1,-1];b=[3/512;1/256];y=inv(A)*b截图如下:可得挠度:0.0098,0.0137五、误差要求由积分法求得这些挠度的精确结果为:比较两种结果:点1处:点2处:点3处与点1处相同。

牛顿插值法原理及应用

牛顿插值法原理及应用

牛顿插值法插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。

如果这特定函数是多项式,就称它为插值多项式。

当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。

为了克服这一缺点,提出了牛顿插值。

牛顿插值通过求各阶差商,递推得到的一个公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。

插值函数插值函数的概念及相关性质[1]定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。

若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数.称x1,x2,…xn 为插值节点,称[a,b]为插值区间。

定理:n次代数插值问题的解存在且唯一。

牛顿插值法C程序程序框图#include<stdio.h>void main(){float x[11],y[11][11],xx,temp,newton;int i,j,n;printf("Newton插值:\n请输入要运算的值:x=");scanf("%f",&xx);printf("请输入插值的次数(n<11):n=");scanf("%d",&n);printf("请输入%d组值:\n",n+1);for(i=0;i<n+1;i++){ printf("x%d=",i);scanf("%f",&x[i]);printf("y%d=",i);scanf("%f",&y[0][i]);}for(i=1;i<n+1;i++)for(j=i;j<n+1;j++){ if(i>1)y[i][j]=(y[i-1][j]-y[i-1][j-1])/(x[j]-x[j-i]);elsey[i][j]=(y[i-1][j]-y[i-1][j-1])/(x[j]-x[j-1]);printf("%f\n",y[i][i]);}temp=1;newton=y[0][0];for(i=1;i<n+1;i++){ temp=temp*(xx-x[i-1]);newton=newton+y[i][i]*temp;}printf("求得的结果为:N(%.4f)=%9f\n",xx,newton);牛顿插值法Matlab程序function f = Newton(x,y,x0)syms t;if(length(x) == length(y))n = length(x);c(1:n) = 0.0;elsedisp(&apos;x和y的维数不相等!&apos;);return;endf = y(1);y1 = 0;l = 1;for(i=1:n-1)for(j=i+1:n)y1(j) = (y(j)-y(i))/(x(j)-x(i));endc(i) = y1(i+1);l = l*(t-x(i));f = f + c(i)*l;simplify(f);y = y1;if(i==n-1)if(nargin == 3)f = subs(f,&apos;t&apos;,x0);elsef = collect(f); %将插值多项式展开f = vpa(f, 6);endend牛顿插值法摘要:值法利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。

牛顿插值法ppt课件

牛顿插值法ppt课件

为 在点
处的二阶差商

f[x 0 ,x 1 , x n ] f[x 0 ,x 1 , ,x x n 0 1 ] x n f[x 1 ,x 2 , x n ]
为f (x)在点
处的n阶差商。
--
9
差商表
x
f(x)
一阶差 商
二阶差商
三阶差商
x0
f(x0)
x1
f(x1) f [x0,x1]
x2
f(x2) f [x1,x2] f [x0,x1,x2]
--
14
例题分析(续1)
f
(x0, x1)
y1 x1
y0 x0
12 1(1)
1 2
f
(x1,
x2)
y2 x2
y1 x1
11 21
0
f
(x0, x1, x2)
f
(x1,x2) f (x0,x1) x2 x0
02((1/12))
1 6
--
15
例题分析(续2)
f (x)N2(x) f (x0)f[x0,x1](xx0)
令 xx0得: Nn(x0)c0y0f(x0); 令 xx1得: Nn(x1)c0c1(x1x0)y1f(x1); 由此可c0解 ,c1;c出 i 依: 次类推。
--
6
具有承袭性的插值公式
线性插值公式可以写成如下形式:
其中
p 1 x p 0 x c 1 x x 0
p0xfx0,其修正项的系数 c1
f
x1f x0
x1 x0
再修正 p1 x 可以进一步得到拋物插值公式
p 2 x p 1 x c 2 x x 0 x x 1
其中

牛顿插值法实验报告

牛顿插值法实验报告

牛顿插值法实验报告
1. 什么是牛顿插值法?
牛顿插值法是一种多项式插值的方法,利用差商的概念,通过给定的点求出一个n 次多项式,使得该多项式经过这些点并尽可能接近给定的函数。

2. 实验步骤是什么?
(1)利用MATLAB 编写程序,输入插值节点和函数值;
(2)求解差商表及插值多项式;
(3)将插值多项式绘制成图像,并与实际函数进行比较;
(4)通过调整插值节点的个数,观察插值多项式的变化情况。

3. 实验中遇到的主要问题是什么?
在实验过程中,需要注意细节问题,如插值节点的选择、差商的计算及程序的调试等。

此外,如果插值多项式的次数太高,可能会出现插值误差过大的情况。

4. 实验的结果有哪些?
实验结果表明,随着插值节点数的增加,插值多项式的精度会提高,并且能够较好地拟合原函数。

但是如果节点过于密集,可能出现龙格现象,插值多项式的误差反而会增大。

5. 实验的意义是什么?
牛顿插值法是计算数学中重要的一种方法,对于一些实际问题的模拟和数据处理有着广泛的应用。

了解其原理和实现方式,能够更好地理解插值问题,并为计算实践提供一些帮助。

牛顿插值法介绍

牛顿插值法介绍

牛顿插值法介绍本文将介绍牛顿插值法的基本原理、计算过程、优缺点以及在实际问题中的应用。

首先,我们将简要介绍插值法的基本概念和牛顿插值法的由来,然后详细讨论牛顿插值法的计算步骤和算法,接着分析其优缺点以及适用范围,最后通过几个实际问题的例子展示牛顿插值法的应用场景。

一、插值法基本概念在数学和计算机领域,插值是指根据已知的离散数据点构造满足这些数据点的曲线或函数的过程。

假设我们有一组数据点{(x1, y1), (x2, y2), ..., (xn, yn)},我们想要通过这些数据点构建一个函数f(x),使得f(xi) = yi,其中i = 1, 2, ..., n。

这样的函数就是经过插值的函数,它代表了这些数据点的趋势和变化规律。

插值法通常用于寻找这样的函数,它能够通过已知的数据点来估计函数在其他位置的值。

常见的插值方法包括拉格朗日插值法、牛顿插值法和埃尔米特插值法等。

在这些方法中,牛顿插值法是最为广泛使用的一种,因为它的计算效率高、精度较高,并且易于编程实现。

二、牛顿插值法的由来牛顿插值法由艾萨克·牛顿在17世纪提出,他是一位英国著名的数学家、物理学家和天文学家,在微积分、物理学和光学等领域都做出了重大贡献。

牛顿发展了牛顿插值法的理论基础和计算方法,并将其应用于数据分析和天体运动等问题中。

牛顿插值法基于牛顿插值多项式的概念,该多项式利用差商(divided differences)来表示,并具有易于计算和分析的优势。

牛顿插值多项式能够在已知的数据点上进行插值,并且还可以通过添加新的数据点来动态地更新插值结果。

因此,牛顿插值法成为了一种非常有用的数值计算工具,被广泛应用于工程、科学和金融等领域。

三、牛顿插值法的计算步骤1. 确定数据点首先,我们需要确定一组离散的数据点{(x1, y1), (x2, y2), ..., (xn, yn)},这些数据点是我们已知的数据,我们要通过它们来构建插值函数。

4.2 牛顿插值公式

4.2 牛顿插值公式

§2 差商、牛顿插值多项式在计算过程中,若需要再增加插值节点并求出新的插值函数,则Lagrange 插值公式所有的基函数都要重新计算,造成计算量的很大浪费。

而以下介绍的牛顿插值公式可以克服这一缺陷,可在原有插值多项式的基础上灵活的增加插值节点。

一、 差商及其性质: 1、相关定义设给出函数)(x f 在点0x ,1x ,… ,n x ,…上的函数值 ,则有:称],[10x x f 1010()()f x f x x x -=-为函数)(x f 在0x 、1x 点的一阶差商。

一阶差商的差商],,[210x x x f 121020],[],[x x x x f x x f --= 称为函数)(x f 在0x ,1x 和2x 点的二阶差商。

1-n 阶差商的差商],,,[10n x x x f 112020],,,[],,,[------=n n n n n n x x x x x f x x x f称为函数)(x f 在n x x x ,,,10 点的n 阶差商。

见插商表4-12、性质:性质1 :差商],,,[10n x x x f 可表示为函数值的线性组合,即 ∑==ni i i n x f a x x x f 010)(],,,[ ,其中:∏≠=-=nij j j ii x xa ,0)(/1。

该性质表明:差商与节点的排列次序无关,即:],,,[10n x x x f =],,,[01n x x x f =…=],,,[01x x x f n这就是差商的对称性。

性质 2101010[,,][,,][,,,]n n n n f x x f x x f x x x x x --=-01110[,,,][,,,]n n n f x x x f x x x x -=11100[,,][,,,]n n n f x x f x x x x x --=-10110[,,][,,,]n n n f x x f x x x x x --=-性质 3 设)(x f 在所含节点n x x x ,,,10 的区间],[b a 上有n 阶导数,则在该区间内至少有一点],[b a ∈ξ,使得:!/)(],,,[)(10n f x x x f n n ξ= 由该性质可知,若)(x f 为n 次多项式,则其n 阶差商为一常数。

牛顿插值法

牛顿插值法

f [ x, x0 , x1 ,, xk 1 ] f [ x0 , x1,, xk ] f [ x, x0 , x1 ,, xk ](x xk )
因此可得
f ( x) f0 f [ x, x0 ](x x0 )
f0 ( f [ x0 , x1 ] f [ x, x0 , x1 ](x x1 ))(x x0 ) f0 f [ x0 , x1 ](x x0 ) f [ x, x0 , x1 ](x x0 )(x x1 )
为f ( x)关于xi , x j , xk的二阶差商
依此类推
5
f [ xi0 , xi1 ,, xik 1 , xik ]
f [ xi0 , xi1 ,, xik ] f [ xi0 , xi1 ,, xik 2 , xik 1 ] xik xik 1
为f ( x)关于节点 xi0 , xi1 ,, xik1 , xik 的k阶差商
2 f i 2 f i 1 3 2h3 3 f i 3!h 3
20
3 fi 3 2 fi 2 2 fxi 3 3 3!h 3 3 2h
k ( x) ( x x j )
j 0
k 1
f0 f [ x0 , x1 ,, xk ]( x x j )
k 1
n
n
k 1 j 0
为k次多项式
f 0 f [ x0 , x1 ,, xk ] k ( x)
k 1
为f ( x)关于节点 xi 的n次Newton插值多项式
f 0
f 1
f 1 f 2
f 3
2 f0
2 f2
2 f3
3 f0

牛顿插值法原理及应用

牛顿插值法原理及应用

牛顿插值法插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。

如果这特定函数是多项式,就称它为插值多项式。

当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。

为了克服这一缺点,提出了牛顿插值。

牛顿插值通过求各阶差商,递推得到的一个公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。

插值函数插值函数的概念及相关性质[1]定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。

若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数.称x1,x2,…xn 为插值节点,称[a,b]为插值区间。

定理:n次代数插值问题的解存在且唯一。

牛顿插值法C程序程序框图#include<stdio.h>void main(){float x[11],y[11][11],xx,temp,newton;int i,j,n;printf("Newton插值:\n请输入要运算的值:x=");scanf("%f",&xx);printf("请输入插值的次数(n<11):n=");scanf("%d",&n);printf("请输入%d组值:\n",n+1);for(i=0;i<n+1;i++){ printf("x%d=",i);scanf("%f",&x[i]);printf("y%d=",i);scanf("%f",&y[0][i]);}for(i=1;i<n+1;i++)for(j=i;j<n+1;j++){ if(i>1)y[i][j]=(y[i-1][j]-y[i-1][j-1])/(x[j]-x[j-i]);elsey[i][j]=(y[i-1][j]-y[i-1][j-1])/(x[j]-x[j-1]);printf("%f\n",y[i][i]);}temp=1;newton=y[0][0];for(i=1;i<n+1;i++){ temp=temp*(xx-x[i-1]);newton=newton+y[i][i]*temp;}printf("求得的结果为:N(%.4f)=%9f\n",xx,newton);牛顿插值法Matlab程序function f = Newton(x,y,x0)syms t;if(length(x) == length(y))n = length(x);c(1:n) = 0.0;elsedisp(&apos;x和y的维数不相等!&apos;);return;endf = y(1);y1 = 0;l = 1;for(i=1:n-1)for(j=i+1:n)y1(j) = (y(j)-y(i))/(x(j)-x(i));endc(i) = y1(i+1);l = l*(t-x(i));f = f + c(i)*l;simplify(f);y = y1;if(i==n-1)if(nargin == 3)f = subs(f,&apos;t&apos;,x0);elsef = collect(f); %将插值多项式展开f = vpa(f, 6);endend牛顿插值法摘要:值法利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛顿(newton)插值法
牛顿插值法是一种数值分析中的插值方法,它用于找到一个多项式函数,该函数会经过给定的一系列数据点。

该方法最初由英国数学家艾萨克·牛顿(Isaac Newton)发明并称为插值多项式,它也被称作差分插值法。

插值是数学和工程学中的一项重要任务,它是用于在给定数据点之间构建连续函数的一种数值方法。

插值方法通常涉及过渡从观察结果派生出抽象结果的过程,从而使得预测可能的结果取得更加准确。

下面介绍牛顿插值法的基本原理。

插值基础
插值基础是插值方法中的一个重要概念。

在这里,我们将对牛顿插值法中用到的插值基础进行简要介绍。

一个插值基础是指一个已知数据点的集合,通常是一个 x 坐标和对应的 y 坐标。

每个插值基础一般定义为一个数据点的函数,该函数包含了给定点的所有信息并将这些信息用于构建连续函数。

在牛顿插值法中,我们使用差分来定义插值基础。

差分是指两个相邻数据点之间 y 坐标的差值。

具体来说,若给定以下节点:
x0, y0
x1, y1
x2, y2
...
xn, yn
我们则通过以下的 "+" 符号所示的不断进行差分的方式来构建一个插值基础:
y0
y1-y0

yn-yn-1 yn-yn-1 yn-yn-2 ... yn-y0
上述图表所展示的差分的值即为定义插值基础的差商(divided difference)。

牛顿插值公式
基于上述插值基础和差商,我们现在可以使用牛顿插值公式来实现插值。

具体来说,牛顿插值公式可以表示为:
f(x) = y0 + d1*f[x0,x1] + d2*f[x0,x1,x2] + ... + dn*f[x0,x1,...,xn]
其中 f(x) 是插值函数,x0, x1, ..., xn 是给定的节点,y0, y1, ..., yn 是对应的 y 值,f[x0,x1] 是差商 f(x0,...,x1) 的值,d1, d2, ..., dn 也是差商。

请注意,插值函数的次数最高为 n - 1,这意味着插值函数与插值基础的次数相同。

函数 f(x) 的具体形式由差商的组合方式决定。

例如,f[x0,x1,x2] 表示我们使用三个节点 (x0, y0), (x1, y1), (x2, y2) 定义了一个差商,它的形式为:
这通常被称为二阶差商。

我们可以通过唯一确定的数学方式来计算任意阶数的差商。

牛顿插值法的优点
牛顿插值法有许多优点。

首先,它是一个非常简单的插值方法,易于实现。

其次,由于它是一个多项式插值方法,因此对于任何连续函数,我们都可以使用有限数量的插值基础来表示它。

此外,与其他插值方法相比,牛顿插值法的误差较小,因为它使用了一些特定的差商。

结论。

相关文档
最新文档