矩阵分析第三章3.1-2综述
第三章_matlab矩阵运算
主讲:陈孝敬 E-mail:chenxj9@
第3章
数学运算
主要内容:
①矩阵运算; ②矩阵元素运算;
3.1 矩阵运算
3.1.1 矩阵分析
1.向量范式定义:
x x x
1
n
k 1
xk
2 k
2
k 1 n
x
n
1/ 2
k 1
xk
向量的3种常用范数及其计算函数 在MATLAB中,求向量范数的函数为: (1) norm(V)或norm(V,2):计算向量V的2—范数。 (2) norm(V,1):计算向量V的1—范数。 (3) norm(V,inf):计算向量V的∞—范数。
3.1.2 矩阵分解
矩阵分解:把矩阵分解成比较简单或对它性质比较熟悉的若干 矩阵的乘积的形式;
1.Cholesky分解: Cholesky分解是把对称正定矩阵表示成上三角矩阵的转 置与其本身的乘积,即:A=RTR,在Matlab中用函数chol 来计算Cholesky分解 例3-13 求矩阵A=pascal(4)的Cholesky分解, A=pascal(4) R=chol(A) R’*R
例3-18.求解方程组
x1 x2 3 x3 x4 1 3 x1 x2 3 x3 4 x4 4 x 5x 9 x 8x 0 2 3 4 1
解 先用Matlab函数null求出对应的齐次线性方程组的基础解 系,再利用其系数矩阵的上、下三角阵求出方程组的一个特解, 这样即可得到该方程组的通解,程序如下: >> >> >> >> >> >> A=[1 1 -3 -1;3 -1 -3 4;1 5 -9 -8]; b=[1 4 0] ′; format rat C=null(A , ′r′); %求基础解系 [L,U]=lu(A); %A=LU,L为上三角阵,U为下三角阵 X0= U\(L\b) %用LU求出一个齐次方程的特解
中科院矩阵分析chapt3
矩阵分析及其应用 3.1矩阵序列定义3.1设矩阵序列{A (k )},其中A(k)=( a (k )) C m n ,当k a j" a u 时,称矩阵序列{A (k)}收敛,并称矩阵 A=( a ij )为矩 阵序列{A (k)}的极限,或称{A (k)}收敛于A,记为lim A (k)A 或 A (k) Ak不收敛的矩阵序列称为发散的。
由定义,矩阵序列 A (k )发散的充要条件为存在 j 使得数列a (k)发散。
类似地,我们可以定义矩阵收敛的 Cauchy 定义 定义3.1'矩阵序列{A (k)}收敛的充要条件为 对任给>0存在N(),当k, l N()时有 ||A (k) A (l)|| <其中||.|为任意的广义矩阵范数。
sin 』)n nsin(k)如果直接按定义我们因为求不出 A (n)的极限从而从而只要I 充分大,则当m, n > l 时就有sin(k)k 2这样A (l)收敛。
定理3.1 A (k) A 的充要条件为 ||A (k) A|| 0证明:利用广义矩阵范数的等价性定理,仅对 范数可以证明。
即c 1ILA (k) A||||A (k) AII C 2 ||A (k) AII 性质 0 若 A (k)A ,则 ||A (k) II IIAII 成立。
性质 1. 设 A (k)A m n ,B (k) B m n , 则A (k)+ B(k) A+ B , ,C 性质 2. 设 A (k)A m n ,B (k )B n l ,贝UA (k)B (k)A B证明:由于矩阵范数地等价性,我们可以只讨论相容的 矩阵范数。
||A (k )B (k) A B|| || A (k) B (k) A B (k)||+||AB (k)A B|||| A (k) A|| ||B (k)||+||A||||B (k) B||例 1 A (n)k m 1k(k 1)相反,由于注意||B(k)|| ||B||,则结论可得。
矩阵分析课件
抽象出线性运算的本质,在任意研究对象的集 合上定义具有线性运算的代数结构。
定义1.1(P .1)
要点:
• 集合V 与数域F • 向量的加法和数乘向量运算 • 运算的性质刻画
常见的线性空间
F n={X=(x1,x2,…,xn)T:x F} 运算:向量加法和数乘向量 F mn = {A=[aij]mn:a ijF}; 运算:矩阵的加法和数乘矩阵 i 1 R mn ;C mn 。 ix a i aiR} Pn [x]={p(x)= :
0
1
]
5 向量的长度 定义: || || = ( , ) 性质: || k || =k || || ;
Cauchy 不等式:
, [Vn(F);(,)], | (,) | || || || || 。 || +|| || || +|| ||
如果
W1=L{1,2,…, m },
W2=L{1,2,…, k},
则 W1+W2=L{1,2,…,m,1,2,…, k }
3 、维数公式
子空间的包含关系: W1 W1 W2 W1 W2 Vn ( F ) W2
dimW1W2 dim Wi dimW1+W2 dimVn(F)。
子空间的“和”为“直和”的充要–条件 : 定理1· 8 设 W=W1+W2,则下列各条等价: ( 1) W=W1W2 ( 2) X W,X=X 1+X2的表 是惟一的 ( 3) W中零向量的表示是惟一的 ( 4) dim W =dimW1+dimW2
例1 P12 eg18 例2 设在Rn×n中,子空间 W 1={A AT =A } , W2={B BT= –B }, 证明Rn×n=W1W2。 例3 子空间W的“直和补子空间”
矩阵分析第三章ppt课件
2
我们知道,向量是特殊的矩阵。所有 m n阶的实矩 阵的集合 R m n 对矩阵的加法和数乘封闭,并且也满
足上述8条运算律。因此也是“实向量空间”。 不过这里的“向量”是实矩阵!!
二、线性空间(Linear Space)的概念
定义1.1如果非空集合 V 对于加法及数乘两种运算 封闭,并且对于加法和数乘满足下面8条运算律,那 么就称集合 V 为数域 F 上的线性空间或向量空间:
例1.2 闭区间 [ a , b ] 上的所有实值连续函数按通常 函数的加法和数与函数的乘法,构成线性空间 C [a , b ] 例1.3 次数不超过 n 的所有实系数多项式按通常 多项式加法和数与多项式的乘法,构成线性空间 P [ x ] n 例1.4 所有收敛的实数数列按数列极限的加法和数
乘,构成线性空间 l
( A 2 ) 加 法 结 合 律 : ( ) ( ) ,
(A 3) 具有加法单位元(零向量) R2 ,使得 (A4) 具有加法逆元(负向量) R2 ,使得 ( )
( M 1 ) 数 乘 的 结 合 律 : k () l ( k l )
( M 1 ) 数 乘 的 结 合 律 : k () l ( k l )
( M 2 ) 数 乘 的 单 位 元 : 1
( D 2 ) 分 配 律 2 : ( k l ) kl
( D 1 ) 分 配 律 1 : k ( ) k k
例1.1所有 m n阶的实(复)矩阵按矩阵的加法 m n m n 和数乘,构成线性空间 R (C ) 。
三、线性空间的基本性质
如果 V 是数域 F 上的线性空间,则
(1 )
鲁棒控制理论与设计 第三章 矩阵分析和线性矩阵不等式
k<r
则 A 与秩为 k 的任一矩阵 B 之差的 L1 和 L2 范数分别为
min A − B =
rank (B )=k
1
A − Ak
1 = σ k +1
和
(3.1.30)
3-5
第三章 矩阵分析和线性矩阵不等式
min A − B 2 =rank (B )=k2A − Ak
2 2
=
σ
2 k +1
+
L
∂A ∂θ
= [ ∂A ∂θ1
,
∂A ∂θ 2
,L ,
∂A ∂θ n
]
(3.1.12)
4) 标量对矩阵求导仍为矩阵。设 J 为标量, M 为矩阵,则 ∂J 是以 ∂J 为第 ij 元素的矩阵,
∂M
∂mij
其中 mij 表示 M 矩阵的第 ij 元素。
在上述约定下,有如下一些结果:
1) ∂ (aT x) = aT ; ∂x
−
A21
A -1 11
A12
]
(3.1.5) (3.1.6)
证明:因为
所以有
⎡ A11
⎢ ⎣
A21
A12 ⎤ ⎡ I
A22
⎥ ⎦
⎢⎣−
A−1 22
A21
0⎤
A−1 22
⎥ ⎦
=
⎡ ⎢
A11
⎣
−
A12 0
A−1 22
A21
A12
A−1 22
I
⎤ ⎥ ⎦
det
A ⋅ det
A −1 22
=
det[ A11
3.1.2 矢量与矩阵的微分运算
在鲁棒控制理论和系统建模中,矢量与矩阵的微分运算是非常重要的。本节我们不加证明地给出 一些常用到得运算定理和公式。为了叙述方便,采用下列约定。
矩阵分析3ppt课件
3. 哈密顿-开莱定理及矩阵的最小多项式
第三章 矩阵的标准形与若干分解形式
应用 计算矩阵多项式
1 0 2
例 A0 1 1 ,求(A) 2A8 3A5 A4 A2 4
0 1 0
特征多式E- A 3 21,于是A3 2A10 (A) (2A5 4A3 5A2 9A)(A3 2A1)
24A2 37A10E
0 0 ( 2 ) ( 1)( 2 )
1 0
0
0 0
0
(
0 1)(
2)
4. 多项式矩阵与史密斯标准形
第三章 矩阵的标准形与若干分解形式
性质 初等变换不改变矩阵的各阶行列式因子及秩 史密斯标准形中的d i 即是不变因子
充要条件 两个矩阵等价,则它们具有相同的行列式因 子,相同的不变因子,相同的初等因子
2
n
1. 矩阵的相似对角形
第三章 矩阵的标准形与若干分解形式
充要条件 n阶矩阵A能与对角矩阵相似的充要条 件,是A有n个线性无关的特征向量
充分条件 n阶矩阵A如果有n个不同的特征值, 则A可与对角矩阵相似
1. 矩阵的相似对角形
第三章 矩阵的标准形与若干分解形式
充分条件 n阶矩阵A如果有n个不同的特征值, 则A可与对角矩阵相似
1
1
0
1 2 1
2
P -1 A P
1
1
2
100
2100 2 2101 2 0
A100
P
1
P -1
2100 1
2101 1
0
1
2100 1 2101 2 1
1. 矩阵的相似对角形
第三章 矩阵的标准形与若干分解形式
并非每个矩阵都可以相似于对角矩阵。当矩阵 不能相似于对角阵的时候,能否找到一个比较 简单的分块对角阵与它相似?
《线性代数》第三章矩阵的初等变换与线性方程组精选习题及解答
例 3.10
求齐次线性方程组
⎧ ⎪ ⎨
x1 x1
− −
x2 x2
− +
x3 x3
+ x4 = 0 − 3x4 = 0
的通解.
⎪⎩x1 − x2 − 2x3 + 3x4 = 0
解 系数矩阵经过初等变换得
⎡1 −1 −1 1 ⎤
⎡1 −1 0 −1⎤
A = ⎢⎢1 −1 1 −3⎥⎥ ⎯r⎯→ ⎢⎢0 0 1 −2⎥⎥
阶梯形的非零行数判断矩阵的秩.
2
⎛1 3 1 4⎞
解
A
⎯r⎯→
⎜ ⎜
0
6
−4
4
⎟ ⎟
,故
R(
A)
=
2
.
⎜⎝ 0 0 0 0⎟⎠
⎡1 1 2 2 3 ⎤
例 3.2
设A=
⎢⎢0 ⎢2
1 3
1 a+2
−1 3
−1 a+6
⎥ ⎥ ⎥
,则
A
的秩
R(
A)
=
(
).
⎢⎣4 0 4 a + 7 a +11⎥⎦
(A) 必为 2
6
⎡ 1 1 0 −2 1 −1⎤
⎡1 0 0 2 −1 −1⎤
( A | b) = ⎢⎢−2 −1
1
−4 2
1
⎥ ⎥
⎯r⎯→
⎢⎢0
1
0
−4
2
0
⎥ ⎥
⎢⎣−1 1 −1 −2 1 2 ⎥⎦
⎢⎣0 0 1 −4 2 −1⎥⎦
R( A) = R( A | b) = 3 < 5 ,所以方程组有无穷多解,令 x4 = c1, x5 = c2 ,得
第3讲 矩阵分析
定义 设A为方阵, 且k 时, A( k ) 0, 则称A为收敛矩阵.
西南林业大学
矩阵论
矩阵分析
matrix theory
定理 Ak 0的充要条件是 ( A) 1. 定理 Ak 0的充要条件是只要有一种 矩阵范数 , 使得 A 1. 1/ 2 1/ 3 例: A 是否为收敛矩阵? 1/ 4 1/ 5 解: A
2
1 -1 1 -1 1 -1 B BB B 0 00 0 0 0
2
A A2 A3 ; B B 2 B 3
西南林业大学
矩阵论
矩阵分析
matrix theory
1 2 1 3 e I A A A 2! 3!
西南林业大学
矩阵论
矩阵分析
matrix theory
矩阵函数 - - -以n阶矩阵为自变量和函数值的一种函数. 定义 设一元函数f ( z )能够展开为z的幂级数 f ( z ) ck z k
k 0
z r
其中r 0表示该幂级数的收敛半径. 当n阶矩阵A的谱半径 ( A) r时, 把收敛的矩阵幂级数 ck Ak 和称为矩阵函数, 记为f ( A), 即
1 1 1 1 1 N 1 1 2 2 3 N 1 N 1 N 1
N 1 1 2 0
S
(N )
A( k )
k 1
N
1 N 1 9 4 N N 1
3 4k 的收敛性. 1 k ( k 1)
矩阵分析技术综述
矩阵分析技术综述矩阵分析技术是一种数学方法,在不同领域的应用中发挥着重要的作用。
矩阵分析技术可以用来建模、求解、优化等。
在机器学习、信号处理、计算机科学等领域都有广泛的应用。
本文将对矩阵分析技术进行综述,包括矩阵的基本概念、特征分解、奇异值分解、矩阵多项式、矩阵分解等。
矩阵的基本概念矩阵是由一个数集合按照一定规律排列成的一个矩形数组。
矩阵通常用方括号或圆括号来表示。
矩阵中每一个元素都可以用下标表示,如$A_{ij}$表示矩阵A中第i行第j列的元素。
矩阵的加、减、乘法以及转置等运算也是基本的矩阵操作,在很多算法中都有应用。
特征分解矩阵的特征分解是指将一个矩阵分解成特定形式的矩阵乘积,其中第一因子是一个特征向量矩阵,第二因子是由特征值构成的对角矩阵。
特征分解是线性代数中的一个重要概念,在很多领域的应用中都有应用。
例如,在机器学习中,特征分解可以用来降维,加快计算速度;在信号处理中,特征分解可以用来提取信号的特征信息。
奇异值分解奇异值分解是将一个矩阵分解成三个矩阵乘积的形式,其中第一因子是一个列正交矩阵,第二因子是一个对角线上的奇异值矩阵,第三因子是一个行正交矩阵。
奇异值分解是矩阵分析中的另一个重要概念。
奇异值分解可以用来求解线性方程组、求解最小二乘问题、降维等。
在图像处理以及信号处理中也有很广泛的应用。
矩阵多项式矩阵多项式是将矩阵看作一个多项式的形式,即是将多项式中的常数项、一次项、二次项以及高次项分别对应为矩阵中的常数矩阵、矩阵本身、矩阵相乘、矩阵的高次幂等。
矩阵多项式可以用来求解矩阵的特征值、特征向量,还可以用来解决自然科学领域相关的微分方程问题、动力学问题等。
矩阵分解矩阵分解是一种将一个矩阵分解为多个子矩阵的技术,这些子矩阵能够同时刻画矩阵的核心信息。
矩阵分解可以分为多种方法,包括LU分解、QR分解、Cholesky分解等等。
在很多领域中,如机器学习、推荐系统、计算机视觉等,矩阵分解都是一个非常重要的技术。
数值分析第三章小结
第三章矩阵特征值与特征向量的计算--------学习小结一、本章学习体会本章我们学习了矩阵特征值与特征向量的计算方法即幂法、反幂法、Jacobi方法和QR方法。
下边介绍一下四种方法各自的特点和适用范围。
幂法:主要用于计算矩阵按模最大的特征值及其相应的特征向量;反幂法:主要用于计算矩阵按模最小的特征值及其相应的特征向量;Jacobi法:用于求实对称矩阵的全部特征值和特征向量的方法;QR法:则适用于计算一般实矩阵的全部特征值,尤其适用于计算中小型实矩阵的全部特征值。
归结起来,这四种方法有一个共同的特点,即都是用了迭代的方法来求矩阵的特征值和特征向量。
还有利用用MATLAB自带的解法求解特征值和特征向量,其自带函数Eig即得到结果是虚数也可以算出,并且结果自动正交化。
二、本章知识梳理在工程技术中,计算矩阵的特征值和特征向量主要使用数值解法。
本章将阐述幂法、反幂法、Jacobi 方法、和QR 方法,并且只限于讨论实矩阵的情况。
3.1 幂法和反幂法(1)幂法幂法主要用于计算矩阵的按模为最大的特征值和相应的特征向量,其思想是迭代。
设n ⨯n 实矩阵A 具有n 个线性无关的特征向量,,...,,321n x x x x 其相应的特征值n λλλ...21,,满足如下不等式 n λλλλ≥≥≥> (321)其中i i i x Ax λ= )。
(n i ,...2,1=现在要求出1λ和相应的特征向量。
任取一n 维非零向量0u ,从0u 出发,按照如下的递推公式 1-=k k Au u ),,(...21=k 因n 维向量组n x x x ,...,21线性无关,故对于向量0u ,必存在唯一的不全为零的数组n ααα,...,21,使得n n x x x u ααα...22110++=n k n k k k k k k x A x A x A u A u A Au u ααα+++=====--......22110221=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+=+++n kn n k kn k n n k k x x x x x x 12122111222111......λλαλλααλλαλαλα 设01≠α。
矩阵分析.ppt
X
x2
,
am X
xn
nm
同理,a X 对X T的导数定义为
a1 X
x1
da X
a2
X
dX T
x1
am X
x1
a1 X
x2
a2 X
x2
am X
x2
bX
daT X
dX
bX
dbT X
dX
aX
;
5
d dX T
aT
X
bX
bT
X
da X
dX T
aT
X
db X
dX T
。
例6
设A
aij
,
mn
X
x1, x2 ,
, xn T ,
求线性向量函数y AX关于向量X T的导数
可微,其导数定义如下:
A' t= aij' t ,同样,At的高阶导数定义为:
A'' t=
A' t
'
,
, An
t
=
n1
A
t
'
。
性质1 设函数矩阵At,Bt都可微,则 1设k任意常数,则kAt' kA' t;
2若At与Bt可以相加,则 At Bt' A' t B' t;
矩阵分析第三章课后答案
第三章 内积空间 正规矩阵 Hermite 矩阵3-1(1)证明:),(αβ=H A αβ=H H A )(βα=H A βα ,(βα,k )=),(βαβαk A k H =),(),()(),(γβγαγβγαγβαγβα+=+=+=+H H H A A AH A αααα=),(,因为A 为正定H 矩阵,所以0),(≥αα,当且仅当0),(0==ααα时,由上可知cn是酉空间。
証毕。
(2)解: ∑∑==n jnij ij i Hy a x A |||),(|βαβα∑∑==n jnij ijix ax ),(||||ααα,∑∑==n jnij ijiy ay ),(||||βββ由Cauchy-Schwarz 不等式有:∑∑∑∑∑∑≤n jnij ijin jnin jnij ijij ijiy ay x ax y ax *3-2解:根据核空间的定义知道N(A)是方程组[][][]()1234512312321-113=011-101=0,1,1,0,0=-1,1,01,0=4-5,0,0,1=span{,,}T T Tx x x x x N A αααααα⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦的解空间,解得它的基础解系为,,,,从而[] () ()() ()() ()1121221211131323312312112212311122schmidt==0,1,1,0,0,111=-=-=-1,,-,1,0,222,,-513=--=-+,,257663=,-,,,15555==00,0=TTTTβααββαβαβββαβαββαββαββββββββββγββγβ⎡⎤⎢⎥⎣⎦⎡⎤⎢⎥⎣⎦⎡⎤⎢⎥⎣⎦首先应用正交化方法得到:然后将,,单位化后得到:2333123=--0510105==().TTN Aβγβγγγ⎡⎤⎢⎥⎣⎦,,,所以,,即为的标准正交基3-3(1)解:由|λE-A| = (λ+1)3得λ= -1是A的特征值,当λ=-1时,可得|λE-A|=021于是ε1=(0,1,0)T是A的特征向量。
第3章 矩阵的标准形-2
1 2 3 4
A
0 0
1 0
2 1
3ห้องสมุดไป่ตู้2
0 0 0 1
矩阵分析简明教程
1
E
A
0 0
0
2 1
0 0
3 2 1 0
4
3
2
1
D1( ) D2 ( ) D3 ( ) 1, D4 ( ) ( 1)4
d1( ) d2 ( ) d3 ( ) 1, d4 ( ) ( 1)4
E
A
4
1
1 3
0
0
0
2
1 1 0
3 4
0
0 1 2
矩阵分析简明教程
1
0
0
3 ( 1)2
0
0
1 2
1 0
0
0
( 1)2
0
0
1 2
矩阵分析简明教程
1 0
0
0
( 1)2
(
2)(
1)2
0 1
0
1 0
0
0
0
(
2)(
1
)
2
0 1
0
矩阵分析简明教程
矩阵分析简明教程
即
(E A) p1 0
(E A) p2 0
(E A) p3 p2
前面的两个方程为同解方程组,可以求出它们的一个 基础解系:
1 1, 1, 0T ,2 3, 0, 1T
可以取 p1 1 ,但是不能简单地取 p2 2 ,这是因为如果 p2 选取不当会使得第三个非
齐次线性方程组无解。由于 1,2
J1
J
J2
J
s
称为Jordan标准形。
第三章 矩阵分析
c c
k 0 k 0
1 k 1 k k i
c c
k 0
di 1 k di 1 k k i
ck i k
ck c1 ik 1 k
k 0
ck ik
k 0
di di
a
k 0
(k )
ij
aij
(0)
aij
(1)
aij
(k )
于是
k 0
A
(k ) m1
aij
k 0 i 1 j 1
m1
m
n
(k )
aij
i 1 j 1 k 0
m
n
(k )
即 k 0
A( k )
收敛。根据矩阵范数等价性定理知结
lim A
k
(k )
A 或
A
(k )
A k ). (
否则称为发散。
例
如果设 A
(k ) 11
(k )
那么
k 1 (k ) k a , a12 r (0 r 1) 3k 2 1 k k (k ) (k ) k a21 r ( r 1) , a22 2 k k
lim A
k
(k )
A , lim B
k
(k )
B
则
lim aA
k
(k )
bB
(k )
aA bB , a, b C
(k ) k
(3)设 lim A
矩阵论矩阵分析报告
第三章 矩阵分析在此之前我们只研究了矩阵的代数运算,但在数学的许多分支和工程实际中,特别是涉及到多元分析时,还要用到矩阵的分析运算.本章首先讨论矩阵序列的极限和矩阵级数,然后介绍矩阵函数和它的计算,最后介绍矩阵的微积分,以及矩阵分析在解微分方程组和线性矩阵方程中的应用.§3.1 矩阵序列 定义 3.1 设有Cm n⨯中的矩阵序列{}()k A ,其中()()()k k ij m nAa ⨯=.若()lim (1,2,,;1,2,,)k ij ij k a a i m j n →+∞=== ,则称矩阵序列{}()k A 收敛于()ij m n A a ⨯=,或称A 为矩阵序列{}()k A 的极限,记为()lim k k A A →+∞=或()()k A A k →→+∞不收敛的矩阵序列称为发散. 由定义可见,Cm n⨯中一个矩阵序列的收敛相当于mn 个数列同时收敛.因此,可以用初等分析的方法来研究它.但同时研究mn 个数列的极限未免繁琐.与向量序列一样,可以利用矩阵范数来研究矩阵序列的极限. 定理 3.1 设()k A,C (012)m n A k ,,,⨯∈= .则()lim k k AA →+∞=的充分必要条件是()lim 0k k A A →+∞-=,其中 是C m n ⨯上的任一矩阵范数.证 先取Cm n⨯上矩阵的G-范数.由于()()()()1=1k k k ij ij ij ij Gi,jm nk ijiji j a a a a A Aaa =-≤-=-≤-所以()lim k k A A →+∞=的充分必要条件是()lim 0k Gk A A→+∞-=.又由范数的等价性知,对C m n⨯上任一矩阵范数 ,存在正常数α,β,使得()()()k k k GGAAAA AA αβ-≤-≤-故()lim 0k Gk AA→+∞-=的充分必要条件是()lim 0k k A A →+∞-=.证毕推论 设()k A,C(012)m nA k ,,,⨯∈= ,()lim k k A A →+∞=.则()lim k k A A →+∞=其中 是Cm n⨯上任一矩阵范数.证 由()()k k AA A A -≤-即知结论成立.证毕需要指出的是,上述推论的相反结果不成立.如矩阵序列()1(1)112k k A k ⎛⎫- ⎪=+ ⎪ ⎪⎝⎭不收敛.但()Flim lim k k x A →+∞== 收敛的矩阵序列的性质,有许多与收敛数列的性质相类似. 定理3.2 设()lim k k AA →+∞=,()lim k k B B →+∞=,其中()k A ,()k B ,A ,B 为适当阶的矩阵,α,β∈C .则 (1)()()lim ()k k k AB A B αβαβ→+∞+=+;(2) ()()lim k k k A BAB →+∞=;(3)当()k A与A 均可逆时,()11lim ()k k AA --→+∞=.证 取矩阵范数 ,有()()()()()()()()()()()()()()()k k k k k k k k k k k k k A B A B A A B B A B ABA B A B A B AB A B B A A Bαβαβαβ+-+≤-+--=-+-≤-+-由定理3.1和推论知(1)和(2)成立.因为()1()k A -,1A -存在,所以()lim det det 0k k AA →+∞=≠,又有()lim adj adj k k A A →+∞=.于是()()11()adj adj lim ()lim det det k k k k k A AA A A A--→+∞→+∞=== 证毕 定理3.2(3)中条件()k A与A 都可逆是不可少的,因为即使所有的()k A可逆也不能保证A一定可逆.例如()11111k Ak ⎛⎫+ ⎪= ⎪ ⎪⎝⎭对每一个()k A都有逆矩阵()1()1k kk A k k --⎛⎫=⎪-+⎝⎭,但()11lim 11k k A A →+∞⎛⎫== ⎪⎝⎭而A 是不可逆的. 在矩阵序列中,最常见的是由一个方阵的幂构成的序列.关于这样的矩阵序列有以下的概念和收敛定理. 定义3.2 设n nA C ⨯∈,若()lim 0k k A→+∞=,则称A 为收敛矩阵.定理3.3 设n nA C⨯∈,则A 为收敛矩阵的充分必要条件是ρ(A )<1.证 必要性.已知A 为收敛矩阵,则由谱半径的性质,有(())()k k k A A A ρρ=≤其中 是Cn n⨯上任一矩阵范数,即有lim (())0kk A ρ→+∞=,故ρ(A )<1.充分性.由于ρ(A )<1,则存在正数ε,使得ρ(A )+ε<1.根据定理2.14,存在C n n⨯上的矩阵范数m ,使得()1m A A ρε≤+<从而由kk m mAA ≤得lim 0kmk A →+∞=.故lim 0k k A →+∞=. 证毕推论 设n nA C ⨯∈.若对Cn n⨯上的某一矩阵范数 有1A <,则A 为收敛矩阵.例3.1 判断下列矩阵是否为收敛矩阵:(1)181216A -⎛⎫= ⎪-⎝⎭; (2)0.20.10.20.50.50.40.10.30.2A ⎛⎫⎪= ⎪ ⎪⎝⎭. 解 (1)可求得A 的特征值为156λ=,212λ=-,于是5()16A ρ=<,故A 是收敛矩阵; (2)因为10.91A =<,所以A 是收敛矩阵.§3.2 矩阵级数定义3.3 由Cm n⨯中的矩阵序列{}()k A 构成的无穷和(0)(1)()k A A A ++++ 称为矩阵级数,记为()k k A+∞=∑.对任一正整数N ,称()()NN k k SA ==∑为矩阵级数的部分和.如果由部分和构成的矩阵序列{}()N S收敛,且有极限S ,即()lim N N SS →+∞=,则称矩阵级数()0k k A +∞=∑收敛,而且有和S ,记为()k k S A+∞==∑不收敛的矩阵级数称为发散的.如果记()()()k k ij m n Aa ⨯=,()ij m n S s ⨯=,显然()0k k S A +∞==∑相当于()(1,2,,;1,2,,)k ij ij k a s i m j n +∞====∑即mn 个数项级数都收敛. 例3.2 已知()1π24(0,1,)10(1)(2)k kk A k k k ⎛⎫⎪ ⎪== ⎪ ⎪++⎝⎭研究矩阵级数()k A+∞∑的敛散性.解 因为k 00()()001π2410(1)(2)1π1242341012N Nk Nk k N k N k k N N S A k k N ====⎛⎫⎪ ⎪== ⎪ ⎪++⎝⎭⎛⎫⎛⎫-- ⎪ ⎪⎝⎭ ⎪= ⎪- ⎪+⎝⎭∑∑∑∑所以()4π2lim 301N N S S →+∞⎛⎫⎪= ⎪ ⎪⎝⎭故所给矩阵级数收敛,且其和为S . 定义3.4 设()()()C (0,1,)k k m n ij m n Aa k ⨯⨯=∈= .如果mn 个数项级数()0(1,2,,;1,2,,)k ijk ai m j n +∞===∑ 都绝对收敛,即()k ijk a +∞=∑都收敛,则称矩阵级数()k k A+∞=∑绝对收敛.利用矩阵范数,可以将判定矩阵级数是否绝对收敛转化为判定一个正项级数是否收敛的问题.定理3.4 设()()()C(0,1,)k k m nij m nAa k ⨯⨯=∈= .则矩阵级数()0k k A +∞=∑绝对收敛的充分必要条件是正项级数()0k k A +∞=∑收敛,其中 是C m n ⨯上任一矩阵范数.证 先取矩阵的1m -范数.若1()k k m A +∞=∑收敛,由于1()()()11(1,2,,;1,2,,)mnk k k ijij i j m aa A i m j n ==≤===∑∑从而由正项级数的比较判别法知()k ijk a+∞=∑都收敛,故()k k A+∞=∑绝对收敛.反之,若()k k A+∞=∑绝对收敛,则()0k ijk a+∞=∑都收敛,从而其部分和有界,即()0(1,2,,;1,2,,)Nk ijijk aM i m j n =≤==∑ 记,max ij i jM M =,则有1()()()0011110()()NNmnm n Nk k k ijijk k i j i j k m AaamnM =========≤∑∑∑∑∑∑∑故1()k k m A +∞=∑收敛.这表明()k k A+∞=∑绝对收敛的充分必要条件是1()k k m A +∞=∑收敛.由矩阵范数的等价性和正项级数的比较判别法知,1()k k m A+∞=∑收敛的充分必要条件是()0k k A +∞=∑收敛,其中 是C m n ⨯上任一矩阵范数. 证毕利用矩阵级数收敛和绝对收敛的定义,以及数学分析中的相应结果,可以得到以下一些结论.定理3.5 设()k k AA +∞==∑,()0k k B B +∞==∑,其中()k A ,()k B ,A ,B 是适当阶的矩阵,则(1)()()0()k k k AB A B +∞=+=+∑;(2)对任意λ∈C ,有()k k AA λλ+∞==∑;(3)绝对收敛的矩阵级数必收敛,并且任意调换其项的顺序所得的矩阵级数仍收敛,且其和不变; (4)若矩阵级数()k k A+∞=∑收敛(或绝对收敛),则矩阵级数()k k PAQ +∞=∑也收敛(或绝对收敛),并且有()()0()(3.1)k k k k PAQ P A Q+∞+∞===∑∑(5)若()k k A+∞=∑与()k k B+∞=∑均绝对收敛,则它们按项相乘所得的矩阵级数(0)(0)(0)(1)(1)(0)(0)()(1)(1)(()()(3.2)k k k A B AB A B A B A B A B -++++++++ 也绝对收敛,且其和为AB . 证 只证(4)和(5).若()0k k A+∞=∑收敛,记()()0NN k k SA ==∑,则()lim N N S A →+∞=.从而()()00lim(lim)NNk k N N k k PAQ P AQ PAQ →+∞→+∞====∑∑可见()k k PAQ +∞=∑收敛,且式(3.1)成立.若()k k A+∞=∑绝对收敛,则由定理3.4知()k k A +∞=∑收敛,但()()()k k k PA Q P AQ Aα≤≤其中α是与k 是无关的正数,从而()k k PAQ +∞=∑收敛,即()k k PAQ +∞=∑绝对收敛.当()k k A+∞=∑和()k k B+∞=∑绝对收敛时,由定理3.4知()k k A+∞=∑和()0k k B +∞=∑收敛,设其和分别为1σ与2σ,从而它们按项相乘所得的正项级数(0)(0)(0)(1)(1)(0)(0)()(1)(1)()(0)()()k k k A B A B A B ABABAB-++++++++也收敛,其和为12σσ.因为(0)()(1)(1)()(0)(0)()(1)(1)()(0)k k k k k k A B A B A B ABABAB--+++≤+++所以矩阵级数(3.2)绝对收敛.记()()1NN k k SA==∑,()()2NN k k SB ==∑,()(0)()(1)(1)()(0)3()NN k k k k SA B A B A B -==+++∑则()()()(1)()(2)(1)(2)()()(1)()()123N N N N N N N N N S S S A B A B A B A B A B --=++++++又记()()1NN k k Aσ==∑,()()2NN k k B σ==∑,()(0)()(1)(1)()(0)3()NN k k k k A B A B A B σ-==+++∑显然()()()()()()123123N N N N N N S S S σσσ-≤-故由()()12lim N N N S S AB →+∞=和()()()123lim ()0N N N N σσσ→+∞-=,得()3lim N N S AB →+∞=证毕下面讨论一类特殊的矩阵级数——矩阵幂级数. 定义3.5 设n nA C⨯∈,C(0,1,)k a k ∈= .称矩阵级数kk k a A+∞=∑为矩阵A 的幂级数.利用定义来判定矩阵幂级数的敛散性,需要判别2n 个数项级数的敛散性,当矩阵阶数n 较大时,这是很不方便的,且在许多情况下也无此必要.显然,矩阵幂级数是复变量z 的幂级数0kk k a z+∞=∑的推广.如果幂级数kk k a z+∞=∑的收敛半径为r ,则对收敛圆z r <内的所有z ,kk k a z+∞=∑都是绝对收敛的.因此,讨论kk k a A+∞=∑的收敛性问题自然联系到kk k a z+∞=∑的收敛半径.定理3.6 设幂级数kk k a z+∞=∑的收敛半径为r ,Cn nA ⨯∈.则(1)当ρ(A )<r 时,矩阵幂级数0kk k a A+∞=∑绝对收敛;(2)当ρ(A )>r 时,矩阵幂级数kk k a A+∞=∑发散.证 (1)因为ρ(A )<r ,所以存在正数ε,使得ρ(A )+ε<r .根据定理2.14,存在Cn n⨯上的矩阵范数m ,使得m ()A A r ρε≤+<从m m(())kk k k k k a A a A a A ρε≤≤+而由于幂级数(())kkk aA ρε+∞=+∑收敛,故矩阵幂级数0k k k a A +∞=∑绝对收敛.(2)当ρ(A )>r 时,设A 的,n 个特征值为12,,,n λλλ ,则有某个l λ满足l r λ>.由Jordan 定理,存在n 阶可逆矩阵P ,使得11112(10)i n n P AP J λδδδλλ--⎛⎫⎪⎪== ⎪⎪⎝⎭代表或而kk k a J+∞=∑的对角线元素为0(1,2,,)k k jk a j n λ+∞==∑ .由于0k k lk a λ+∞=∑发散,从而0k k k a J +∞=∑发散.故由定理 3.5(4)知,kkk a A+∞=∑也发散. 证毕推论 设幂级数kkk a z +∞=∑的收敛半径为r ,C n n A ⨯∈.若存在C n n ⨯上的某一矩阵范数 使得A r <,则矩阵幂级数0kk k a A+∞=∑绝对收敛.例3.3 判断矩阵幂级数018216kkk k+∞=-⎛⎫ ⎪-⎝⎭∑的敛散性. 解 令181216A -⎛⎫= ⎪-⎝⎭.例3.1中已求得5()6A ρ=.由于幂级数0kk kz +∞=∑的收敛半径为r =1,故由ρ(A )<1知矩阵幂级数kk kA+∞=∑绝对收敛.最后,考虑一个特殊的矩阵幂级数. 定理3.7 设Cn nA ⨯∈.矩阵幂级数kk A+∞=∑(称为Neumann 级数)收敛的充分必要条件是ρ(A )<1,并且在收敛时,其和为1()I A --. 证 当ρ(A )<1时,由于幂级数kk z+∞=∑的收敛半径r =1,故由定理 3.6知矩阵幂级数0kk A+∞=∑收敛.反之,若kk A+∞=∑收敛,记0kk S A+∞==∑,()()0NN k k SA ==∑则()lim N N S S →+∞=.由于()(1)()(1)lim lim ()=lim lim N N N N N N N N N A S S S S O --→+∞→+∞→+∞→+∞==--故由定理3.3知ρ(A )<1.当kk A+∞=∑收敛时,ρ(A )<1,因此I -A 可逆,又因为()1()N N S I A I A +-=-所以()111()()N N S I A A I A -+-=---故()1lim ()N N S S I A -→+∞==- 证毕 例3.4 已知0.20.10.20.50.50.40.10.30.2A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,判断矩阵幂级数0k k A +∞=∑的敛散性.若收敛,试求其和.解 因为10.91A =<,所以kk A+∞=∑收敛,且102814141()44624214202535k k A I A +∞-=⎛⎫ ⎪=-= ⎪ ⎪⎝⎭∑ §3.3 矩阵函数矩阵函数是以矩阵为变量且取值为矩阵的一类函数.本节介绍矩阵函数的定义和计算方法,并讨论常用矩阵函数的性质. 一、矩阵函数的定义 定义3.5 设幂级数0k k k a z +∞=∑的收敛半径为r ,且当z r <时,幂级数收敛于函数f (z ),即0()()kk k f z a zz r +∞==<∑如果Cn nA ⨯∈满足ρ(A )<r ,则称收敛的矩阵幂级数kk k a A+∞=∑的和为矩阵函数,记为f (A ),即0()(3.3)kk k f A a A+∞==∑根据这个定义,可以得到在形式上和数学分析中的一些函数类似的矩阵函数.例如,对于如下函数的幂级数展开式02120101e ()!(1)sin ()(21)!(1)cos ()(2)!(1)(1)(1)ln(1)(1)1kzk k k k k kk kk k k k z r k z zr k z zr k z z r z zr k +∞=+∞+=+∞=+∞-=+∞+===+∞-==+∞+-==+∞-==-+==+∑∑∑∑∑ 相应地有矩阵函数01e !kk A A k +∞==∑(C n n A ⨯∈) 210(1)sin (21)!kk k A A k +∞+=-=+∑ (C n n A ⨯∈)20(1)cos (2)!k kk A A k +∞=-=∑ (C n n A ⨯∈)1()k k I A A +∞-=-=∑ (ρ(A )<1)1(1)ln()1k k k I A A k +∞+=-+=+∑ (ρ(A )<1)称e A为矩阵指数函数,sin A 为矩阵正弦函数,cos A 为矩阵余弦函数.如果把矩阵函数f (A )的变元A 换成At ,其中t 为参数,则相应得到()()(3.4)kk k f At a At +∞==∑在实际应用中,经常需要求含参数的矩阵函数.二、矩阵函数值的计算以上利用收敛的矩阵幂级数的和定义了矩阵函数f (A ),在具体应用中,要求将f (A )所代表的具体的矩阵求出来,即求出矩阵函数的值.这里介绍几种求矩阵函数值的方法.以下均假设式(3.3)或式(3.4)中的矩阵幂级数收敛. 方法一 利用Hamilton-Cayley 定理利用Hamilton-Cayley 定理找出矩阵方幂之间的关系,然后化简矩阵幂级数求出矩阵函数的值.举例说明如下. 例3.5 已知0110A ⎛⎫=⎪-⎝⎭,求e At.解 可求得2det()1I A λλ-=+.由Hamilton-Cayley 定理知2A I O +=,从而2A I =-,3A A =-,4A I =,5A A =,…即2(1)k k A I =-,21(1)(1,2,)k k A Ak +=-=故243501e 1!2!4!3!5!cos sin (cos )(sin )sin cos Atk k k t t t t A t I t Ak t t t I t A t t +∞=⎛⎫⎛⎫==-+-+-+- ⎪ ⎪⎝⎭⎝⎭⎛⎫=+= ⎪-⎝⎭∑例3.6 已知4阶方阵A 的特征值为π,-π,0,0,求sin A ,cos A .解 因为2422det()(π)(π)πI A λλλλλλ-=-+=-,所以422πA A O -=.于是422πA A =,523πA A =,642πA A =,743πA A =,…即2222πkk A A -=,21223π(2,3,)k k A A k +-==故213223023321323332(1)1(1)sin π(21)!3!(21)!11(1)π3!π(21)!sin ππ1ππk k k k k k k k k A A A A Ak k A A A k A A A A +∞+∞+-==+∞+=--==-+++⎛⎫-=-+ ⎪+⎝⎭=+=-∑∑∑-22222022222(1)1(1)cos π(2)!2!(2)!cos π12ππk k k k k k A A I A Ak k I A I A +∞+∞-==--==-+=+=-∑∑-方法二 利用相似对角化 设C n nA ⨯∈是可对角化的,即存在C n n n P ⨯∈,使得112diag(,,,)n P AP A λλλ-== 则有11112112()()()diag(,,,)diag((),(),,())kkk k k k k k k kk k k k k n k k k n f A a A a P P P a P P a a a P P f f f P λλλλλλ+∞+∞+∞--===+∞+∞+∞-===-==Λ=Λ==∑∑∑∑∑∑同理可得112()diag((),(),,())n f At P f t f t f t P λλλ-=例3.7 已知460350361A ⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭,求e At,cos A .解 可求得2det()(2)(1)I A λλλ-=+-,即A 的特征值为12λ=-,231λλ==.对应12λ=-的特征向量为T 1(1,1,1)p =-,对应231λλ==的两个线性无关的特征向量为T 2(2,1,0)p =-,T 3(0,0,1)p =.于是120110101P --⎛⎫ ⎪= ⎪ ⎪⎝⎭ 使得1211P AP --⎛⎫⎪= ⎪ ⎪⎝⎭故22212222e 2e e 2e 2e 0e e e e2e e 0e e e 2e 2e e tt t t t At tt t t t t t t t tt P P --------⎛⎫⎛⎫-- ⎪ ⎪==--⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭1cos(2)cos cos1cos12cos1cos 22cos12cos 20cos 2cos12cos 2cos10cos 2cos12cos 22cos1cos1A P--⎛⎫⎪= ⎪ ⎪⎝⎭--⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭方法三 利用Jordan 标准形 设Cn nA ⨯∈,且C n nn P ⨯∈,使得121s J J P AP J J -⎛⎫ ⎪⎪== ⎪ ⎪⎝⎭ 其中×1(1,2,,)1i iii i i r rJ i s λλλ⎛⎫ ⎪⎪== ⎪⎪⎝⎭由定理1.12得111111001(1)01(1C C ()C ()()1!(1)!()1!()()1!(1)!i i i i i i i r k r k k i k i k ik k k k i i k i k k k k k ik i r r k k k i k k k k k tr r i f J t a J t a t t t r a t t t f f f r λλλλλλλλλλλλλλλλ--+-+∞+∞-==--+∞==--⎛⎫ ⎪⎪== ⎪ ⎪ ⎪⎝⎭⎛⎫' ⎪- ⎪⎪= ⎪⎪'⎪ ⎪⎝⎭'-=∑∑∑)()()()1!()i tt f t f f λλλλλ=⎛⎫ ⎪ ⎪⎪ ⎪⎪' ⎪ ⎪⎝⎭从而1010110011()()()()()k kk kk k k k k k k k k k k k k k k s k s f At a A t a PJP t a J tP a J t P P P a J t f J t P Pf J t +∞+∞-==+∞=+∞--=+∞=-==⎛⎫⎪ ⎪== ⎪⎪ ⎪ ⎪⎝⎭⎛⎫ ⎪= ⎪ ⎪⎝⎭∑∑∑∑∑例3.8 已知101120403A -⎛⎫⎪= ⎪ ⎪-⎝⎭,求e A,sin At .解 例1.9已求得100111210P ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭,11112P AP J -⎛⎫⎪== ⎪ ⎪⎝⎭于是12222e e e 0ee e 3e e e 2e+e e 4e 03e A P P -⎛⎫⎛⎫ ⎪ ⎪==- ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭-- 1sin cos sin sin sin 2sin 2cos 0cos sin 2cos sin 2sin 2cos sin sin 24cos 02cos sin t t t At P t Pt t t t t t t t t t t t t t t t t t t t -⎛⎫⎪= ⎪ ⎪⎝⎭-⎛⎫ ⎪=+---+ ⎪ ⎪-+⎝⎭根据Jordan 标准形理论可得 定理3.8 设Cn nA ⨯∈,1λ,2λ,…,n λ是A 的n 个特征值,则矩阵函数f (A )的特征值为1()f λ,2()f λ,…,()n f λ. 方法四 待定系数法 设Cn nA ⨯∈,且A 的特征多项式为1212()det()()()()(3.5)srr r s I A ψλλλλλλλλ=-=---其中1λ,2λ,…,s λ是A 的全部互异特征值,12s r r r n +++= .为计算矩阵函数()k kk k f At a A t +∞==∑,记0()k k k k f t a t λλ+∞==∑.将f (λt )改写为()(,)()(,)(3.6)f t q t r t λλψλλ=+其中q (λ,t )是含参数t 的λ的幂级数,r (λ,t )是含参数t 且次数不超过n -1的λ的多项式,即1110(,)()()()n n r t b t b t b t λλλ--=+++由Hamilton-Cayley 定理知ψ(A )=O ,于是由式(3.6)得1110()(,)()(,)()()()n n f At q A t A r A t b t Ab t A b t Iψ--=+=+++可见,只要求出()(0,1,,1)k b t k n =- 即可得到f (At ).注意到()()0(0,1,,1;1,2,,)l i i l r i s ψλ==-=将式(3.6)两边对λ求导,并利用上式,得d d ()(,)d d iil ll l f t r t λλλλλλλλ=== 即d d ()(,)(0,1,,1;1,2,,)(3.7)d d iil l li l l t t f r t l r i s μλλλμλμλ====-=由式(3.7)即得到以0()b t ,1()b t ,…,1()n b t -为未知量的线性方程组. 综上分析,用待定系数法求矩阵函数f (At )或f (A )的步骤如下: 第一步:求矩阵A 的特征多项式(3.5);第二步:设1110()n n r b b b λλλ--=+++ .根据()()()()(0,1,,1;1,2,,)i l l l i i tr t f l r i s λλλλ===-=或()()()()(0,1,,1;1,2,,)l l i i i r f l r i s λλ==-=列方程组求解0b ,1b ,…,1n b -;第三步:计算1110()(())()n n f At f A r A b A b A b I --==+++ 或.例3.9 已知101120403A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭,求e At,cos A .解 可求得2det()(1)(2)I A λλλ-=--.设2210()r b b b λλλ=++则由210212210(1)e (1)2e (2)42e tt t r b b b r b b t r b b b ⎧=++=⎪'=+=⎨⎪=++=⎩解得222120e e e 2e 2e 3e e 2e t t t t t t t t b t b t b t ⎧=--⎪=-++⎨⎪=-⎩于是2222210e 2e 0e e e e 2ee e e e 4e 02e e t tAt t t tt t t t t ttt t b A b A b I t t t t t ⎛⎫-⎪=++=-++-- ⎪ ⎪ ⎪-+⎝⎭而由21021210(1)cos1(1)2sin1(2)42cos 2r b b b r b b r b b b =++=⎧⎪'=+=-⎨⎪=++=⎩解得210sin1cos1cos 23sin12cos12cos 22sin1cos 2b b b =-+⎧⎪=-+-⎨⎪=+⎩从而22102sin1cos 20sin1cos 2sin1cos1cos 2cos 2sin1cos1cos 24sin102sin1cos1A b A b A b I +-⎛⎫ ⎪=++=-+--+ ⎪ ⎪-+⎝⎭如果求得矩阵A 的最小多项式,且其次数低于A 的特征多项式的次数,则计算矩阵函数就要容易一些.例3.10 已知311202113A -⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,求e At ,sin A . 解 例1.9已求得A 的Jordan 标准形为2212J ⎛⎫⎪= ⎪ ⎪⎝⎭于是A 的最小多项式为2()(2)A m λλ=-.设10()r b b λλ=+由21021(2)2e (2)e t tr b b r b t ⎧=+=⎪⎨'==⎪⎩ 解得2120e (12)et t b t b t ⎧=⎪⎨=-⎪⎩ 于是2101e e 21221At t tt t b A b I t tt t t t +-⎛⎫ ⎪=+=-- ⎪ ⎪--+⎝⎭又由101(2)2sin 2(2)cos 2r b b r b =+=⎧⎨'==⎩ 解得10cos 2sin 22cos 2b b =⎧⎨=-⎩从而10sin 2cos 2cos 2cos 2sin 2cos 2sin 22cos 22cos 2cos 2cos 2sin 2cos 2A b A b I +-⎛⎫ ⎪=+=-- ⎪ ⎪--+⎝⎭三、常用矩阵函数的性质常用的矩阵函数有e A,sin A ,cos A ,它们有些性质与普通的指数函数和三角函数相同,但由于矩阵乘法不满足交换律,从而有些性质与一般指数函数和三角函数不相同. 定理3.9 对任意Cn nA ⨯∈,总有(1)sin(-A )=-sin A ,cos(-A )=cos A ; (2)i e cos isin AA A =+,i -i 1cos (e e )2A A A =+,i -i 1sin (e e )2iA A A =-. 证 (1)由sin A 与cos A 的矩阵幂级数形式直接得到;(2)i 221000i (1)(1)e i !(2)!(21)!cos isin k k k Ak k k k k k A A A k k k A A+∞+∞+∞+===--==++=+∑∑∑又有-i e cos()isin()cos isin A A A A A =-+-=- 从而i -i 1cos (e e )2A A A =+,i -i 1sin (e e )2iA A A =- 定理3.10 设A ,C n nB ⨯∈,且AB =BA ,则(1)ee e e e A BA B B A +==;(2)sin(A +B )=sin A cos B +cos A sin B ;(3)cos(A +B )=cos A cos B -sin A sin B .证 (1)0022011e e !!1()(2)2!1()e !A Bk k k k k A B k A B k k I A B A AB B A B k +∞+∞==+∞+=⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭=++++++=+=∑∑∑(2)i()-i()i i -i -i i -i i -i i -i i -i 11sin()(e e )(e e e e )2i 2i 1111(e e )(e e )(e e )(e e )2i 222i sin cos cos sin A B A B A B A B A A B B A A B B A B A B A B+++=-=-=-+++-=+ 同理可证(3). 证毕在定理3.10中,取A =B ,即得 推论 对任意Cn nA ⨯∈,有22cos 2cos sin A A A =-,sin2A =2sin A cos A 值得注意的是,当AB ≠BA 时,ee e A BA B +=或e e e A B B A +=不成立.如取0010A ⎛⎫= ⎪⎝⎭,0100B ⎛⎫= ⎪⎝⎭,则0110A B ⎛⎫+= ⎪⎝⎭,00100100AB BA ⎛⎫⎛⎫=≠= ⎪ ⎪⎝⎭⎝⎭且10e 11A⎛⎫= ⎪⎝⎭,11e 01B ⎛⎫= ⎪⎝⎭,-1-1-1-1e+e e e 1e 2e e e+e A B+⎛⎫= ⎪⎝⎭-- 可见1121e e e e 1211A BB A ⎛⎫⎛⎫=≠= ⎪ ⎪⎝⎭⎝⎭e e e A B A B +≠,e e e A B B A +≠定理3.11 设Cn nA ⨯∈,则有(1)tr dete eA A=;(2)1(e )e A A --=.证 (1)设A 的特征值为1λ,2λ,…,n λ.则由定理3.8知,e A的特征值为1e λ,2e λ,…,e n λ,从而1212tr dete =e e e e e n n A A λλλλλλ++==…+…(2)由于tr dete =e0AA≠,所以e A 总是可逆的.又由定理3.10,得e e e e A A A A OI--===故1(e )e A A --=. 证毕需要指出的是,对任何n 阶方阵A ,e A总是可逆的,但sin A 与cos A 却不一定可逆.如取π00π/2A ⎛⎫=⎪⎝⎭,则00sin 01A ⎛⎫= ⎪⎝⎭,10cos 00A -⎛⎫= ⎪⎝⎭.可见sin A 与cos A 都不可逆.§3.4 矩阵的微分和积分在研究微分方程组时,为了简化对问题的表述及求解过程,需要考虑以函数为元素的矩阵的微分和积分.在研究优化等问题时,则要碰到数量函数对向量变量或矩阵变量的导数,以及向量值或矩阵值函数对向量变量或矩阵变量的导数.本节简单地介绍这些内容. 一、函数矩阵的微分和积分定义 3.6 以变量t 的函数为元素的矩阵()(())i j m n A t a t ⨯=称为函数矩阵,其中()(1,2,,;1,2,,)ij a t i m j n == 都是变量t 的函数.若t ∈[a ,b ],则称A (t )是定义在[a ,b )上的;又若每个()ij a t 在[a ,b ]上连续、可微、可积,则称A (t )在[a ,b ]上是连续、可微、可积的.当A (t )可微时,规定其导数为()(())ijm n A t a t ⨯''=或d d ()()d d ij m nA t a t t t ⨯⎛⎫= ⎪⎝⎭而当A (t )在[a ,b ]上可积时,规定A (t )在[a ,b ]上的积分为()()d ()d bb ijaam nA t t a t t ⨯=⎰⎰例3.11 求函数矩阵23sin cos ()2e 01t t t t t A t t t ⎛⎫⎪= ⎪ ⎪⎝⎭的导数. 解2cos sin 1d ()2ln 2e 2d 003t t t t A t t t t -⎛⎫⎪= ⎪ ⎪⎝⎭关于函数矩阵,有下面的求导法则.定理3.12 设A (t )与B (t )是适当阶的可微矩阵,则(1)d d d(()())()()d d d A t B t A t B t t t t+=+ (2)当λ(t )为可微函数时,有d d d (()())()()()()d d d t A t t A t t A t t t t λλλ⎛⎫=+ ⎪⎝⎭(3)d d d (()())()()()()d d d A t B t A t B t A t B t t t t ⎛⎫=+ ⎪⎝⎭; (4)当u =f (t )关于t 可微时,有d d()()()d d A u f t A u t u'= (5)当1()A t -是可微矩阵时,有111d d (())()()()d d A t A t A t A t t t ---⎛⎫=- ⎪⎝⎭证 只证(2)和(5).设()(())ij m n A t a t ⨯=,()(())ij n p B t b t ⨯=,则111d d (()())(()())d d d d ()()()()d d d d ()()()()d d nik kj m n k n nik kj ik kj k k m nA tB t a t b t t t a t b t a t b t t t A t B t A t B t t t ⨯===⨯=⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭⎛⎫=+ ⎪⎝⎭∑∑∑由于1()()A t A t I-=,两边对t 求导,得11d d ()()()()d d A t A t A t A t O t t --⎛⎫+= ⎪⎝⎭从而111d d ()()()()d d A t A t A t A t t t ---⎛⎫=- ⎪⎝⎭证毕 定理3.13 设C n nA ⨯∈,则有(1)d e e e d AtAt At A A t ==; (2)dsin cos (cos )d At A At At A t ==;(3)dcos sin (sin )d At A At At A t=-=-.证 这里只证(1).(2)和(3)的证明与(1)类似.由0e !k Atkk t A k +∞==∑,并利用绝对收敛级数可以逐项求导,得101111d d e d d !(1)!e (1)!k k At k k k k k k Atk t t A A t t k k tA A A k -+∞+∞==-+∞-===-==-∑∑∑同样11111d e ==e d (1)!(1)!k k At k k At k k t t A A A A t k k --+∞+∞-==⎛⎫= ⎪--⎝⎭∑∑ 证毕根据定义和积分的有关性质,可得定理3.14 设A (t ),B (t )是区间[a ,b ]上适当阶的可积矩阵,A ,B 是适当阶的常数矩阵,λ∈C ,则 (1)(()())d ()d ()d bb baaaA tB t t A t t B t t +=+⎰⎰⎰;(2)()d ()d bba aA t t A t t λλ=⎰⎰;(3)()()d ()d bbaaA tB t A t t B =⎰⎰,()d ()d b baaAB t t A B t t =⎰⎰;(4)当A (t )在[a ,b ]上连续时,对任意t ∈(a ,b ),有()d ()d ()d t aA A t tττ=⎰(5)当A (t )在[a ,b]上连续可微时,有()d ()()baA t t A b A a '=-⎰以上介绍了函数矩阵的微积分概念及一些运算法则.由于d()d A t t仍是函数矩阵,如果它仍是可导矩阵,即可定义其二阶导数.不难给出函数矩阵的高阶导数11d d d ()()d d d k k k k A t A t t t t --⎛⎫= ⎪⎝⎭二、数量函数对矩阵变量的导数定义 3.7 设f (X )是以矩阵()ij m n X x ⨯=为自变量的mn 元函数,且(1,2,,;1,2,,)ijfi m j n x ∂==∂ 都存在,规定f 对矩阵变量X 的导数d d f X 为 1111d d ij m nm mn ff x x n f fX x ff x x ⨯∂∂⎛⎫ ⎪∂∂ ⎪⎛⎫∂ ⎪== ⎪ ⎪ ⎪∂⎝⎭∂∂ ⎪ ⎪∂∂ ⎪⎝⎭特别地,以T12(,,,)n x ξξξ= 为自变量的函数f (x )的导数T12d (,,,)d nf f f f x ξξξ∂∂∂=∂∂∂ 称为数量函数对向量变量的导数,即为在数学分析中学过的函数f 的梯度向量,记为grad f .例 3.12 设T 12(,,,)n a a a a = 是给定的向量,T 12(,,,)n x ξξξ= 是向量变量,且T T ()f x a x x a ==求d d f x. 解 因为1()nk kk f x a ξ==∑而(1,2,,)j jfa j n ξ∂==∂ 所以 TT 1212d (,,,)(,,,)d n nf f f f a a a a x ξξξ∂∂∂===∂∂∂ 例3.13 设()ij m n A a ⨯=是给定的矩阵,()ij n m X x ⨯=是矩阵变量,且()tr()f x Ax =求d d fX. 解 因为1()nikkj m m k AX ax ⨯==∑.所以11()tr()m nsk ks s k f X AX a x ====∑∑而(1,2,,;1,2,,)ijfi n j m x ∂==∂ 故T d ()d ji n m ij n mf f a A X x ⨯⨯⎛⎫∂=== ⎪ ⎪∂⎝⎭ 例 3.14 设()ij n n A a ⨯=是给定的矩阵,T 12(,,,)n x ξξξ= 是向量变量,且T ()f x x Ax =求d d f x. 解 因为T1111()()n nn ns sk ks sk k s k s k f x x Ax aa ξξξξ=======∑∑∑∑而1111,11,111()nj j j j jk k j jj j j j n nj k j n nsj s jk ks k fa a a a a a a a ξξξξξξξξξ--++===∂=+++++++∂=+∑∑∑所以1111111T T d d ()n ns s k k s k n nsn s nk k s k n f a a f x f a a A x Ax A A xξξξξξξ====∂⎛⎫⎛⎫+ ⎪ ⎪∂⎪ ⎪ ⎪== ⎪ ⎪ ⎪∂ ⎪ ⎪+ ⎪⎪∂⎝⎭⎝⎭=+=+∑∑∑∑ 特别地,当A 是对称矩阵时,有d 2d fAx x=例3.15 设()ij n n X x ⨯=是矩阵变量,且det X ≠0.证明1T ddet (det )()d X X X X-= 证 设ij x 的代数余子式为ij X .把det X 按等i 行展开,得1det nikik k X xX ==∑于是det ij ijX X x ∂=∂故 T1T 1Tddet det ()(adj )d ((det ))(det )()ij n n ij n nX X X X X x X X X X ⨯⨯--⎛⎫∂=== ⎪ ⎪∂⎝⎭== 三、矩阵值函数对矩阵变量的导数定义3.8 设矩阵()(())ij s t F X f X ⨯=的元素()(1,2,,;1,2,,)ij f X i s j t == 都是矩阵变量()ij m n X x ⨯=的函数,则称F (X )为矩阵值函数,规定F (X )对矩阵变量X 的导数d d FX为111d d 1FF x x n F X FF x x m mn ∂∂⎛⎫ ⎪∂∂ ⎪⎪= ⎪∂∂ ⎪ ⎪∂∂ ⎪⎝⎭ ,其中1111tij s stf f x x ij ij F x f f x x ij ij ∂∂⎛⎫ ⎪∂∂ ⎪∂⎪=⎪∂ ⎪∂∂ ⎪∂∂ ⎪⎝⎭即其结果为(ms )×(nt )矩阵. 作为特殊情形,这一定义包括了向量值函数对于向量变量的导数,向量值函数对于矩阵变量的导数,矩阵值函数对于向量变量的导数等.例3.16 设T12(,,,)n x ξξξ= 是向量变量,求T T d d d d x xx x=. 解 由定义,得T 1TT 2T 100010d d 001n nx x x I x x ξξξ⎛⎫∂ ⎪∂ ⎪⎛⎫ ⎪∂ ⎪⎪ ⎪===∂ ⎪ ⎪⎪ ⎪⎪⎝⎭ ⎪∂ ⎪∂⎝⎭同理可得T 12d ,,,d n n x x x x I x ξξξ⎛⎫∂∂∂== ⎪∂∂∂⎝⎭例3.17 设T1234(,,,)a a a a a =是给定向量,24()ij X x ⨯=是矩阵变量,求Td()d Xa X,d()d Xa X. 解 因为41121k k k n k k k x a Xa x a ==⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭∑∑,44T 1211()(,)k k k k k k Xa x a x a ===∑∑ 所以T T TT T 13141112T T T T 2122232431243124()()()()d()d ()()()()00000000Xa Xa Xa Xa x x x x Xa XXa Xa Xa Xa xx x x a aa a a a a a ⎛⎫∂∂∂∂⎪∂∂∂∂ ⎪=⎪∂∂∂∂ ⎪ ⎪∂∂∂∂⎝⎭⎛⎫= ⎪⎝⎭而131411122122232412341234()()()()d()()()()()d 00000000Xa Xa Xa Xa x x x x Xa Xa Xa Xa Xa Xxx x x a a a a a a a a ∂∂∂∂⎛⎫⎪∂∂∂∂ ⎪=⎪∂∂∂∂ ⎪∂∂∂∂⎝⎭⎛⎫⎪ ⎪=⎪⎪⎝⎭§3.5 矩阵分析应用举例本节介绍矩阵函数及矩阵微积分的一些应用. 一、求解一阶线性常系数微分方程组在数学或工程技术中,经常要研究一阶常系数微分方程组1111122112211222221122d ()()()()()d d ()()()()()d d ()()()()()d n n n n n n n nn n n x t a x t a x t a x t f t t x t a x t a x t a x t f t t x t a x t a x t a x t f t t ⎧=++++⎪⎪⎪=++++⎨⎪⎪=++++⎪⎩满足初始条件0()(1,2,,)i ix t c i n ==的解.如果记T12(),(,,,)ij n n n A a c c c c ⨯==T 12()((),(),,())n x t x t x t x t = ,T 12()((),(),,())n f t f t f t f t =则上述微分方程组可写为0d ()()()(3.8)d ()x t Ax t f t tx t c⎧=+⎪⎨⎪=⎩因为d d ()(e ())e ()()e d d d ()e ()e ()d At At At At At x t x t A x t t t x t Ax t f t t -----=-+⎛⎫=-= ⎪⎝⎭将上式两边在[0t ,t ]上积分,得00d (e ())d e ()d d tt A A t t x f τττττττ--=⎰⎰ 即00e()e()e ()d tAt A A t x t x t f ττττ----=⎰于是微分方程组的解为00()()e e e ()d tA t t At A t x t c f τττ--+⎰=例3.18 求解微分方程组初值问题113212313123d ()()()1d d ()()2()1d d ()4()3()2d (0)1,(0)0,(0)1x t x t x t t x t x t x t tx t x t x t t x x x ⎧=-++⎪⎪⎪=+-⎪⎨⎪=-++⎪⎪⎪===⎩ 解 记123()10111120,0,()(),()140312()x t A c x t x t f t x t -⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪====- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭则微分方程组可以写成式(3.8)的矩阵形式.例3.9已求得222e 2e 0e e e e 2e e e e e 4e 02e e t t tAt t t tt t t t t t t t t t t t t ⎛⎫-⎪=-++-- ⎪ ⎪-+⎝⎭依次计算下列各量e e e e e 2e t t At t t t t c t t ⎛⎫- ⎪= ⎪ ⎪-⎝⎭,00e 1e e ()d e 1e 2e 22e t t t A t tf d τττττττ-------⎛⎫⎛⎫- ⎪ ⎪=-=-+ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭⎰⎰, 0e 1e e ()d e 12e 2t t At A t tf τττ-⎛⎫- ⎪=-+ ⎪ ⎪-⎝⎭⎰故微分方程组的解为123e e e 1(2)e 1()()()e e 1(1)e 1()e 2e 2e 2(32)e 2t t t tt t t t t t t t t x t x t x t t t x t t ⎛⎫⎛⎫⎛⎫----⎛⎫⎪ ⎪ ⎪ ⎪==+-+=-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭二、求解矩阵方程在控制论与系统理论中,要遇到形如AX +XB =F 的矩阵方程求解问题,这个矩阵方程也称为Lyapunov 方程.关于这个矩阵方程的解有如下结果. 定理3.15 给定矩阵方程 AX +XB =F (3.9) 其中Cm mA ⨯∈,Cn nB ⨯∈,Cm nF ⨯∈.如果A 和B 的所有特征值具有负实部(这种矩阵称为稳定矩阵),则该矩阵方程有惟一解e e d At Bt X F t +∞=-⎰证 记()e e At Bt Y t F =.则有Y (0)=F ,且d ()e e e e ()()(3.10)d At Bt At Bt Y t A F F B AY t Y t B t=+=+设12,,,m λλλ 是A 的m 个特征值,12,,,n μμμ 是B 的n 个特征值.根据利用Jordan 标准形求矩阵函数的方法(见§3.3)知,e At的元素是形如e (0)j tr t r λ≥的项的线性组合.因为A 的所有特征值j λ的实部是负的,所以lim eAtt O →+∞=.同理lim e Bt t O →+∞=.于是lim ()lim e e At Bt t t Y t F O →+∞→+∞==又由于e e At BtF 的元素是形如()e (0)i j tr t r λμ+≥的项的线性组合,且积分()0ed i j tr t t λμ+∞+⎰都存在,故积分e e d At Bt F t +∞⎰存在.对式(3.10)两边从0到+∞积分,得()()0()(0)()d ()d Y Y AY t t Y t t B +∞+∞+∞-=+⎰⎰即()()0()d ()d A Y t t Y t t B F+∞+∞-+-=⎰⎰这说明0e e d At Bt X F t +∞=-⎰是矩阵方程(3.9)的解.惟一性的证明见第七章. 证毕 推论1 设Cm mA ⨯∈,Cn nB ⨯∈,Cm nF ⨯∈,则矩阵微分方程d ()()()d (0)X t AX t X t B tX F⎧=+⎪⎨⎪=⎩的解为()e e At BtX t F =推论2 设A ,C n nF ⨯∈,且A 的所有特征值具有负实部,则矩阵方程HA X XA F+=-的惟一解为H 0ee d (3.11)A tAt X F t+∞=⎰如果F 是Hermite 正定矩阵,则解矩阵X 也是Hermite 正定矩阵.证 只需证明后一结论.当F 是Hermite 正定矩阵时,由式(3.11)可知X 是Hermite 矩阵.又对0Cnx ≠∈,由于eAt总是可逆的,所以e 0Atx ≠,于是HH H e e (e )(e )0A t At At At x F x x F x =>.从而HH 0(e )(e )d 0At At x Xx x F x t +∞=>⎰故X 是Hermite 正定矩阵. 证毕三、最小二乘问题 设Cm nA ⨯∈,C n b ∈.当线性方程组Ax =b 无解时,则对任意C nx ∈都有Ax -b ≠0.此时希望找出这样的向量0C n x ∈,它使2Ax b -达到最小,即022Clim (3.12)nx Ax b Ax b ∈-=-称这个问题为最小二乘问题,称0x 为矛盾方程组Ax =b 的最小二乘解.以下结论给出了当A ,b 分别是实矩阵和实向量时,Ax =b 的最小二乘解所满足的代数方程.定理3.16 设R m nA ⨯∈,R mb ∈,0R n x ∈.若0R n x ∈是Ax =b 的最小二乘解,则0x 是方程组TT(3.13)A Ax A b=的解.称式(3.13)为Ax =b 的法方程组.证 由于2T 2TTTTTT()()()f x Ax b Ax b Ax b x A Ax x A b b Ax b b=-=--=--+若0x 为Ax =b 的最小二乘解,则它应是f (x )的极小值点,从而d 0(3.14)d x f x=根据例3.12和例3.14,得T T d 22d fA Ax A b x=- 由式(3.14)即知T T00A Ax A b -=,故0x 是式(3.13)的解. 证毕 对于含约束条件的最小二乘问题,有如下的结果. 例3.19 设Rm nA ⨯∈,R m b ∈,Rk nB ⨯∈,R kd ∈,且Bx =d 有解.试求约束极小。
第三章矩阵分析简介
定义1
(k ) mn A a 中的矩阵序列,其中 A ij k k 1 为 C k
(k ) mn 如果 lim a 又 A aij 。 C ij a ij 对 i =1, 2,…,m,
j =1,2,…,n 均成立, 则称矩阵序列 Ak k 1 收敛,而A称为
k
A 1
判断一个矩阵是否为收敛矩阵:
1、若 Ak 容易计算,则利用其判断收敛性
2、判断矩阵的某种范数是否小于1 3、计算矩阵的谱半径
练习题
判断对下列矩阵是否有 lim Ak 0
k
0.2 0.1 0.2 1 1 8 (2) (1) A , A 0.5 0.5 0.4 6 2 1 0.1 0.3 0.2 解:(1)取 1 8 1 则 B , ( A) ( B ) ,令 6 2 1
k
矩阵序列
序列称为发散的。
不收敛的矩阵 Ak A 。 Ak k 1 的极限,记为 lim k
矩阵序列收敛 元素收敛
例1
讨论矩阵序列 Ak k 1的收敛性。
解: 只需求出它的每一个元素的极限即可,极限为:
lim
k
Ak lim 1 lim 2 k k
k 1
3、级数收敛 lim S n S
n
3、级数收敛 lim S n S
n
4、数项级数
4、矩阵级数
S 1 a an 收敛 a 1
S I A An 收敛 ( A) 1
矩阵级数收敛 mn个数项级数收敛
k k
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x1 x2 xn T A x1 x2 xn ( , )
x11 x22 xnn
Hermite矩阵 : 规定记号:
AH
T
A,
称AH为A的复共轭转置。
复共轭转置有运算性质 : (1)AH ( A)T ; (2)( A B)H AH BH ; (3)(kA)H k AH ; (4)( AB)H BH AH ; (5)( AH )H A; (6)若A可逆,则( AH )1 ( A1 )H .
&3.1 欧氏空间、酉空间
一、概念
定义3.1.1 设V是实数域R上的n维线性空间,
如果对V中任意两个向量、 ,有唯一确定 的实数与之对应,这实数记为(, ),并且满足 下列四个条件,则这实数(, )称为与的
内积:
(1) (, ) ( , ) (2) (k, ) k(, ) (3) ( , ) (, ) ( , ) (4) (, ) 0,当且仅当 0时(, ) 0 其中 , , 是V中任意向量,k R;称定义有这
例3.1.5设n2维空间Rnn中对向量(n阶矩阵)A, B 规定内积为
( A, B) tr( AT B), A, B Rnn , 则Rnn是欧氏空间。
定义3.1.2 : 设V是复数域C上的n维线性空间,
如果对V中 任意两个向量、 ,有唯一确定的
复数与之对应,这复数记为(, )且满足下列四个 条件,则这复数(, )称为与的内积 :
第三章 内积空间、正规矩阵、Hermite矩阵
在线性空间中,向量之间的基本运算只有 加法和数乘运算,向量的度量性质没有反映, 局限了线性空间的应用。现在我们借助内积把 度量概念引入到线性空间中。
解析几何中,是用向量的长度和夹角来定 义内积,而在矩阵理论中是先定义内积概念, 再引入向量的长度、夹角等概念。
i 1
i 1
设1,2 , ,n为n维酉空间V的一组基,
n
n
, V且 xii , y j j 则
i 1
j1
n
n
nn
( , ) xii , y j j
xi y j (i , j )
i1
j 1
i1 j1
令gij (i , j ) i, j 1, 2, , n .
样内积的线性空间V 为n维欧氏空间.
例3.1.1 设Rn是n维实向量空间,若
=(a1,a2 ,...,an )T , =(b1,b2,...,bn)T 令 ( , ) T a1b1 a2b2 ... anbn 容易验证,所规定的 ( , )是Rn的内积,从而
Rn成为欧氏空间。
注: 1.今后欧氏空间Rn中的内积都指如上例3.1.1定
义的内积运算.
2.对同一个线性空间,可以定义不同的内积,因 而得到不同的欧氏空间.
例3.1.2 设在R2中对向量 (a1, a2 )T 和
(b1, b2 )T 规定内积为
( , )=2a1b1+a1b2 +a2b1+a2b2 ,
证明R2按照如上的内积运算构成是欧氏空间。
例3.1.3 用表示C[a,b]闭区间[a,b]上的所有实值 连续函数构成的实线性空间,f(x),g(x) C[a,b], 规定
( , )
T
a1b1 a2 b2 ... an bn H 容易验证,所规定的 ( , )是Cn的内积,
从而Cn成为酉空间。
二、酉(欧氏)空间的性质
1. 欧氏空间的性质
(1)( , k ) k( , );
(2)( , ) ( , ) ( , );
n
n
(3)( kii , ) ki (i , );
i 1
i 1
n
n
(4)( , ki i ) ki ( , i ).
i 1
i 1
2. 酉空间的性质
(1)( , k ) k( , );
(2)( , ) ( , ) ( , );
n
n
(3)( kii , ) ki (i , );
i 1
i 1
n
n
(4)( , ki i ) ki ( , i ).
注 在复数域C上定义内积时,不能象实数 域上内积定义方式,否则会出现矛盾。如
(,)>0, (i,i)=i2(,)=-(,), 这样(,)<0,矛盾!实际上(,k )=k(, )
例3.1.6 设Cn是n维复向量空间,若
=(a1,a2 ,...,an )T , =(b1,b2,...,bn)T
令
显然,实对称矩阵是实Hermite矩阵;酉空间的度 量矩阵是Hermite矩阵.欧氏空间的度量矩阵是实对称 阵。
定义3.1.4 : 设A C nn , 若AH A,则称A为Hermite矩阵;
若AH A,则称A为反Hermite矩阵.
容易证明: (1)AH A Re(aij ) Re(a ji ), Im(aij ) Im(a ji );
(2)AH A Re(aij ) Re(a ji ), Im(aij ) Im(a ji ).
(f(x),g(x))= b f(x)g(x)dx a
容易验证,这样规定的(f(x),g(x))是C[a,b]上的一 个内积,从而C[a,b]成为一个欧氏空间。
例3.1.4 设A为n阶正定矩阵,对于Rn中的任意两 个列向量X,Y,规定
(X,Y)=X T AY 容易验证(X,Y)是Rn上的一个内积,于是Rn成为一 个欧氏空间。
称n阶方阵: G gij
为基1,2 , ,n的度量矩阵.
g11 g12
G
gij
g21
g22
gn1 gn2
1 2
,1 ,1
n ,1
1,2 2,2
n,2
g1n
g2n
gnn
1 2
, ,
n n
n ,n
度量矩阵性质:
(1)设G为度量矩阵,则G GT ;
(1)( , ) ( , ), (2)(k , ) k( , ), (3)( , ) ( , ) ( , ), (4)( , ) 0, 当且仅当 0时(, ) 0.
其中、、 为V中任意向量,任意复数k C;
称定义有这样内积的线性空间V 为n维复欧氏 空间或酉空间.
欧氏空间与酉空间统称为内积空间.