2.2〓整式的加减
七年级(人教版)集体备课教案:2.2《整式的加减(2)》
七年级(人教版)集体备课教案:2.2《整式的加减(2)》一. 教材分析《整式的加减(2)》是人教版七年级数学上册第二单元的教学内容,本节课主要介绍整式的加减运算。
学生在学习本节课之前,已经掌握了整式的基本概念和加减运算的规则。
本节课的内容是进一步引导学生运用整式的加减法则进行计算,提高学生的运算能力,培养学生解决问题的能力。
教材中通过丰富的例题和练习题,帮助学生巩固所学知识,提高解题技巧。
二. 学情分析学生在学习本节课之前,已经具备了一定的数学基础,能够理解和掌握整式的基本概念和加减运算的规则。
但部分学生在进行整式加减运算时,容易出错,对运算法则理解不透彻。
因此,在教学过程中,需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的讲解和辅导。
三. 教学目标1.理解整式的加减法则,掌握整式加减运算的步骤和技巧。
2.能够运用整式的加减法则解决实际问题,提高解决问题的能力。
3.培养学生的运算能力,提高学生的数学思维能力。
四. 教学重难点1.整式的加减法则的运用。
2.整式加减运算的步骤和技巧。
3.运用整式的加减法则解决实际问题。
五. 教学方法采用问题驱动法、案例分析法、分组合作法、讨论法等教学方法,引导学生主动探究、合作交流,提高学生的学习兴趣和参与度。
六. 教学准备1.教学课件:制作课件,展示整式的加减运算的步骤和技巧。
2.练习题:准备一些有关整式加减运算的练习题,用于巩固所学知识。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用一个实际问题,引导学生思考如何运用整式的加减法则进行计算。
例如:已知平行四边形的面积为12平方厘米,一边长为3厘米,另一边长为4厘米,求平行四边形的周长。
2.呈现(10分钟)展示整式的加减运算的步骤和技巧,引导学生理解并掌握运算法则。
通过讲解教材中的例题,让学生了解整式加减运算的解题思路。
3.操练(10分钟)让学生分组合作,解决一些关于整式加减运算的问题。
2.2-整式的加减教学设计
《2.2整式的加减》教学案例漯河市体育运动学校张亚丽2016年10月课题:2.2整式的加减教材:义务教育人教版七年级上册 教学目标:1、理解同类项的概念.2、会利用运算律合并同类项,掌握合并同类项的法则.3、在归纳合并同类项法则的过程中,提高观察能力、运用数学语言进行表达和交流的能力.4、在合并同类项的过程中,体会转化、分类讨论的数学思想.教学重点和难点:重点:理解同类项的概念;根据合并同类项的法则正确地合并同类项. 难点:根据同类项的概念在多项式中找同类项;正确地合并同类项.教学方法:分层次教学,讲授、练习相结合。
教学过程第一环节 直入课题,解读目标 要求:红笔勾画重点词句。
【设计意图】通过解读目标,让学生明确本节课的任务及重难点,有目的性的进行学习。
第二环节 自主学习1、将下面的代数式进行分类。
n 8、 xy -、 n 5、 b a 27-、 xy 3、 b a 22、与 ; 与 ; 与 是同类的, 因为它们所含字母 ; 也相同,这样的项,叫做同类项。
2、在多项式4353822+-+-x x x 中,28x 和______是同类项,5和_______是同类项.设计 “找朋友”的游戏,通过游戏让学生体会:① 同类项与系数无关; ②同类项与字母先后顺序无关。
【预习检测】(每空2分,共6分,4分合格,6分优秀) 3、下列各题中的两项是同类项的是( )A .9abc 与11acB .20.2ab 与20.2a bC .2b 与2xD .23x y 与23yx - 4、若215y x m +与3131x y n +-是同类项,则m= ,n= 。
【设计意图】通过完成预习案的相关内容,帮助学生理解同类项的概念,并能应用同类项的概念解决相关的一些问题。
第三环节 合作学习 一、合并同类项及其法则如图的长方形由两个小长方形组成,求这个长方形的面积。
(用两种方法列出式子,不计算)。
方法一: 方法二:则: = =13n ;定义:把同类项 叫做合并同类项。
整式的加减--同类项、合并同类项
2.2(1)整式的加减--同类项、合并同类项一.【知识要点】1.同类项的概念:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项. 注意:①“两相同”同类项中要注意到两个相同:字母相同及相同的字母的指数也相同;②“两无关”是指同类项与(系数)和(字母)的顺序无关; ③所有的常数项都是同类项。
2.把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变. 进行合并同类项的一般步骤: (1)先用相同的划线找到同类项;(2)利用加法交换律与加法结合律把同类项放在一起; (3)利用有理数的加减混合运算,进行系数相加; (4)字母与字母的系数不变. 二.【经典例题】 1.下列几组式子:(1)3y x 2与–3y x 2 (2)0.2b a 2与0.22ab (3)11abc 与9bc (4)224b a 和224n m(5)4332n m 与–3423m n (6)4z xy 2与4yz x 2 (7)6与6π (8)22和2a其中是同类项的是:_________________________________________.2.合并下列多项式中的同类项: (1)2a 2b -3a 2b+12a 2b ; (2)a 3-a 2b+ab 2+a 2b -ab 2+b 3.3.若25y x n -与m y x 2312是同类项,则=m ,=n 4.已知()2210a b -++=,求22222133542a b ab a b ab ab ab a b +-++-+的值5.已知0123=++y xb na b ma (m 、n 均不为0),求y x nm+-2的值。
6. 已知关于x,y 的单项式2322+-m n y x y ax与的和等于0,求a+m+n 的值为_______.7.(2020年绵阳期末第5题)若单项式﹣2m 2b n 3a﹣2与n a +1m b﹣1可以合并,则代数式2b ﹣a=( ) A .B .C .D .三.【题库】 【A 】1.化简:(1)3x -x =_____;(2)-2y 2x +3y 2x =______;(3)-22x -32x +y -2y =______.2.在代数式4x 2+4xy -8y 2-3x+1-5x 2+6-7x 2中,4x 2的同类项是 ,6的同类项是 .3.若2x k y k+2与3x 2y n 的和为5x 2y n ,则k= ,n= .4.若-3xm -1y4与13x2yn+2是同类项,求m,n.5.合并同类项:(1)3x 2-1-2x -5+3x -x 2;(2)-0.8a 2b -6ab -1.2a 2b+5ab+a 2b.6.下列判断中正确的个数为( )①23a 与23b 是同类项;②85与58是同类项;③x 2-与2x-是同类项;④4321y x 与347.0y x -是同类项A .1个B .2个C .3个D .4个7.若b a M 22=,23ab N =,b a P 24-=,则下面计算正确的是( )A .235b a N M =+B .ab P N -=+C .b a P M 22-=+D .b a P N 22=- 8.若323y xm-与n y x 42是同类项,则n m -的值是( )A .0B .1C .7D .-19.合并同类项22227435ab ab ab ab b a -+--=_______________ 10.求多项式3x 2+4x -2x 2-x+x 2-3x -1的值,其中x=-3. 11.下列计算正确的是( )A.2x +3y =5xyB.-3x -x =-x C.-xy +6x y =5x y D.5ab -b a =ab 2232252232227223212.已知单项式b a xy -y x +-431321与是同类项,那么b a ,的值分别是( ) A .⎩⎨⎧==.1,2b a B .⎩⎨⎧-==.1,2b a C .⎩⎨⎧-=-=.1,2b a D .⎩⎨⎧=-=.1,2b a13.若单项式﹣35a b 与2m a b 是同类项,则常数m 的值为( ) A.﹣3 B.4 C.3 D.2 14.合并下列各式中的同类项(1)b a ab b a ab b a 2228.44.162.0++--- (2)222614121x x x --(3)222234422xy y x xy xy xy y x -++-- (4)2238347669a ab a ab +-+-+-15.下列各组中的两式是同类项的是( ) A .()32-与()3n - B .b a 254-与c a 254- C .2-x 与2- D .n m 31.0与321nm - 16.若12x a -1y 3与-3x -b y 2a+b 是同类项,那么a,b 的值分别是( ) A.a=2, b=-1. B.a=2, b=1. C.a=-2, b=-1. D.a=-2, b=1. 17.指出下列多项式中的同类项:(1)3x -2y+1+3y -2x -5;(2)3x 2y -2xy 2+13xy 2-32yx 2.18. 下列合并同类项正确的是( )A. B. C. D. 19. 如果-13mx y 与221n x y +是同类项,则m=_______,n=________. 20.下列各组中的两项是同类项的为( )A .3m 3n 2和-3m 2n 3B .12xy 与22xy C .53与a 3D .7x 与7y21.下列运算正确的是( )A. 42232a a a =+B. b a b a +=+2)(2C. 2323a a a =-D. 22223a a a =- 22. 判断(1)4abc 与 4ab 不是同类项 ( )325a b ab +=770m m -=33622ab ab a b +=-+=a b a b ab 222(2) 325n m - 与 232m n 不是同类项 ( ) (3) y x 23.0- 与 2yx 是同类项 ( ) 23.若y x 25与 n m y x 1-是同类项,则m=( ) ,n=( )【B 】1.若单项式-5x m y 3与4x 3y n能合并成一项,则m n=( ) A.3 B.9 C.27 D.62. 若3231+a y x 与是同类项,求2222223612415b a ab b a ab b a ---+的值。
2.2.2整式的加减(三)-上课用
记本和圆珠笔共花费(4x+3y)元。
小红和小明一共花费(3x+2y)+(4x+3y) =3x+2y+4x+3y =7x+5y (元) 解法二:小红和小明买笔记本共花费(3x+4x)元,买圆珠笔共 花 费(2y+3y)元。小红和小明一共花费 (3x+4x)+(2y+3y)
三.例题讲解
例3.做大小两个长方体纸盒,尺寸如下(单位:cm): (1)做这两个纸盒共用料多少厘米2?
练习. 若M=3x2-5x+10,N=3x2-4x+10,则M与N的大小 关系是( ) (A)M>N (B)M=N (C)M<N (D)无法确定
(2)(8a 7b) (4a 5b)
}
三.例题讲解
例2.一种笔记本的单价是x 元,圆珠笔的单价是y元, 小红买这种笔记本3个,买圆珠笔2支;小明买这种笔 记本4个,买圆珠笔3支。买这些笔记本和圆珠笔,小 红和小明一共花费多少钱?
解法一:小红买笔记本和圆珠笔共花费(3x+2y)元,小明买笔
式子表示出来。再进行整式的加减运算)。
3.比较复杂的式子求值问题解决步骤(两步走) : 先化简,再求值.
祝同学们学 习愉快!!
补例1 .有这样一道题: “计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的 值. 其中x=2,y=-1”.小明把x=2错抄成x=-2,但他计算的结 果也是正确的,你说这是为什么? 分析:要说明把x=2误代入x=-2计算的结果不变,则需要 将整数进行化简,通过化简的结果说明与x=2还是 x=-2没有关系.
2.2 整式的加减
乘任何一项;(2)同号得正,异号得负,不要出 现符号错误;(3)去完括号,可运用去括号法则 进行验证.
意若所给的值是负数,代入时要添上括号;若所给的值是
(3)整式加减的结果一定要化为最简,即最后结果中:①不能
含有同类项;②不能出现带分数,带分数要化成假分数;③一 般按某一字母的降幂或升幂排列
巧记乐背
整式进行加和减,
实质就是在化简; 先去括号再合并, 化到最简才算完.
整式加减与求值:整式的加减常与整式的求值相结合,解 决这类问题的大致步骤为:先利用整式的加减化简整式, 再把有关的数值代入并计算,简记为“一化、二代、三计 算”.在化简时要注意去括号时是否变号,在代入时要注
第二章 整式的加减
2.2 整式的加减
同类项
概念 同类 项 所含字母相同,并且相同字母的指数也相同的项叫作同类项.几个 常数项也是同类项
(1)同类项不一定是两项,也可以是三项、四项或更多项,但至
少为两项.(2)同类项的特征:“两相同,两无关”.“两相同”是 知识 指:①所含字母相同;②相同字母的指数相同.“两无关”是指:①
整式的加减
概念
整式加 减的运 算法则 一般地,几个整式相加减,如果有括号就先去括号,再合并同
类项
(1)整式加减的一般步骤:①如果有括号,先去括号;②如果
有同类项,要合并同类项;③如果运算结果是多项式,把这个
知识解 读 多项式按某一字母的降(升)幂排列.(2)整式加减的一般步 骤并不绝对,在具体运算中,也可以先合并同类项,再去括号.
2.2.1整式的加减
2.类比探究,学习新知
例题 4 x 2 x 7 3 x 8 x 2 解:4 x 2 2 x 7 3 x 8 x 2 2
2 2
4x 8x 2x 3x 7 2
2 2
( 交换律 )
2.类比探究,学习新知
例题 4 x 2 x 7 3 x 8 x 2 解:4 x 2 2 x 7 3 x 8 x 2 2
2 2
4x 8x 2x 3x 7 2 ( 交换律 ) 2 2 (4 x 8 x ) (2 x 3 x) (7 2) ( 结合律 ) 2 ( 分配律 ) (4 8) x (2 3) x (7 2)
2 2
2.类比探究,学习新知
例题 4 x 2 x 7 3 x 8 x 2 解:4 x 2 2 x 7 3 x 8 x 2 2
2 2 2 2
(3) 4a 3b 2ab 4a 4b
2 2 2
2
4.基础训练,巩固新知
练习1 判断下列说法是否正确,正确的 在括号内打“√”,错误的打“×” (1) 3 x 与 3mx 是同类项( ) (2) 2ab 与 5ab 是同类项( ) 1 2 2 (3) 3 xy 与 y x 是同类项( ) 2 2 2 (4) 5a b 与 2a bc 是同类项( ) 2 3 ( 5) 2 与 3 是同类项( )
(1)上述各多项式的项有什么共同特点? (2)上述多项式的运算有什么共同特点? 你能从中得出什么规律?
2.类比探究,学习新知
(1)上述各多项式的项有什么共同特点? ①每个式子的项含有相同的字母; ②并且相同字母的指数也相同. (2)上述多项式的运算有什么共同特点? ①根据分配律把多项式各项的系数相加; ②字母部分保持不变.
《2_2整式的加减》(第一课时)教学设计
《2.2整式的加减》(第一课时)教学设计一、教学目标:1、知识与技能目标:(1)使学生理解多项式中同类项的概念,会识别同类项。
(2)使学生掌握合并同类项法则。
2.过程与方法:组织学生参与学习、讨论,在合作探究活动中获取知识。
3.情感态度与价值观:激发学生的求知欲,培养独立思考和合作交流的水平,让他们享受成功的喜悦。
三、教学重点、难点:重点:同类项的概念、合并同类项的法则及应用。
难点:准确判断同类项;准确合并同类项。
四、教学方法:采用引导发现法,引导学生从已有的知识和生活经验出发,提出问题与学生共同观察、类比、归纳探索,以调动学生求知的积极性.五、教具准备:多媒体课件卡片六、教学过程设计:(一)、明确本节课的学习目标。
1、什么是同类项;2、怎样合并同类项。
(二)、探究新知:1、同类项的概念:(1)下各组式子的共同特点和不同点:2x 和 -3 x , 5st 和 7ts , 3x2y 和 5x2y , 2 ab2c 和 -ab2c 师:操作多媒体,展示幻灯片,提出问题生:动脑思考回答以下问题(2)什么是同类项:由3x2y 和 5x2y 引出同类项的概念:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
注意:(1)同类项与系数无关,与字母的排列顺序也无关;(2)几个常数项也是同类项。
师:提出问题生:总结回答(3)巩固练习:①、说出以下各题的两项是不是同类项?为什么?a3与b3 -4x2y与4xy23.5abc与0.5abc -2与4师:课件展示问题生:回答师:总结并展示答案②、玩一玩:找同类项朋友游戏规则:现在,老师有16张写有单项式的卡片,发给一些同学;老师随意报一个号,请报到号的同学带好卡片站到前面,并面对全班同学高举自己的卡片;其他15位同学观察自己手中的卡片和前面同学卡片上的单项式,假设认为它们是同类项的,也请站到前面,并面向全班同学高举自己的卡片;请其他同学做裁判,看看他们有没有找错朋友。
2.2_整式的加减(教案)
一、教学内容
2.2_整式的加减:本节教学内容来自七年级数学上册,主要包括以下内容点:(1)理解整式的概念,掌握整式的加减法则;(2)能够正确列出整式,进行整式的加减运算;(3)掌握合并同类项的方法,并运用到实际问题中。具体内容包括:单项式与多项式的定义、同类项的辨识、合并同类项、整式的加减运算。通过本节内容的学习,使学生能够熟练掌握整式的加减运算,为后续学习打下基础。
三、教学难点与重点
1.教学重点
(1)整式的概念:使学生理解并掌握单项式、多项式的定义,能够辨识各种整式。
举例:如2x、-3xy、4x^2y等是单项式;3x+2y、4x^2-5xy+6等是多项式。
(2)整式的加减法则:使学生熟练掌握整式加减运算的步骤和方法,特别是合并同类项。
举例:如2x+3x=5x,-4xy-2xy=-6xy。
3.重点难点解析:在讲授过程中,我会特别强调整式的加减法则和合并同类项这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与整式加减相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。例如,通过计算不同物品的价格总和,演示整式的加减原理。
(3)应用整式加减解决实际问题:培养学生将现实问题抽象为整式加减运算,并能正确求解。
举例:某商品的单价为x元,购买a个该商生需掌握辨识同类项的规则,包括字母相同、指数相同。
举例:2x与3x是同类项,但2x与2x^2不是同类项。
(2)合并同类项:学生需学会将同类项的系数相加减,字母及指数保持不变。
举例:2x+3x=5x,而不是6x;4x^2-3x^2=x^2,而不是7x^2。
2.2整式的加减(第4课时)
数学
七年级
上册
2.2 整式的加减 (第4课时)
学习目标:
(1)理解整式的加减就是去括号,合并同类项;
(2) 在掌握合并同类项、去括号的基础上,掌 握整式加减的一般步骤; (3)能熟练、准确地进行整式的加减运算
学习重点:
运用合并同类项、去括号进行整式的加
减.
练一练
先去括号,再合并同类项。
练一练
1.(1)求整式3x+4y与2x-2y-1的和 (2)求整式3x+4y与2x-2y-1的差
注意:当多项式做减数时,要用括号括起来!
2.已知A=x3+x2+x+1,B=x-x2,求: (1)2A+B注意用括号前的 数值去乘括号内的每一项; (2)找出同类项,放到同一个括号里; (3)合并同类项,计算出最简式; (4)把x,y的值代入式子.
注意:多项式做减数时,应用括号括起来!
练一练
已知(x+1)2+|y-1|=0,
求: 2(xy-5xy2) -(3xy2-xy)的值。 解 x 1) y 1 0 ( 当x= -1,y=1时
2
x 1 0, y 1 0
x 1, y 1 2(xy-5xy2)-(3xy2-xy)
=2xy-10xy2-3xy2+xy =3xy-13xy2
原式=3×(-1)×113×(-1)×12 = -3+13=10
补充作业: 1.已知两个多项式A,B.其中 B=4x2+3x-4, A-B=-7x2-6x+8. 求:A+B.
提示:因为(A+B)-(A-B)=2B, 所以A+B=2B+(A-B)
2.已知A=3a2+2b2,B=a2-2a-b2, 当 (b+4)2+|a-3|=0时,求A-B的值。
2.2整式的加减数学教案
2.2整式的加减数学教案
标题: 2.2 整式的加减数学教案
一、教学目标
1. 理解并掌握整式加减运算的基本概念和方法。
2. 能够运用整式加减运算法则解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学重点与难点
1. 重点:理解整式加减运算法则,能够熟练进行整式的加减运算。
2. 难点:理解和运用整式加减运算法则解决实际问题。
三、教学过程
1. 引入新课
通过一些生活中的实例,引入整式加减的概念,激发学生的学习兴趣。
2. 新课讲解
(1)定义与性质:讲解整式的定义,整式的加法和减法运算法则,以及整式加减运算的一些基本性质。
(2)例题解析:通过具体的例题,让学生理解和掌握整式加减运算的方法。
3. 练习与讨论
设计一些练习题,让学生自己尝试解答,然后集体讨论,强化对整式加减运算法则的理解和应用。
4. 小结与作业
对本节课的内容进行小结,布置课后作业,让学生进一步巩固所学知识。
四、教学反思
在教学过程中,教师应注意观察学生的学习情况,及时调整教学策略,确保每一个学生都能理解和掌握整式加减运算法则。
人教版七年级数学上册2.2《整式的加减》教学设计
人教版七年级数学上册2.2《整式的加减》教学设计一. 教材分析人教版七年级数学上册2.2《整式的加减》是学生在掌握了整式的概念和运算法则的基础上进行学习的内容。
本节内容主要介绍了整式的加减法运算,包括同类项的定义、合并同类项的法则等。
通过本节内容的学习,学生能够熟练掌握整式的加减法运算,并能够解决实际问题。
二. 学情分析学生在进入七年级之前,已经学习了整数和分数的加减法运算,具备了一定的数学基础。
但是,对于整式的加减法运算,学生可能还存在着一些困惑,例如对同类项的理解和合并同类项的方法等。
因此,在教学过程中,需要注重对学生基础知识的巩固和拓展,通过实例讲解和练习,帮助学生理解和掌握整式的加减法运算。
三. 教学目标1.知识与技能:学生能够理解同类项的定义,掌握合并同类项的法则,能够进行整式的加减法运算。
2.过程与方法:通过实例讲解和练习,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣和热情,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.教学重点:同类项的定义,合并同类项的法则,整式的加减法运算。
2.教学难点:同类项的判断,合并同类项的技巧,解决实际问题。
五. 教学方法1.情境教学法:通过实例讲解和生活实际问题,引发学生的兴趣和思考,引导学生主动参与学习。
2.合作学习法:学生进行小组讨论和合作交流,培养学生的团队合作意识和沟通能力。
3.实践操作法:通过练习和操作,让学生动手动脑,巩固所学知识,提高解决问题的能力。
六. 教学准备1.教学PPT:制作精美的PPT,展示教学内容和实例。
2.练习题:准备适量的练习题,用于学生的操练和巩固。
3.教学工具:准备黑板、粉笔、投影仪等教学工具。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如购物时找零、制作蛋糕等,引导学生思考如何运用整式的加减法来解决问题。
激发学生的兴趣和思考,为后续学习做好铺垫。
2.呈现(10分钟)通过PPT呈现同类项的定义和合并同类项的法则,结合实例进行讲解。
2.2.2_整式的加减
(1)
1 1 5(3a 2b − ab 2 ) − (ab 2 + 3a 2b), 其中a = , b = . 2 3
已知 A = 2a 2 − a , B = − 5a + 1, 求当 a = 1 时, 3A − 2B + 1的值。 2
ห้องสมุดไป่ตู้
(2)
随堂练习: 3.合并同类项 ①X3-2X2+3X-1-5X+2+2X ④-mn+2mn-3mn2+4mn2 练一练 计算下列各题:
2
3
2
2
(1) 5a2+4-2a
(2) x2-x4+2-5x
2.把多项式降幂排列 瞧一 瞧 : 下列各题计算的结果对不对?如果不对,指出错在哪里?
2x4y + x3y
2
− 3x2y
3
+
2 x + 2 3
(1 ) (3)
例1
3 a + 2 b = 5 ab ( 2 ) 2 ab − 2 ba = 0 ( 4 )
比较③、④两式,你能发现去括号时符号变化的规律吗? 思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师 板书(或用屏幕)展示: 如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相 同; 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反. 特别地,+(x-3)与-(x-3)可以分别看作 1 与-1 分别乘(x-3). 利用分配律,可以将式子中的括号去掉,得: +(x-3)=x-3 (括号没了,括号内的每一项都没有变号) -(x-3)=-x+3 (括号没了,括号内的每一项都改变了符号) 去括号规律要准确理解, 去括号应对括号的每一项的符号都予考虑,做到要 变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项. 二、范例学习 例 1.化简下列各式: (1)8a+2b+(5a-b); (2)(5a-3b)-3(a2-2b). 思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要 变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号. 为了防止错误,题(2)中-3(a2-2b),先把 3 乘到括号内,然后再去括号. 解答过程按课本,可由学生口述,教师板书. 例 2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水, 两船在 静水中的速度都是 50 千米/时,水流速度是 a 千米/时. (1)2 小时后两船相距多远? (2)2 小时后甲船比乙船多航行多少千米? 教师操作投影仪,展示例 2,学生思考、小组交流,寻求解答思路. 思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度, 船逆水 航行速度 =船在静水中行驶速度-水流速度.因此,甲船速度为( 50+a)千米 / 时,乙船速度为(50-a)千米/时,2 小时后,甲船行程为 2(50+a)千米,乙 船行程为(50-a)千米. 两船从同一洪口同时出发反向而行,所以两船相距等 于甲、乙两船行程之和. 解答过程按课本. 去括号时强调: 括号内每一项都要乘以 2, 括号前是负因数时, 去掉括号后, 括号内每一项都要变号.为了防止出错,可以先用分配律将数字 2 与括号内的 各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号. 三、巩固练习 1.课本第 68 页练习 1、2 题. 2.计算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2. [5xy2] 思路点拨:一般地,先去小括号,再去中括号. 四、课堂小结 去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-” 号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律 可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数 字要乘以括号内的每一项,切勿漏乘某些项. 学生作总结后教师强调要求大家应熟记法则,并能根据法则进行去括号运算。 法 则顺口溜:去括号,看符号:是“+”号,不变号;是“―”号,全变号。
2.2.2 整式的加减——去括号 说课稿 2022—2023学年人教版数学七年级上册
2.2.2 整式的加减——去括号说课稿一、教材分析1. 教材内容本课时是数学七年级上册的第2单元第2节课,主要内容是整式的加减——去括号。
本节课的教学目标是让学生能够理解整式的加减法则,掌握去括号的方法,培养学生运算能力和思维能力。
2. 教学重点和难点本节课的教学重点是引导学生掌握整式的加减法则和去括号的方法。
教学难点在于让学生理解去括号的原理和运用去括号方法解决问题。
3. 教学准备为了能够有效地教授本节课,我准备了以下教学准备:•教案和课件•学生的课本和作业本•黑板和粉笔•各种整式的例题和练习题二、教学过程1. 导入新课通过提问学生已学过的内容,引导学生回忆整式的定义和加减法则,为本节课的学习做铺垫。
2. 介绍整式的去括号方法通过一个简单的例子,向学生展示括号中的项如何进入的去括号过程,引导学生理解去括号的原理和规则。
3. 整式的加减法则结合具体例子,向学生展示整式的加减法则,包括同类项相加减和不同类项相加减的步骤和规则。
4. 练习与巩固让学生在黑板上完成一些练习题,巩固整式的加减法则和去括号的方法。
5. 拓展思考提出一些拓展问题,让学生思考整式的运算性质和应用。
三、教学方法1. 案例教学法通过具体的案例和例题,引导学生理解整式的加减法则和去括号的方法。
2. 合作学习法在练习与巩固环节,鼓励学生进行小组合作,互相讨论和解决问题,提高学生的思维能力和合作能力。
3. 智慧板教学法结合智慧教育技术,使用智慧板进行教学,可以更加直观地展示各种整式的加减过程和去括号的方法。
四、教学评估1. 自我评估通过观察学生的表现和听取学生的回答、解题过程,评估学生是否掌握了整式的加减法则和去括号的方法。
2. 学生评估通过给学生一些作业题目,让他们在课后完成,再进行评估。
可以通过作业的完成情况和成绩来评估学生的学习效果。
五、板书设计去括号公式:(a + b) + c = a + b + c(a + b) - c = a + b - ca - (b + c) = a - b - c六、教学反思本节课的教学目标是引导学生理解整式的加减法则和去括号的方法。
2.2.2整式的加减运算
应用练习
(1)
第三组
(2x-3y)+(5x+4y)
=2x+5x-3y+4y
解:原式=2x-3y+5x+4y
=7x+y
(2)(8a-7b)-(4a-5b)
解:原式= 8a-7b-4a+5b
=8a-4a-7b+5b =4a-2b
应用练习
1.
第四组
3x+(5y-2x)
解:原式=3x+5y-2x =X+5y 2. 8y-(-2x+3y) 解:原式=8y+2x-3y =2x+5y
3.
-2(8a+2b)+4(5a+b)
解:原式=-16a-4b+20a+4b=4a 4. 3(5a-3c)-2(a-c) 解:原式=15a-9c-2a+2c=13a-7c
应用练习
1.
第五组
(5a-3b) – 3(a2 -2b)+7(3b+2a)
解:原式=5a-3b-3a2+6b+21b+14a =5a+14a+(-3b+6b+21b)- 3a2 =19a+24b - 3a2
练习:已知M=3x2-2xy+y2,N=2x2+xy-3y2,
求2M-3N的值(其中x=1,y=-2)。
作业 P69. 练习2 P70. 4题 、5题
再 见 碑
2
y )
2
= 3x y
当
x=-2,y=
2 3
时 ,
原 式 = ( - 3 )( 2)(
2 3
2.2 整式的加减(解析版)
2.2整式的加减一、选择题(共9小题)1.(2022秋•海珠区校级期末)单项式﹣x 3y a 与6x b y 4是同类项,则a +b 等于( )A .﹣7B .7C .﹣5D .5【分析】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项,据此可得a ,b 的值,再代入所求式子计算即可.【解析】根据题意得,a =4,b =3,∴a +b =4+3=7.故选:B .2.(2022秋•郧西县期末)若代数式﹣5x 6y 3与2x 2n y 3是同类项,则常数n 的值( )A .2B .3C .4D .6【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【解析】由﹣5x 6y 3与2x 2n y 3是同类项,得2n =6,解得n =3.故选:B .3.(2022秋•南召县期末)下列各组代数式中,是同类项的是( )A .5x 2y 与15xy B .﹣5x 2y 与15yx 2C .5ax 2与15yx 2D .83与x 3【分析】所含字母相同,并且相同字母的指数也相同的项叫同类项,且常数项也是同类项.通过该定义来判断是不是同类项.【解析】A 、5x 2y 与15xy 字母x 、y 相同,但x 的指数不同,所以不是同类项;B 、﹣5x 2y 与15yx 2字母x 、y 相同,且x 、y 的指数也相同,所以是同类项;C 、5ax 2与15yx 2字母a 与y 不同,所以不是同类项;D 、83与x 3,对83只是常数项无字母项,x 3只是字母项无常数项,所以不是同类项.故选:B .4.(2022秋•惠州期末)下面运算正确的是( )A .3ab +3ac =6abcB .4a 2b ﹣4b 2a =0C .2x 2+7x 2=9x 4D .3y 2﹣2y 2=y 2【分析】分别利用合并同类项法则进而判断得出即可.【解析】A 、3ab +3ac 无法合并,故此选项错误;B 、4a 2b ﹣4b 2a ,无法合并,故此选项错误;C 、2x 2+7x 2=9x 2,故此选项错误;D 、3y 2﹣2y 2=y 2,故此选项正确;故选:D .5.(2021•罗湖区校级模拟)下列式子计算正确的个数有( )①a 2+a 2=a 4;②3xy 2﹣2xy 2=1;③3ab ﹣2ab =ab ;④(﹣2)3﹣(﹣3)2=﹣17.A .1个B .2个C .3个D .0个【分析】根据合并同类项的法则和有理数的混合运算进行计算即可.【解析】①a 2+a 2=2a 2,故①错误;②3xy 2﹣2xy 2=xy 2,故②错误;③3ab ﹣2ab =ab ,故③正确;④(﹣2)3﹣(﹣3)2=﹣17,故④正确,故选:B .6.(2021秋•招远市期末)下列各式由等号左边变到右边变错的有( )①a ﹣(b ﹣c )=a ﹣b ﹣c②(x 2+y )﹣2(x ﹣y 2)=x 2+y ﹣2x +y 2③﹣(a +b )﹣(﹣x +y )=﹣a +b +x ﹣y④﹣3(x ﹣y )+(a ﹣b )=﹣3x ﹣3y +a ﹣b .A .1个B .2个C .3个D .4个【分析】根据去括号的方法逐一化简即可.【解析】根据去括号的法则:①应为a﹣(b﹣c)=a﹣b+c,错误;②应为(x2+y)﹣2(x﹣y2)=x2+y﹣2x+2y2,错误;③应为﹣(a+b)﹣(﹣x+y)=﹣a﹣b+x﹣y,错误;④﹣3(x﹣y)+(a﹣b)=﹣3x+3y+a﹣b,错误.故选:D.7.(2021秋•云梦县校级期末)下列去括号正确的是( )A.﹣(﹣x2)=﹣x2B.﹣x﹣(2x2﹣1)=﹣x﹣2x2+1C.﹣(2m﹣3n)=﹣2m﹣3n D.3(2﹣3x)=6﹣3x【分析】根据去括号法则解答.【解析】A、﹣(﹣x2)=x2,计算错误,不符合题意;B、﹣x﹣(2x2﹣1)=﹣x﹣2x2+1,计算正确,符合题意;C、﹣(2m﹣3n)=﹣2m+3n,计算错误,不符合题意;D、3(2﹣3x)=6﹣9x,计算错误,不符合题意.故选:B.8.(2022秋•鸡西期中)两个形状大小完全相同的长方形中放入4个相同的小长方形后,得到图①和图②的阴影部分,如果大长方形的长为m,则图②与图①的阴影部分周长之差是( )A.―m2B.m2C.m3D.―m3【分析】设图中小长方形的长为x,宽为y,表示出两图形中阴影部分的周长,求出之差即可.【解析】设图③中小长方形的长为x,宽为y,大长方形的宽为n,根据题意得:x+2y=m,x=2y,即y=14 m,图①中阴影部分的周长为2(n﹣2y+m)=2n﹣4y+2m,图②中阴影部分的周长2n+4y+2y=2n+6y,则图②与图①的阴影部分周长之差是2n+6y﹣(2n﹣4y+2m)=10y﹣2m=52m﹣2m=m2.故选:B.9.(2022秋•沙坪坝区期末)已知x2﹣xy=3,3xy+y2=5,则2x2+xy+y2的值是( )A.8B.2C.11D.13【分析】第一个等式两边乘以2,与第二个等式相加即可求出原式的值.【解析】x2﹣xy=3①,3xy+y2=5②,①×2+②得:2x2﹣2xy+3xy+y2=2x2+xy+y2=11.故选:C.二.填空题(共5小题)10.(2022秋•江夏区期末)若单项式3xy m与﹣x n y3是同类项,则m﹣n的值是 2 .【分析】根据所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,得出m,n的值,进而得出答案.【解析】∵3xy m与﹣x n y3是同类项,∴m=3,n=1,∴m﹣n=3﹣1=2.故答案为:2.11.(2022秋•嘉定区校级期中)去括号:4x3﹣(﹣3x2+2x﹣1)= 4x3+3x2﹣2x+1 【分析】根据去括号法则解答即可.【解析】根据去括号法则可得:4x3﹣(﹣3x2+2x﹣1)=4x3+3x2﹣2x+1.故答案为:4x3+3x2﹣2x+1.12.(2022秋•宁远县期中)化简﹣(﹣x+y)﹣[﹣(x﹣y)]得 2x﹣2y .【分析】先去括号,然后合并同类项.【解析】﹣(﹣x+y)﹣[﹣(x﹣y)]=x﹣y+x﹣y=2x﹣2y.故答案为:2x﹣2y.13.(2021秋•鼓楼区校级期末)a2+ab=3,ab﹣b2=6,则a2+3ab﹣2b2= 15 .【分析】原式进行变形后,利用整体思想代入求值.【解析】原式=a2+ab+2ab﹣2b2,∵a2+ab=3,ab﹣b2=6,∴原式=a2+ab+2(ab﹣b2)=3+2×6=3+12=15,故答案为:15.14.(2021秋•苏州期中)若m2+mn=1,n2﹣2mn=10,则代数式m2+5mn﹣2n2的值为 ﹣19 .【分析】根据整式的加减运算法则即可求出答案.【解析】∵m2+mn=1,n2﹣2mn=10,∴原式=m2+mn+4mn﹣2n2=(m2+mn)﹣2(n2﹣2mn)=1﹣2×10=1﹣20=﹣19,故答案为:﹣19.三.解答题(共4小题)15.(2022秋•济南期中)化简:x2+4﹣2x2+3x﹣5﹣6x.【分析】根据合并同类项法则逐一判断即可,在合并同类项时,系数相加减,字母及其指数不变.【解析】x2+4﹣2x2+3x﹣5﹣6x=(x2﹣2x2)+(3x﹣6x)+(4﹣5)=﹣x2﹣3x﹣1.16.(2022秋•桥西区校级期末)已知一个代数式与﹣2x2+x的和是﹣6x2+x+3.(1)求这个代数式;(2)当x=―12时,求这个代数式的值.【分析】(1)直接利用整式的加减运算法则计算得出答案;(2)直接把x的值代入,进而得出答案.【解析】(1)∵一个代数式与﹣2x2+x的和是﹣6x2+x+3,∴这个代数式为:﹣6x2+x+3﹣(﹣2x2+x)=﹣6x2+x+3+2x2﹣x=﹣4x2+3;(2)当x=―12时,原式=﹣4×(―12)2+3=﹣1+3=2.17.(2022秋•西城区校级期中)化简:4x2﹣8xy2﹣2x2+3y2x+1.【分析】直接合并同类项进而得出答案.【解析】4x 2﹣8xy 2﹣2x 2+3y 2x +1=(4x 2﹣2x 2)+(﹣8xy 2+3xy 2)+1=2x 2﹣5xy 2+1.18.(2021秋•沙坡头区校级期末)化简:(1)5(mn ﹣2m )+3(4m ﹣2mn );(2)﹣3(x +2y ﹣1)―12(﹣6y ﹣4x +2).【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可.【解析】(1)5(mn ﹣2m )+3(4m ﹣2mn )=5mn ﹣10m +12m ﹣6mn=﹣mn +2m ;(2)﹣3(x +2y ﹣1)―12(﹣6y ﹣4x +2)=﹣3x ﹣6y +3+3y +2x ﹣1=﹣x ﹣3y +2.一.选择题(共5小题)1.(2022•河源模拟)若42m a b -与225n a b +是同类项,则n m 的值是( )A .2B .0C .4D .1【分析】依据同类项的相同字母指数相同列方程求解即可.【解析】单项式42m a b -与225n a b +是同类项,2m \=,24n +=,2m \=,2n =.224n m \==.故选:C .2.(2022秋•杭州期中)如关于x ,y 的多项式234756x y mxy y xy +-+化简后不含二次项,则(m = )A .47-B .67-C .57D .0【分析】先化简多项式234756x y mxy y xy +-+,再根据多项式不含二次项即可求解.【解析】234756x y mxy y xy+-+234(76)5x y m xy y =++-Q 多项式234756x y mxy y xy +-+化简后不含二次项,760m \+=,解得:67m =-,故选:B .3.(2022秋•海港区校级期末)化简:()a b c d ---+的结果是( )A .a b c d --+B .a b c d ---+C .a b c d ++-D .a b c d-++-【分析】根据去括号的法则去括号即可.【解析】去括号得,a b c d -++-.故选D .4.(2023•开福区校级三模)已知有2个完全相同的边长为a 、b 的小长方形和1个边长为m 、n 的大长方形,小明把这2个小长方形按如图所示放置在大长方形中,小明经过推理得知,要求出图中阴影部分的周长之和,只需知道a 、b 、m 、n 中的一个量即可,则要知道的那个量是( )A .aB .bC .mD .n【分析】先用含a 、b 、m 、n 的代数式表示出阴影矩形的长宽,再求阴影矩形的周长和即可.【解析】由图和已知可知:AB a =,EF b =,AC n b =-,GE n a =-.阴影部分的周长为:2()2()AB AC GE EF +++2()2()a nb n a b =+-+-+222222a n b n a b=+-+-+4n =.\求图中阴影部分的周长之和,只需知道n 一个量即可.故选:D .5.(2021秋•运城期中)若代数式22(3)x ax bx x +---的值与字母x 无关,则a b -的值为( )A .0B .2-C .2D .1【分析】原式去括号合并后,根据结果与字母x 无关,确定出a 与b 的值,代入原式计算即可求出值.【解析】22222(3)3(1)(1)3x ax bx x x ax bx x b x a x +---=+-++=-+++Q ,且代数式的值与字母x 无关,10b \-=,10a +=,解得:1a =-,1b =,则112a b -=--=-,故选:B .二.填空题(共3小题)6.(2023春•南岗区校级期中)当k = 19 时,多项式221(33)(8)3x kxy y xy --+-不含xy 项.【分析】先合并同类项,然后使xy 的项的系数为0,即可得出答案.【解析】222211(33)(8)(3)3833x kxy y xy x k xy y --+-=+---,Q 多项式不含xy 项,\1303k -=,解得19k =.故答案为:19.7.(2022秋•任城区校级期末)若222(91)x ax bx x y +--++-的值与x 的取值无关,则a b = 14 .【分析】将原式进行化简得2(12)(2)192b x a x y ++--+,再令含有x 的项的系数为0,求出a 、b 的值代入计算即可.【解析】222(91)x ax bx x y +--++-Q 2222192x ax bx x y =++--+2(12)(2)192b x a x y =++--+,又222(91)x ax bx x y +--++-Q 的值与x 的取值无关,120b \+=,20a -=,解得2a =,12b =-,211()24a b \=-=,故答案为:14.8.(2021春•罗湖区校级期末)若多项式2237x x ++的值为10,则多项式2697x x +-的值为 2 .【分析】由题意得2233x x +=,将2697x x +-变形为23(23)7x x +-可得出其值.【解析】由题意得:2233x x +=226973(23)72x x x x +-=+-=.三.解答题(共6小题)9.(2022秋•香坊区校级月考)若单项式114m n x y -+-与233523m n x y --是同类项,求n m 的值.【分析】根据同类项的定义可求出m 、n 的值,再代入计算即可.【解析】114m n x y -+-Q 与233523m n x y --是同类项,123m m \-=-,135n n +=-,解得2m =,3n =,328n m \==.10.(2022秋•惠城区期末)已知:22321A a ab a =+--,21B a ab =-+-(1)求4(32)A A B --的值;(2)若2A B +的值与a 的取值无关,求b 的值.【分析】(1)先化简,然后把A 和B 代入求解;(2)根据题意可得523ab a --与a 的取值无关,即化简之后a 的系数为0,据此求b 值即可.【解析】(1)4(32)2A A B A B--=+22321A a ab a =+--Q ,21B a ab =-+-,\原式2A B=+2223212(1)a ab a a ab =+--+-+-523ab a =--;(2)若2A B +的值与a 的取值无关,则523ab a --与a 的取值无关,即:(52)3b a --与a 的取值无关,520b \-=,解得:25b =即b 的值为25.11.(2014•咸阳模拟)已知221A x x =-+,2263B x x =-+.求:(1)2A B +.(2)2A B -.【分析】(1)根据题意可得222212(263)A B x x x x +=-++-+,去括号合并可得出答案.(2)2222(21)(263)A B x x x x -=-+--+,先去括号,然后合并即可.【解析】(1)由题意得:222212(263)A B x x x x +=-++-+,22214126x x x x =-++-+,25147x x =-+.(2)2222(21)(263)A B x x x x -=-+--+,22242263x x x x =-+-+-,21x =-.12.(2021秋•泉州期末)先化简,再求值:223(2)[33()]a ab a b ab b ---++,其中3a =-,13b =.【分析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【解析】原式22(36)[3(33)]a ab a b ab b =---++2236(333)a ab a b ab b =---++2236333a ab a b ab b=--+--229a ab =-,当3a =-,13b =时,原式212(3)9(3)189273=´--´-´=+=.13.(2022秋•揭西县期末)先化简,再求值:222233[22()]32x y xy xy x y xy xy ---+-,其中3x =,13y =-.【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【解析】原式2222232233x y xy xy x y xy xy xy xy =-+-+-=+,当3x =,13y =-时,原式12133=-=-.14.(2021秋•颍东区期末)先化简,再求值:2223[23(2)]x y x y xy x y xy ----,其中12x =-,2y =.【分析】去小括号,去中括号,合并同类项,最后代入求出即可.【解析】2223[23(2)]x y x y xy x y xy ----2223[263]x y x y xy x y xy =--+-2223263x y x y xy x y xy=-+-+227x y xy=-+当12x =-,2y =时,原式2112()27()222=-´-´+´-´8=-.一.填空题(共1小题)1.当13m <…时,化简|1||3|m m ---= 24m - .【分析】先根据绝对值的性质把原式化简,再去括号即可.【解析】根据绝对值的性质可知,当13m <…时,|1|1m m -=-,|3|3m m -=-,故|1||3|(1)(3)24m m m m m ---=---=-.二.解答题(共4小题)2.(2022秋•香坊区校级月考)若单项式114m n x y -+-与233523m n x y --是同类项,求n m 的值.【分析】根据同类项的定义可求出m 、n 的值,再代入计算即可.【解析】114m n x y -+-Q 与233523m n x y --是同类项,123m m \-=-,135n n +=-,解得2m =,3n =,328n m \==.3.(2022秋•二道区校级期中)若多项式3232243366mx x x x x nx -+--+-+化简后不含x 的三次项和一次项,回答下列问题:(1)直接写出m = 3 ,n = ;(2)求代数式2021()m n -的值.【分析】(1)将关于x 的多项式合并同类项.由于其不含三次项及一次项,即系数为0,可以求得m ,n ;(2)将(1)中的m 和n 的值代入2021()m n -进行计算,即可得出答案.【解析】(1)323232243366(3)4(4)3mx x x x x nx m x x n x -+--+-+=-++-+,Q 该多项式化简后不含x 的三次项和一次项,30m \-=,40n -=,3m \=,4n =;故答案为:3,4;(2)20212021()(34)1m n -=-=-.4.(2021秋•元阳县期末)有一道题目,是一个多项式减去2146x x +-,小强误当成了加法计算,结果得到223x x -+,正确的结果应该是多少?【分析】先按错误的说法,求出原多项式,原多项式是:222(23)(146)159x x x x x x -+-+-=-+;再用原多项式减去2146x x +-,运用去括号,合并同类项即可得到正确的结果.【解析】这个多项式为:222(23)(146)159x x x x x x -+-+-=-+所以22(159)(146)2915x x x x x -+-+-=-+正确的结果为:2915x -+.5.已知2231A x xy y =++-,2B x xy =-.(1)若2(2)|3|0x y ++-=,求2A B -的值;(2)若2A B -的值与y 的值无关,求x 的值.【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【解析】(1)222(231)2()A B x xy y x xy -=++---2223122x xy y x xy=++--+331xy y =+-.2(2)|3|0x y ++-=Q ,2x \=-,3y =.23(2)3331A B -=´-´+´-1891=-+-10=-.(2)2A B -Q 的值与y 的值无关,即(33)1x y +-与y 的值无关,330x \+=.解得1x =-.。
2.2.1整式的加减-合并同类项(教案)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“合并同类项在实际数学问题中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
在新课讲授环节,我发现学生们对于理论知识的掌握程度有所不同。有些学生能够迅速理解并掌握合并同类项的法则,而部分学生则需要更多的时间来消化。因此,在接下来的课程中,我需要针对不同学生的学习需求,适当调整教学节奏和策略,确保每位学生都能跟上进度。
实践活动和小组讨论环节,学生们表现得相当积极。他们通过分组讨论和实验操作,加深了对合并同类项的理解。但同时,我也注意到有些小组在讨论过程中,个别成员参与度不高。为了提高学生的参与度,我打算在下一节课中,增加一些互动性强的环节,鼓励更多学生积极参与。
2.2.1整式的加减-合并同类项(教案)
一、教学内容
本节课选自教科书第二章“整式的加减”中的2.2.1节“合并同类项”。教学内容主要包括以下方面:
1.掌握同类项的定义及判断方法。
2.学习合并同类项的法则及运算步骤。
3.能够运用合并同类项法则进行整式的简化。
4.通过实例分析,让学生理解合并同类项在解决实际问题时的重要性。
-教学策略:通过具体案例分析,引导学生学习如何提取关键信息,建立数学模型。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《整式的加减-合并同类项》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要将相同类别的物品进行合并计算的情况?”(如购物时买了几件相同的商品,需要计算总价。)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索合并同类项的奥秘。
2.2整式的加减(4)
七年级数学 编号:SX-14-07-030《2.2整式的加减》导学案(4)编写人:许结华 审核人: 编写时间:2014.10.13班级: 组名: 姓名: 完成等级: 更正等级 【学习目标】1.熟练应用去括号和合并同类项法则对多项式进行化简。
2.从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算。
3.认识到数学是解决实际问题和进行交流的重要工具。
【学习重点】整式的加减。
【学习难点】总结出整式的加减的一般步骤。
【知识链接】:1、某学生合唱团出场时第一排站了n名,从第二排起每一排都比前一排多一人,一共站了四排,则该合唱团一共有多少名学生参加?①列出算式: ②以上答案能进一步化简吗?如何化简?我们进行了哪些运算?2、合并同类项和去括号法则分别是什么?3.化简:(1)(x+y)—(2x -3y) (2) 2 222223(2)a b a b --+【学习过程】:探究一: 1、自学与思考:请同学们围绕着“怎样进行整式的加减运算?”这个问题,自学课文第67页例题6开始到69页“练习”为止。
并思考:(1)例题7两种解法分别是怎样考虑的?(2)为什么有括号?(3)例题中列出的式子实际上都是几个整式的什么运算?(4)观察例题的解答过程,你可以总结整式加减的一般步骤吗?通过例题可以看出,整式加减实质上就是 ,其一般步骤可以总结为: 几个整式相加减,如果有括号就先 ,然后再 。
探究二:1.求整式x 2―7x ―2与―2x 2+4x ―1的差。
2.一个多项式加上―5x 2―4x ―3和为―x 2―3x ,求这个多项式。
3.化简求值:221123(xy y )(x xy 1),x ,y 332234----+==其中【学习小结】1.我的收获是 2.还有没解决的问题是 【基础达标】1.计算:m [n 2m (m n)]----等于( ) A 、2n - B 、m 2 C 、4m 2n - D 、2n 2m - 3.a b c -+-的相反数是( )A 、a b c --+B 、a b c -+C 、a b c --+D 、a b c ---5. 已知()2x 3y 60+++=,求2(3x-3y )—4[])2(2)(3y x y x ---的值。