反比例函数(中考分类)

合集下载

中考数学试题分类考点总结(反比例函数)

中考数学试题分类考点总结(反比例函数)

一.选择题(共21小题)1.(2018•中考数学试题分类汇编:考点15 反比例函数玉林)等腰三角形底角与顶角之间的函数关系是( ) A .正比例函数 B .一次函数 C .反比例函数 D .二次函数【分析】根据一次函数的定义,可得答案.【解答】解:设等腰三角形的底角为y ,顶角为x ,由题意,得y=﹣x +90°,故选:B .2.(2018•怀化)函数y=kx ﹣3与y=(k ≠0)在同一坐标系内的图象可能是( )A .B .C .D .【分析】根据当k >0、当k <0时,y=kx ﹣3和y=(k ≠0)经过的象限,二者一致的即为正确答案.【解答】解:∵当k >0时,y=kx ﹣3过一、三、四象限,反比例函数y=过一、三象限,当k <0时,y=kx ﹣3过二、三、四象限,反比例函数y=过二、四象限, ∴B 正确;故选:B .3.(2018•永州)在同一平面直角坐标系中,反比例函数y=(b ≠0)与二次函数y=ax 2+bx (a ≠0)的图象大致是( )A .B .C .D .【分析】直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.【解答】解:A、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的右侧,则a、b异号,即b<0.所以反比例函数y=的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的左侧,则a、b 同号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b 异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b 异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项正确;故选:D.4.(2018•菏泽)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.【分析】直接利用二次函数图象经过的象限得出a,b,c的取值范围,进而利用一次函数与反比例函数的性质得出答案.【解答】解:∵二次函数y=ax2+bx+c的图象开口向上,∴a>0,∵该抛物线对称轴位于y轴的右侧,∴a、b异号,即b<0.∵当x=1时,y<0,∴a+b+c<0.∴一次函数y=bx+a的图象经过第一、二、四象限,反比例函数y=的图象分布在第二、四象限,故选:B.5.(2018•大庆)在同一直角坐标系中,函数y=和y=kx﹣3的图象大致是()A.B.C.D.【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论.当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【解答】解:分两种情况讨论:①当k>0时,y=kx﹣3与y轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限;②当k<0时,y=kx﹣3与y轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限.故选:B.6.(2018•香坊区)对于反比例函数y=,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大 D.当x<0时,y随x的增大而减小【分析】根据反比例函数的性质用排除法解答.【解答】解:A、把点(﹣2,﹣1)代入反比例函数y=得﹣1=﹣1,故A选项正确;B、∵k=2>0,∴图象在第一、三象限,故B选项正确;C、当x>0时,y随x的增大而减小,故C选项错误;D、当x<0时,y随x的增大而减小,故D选项正确.故选:C.7.(2018•衡阳)对于反比例函数y=﹣,下列说法不正确的是()A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,﹣2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【解答】解:A、k=﹣2<0,∴它的图象在第二、四象限,故本选项正确;B、k=﹣2<0,当x>0时,y随x的增大而增大,故本选项正确;C、∵﹣=﹣2,∴点(1,﹣2)在它的图象上,故本选项正确;D、点A(x1,y1)、B(x2、y2)都在反比例函数y=﹣的图象上,若x1<x2<0,则y1<y2,故本选项错误.故选:D.8.(2018•柳州)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2 B.a≠﹣2 C.a≠±2 D.a=±2【分析】根据反比例函数解析式中k是常数,不能等于0解答即可.【解答】解:由题意可得:|a|﹣2≠0,解得:a≠±2,故选:C.9.(2018•德州)给出下列函数:①y=﹣3x+2;②y=;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A.①③B.③④C.②④D.②③【分析】分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案.【解答】解:①y=﹣3x+2,当x>1时,函数值y随自变量x增大而减小,故此选项错误;②y=,当x>1时,函数值y随自变量x增大而减小,故此选项错误;③y=2x2,当x>1时,函数值y随自变量x增大而减小,故此选项正确;④y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项正确;故选:B.10.(2018•嘉兴)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A.1 B.2 C.3 D.4【分析】根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据△AOB的面积为1,即可求得k的值.【解答】解:设点A的坐标为(a,0),∵过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,∴点C(﹣a,),∴点B的坐标为(0,),∴=1,解得,k=4,故选:D.11.(2018•温州)如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为()A.4 B.3 C.2 D.【分析】先求出点A,B的坐标,再根据AC∥BD∥y轴,确定点C,点D的坐标,求出AC,BD,最后根据,△OAC与△ABD的面积之和为,即可解答.【解答】解:∵点A,B在反比例函数y=(x>0)的图象上,点A,B的横坐标分别为1,2,∴点A的坐标为(1,1),点B的坐标为(2,),∵AC∥BD∥y轴,∴点C,D的横坐标分别为1,2,∵点C,D在反比例函数y=(k>0)的图象上,∴点C的坐标为(1,k),点D的坐标为(2,),∴AC=k﹣1,BD=,∴S△OAC =(k﹣1)×1=,S△ABD=•×(2﹣1)=,∵△OAC与△ABD的面积之和为,∴,解得:k=3.故选:B.12.(2018•宁波)如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A.8 B.﹣8 C.4 D.﹣4【分析】设A(a,h),B(b,h),根据反比例函数图象上点的坐标特征得出ah=k1,bh=k2.根据三角形的面积公式得到S△ABC=A B•y A=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,求出k1﹣k2=8.【解答】解:∵AB∥x轴,∴A,B两点纵坐标相同.设A(a,h),B(b,h),则ah=k1,bh=k2.=AB•y A=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,∵S△ABC∴k1﹣k2=8.故选:A.13.(2018•郴州)如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A .4B .3C .2D .1【分析】先根据反比例函数图象上点的坐标特征及A ,B 两点的横坐标,求出A (2,2),B (4,1).再过A ,B 两点分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,根据反比例函数系数k 的几何意义得出S △AOC =S △BOD =×4=2.根据S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC ,得出S △AOB =S 梯形ABDC ,利用梯形面积公式求出S 梯形ABDC =(BD +AC )•CD=(1+2)×2=3,从而得出S △AOB =3.【解答】解:∵A ,B 是反比例函数y=在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,∴当x=2时,y=2,即A (2,2),当x=4时,y=1,即B (4,1).如图,过A ,B 两点分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,则S △AOC =S △BOD =×4=2.∵S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC ,∴S △AOB =S 梯形ABDC ,∵S 梯形ABDC =(BD +AC )•CD=(1+2)×2=3,∴S △AOB =3.故选:B .14.(2018•无锡)已知点P (a ,m ),Q (b ,n )都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n【分析】根据反比例函数的性质,可得答案.【解答】解:y=的k=﹣2<0,图象位于二四象限,∵a<0,∴P(a,m)在第二象限,∴m>0;∵b>0,∴Q(b,n)在第四象限,∴n<0.∴n<0<m,即m>n,故D正确;故选:D.15.(2018•淮安)若点A(﹣2,3)在反比例函数y=的图象上,则k的值是()A.﹣6 B.﹣2 C.2 D.6【分析】根据待定系数法,可得答案.【解答】解:将A(﹣2,3)代入反比例函数y=,得k=﹣2×3=﹣6,故选:A.16.(2018•岳阳)在同一直角坐标系中,二次函数y=x2与反比例函数y=(x >0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为()A.1 B.m C.m2D.【分析】三个点的纵坐标相同,由图象可知y=x2图象上点横坐标互为相反数,则x1+x2+x3=x3,再由反比例函数性质可求x3.【解答】解:设点A、B在二次函数y=x2图象上,点C在反比例函数y=(x>0)的图象上.因为AB两点纵坐标相同,则A、B关于y轴对称,则x1+x2=0,因为点C(x3,m)在反比例函数图象上,则x3=∴ω=x1+x2+x3=x3=故选:D.17.(2018•遵义)如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y==2,【分析】直接利用相似三角形的判定与性质得出=,进而得出S△AOD即可得出答案.【解答】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∴=tan30°=,∴=,∵×AD×DO=xy=3,=×BC×CO=S△AOD=1,∴S△BCO=2,∴S△AOD∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣.故选:C.18.(2018•湖州)如图,已知直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标是()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(﹣2,﹣1)【分析】直接利用正比例函数的性质得出M,N两点关于原点对称,进而得出答案.【解答】解:∵直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点,∴M,N两点关于原点对称,∵点M的坐标是(1,2),∴点N的坐标是(﹣1,﹣2).故选:A.19.(2018•江西)在平面直角坐标系中,分别过点A(m,0),B(m+2,0)作x轴的垂线l1和l2,探究直线l1,直线l2与双曲线y=的关系,下列结论错误的是()A.两直线中总有一条与双曲线相交B.当m=1时,两直线与双曲线的交点到原点的距离相等C.当﹣2<m<0时,两直线与双曲线的交点在y轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2【分析】A、由m、m+2不同时为零,可得出:两直线中总有一条与双曲线相交;B、找出当m=1时两直线与双曲线的交点坐标,利用两点间的距离公式可得出:当m=1时,两直线与双曲线的交点到原点的距离相等;C、当﹣2<m<0时,0<m+2<2,可得出:当﹣2<m<0时,两直线与双曲线的交点在y轴两侧;D、由y与x之间一一对应结合两交点横坐标之差为2,可得出:当两直线与双曲线都有交点时,这两交点的距离大于2.此题得解.【解答】解:A、∵m、m+2不同时为零,∴两直线中总有一条与双曲线相交;B、当m=1时,点A的坐标为(1,0),点B的坐标为(3,0),当x=1时,y==3,∴直线l1与双曲线的交点坐标为(1,3);当x=3时,y==1,∴直线l2与双曲线的交点坐标为(3,1).∵=,∴当m=1时,两直线与双曲线的交点到原点的距离相等;C、当﹣2<m<0时,0<m+2<2,∴当﹣2<m<0时,两直线与双曲线的交点在y轴两侧;D、∵m+2﹣m=2,且y与x之间一一对应,∴当两直线与双曲线都有交点时,这两交点的距离大于2.故选:D.20.(2018•铜仁市)如图,已知一次函数y=ax+b和反比例函数y=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为()A.x<﹣2或0<x<1 B.x<﹣2 C.0<x<1 D.﹣2<x<0或x>1【分析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.【解答】解:观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,∴不等式ax+b<的解集是﹣2<x<0或x>1.故选:D.21.(2018•聊城)春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3B.室内空气中的含药量不低于8mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内【分析】利用图中信息一一判断即可;【解答】解:A、正确.不符合题意.B、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;C、y=5时,x=2.5或24,24﹣2.5=21.5<35,故本选项错误,符合题意;D、正确.不符合题意,故选:C.二.填空题(共9小题)22.(2018•上海)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是k<1.【分析】由于在反比例函数y=的图象有一支在第二象限,故k﹣1<0,求出k的取值范围即可.【解答】解:∵反比例函数y=的图象有一支在第二象限,∴k﹣1<0,解得k<1.故答案为:k<1.23.(2018•齐齐哈尔)已知反比例函数y=的图象在第一、三象限内,则k 的值可以是1.(写出满足条件的一个k的值即可)【分析】根据反比例函数的性质:反比例函数y=的图象在第一、三象限内,则可知2﹣k>0,解得k的取值范围,写出一个符合题意的k即可.【解答】解:由题意得,反比例函数y=的图象在第一、三象限内,则2﹣k>0,故k<2,满足条件的k可以为1,故答案为:1.24.(2018•连云港)已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣图象上的两个点,则y1与y2的大小关系为y1<y2.【分析】根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小,从而可以解答本题.【解答】解:∵反比例函数y=﹣,﹣4<0,∴在每个象限内,y随x的增大而增大,∵A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣图象上的两个点,﹣4<﹣1,∴y1<y2,故答案为:y1<y2.25.(2018•南京)已知反比例函数y=的图象经过点(﹣3,﹣1),则k=3.【分析】根据反比例函数y=的图象经过点(﹣3,﹣1),可以求得k的值.【解答】解:∵反比例函数y=的图象经过点(﹣3,﹣1),∴﹣1=,解得,k=3,故答案为:3.26.(2018•陕西)若一个反比例函数的图象经过点A(m,m)和B(2m,﹣1),则这个反比例函数的表达式为.【分析】设反比例函数的表达式为y=,依据反比例函数的图象经过点A(m,m)和B(2m,﹣1),即可得到k的值,进而得出反比例函数的表达式为.【解答】解:设反比例函数的表达式为y=,∵反比例函数的图象经过点A(m,m)和B(2m,﹣1),∴k=m2=﹣2m,解得m1=﹣2,m2=0(舍去),∴k=4,∴反比例函数的表达式为.故答案为:.27.(2018•东营)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为y=.【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【解答】解:设A坐标为(x,y),∵B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0﹣3,解得:x=﹣2,y=﹣3,即A(﹣2,﹣3),设过点A的反比例解析式为y=,把A(﹣2,﹣3)代入得:k=6,则过点A的反比例解析式为y=,故答案为:y=28.(2018•成都)设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为.【分析】以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,联立直线AB及双曲线解析式成方程组,通过解方程组可求出点A、B的坐标,由PQ的长度可得出点P的坐标(点P在直线y=﹣x上找出点P的坐标),由图形的对称性结合点A、B和P的坐标可得出点P′的坐标,再利用反比例函数图象上点的坐标特征即可得出关于k的一元一次方程,解之即可得出结论.【解答】解:以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,如图所示.联立直线AB及双曲线解析式成方程组,,解得:,,∴点A的坐标为(﹣,﹣),点B的坐标为(,).∵PQ=6,∴OP=3,点P的坐标为(﹣,).根据图形的对称性可知:AB=OO′=PP′,∴点P′的坐标为(﹣+2, +2).又∵点P′在双曲线y=上,∴(﹣+2)•(+2)=k,解得:k=.故答案为:.29.(2018•安顺)如图,已知直线y=k1x+b与x轴、y轴相交于P、Q两点,与y=的图象相交于A(﹣2,m)、B(1,n)两点,连接OA、OB,给出下列结论:①k1k2<0;②m+n=0;③S△AOP=S△BOQ;④不等式k1x+b的解集是x<﹣2或0<x<1,其中正确的结论的序号是②③④.【分析】根据一次函数和反比例函数的性质得到k1k2>0,故①错误;把A(﹣2,m)、B(1,n)代入y=中得到﹣2m=n故②正确;把A(﹣2,m)、B(1,n)代入y=k1x+b得到y=﹣mx﹣m,求得P(﹣1,0),Q(0,﹣m),根据三角形的面积公式即可得到S△AOP =S△BOQ;故③正确;根据图象得到不等式k1x+b的解集是x<﹣2或0<x<1,故④正确.【解答】解:由图象知,k1<0,k2<0,∴k1k2>0,故①错误;把A(﹣2,m)、B(1,n)代入y=中得﹣2m=n,∴m+n=0,故②正确;把A(﹣2,m)、B(1,n)代入y=k1x+b得,∴,∵﹣2m=n,∴y=﹣mx﹣m,∵已知直线y=k1x+b与x轴、y轴相交于P、Q两点,∴P(﹣1,0),Q(0,﹣m),∴OP=1,OQ=m,∴S△AOP =m,S△BOQ=m,∴S△AOP =S△BOQ;故③正确;由图象知不等式k1x+b的解集是x<﹣2或0<x<1,故④正确;故答案为:②③④.30.(2018•安徽)如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B.平移直线y=kx,使其经过点B,得到直线l,则直线l对应的函数表达式是y=x﹣3.【分析】首先利用图象上点的坐标特征得出A点坐标,进而得出正比例函数解析式,再利用平移的性质得出答案.【解答】解:∵正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),∴2m=6,解得:m=3,故A(2,3),则3=2k,解得:k=,故正比例函数解析式为:y=x,∵AB⊥x轴于点B,平移直线y=kx,使其经过点B,∴B(2,0),∴设平移后的解析式为:y=x+b,则0=3+b,解得:b=﹣3,故直线l对应的函数表达式是:y=x﹣3.故答案为:y=x﹣3.三.解答题(共20小题)31.(2018•贵港)如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.(1)求k和n的值;(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.【分析】(1)利用一次函数图象上点的坐标特征可求出n值,进而可得出点B 的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;(2)由k=6>0结合反比例函数的性质,即可求出:当2≤x≤6时,1≤y≤3.【解答】解:(1)当x=6时,n=﹣×6+4=1,∴点B的坐标为(6,1).∵反比例函数y=过点B(6,1),∴k=6×1=6.(2)∵k=6>0,∴当x>0时,y随x值增大而减小,∴当2≤x≤6时,1≤y≤3.32.(2018•泰安)如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC 的中点,反比例函数y=的图象经过点E,与AB交于点F.(1)若点B坐标为(﹣6,0),求m的值及图象经过A、E两点的一次函数的表达式;(2)若AF﹣AE=2,求反比例函数的表达式.【分析】(1)根据矩形的性质,可得A,E点坐标,根据待定系数法,可得答案;(2)根据勾股定理,可得AE的长,根据线段的和差,可得FB,可得F点坐标,根据待定系数法,可得m的值,可得答案.【解答】解:(1)点B坐标为(﹣6,0),AD=3,AB=8,E为CD的中点,∴点A(﹣6,8),E(﹣3,4),函数图象经过E点,∴m=﹣3×4=﹣12,设AE的解析式为y=kx+b,,解得,一次函数的解析是为y=﹣x;(2)AD=3,DE=4,∴AE==5,∵AF﹣AE=2,∴AF=7,BF=1,设E点坐标为(a,4),则F点坐标为(a﹣3,1),∵E,F两点在函数y=图象上,∴4a=a﹣3,解得a=﹣1,∴E(﹣1,4),∴m=﹣1×4=﹣4,∴y=﹣.33.(2018•岳阳)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.【分析】(1)把A的坐标代入反比例函数的解析式即可求得;(2)作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b的方程求得b的值,进而求得a的值,根据待定系数法,可得答案.【解答】解:(1)由题意得,k=xy=2×3=6∴反比例函数的解析式为y=.(2)设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b)∵反比例函数y=的图象经过点B(a,b)∴b=∴AD=3﹣.=BC•AD∴S△ABC=a(3﹣)=6解得a=6∴b==1∴B(6,1).设AB的解析式为y=kx+b,将A(2,3),B(6,1)代入函数解析式,得,解得,直线AB的解析式为y=﹣x+4.34.(2018•柳州)如图,一次函数y=mx+b的图象与反比例函数y=的图象交于A(3,1),B(﹣,n)两点.(1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.【分析】(1)根据反比例函数y=的图象经过A(3,1),即可得到反比例函数的解析式为y=;(2)把B (﹣,n )代入反比例函数解析式,可得n=﹣6,把A (3,1),B (﹣,﹣6)代入一次函数y=mx +b ,可得一次函数的解析式为y=2x ﹣5.【解答】解:(1)∵反比例函数y=的图象经过A (3,1),∴k=3×1=3,∴反比例函数的解析式为y=;(2)把B (﹣,n )代入反比例函数解析式,可得 ﹣n=3,解得n=﹣6,∴B (﹣,﹣6),把A (3,1),B (﹣,﹣6)代入一次函数y=mx +b ,可得, 解得,∴一次函数的解析式为y=2x ﹣5.35.(2018•白银)如图,一次函数y=x +4的图象与反比例函数y=(k 为常数且k ≠0)的图象交于A (﹣1,a ),B 两点,与x 轴交于点C .(1)求此反比例函数的表达式;(2)若点P 在x 轴上,且S △ACP =S △BOC ,求点P 的坐标.【分析】(1)利用点A 在y=﹣x +4上求a ,进而代入反比例函数y=求k . (2)联立方程求出交点,设出点P 坐标表示三角形面积,求出P 点坐标.【解答】解:(1)把点A (﹣1,a )代入y=x +4,得a=3,∴A (﹣1,3)把A (﹣1,3)代入反比例函数y=∴k=﹣3,∴反比例函数的表达式为y=﹣(2)联立两个函数的表达式得解得或∴点B 的坐标为B (﹣3,1)当y=x +4=0时,得x=﹣4∴点C (﹣4,0)设点P 的坐标为(x ,0)∵S △ACP =S △BOC ∴解得x 1=﹣6,x 2=﹣2∴点P (﹣6,0)或(﹣2,0)36.(2018•菏泽)如图,已知点D 在反比例函数y=的图象上,过点D 作DB ⊥y 轴,垂足为B (0,3),直线y=kx +b 经过点A (5,0),与y 轴交于点C ,且BD=OC ,OC :OA=2:5.(1)求反比例函数y=和一次函数y=kx +b 的表达式;(2)直接写出关于x 的不等式>kx +b 的解集.【分析】(1)由OC、OA、BD之间的关系结合点A、B的坐标可得出点C、D的坐标,由点D的坐标利用反比例函数图象上点的坐标特征可求出a值,进而可得出反比例函数的表达式,再由点A、C的坐标利用待定系数法,即可求出一次函数的表达式;(2)将一次函数表达式代入反比例函数表达式中,利用根的判别式△<0可得出两函数图象无交点,再观察图形,利用两函数图象的上下位置关系即可找出不等式>kx+b的解集.【解答】解:(1)∵BD=OC,OC:OA=2:5,点A(5,0),点B(0,3),∴OA=5,OC=BD=2,OB=3,又∵点C在y轴负半轴,点D在第二象限,∴点C的坐标为(0,﹣2),点D的坐标为(﹣2,3).∵点D(﹣2,3)在反比例函数y=的图象上,∴a=﹣2×3=﹣6,∴反比例函数的表达式为y=﹣.将A(5,0)、B(0,﹣2)代入y=kx+b,,解得:,∴一次函数的表达式为y=x﹣2.(2)将y=x﹣2代入y=﹣,整理得:x2﹣2x+6=0,∵△=(﹣2)2﹣4××6=﹣<0,∴一次函数图象与反比例函数图象无交点.观察图形,可知:当x<0时,反比例函数图象在一次函数图象上方,∴不等式>kx+b的解集为x<0.37.(2018•湘西州)反比例函数y=(k为常数,且k≠0)的图象经过点A(1,3)、B(3,m).(1)求反比例函数的解析式及B点的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.【分析】(1)先把A点坐标代入y=求出k得到反比例函数解析式;然后把B (3,m)代入反比例函数解析式求出m得到B点坐标;(2)作A点关于x轴的对称点A′,连接BA′交x轴于P点,则A′(1,﹣3),利用两点之间线段最短可判断此时此时PA+PB的值最小,再利用待定系数法求出直线BA′的解析式,然后求出直线与x轴的交点坐标即可得到P点坐标.【解答】解:(1)把A(1,3)代入y=得k=1×3=3,∴反比例函数解析式为y=;把B(3,m)代入y=得3m=3,解得m=1,∴B点坐标为(3,1);(2)作A点关于x轴的对称点A′,连接BA′交x轴于P点,则A′(1,﹣3),∵PA+PB=PA′+PB=BA′,∴此时此时PA+PB的值最小,设直线BA′的解析式为y=mx+n,把A′(1,﹣3),B(3,1)代入得,解得,∴直线BA′的解析式为y=2x﹣5,当y=0时,2x﹣5=0,解得x=,∴P点坐标为(,0).38.(2018•大庆)如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.(1)求反比例函数y=的表达式;(2)求点B的坐标;(3)求△OAP的面积.【分析】(1)将点A的坐标代入解析式求解可得;(2)利用勾股定理求得AB=OA=5,由AB∥x轴即可得点B的坐标;(3)先根据点B坐标得出OB所在直线解析式,从而求得直线与双曲线交点P 的坐标,再利用割补法求解可得.【解答】解:(1)将点A(4,3)代入y=,得:k=12,则反比例函数解析式为y=;(2)如图,过点A作AC⊥x轴于点C,则OC=4、AC=3,∴OA==5,∵AB∥x轴,且AB=OA=5,∴点B的坐标为(9,3);(3)∵点B坐标为(9,3),∴OB所在直线解析式为y=x,由可得点P坐标为(6,2),过点P作PD⊥x轴,延长DP交AB于点E,则点E坐标为(6,3),∴AE=2、PE=1、PD=2,则△OAP的面积=×(2+6)×3﹣×6×2﹣×2×1=5.39.(2018•枣庄)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.【分析】(1)根据三角形相似,可求出点C坐标,可得一次函数和反比例函数解析式;(2)联立解析式,可求交点坐标;(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系.【解答】解:(1)由已知,OA=6,OB=12,OD=4∵CD⊥x轴∴OB∥CD∴△ABO∽△ACD∴∴∴CD=20∴点C坐标为(﹣4,20)∴n=xy=﹣80∴反比例函数解析式为:y=﹣把点A(6,0),B(0,12)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣2x+12(2)当﹣=﹣2x+12时,解得x1=10,x2=﹣4当x=10时,y=﹣8∴点E坐标为(10,﹣8)=S△CDA+S△EDA=∴S△CDE(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象∴由图象得,x≥10,或﹣4≤x<040.(2018•杭州)设一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,3),B(﹣1,﹣1)两点.(1)求该一次函数的表达式;(2)若点(2a+2,a2)在该一次函数图象上,求a的值.(3)已知点C(x1,y1)和点D(x2,y2)在该一次函数图象上,设m=(x1﹣x2)(y1﹣y2),判断反比例函数y=的图象所在的象限,说明理由.【分析】(1)根据一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,3),B(﹣1,﹣1)两点,可以求得该函数的表达式;(2)根据(1)中的解析式可以求得a的值;(3)根据题意可以判断m的正负,从而可以解答本题.【解答】解:(1)∵一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,3),B(﹣1,﹣1)两点,∴,得,即该一次函数的表达式是y=2x+1;(2)点(2a+2,a2)在该一次函数y=2x+1的图象上,∴a2=2(2a+2)+1,解得,a=﹣1或a=5,即a的值是﹣1或5;(3)反比例函数y=的图象在第一、三象限,理由:∵点C(x1,y1)和点D(x2,y2)在该一次函数y=2x+1的图象上,m=(x1﹣x2)(y1﹣y2),假设x1<x2,则y1<y1,此时m=(x1﹣x2)(y1﹣y2)>0,假设x1>x2,则y1>y1,此时m=(x1﹣x2)(y1﹣y2)>0,由上可得,m>0,∴m+1>0,∴反比例函数y=的图象在第一、三象限.41.(2018•杭州)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时).(1)求v关于t的函数表达式.(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?【分析】(1)直接利用vt=100进而得出答案;(2)直接利用要求不超过5小时卸完船上的这批货物,进而得出答案.【解答】解:(1)由题意可得:100=vt,则v=;(2)∵不超过5小时卸完船上的这批货物,∴t≤5,则v≥=20,答:平均每小时至少要卸货20吨.42.(2018•河北)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t(秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v米/秒.当甲距乙x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.【分析】(1)用待定系数法解题即可;(2)根据题意,分别用t表示x、y,再用代入消元法得出y与x之间的关系式;(3)求出甲距x轴1.8米时的横坐标,根据题意求出乙位于甲右侧超过4.5米的v乙.【解答】解:(1)由题意,点A(1,18)带入y=得:18=∴k=18设h=at2,把t=1,h=5代入∴a=5∴h=5t2(2)∵v=5,AB=1∴x=5t+1∵h=5t2,OB=18∴y=﹣5t2+18。

知识清单11 反比例函数- 2020年中考数学知识清单大全25讲(附例释)

知识清单11 反比例函数- 2020年中考数学知识清单大全25讲(附例释)

知识清单11:反比例函数1. 反比例函数的概念2. 反比例函数的图像与性质3. 确定反比例函数表达式4. k 值的几何意义5. 反比例函数与一次函数交点问题6. 反比例函数的实际应用1.反比例函数的概念(1)定义:形如y =kx (k ≠0)的函数称为反比例函数,k 叫做比例系数, 自变量的取值范围是非零的一切实数. (2)形式:反比例函数有以下三种基本形式: ①y =kx ;②y=kx -1; ③xy=k.(其中k 为常数,且k ≠0)2.反比例函数的图象和性质3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x 轴和y 轴,但都不会与x 轴和y 轴相交; (3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条 对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例 函数系数k 即可.名师点睛:(1)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.(2)判断点是否在反比例函数图象上的方法: ①把点的横、纵坐标代入看是否满足其解析式; ②把点的横、纵坐标相乘,判断其乘积是否等于k(3)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断.(4)例:若(a ,b)在反比例函数ky x=的图象上,则(-a ,-b)在该函数图象上.(5)例:已知反比例函数图象过点(-3,-1),则反比例函数解析式的k=(-3)·(-1)=3,它的解析式是3y x=.(1)意义:从反比例函数y =kx (k ≠0)图象上任意一点向x 轴和y 轴作垂 线,垂线与坐标轴所围成的矩形面积为|k |,以该点、一个垂足和原点为顶点的三角形的面积为2k.(2)反比例函数的|k |越大,则图像越远离原点.6.反比例函数与一次函数的综合(1)确定交点坐标:①已知一个交点坐标为(a ,b ),则根据中心对 称性,可得另一个交点坐标为(-a ,-b );②联立两个函数解析式,利 用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代 入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数 的关系,可采用假设法,分k >0和k <0两种情况讨论,看哪个选项 符合要求即可,也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图 象在下方的值小,结合交点坐标,确定出解集的范围. (5)两函数交点个数问题:①若两函数有两个交点,则联立后的一元二次方程△>0; ②若两函数有唯一交点,则联立后的一元二次方程△=0; ③若两函数有没有交点,则联立后的一元二次方程△<0;7.实际应用的一般步骤(1)题意找出自变量与因变量之间的乘积关系; (2)设出函数表达式; (3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.名师点睛:(6)已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k <0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3y x =或3y x=-.(7)涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k 的几何意义.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S △AOC =S △BOD <S △OPE .(8)k 值几何意义:(9)例:若一次函数6y x =-+向右平移m 个单位后与反比例函数2y x=有唯一交点,则m 的值为_____. 解:令()26x m x-++=,化简得:()2620xm x +-+=因为两函数有唯一交点,则△=0, 即()2680m --=,解得226m =±+.函数的平移规律:上加下减,左加右减,上、下平移直接在解析式后加减,左、右平移在自变量x的地方加减.例题:函数723yx=-+并非y关于x的反比例函数,但可以看成是由y关于x的反比例函数7yx=向左平3个单位和向下平移2个单位得到,图像在平移的过程中,“临界线”也跟着发生了相应的平移,如图所示:临界线:x轴和y轴7yx =。

中考考点反比例函数的定义反比例函数像的性质与变化规律

中考考点反比例函数的定义反比例函数像的性质与变化规律

中考考点反比例函数的定义反比例函数像的性质与变化规律反比例函数是数学中的一个重要概念,也是中考数学考试的一个重要考点。

它具有独特的定义和性质,同时在实际问题中有着广泛的应用。

本文将对反比例函数的定义、性质以及变化规律进行详细阐述。

一、反比例函数的定义反比例函数是指具有形如y=k/x的函数关系的数学函数。

其中,k 是一个常数,并且x≠0。

例如,y=3/x就是一个简单的反比例函数。

当x取不同的值时,y的值会产生相应的变化。

在反比例函数中,x的值为0时,y的值无定义。

这是因为在数学中,除数不能为0。

因此,反比例函数的定义域为x≠0,值域为y≠0。

二、反比例函数的性质反比例函数具有以下几个重要的性质:1. 过原点:反比例函数的图像一定经过坐标原点(0,0)。

这是因为当x取0时,y的值无论为何都是无意义的。

2. 零点:反比例函数在定义域中,存在一个特殊的点使得函数值为0。

该点称为反比例函数的零点。

对于y=k/x的反比例函数来说,当x=k时,y=0。

3. 单调性:反比例函数在其定义域内是单调的。

当x1<x2时,对应的y1和y2之间存在着y1>y2的关系。

4. 变化趋势:反比例函数的图像可以是一个倾斜的曲线。

当x的值增大时,y的值会逐渐减小;当x的值减小时,y的值会逐渐增大。

5. 图像形态:反比例函数的图像一般是一个双曲线。

它在坐标平面上的形态取决于k的正负和绝对值大小。

三、反比例函数的变化规律反比例函数在实际问题中具有一定的变化规律。

以“速度与时间的关系”为例,假设一个运动物体在匀速直线运动中,其行驶距离与时间的关系可以表示为y=d/t,其中,d为距离,t为时间。

可以看出,该关系符合反比例函数的形式。

根据反比例函数的特性,在运动过程中,当时间逐渐增加时,物体所行驶的距离会逐渐减小,即速度会逐渐减小。

反之,当时间逐渐减小时,物体所行驶的距离会逐渐增加,即速度会逐渐增大。

这与我们常规的观察和经验是一致的。

专题21反比例函数的图象与性质(3个知识点5种题型2种中考考法)(原卷版-初中数学北师大版9年级上册

专题21反比例函数的图象与性质(3个知识点5种题型2种中考考法)(原卷版-初中数学北师大版9年级上册

专题21反比例函数的图象与性质(3个知识点5种题型2种中考考法)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.反比例函数图象的画法(重点)知识点2.反比例函数的图象与性质(重点)知识点3.反比例函数表达式中比例系数k 的几何意义(难点)【方法二】实例探索法题型1.反比例函数的图象与性质的应用题型2.反比例函数与图形面积问题题型3.利用反比例函数图象的对称性解题题型4.创新题题型5.反比例函数与几何图形的综合【方法三】仿真实战法考法1.反比例函数的比例系数k 的几何意义考法2.利用反比例函数的性质比较函数值大小【方法四】成果评定法【学习目标】1.能画出反比例函数的图象,知道反比例函数的图象是双曲线。

2.理解反比例函数的性质,并能运用其性质解决相关的问题。

3.理解反比例函数)0(≠=k xky 中的比例系数k 的几何意义,并能运用其意义求与反比例函数图象有关的图形面积问题。

【知识导图】【倍速学习四种方法】【方法一】脉络梳理法知识点1.反比例函数图象的画法(重点)(1)列表:自变量的取值应以0为中心,在0的两侧取三对(或三对以上)互为相反数的值,填写y 值时,只需计算右侧的函数值,相应左侧的函数值是与之对应的相反数;(2)描点:描出一侧的点后,另一侧可根据中心对称去描点;(3)连线:按照从左到右的顺序连接各点并延伸,连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交;(4)反比例函数图象的分布是由k 的符号决定的:当0k >时,两支曲线分别位于第一、三象限内,当0k <时,两支曲线分别位于第二、四象限内.知识点2.反比例函数的图象与性质(重点)1、反比例函数的图象特征:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴.注意:(1)若点(a b ,)在反比例函数ky x=的图象上,则点(a b --,)也在此图象上,所以反比例函数的图象关于原点对称;(2)在反比例函数(k 为常数,0k ≠)中,由于,所以两个分支都无限接近但永远不能达到x 轴和y 轴.2.反比例函数的性质(1)如图1,当0k >时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y 值随x 值的增大而减小;(2)如图2,当0k <时,双曲线的两个分支分别位于第二、四象限,在每个象限内,y 值随x 值的增大而增大;注意:(1)反比例函数的增减性不是连续的,它的增减性都是在各自的象限内的增减情况,反比例函数的增减性都是由反比例系数k 的符号决定的;反过来,由双曲线所在的位置和函数的增减性,也可以推断出k 的符号.(2)反比例的图像关于原点的对称【例2】(2022秋•南华县期末)反比例函数与一次函数y =kx +1在同一坐标系的图象可能是()A .B .C.D.【变式】(2022秋•大渡口区校级期末)在同一坐标系中,函数和y=kx﹣2的图象大致是()A.B.C.D.【例3】(2023•瑞安市开学)对于反比例函数,当﹣1<y≤2,且y≠0时,自变量x的取值范围是()A.x≥1或x<﹣2B.x≥1或x≤﹣2C.0<x≤1或x<﹣2D.﹣2<x<0或x≥1【变式】(2023•西湖区校级开学)若点A(x1,y1),B(x2,y2),C(x3,y3),都在反比例函数(k为常数,k>0)的图象上,其中y2<0<y1<y3,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x2<x1<x3知识点3.反比例函数表达式中比例系数k的几何意义(难点)通过反比例函数上一点向一条坐标轴作垂线,这个点与垂足和原点所构成的三角形面积为12k,与两条坐标轴围成矩形面积为k,注意加绝对值时,有正负两个答案.【例4】(2023•和平区校级三模)如图,点A在双曲线上,AB ⊥x 轴于B ,且△AOB 的面积S △AOB =2,则k 的值为()A .2B .4C .﹣2D .﹣4【变式】如图,矩形ABCD 的边CD 在x 轴上,顶点A 在双曲线1y x =上,顶点B 在双曲线3y x=上,求矩形ABCD 的面积.A B CDE Oxy【方法二】实例探索法题型1.反比例函数的图象与性质的应用1.(2023•株洲)下列哪个点在反比例函数的图象上?()A .P 1(1,﹣4)B .P 2(4,﹣1)C .P 3(2,4)D .2.(2023•西湖区校级开学)若点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),都在反比例函数(k 为常数,k>0)的图象上,其中y 2<0<y 1<y 3,则x 1,x 2,x 3的大小关系是()A .x 1<x 2<x 3B .x 2<x 3<x 1C .x 1<x 3<x 2D .x 2<x 1<x 33.(2023春•东阳市期末)已知反比例函数的图象的一支如图所示,它经过点(3,﹣2).(1)求此反比例函数的表达式,并补画该函数图象的另一支.(2)求当y ≤4,且y ≠0时自变量x 的取值范围.4.(1)平面直角坐标系中,点A (725)m m --,在第二象限,且m 为整数,求过点A 的反比例函数解析式;(2)若反比例函数3k y x -=的图像位于第二、四象限内,正比例函数2(1)3y k x =-过一、三象限,求整数k 的值.5.已知反比例函数(0)k y k x =≠,当自变量x 的取值范围为84x ≤≤--时,相应的函数取值范围是12y ≤≤--1,求这个反比例函数解析式.题型2.反比例函数与图形面积问题6.(1)若P是反比例函数3kyx=图像上的一点,PQ⊥y轴,垂足为点Q,若2POQs∆=,求k的值;(2)已知反比例函数kyx=的图像上有一点A,过A点向x轴,y轴分别做垂线,垂足分别为点B C,,且四边形ABOC的面积为15,求这个反比例函数解析式.7.(2022秋•朝阳期末)如图,一次函数y=k1x+b与反比例函数y=(x>0)的图象交于A(1,6),B(3,n)两点.(1)求反比例函数的解析式和n的值;(2)根据图象直接写出不等式k1x+b的x的取值范围;(3)求△AOB的面积.题型3.利用反比例函数图象的对称性解题8.(2023•福建)如图,正方形四个顶点分别位于两个反比例函数y=和y=的图象的四个分支上,则实数n的值为()A.﹣3B.﹣C.D.39.(2023•广西)如图,过的图象上点A,分别作x轴,y轴的平行线交的图象于B,D 两点,以AB,AD为邻边的矩形ABCD被坐标轴分割成四个小矩形,面积分别记为S1,S2,S3,S4,若,则k的值为()A.4B.3C.2D.1(1)若点A(1,1),分别求线段(2)对于任意的点A(a,b),试探究线段14.(2022秋·安徽滁州·九年级统考期中)如图,已知1A,2A,3A,…,n A…是x轴上的点,且15.(2021秋·河北石家庄每个台阶凸出的角的顶点记作(1)若L 过点1T ,则k =(2)若曲线L 使得1T T ~16.(2022秋·全国·九年级期末)如图,已知反比例函数题型5.反比例函数与几何图形的综合17.过原点作直线交双曲线(0)ky k x=>于点A 、C ,过A 、C 两点分别作两坐标轴的平行线,围成矩形ABCD ,如图所示.(1)已知矩形ABCD 的面积等于8,求双曲线的解析式;(2)若已知矩形ABCD 的周长为8,能否由此确定双曲线的解析式?如果能,请予求出;如果不能,说明理由.y ABCDOx18.正方形OAPB 、ADFE 的顶点A 、D 、B 在坐标轴上,点E 在AP 上,点P 、F 在函数(0)ky k x=>的图像上,已知正方形OAPB 的面积是16.(1)求k 的值和直线OP 的函数解析式;(2)求正方形ADEF 的边长.yABPFOxED19.如图,已知正方形OABC 的面积是9,点O 为坐原点,A 在x 轴上,C 在y 轴上,B 在函数(00)ky k x x=>>,的图像上,点P (m ,n )在(00)ky k x x=>>,的图像上异于B 的任意一点,过点P 分别作x 轴,y 轴的垂线,垂足分别是E 、F .设矩形OEPF 和正方形OABC 不重合部分的面积是S .(1)求点B 的坐标;(2)当92S =时,求点P 的坐标;(3)写出S 关于m 的函数解析式.A BC PE FyOx【方法三】仿真实战法考法1.反比例函数的比例系数k 的几何意义1.(2023•福建)如图,正方形四个顶点分别位于两个反比例函数y =和y =的图象的四个分支上,则实数n 的值为()A .﹣3B.﹣C.D .32.(2023•湘西州)如图,点A 在函数y=(x >0)的图象上,点B 在函数y=(x >0)的图象上,且AB ∥x 轴,BC ⊥x 轴于点C ,则四边形ABCO 的面积为()A .1B .2C .3D .4考法2.利用反比例函数的性质比较函数值大小3.(2023•镇江)点A(2,y1)、B(3,y2)在反比例函数y=的图象上,则y1y2(用“<”、“>”或“=”填空).4.(2022•广东)点(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,则y1,y2,y3,y4中最小的是()A.y1B.y2C.y3D.y45.(2021•广安)若点A(﹣3,y1),B(﹣1,y2),C(2,y3)都在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y3<y1<y2B.y2<y1<y3C.y1<y2<y3D.y3<y2<y1【方法四】成果评定法一、单选题A.1 43.(2022·福建福州·校考模拟预测)如图,在x轴于B、D两点,连结A .4B .65.(2022秋·福建厦门·九年级校考期中)如图,过双曲线上任意一点交x 轴、y 轴于点M 、N ,所得矩形A .4B .4-6.(2021秋·河北石家庄·九年级校联考期中)关于反比例函数A .函数图像分别位于第一、三象限C .函数图像过()(23A mB n -,、,A.4 10.(2023·江苏宿迁图像上,点E在yA.1B 二、填空题11.(2022秋·湖南永州13.(2022秋·黑龙江大庆的大小关系是14.(2023·安徽滁州15.(2023秋·重庆沙坪坝比例函数()0ky k x=≠上两点,平行线,两直线交于点16.(2023秋·福建泉州·九年级校考专题练习)如图,已知直线(00)a y x a x =>>,和b y x =象于点D ,过点C 作CE ∥17.(2022秋·贵州铜仁·九年级统考期中)如图,点112232021OA A A A A A ==== 图象分别交于点123,,,B B B 18.(2023·浙江·九年级专题练习)如图,点所示,分别过点A ,C 作x 轴与构成的阴影部分面积为2,则矩形三、解答题19.(2023秋·陕西榆林·九年级校考期末)已知反比例函数(1)函数的图象在第二、四象限?(1)求k的值;(2)请用无刻度的直尺和圆规作出(3)设(2)中的角平分线与⊥.证:DE OA(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;(2)研究函数并结合图象与表格,回答下列问题:①点()121,7552,,,,2A y B y C x ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭②当函数值2y =时,求自变量x 的值;(1)求点A 的坐标;(2)求反比例函数的解析式:(1)点D的坐标为______,点E的坐标为______;(2)动点P在第一象限内,且满足12PBO ODE S S∆∆=。

中考数学复习考点知识归类讲解12 反比例函数比例系数k的几何意义

中考数学复习考点知识归类讲解12 反比例函数比例系数k的几何意义

中考数学复习考点知识归类讲解 专题12 反比例函数比例系数k 的几何意义知识对接考点一、反比例函数比例系数k 的几何意义(1)意义:从反比例函数y =(k≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|. (2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k <0. 例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3y x=或3y x =-专项训练 一、单选题1.如图,已知反比例函数2y x=-的图像上有一点P ,过点P 作PA x ⊥轴,垂足为点A ,则POA 的面积是()A.2 B.1 C.1-D.122.如图,在平面直角坐标系中,A,B是反比例函数kyx=在第一象限的图象上的两点,且其横坐标分别为1,4,若AOB的面积为54,则k的值为()A.23B.1C.2D.1543.若图中反比例函数的表达式均为4yx=,则阴影面积为4的有()A.1个B.2个C.3个D.4个4.如图,点A是反比例函数4yx=-图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足分别为B,C,则矩形ABOC的面积为()A .-4B .2C .4D .85.如图,等腰ABC 中,5AB AC ==,8BC =,点B 在y 轴上,//BC x 轴,反比例函数k y x=(0k >,0x >)的图象经过点A ,交BC 于点D .若AB BD =,则k 的值为()A .60B .48C .36D .206.在平面直角从标系中,30°的直角三角尺直角顶点与坐标原点重合,双曲线11k y x=(x >0),经过点B ,双曲线22k y x=(x <0),经过点C ,则12k k =( )A.﹣3 B.3 C.D7.如图,A、B是双曲线y=kx图象上的两点,过A点作AC⊥x轴于点C,交OB于点D,BD=2OD,且ADO的面积为8,则DCO的面积为()A.12B.1 C.32D.28.如图,平行于y轴的直线l分别与反比例函数kyx=(x>0)和1yx=-(x>0)的图象交于M、N两点,点P是y轴上一动点,若△PMN的面积为2,则k的值为()A.2 B.3 C.4 D.59.如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y3=x(x>0)和y6=x-(x>0)的图象交于B、A两点.若点C是y轴上任意一点,则△ABC的面积为()A .3B .6C .9D .9210.如图.在平面直角坐标系中,△AOB 的面积为278,BA 垂直x 轴于点A ,OB 与双曲线y =k x相交于点C ,且BC ∶OC =1∶2,则k 的值为()A .﹣3B .﹣94C .3D .92二、填空题11.如图,平面直角坐标系中,O 是坐标原点,点A 是反比例函数()0k y k x=≠图象上的一点,过点A 分别作AM x ⊥轴于点M ,AN y ⊥轴于点N .若四边形AMON 的面积为12,则k 的值是__________.12.如图,在反比例函数3yx=的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数kyx=的图象上运动,tan∠CAB=2,则k的值为_____13.如图,点P在反比例函数4yx=-的图像上,过点P作PA x⊥轴于点A,则POA的面积是_______.14.如图所示,反比例函数kyx=(0k≠,0x>)的图像经过矩形OABC的对角线AC的中点D .若矩形OABC 的面积为8,则k 的值为________.15.如图,点A 与点B 分别在函数11(0)k y k x =>与220)k y k x=<(的图象上,线段AB 的中点M 在y 轴上.若△AOB 的面积为3,则12k k -的值是___.三、解答题16.如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为AOB 的中位线,PC 的延长线交反比例函数ky x=(0k >)的图象于点Q ,32OQCS=.(1)求A 点和B 点的坐标; (2)求k 的值和Q 点的坐标.17.点O 为平面直角坐标系的原点,点A 、C 在反比例函数a y x=的图象上,点B 、D 在反比例函数b y x=的图象上,且0a b >>.(1)若点A 的坐标为()6,4,点B 恰好为OA 的中点,过点A 作AN x ⊥轴于点N ,交b y x=的图象于点P . ①请求出a 、b 的值; ②试求OBP 的面积.(2)若////AB CD x 轴,32CD AB ==,AB 与CD 间的距离为6,试说明-a b 的值是否为某一固定值?如果是定值,试求出这个定值;若不是定值,请说明理由.18.如图,点C 在反比例函数y 1=x的图象上,CA ∥y 轴,交反比例函数y 3=x的图象于点A ,CB ∥x 轴,交反比例函数y 3=x的图象于点B ,连结AB 、OA 和OB ,已知CA =2,则△ABO 的面积为__.19.如图是反比例函数2yx=与反比例函数在第一象限中的图象,点P是4yx=图象上一动点,PA⊥X轴于点A,交函数2yx=图象于点C,PB⊥Y轴于点B,交函数2yx=图象于点D,点D的横坐标为a.(1)用字母a表示点P的坐标;(2)求四边形ODPC的面积;(3)连接DC交X轴于点E,连接DA、PE,求证:四边形DAEP是平行四边形.20.如图,点A(﹣2,y1)、B(﹣6,y2)在反比例函数y=kx(k<0)的图象上,AC⊥x轴,BD⊥y轴,垂足分别为C、D,AC与BD相交于点E.(1)根据图象直接写出y1、y2的大小关系,并通过计算加以验证;(2)结合以上信息,从①四边形OCED的面积为2,②BE=2AE这两个条件中任选一个作为补充条件,求k 的值.你选择的条件是(只填序号). 21.如图,一次函数()20y kx k k =-≠的图象与反比例函数1(10)m y m x-=-≠的图象交于点C ,与x 轴交于点A ,过点C 作CB y ⊥轴,垂足为B ,若3ABC S =△.(1)求点A 的坐标及m 的值;(2)若AB =22.如图,过C 点的直线y =﹣12x ﹣2与x 轴,y 轴分别交于点A ,B 两点,且BC =AB ,过点C 作CH ⊥x 轴,垂足为点H ,交反比例函数y =k x(x >0)的图象于点D ,连接OD ,△ODH 的面积为6(1)求k 值和点D 的坐标;(2)如图,连接BD ,OC ,点E 在直线y =﹣12x ﹣2上,且位于第二象限内,若△BDE 的面积是△OCD 面积的2倍,求点E 的坐标.11 / 11 23.如图,直线l 分别交x 轴,y 轴于A 、B 两点,交反比例函数(0)k y k x =≠的图象于P 、Q 两点.若2AB BP =,且AOB 的面积为4(1)求k 的值;(2)当点P 的横坐标为1-时,求POQ △的面积.。

中考一轮复习--第11讲 反比例函数及其应用

中考一轮复习--第11讲 反比例函数及其应用
1
1
∴a=2,∴直线 OB 的函数表达式为 y=2x.
(2)如图,作 CD⊥OA 于点 D,∵C(1,2),
∴OC= 12 + 22 = 5.
在平行四边形 OABC 中,
CB=OA=3,AB=OC= 5,
∴四边形 OABC 的周长为 3+3+ 5 + 5
=6+2 5,
即四边形 OABC 的周长为 6+2 5.
动程序.若在水温为30 ℃时接通电源,水温y(℃)与时间x(min)的关
系如图所示.
(1)分别写出水温上升和下降阶段y与x之间的函数关系式;
(2)怡萱同学想喝高于50 ℃的水,请问她最多需要等待多长时间?
考法1
考法2
考法3
考法4
分析:(1)根据函数图象和题意可以求得y关于x的函数关系式,注意
函数图象是循环出现的;(2)根据(1)中的函数解析式可以解答本题.
(1)求k的值及直线OB的函数表达式;
(2)求四边形OABC的周长.
考法1
考法2
考法3
考法4


解:(1)依题意有:点 C(1,2)在反比例函数 y= (k≠0)的图象上,
∴k=xy=2.
∵A(3,0),∴CB=OA=3.又 CB∥x 轴,∴B(4,2).设直线 OB 的函数表达
式为 y=ax,∴2=4a,
考法1
考法2
考法3
考法4
反比例函数的图象和性质
例2(2019·江苏镇江)已知点A(-2,y1),B(-1,y2)都在反比例函数y=- 2

的图象上,则y1
y2.(填“>”或“<”)
答案:<
2

中考数学专题复习7反比例函数及其运用(解析版)

中考数学专题复习7反比例函数及其运用(解析版)

反比例函数及其运用复习考点攻略考点一 反比例函数的概念1.反比例函数的概念:一般地.函数ky x=(k 是常数.k ≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx -=的形式.自变量x 的取值范围是x ≠0的一切实数.函数的取值范围也是一切非零实数. 2.反比例函数k y x =(k 是常数.k ≠0)中x .y 的取值范围:反比例函数ky x=(k 是常数.k ≠0)的自变量x 的取值范围是不等于0的任意实数.函数值y 的取值范围也是非零实数. 【例1】下列函数中.y 与x 之间是反比例函数关系的是 A .xyB .3x +2y =0C .y =D .y =【答案】A考点二 反比例函数的图象和性质1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线.它有两个分支.这两个分支分别位于第一、三象限.或第二、四象限.由于反比例函数中自变量x ≠0.函数y ≠0.所以.它的图象与x 轴、y 轴都没有交点.即双曲线的两个分支无限接近坐标轴.但永远达不到坐标轴.(2)性质:当k >0时.函数图象的两个分支分别在第一、三象限.在每个象限内.y 随x 的增大而减小.当k <0时.函数图象的两个分支分别在第二、四象限.在每个象限内.y 随x 的增大而增大.2kx 21x +表达式 ky x=(k 是常数.k ≠0) kk >0k <0大致图象所在象限 第一、三象限第二、四象限增减性在每个象限内.y 随x 的增大而减小在每个象限内.y 随x 的增大而增大反比例函数的图象既是轴对称图形.又是中心对称图形.其对称轴为直线y =x 和y =-x .对称中心为原点. 【注意】(1)画反比例函数图象应多取一些点.描点越多.图象越准确.连线时.要注意用平滑的曲线连接各点.(2)随着|x |的增大.双曲线逐渐向坐标轴靠近.但永远不与坐标轴相交.因为反比例函数ky x=中x ≠0且y ≠0. (3)反比例函数的图象不是连续的.因此在谈到反比例函数的增减性时.都是在各自象限内的增减情况.当k >0时.在每一象限(第一、三象限)内y 随x 的增大而减小.但不能笼统地说当k >0时.y 随x 的增大而减小.同样.当k <0时.也不能笼统地说y 随x 的增大而增大.【例2】一次函数与反比例函数在同一坐标系中的图象可能是( ) A . B .C .D .y ax a =-(0)ay a x=≠【答案】D【解析】当时..则一次函数经过一、三、四象限.反比例函数经过一 、三象限.故排除A.C 选项; 当时..则一次函数经过一、二、四象限.反比例函数经过二、四象限.故排除B 选项.故选:D .【例3】若点.在反比例函数的图象上.且.则的取值范围是( )A .B .C .D .或【答案】B【解析】解:∵反比例函数.∴图象经过第二、四象限.在每个象限内.y 随x 的增大而增大.①若点A 、点B 同在第二或第四象限.∵.∴a -1>a+1.此不等式无解;②若点A 在第二象限且点B 在第四象限.∵.∴.解得:; ③由y 1>y 2.可知点A 在第四象限且点B 在第二象限这种情况不可能. 综上.的取值范围是.故选:B .考点三 反比例函数解析式的确定1.待定系数法:确定解析式的方法仍是待定系数法.由于在反比例函数ky x=中.只有一个待定系数.因此只需要一对对应值或图象上的一个点的坐标.即可求出k 的值.从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤 (1)设反比例函数解析式为ky x=(k ≠0); (2)把已知一对x .y 的值代入解析式.得到一个关于待定系数k 的方程; (3)解这个方程求出待定系数k ;(4)将所求得的待定系数k 的值代回所设的函数解析式.【例4】点A 为反比例函数图象上一点.它到原点的距离为5.到x 轴的距离为3.若点A 在第二象限内.则这个函数的解析式为( )0a >0a -<y ax a =-(0)ay a x=≠0a <0a ->y ax a =-(0)ay a x=≠()11,A a y -()21,B a y +(0)ky k x=<12y y >a 1a <-11a -<<1a >1a <-1a >(0)ky k x=<12y y >12y y >1010a a -⎧⎨+⎩<>11a -<<a 11a -<<A.y=12xB.y=-12xC.y=112xD.y=-112x【答案】B【解析】设A点坐标为(x.y).∵A点到x轴的距离为3.∴|y|=3.y=±3.∵A点到原点的距离为5.∴x2+y2=52.解得x=±4.∵点A在第二象限.∴x=-4.y=3.∴点A的坐标为(-4.3).设反比例函数的解析式为y=.∴k=-4×3=-12.∴反比例函数的解析式为y=.故选B.考点四反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时.可通过面积作和或作差的形式来求解.(1)正比例函数与一次函数所围成的三角形面积.如图①.S△ABC=2S△ACO=|k|;(2)如图②.已知一次函数与反比例函数kyx=交于A、B两点.且一次函数与x轴交于点C.则S△AOB=S△AOC+S△BOC=1||2AOC y⋅+1||2BOC y⋅=1(||||)2A BOC y y⋅+;(3)如图③.已知反比例函数kyx=的图象上的两点.其坐标分别为()A Ax y,.k x 12 x-()B B x y ,.C 为AB 延长线与x 轴的交点.则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-.【例5】如图.已知双曲线经过直角三角形OAB 斜边OB 的中点D .与直角边AB 相交于点C .若△OBC 的面积为9.则k =__________.【答案】6【解析】如图.过点D 作x 轴的垂线交x 轴于点E .∵△ODE 的面积和△OAC 的面积相等.∴△OBC 的面积和四边形DEAB 的面积相等且为9. 设点D 的横坐标为x .纵坐标就为. ∵D 为OB 的中点.∴EA =x .AB =. ∴四边形DEAB 的面积可表示为:(+)x =9;k =6. 故答案为:6.【例6】如图.A 、B 两点在双曲线y x=的图象上.分别经过A 、B 两点向轴作垂线段.已知1S =阴影.则12S S +=ky x=k x 2k x12k x 2k xA .8B .6C .5D .4【答案】B【解析】∵点A 、B 是双曲线y =上的点.分别经过A 、B 两点向x 轴、y 轴作垂线段.则根据反比例函数的图象的性质得两个矩形的面积都等于|k |=4.∴S 1+S 2=4+4-1×2=6.故选B .考点五 反比例函数与一次函数的综合1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时.联立两个解析式.构造方程组.然后求出交点坐标.针对12y y >时自变量x 的取值范围.只需观察一次函数的图象高于反比例函数图象的部分所对应的x 的范围.例如.如下图.当12y y >时.x 的取值范围为A x x >或0B x x <<;同理.当12y y <时.x 的取值范围为0A x x <<或B x x <.2.求一次函数与反比例函数的交点坐标(1)从几何角度看.一次函数与反比例函数的交点由k 值的符号来决定. ①k 值同号.两个函数必有两个交点;②k 值异号.两个函数可能无交点.可能有一个交点.也可能有两个交点;(2)从代数角度看.一次函数与反比例函数的交点主要取决于两函数所组成的方程组的解的情况.【例7】已知抛物线y =x 2+2x +k +1与x 轴有两个不同的交点.则一次函数y =kx ﹣k 与反比例函数y =在同一坐标系内的大致图象是( )4xA.B.C.D.【解析】∵抛物线y=x2+2x+k+1与x轴有两个不同的交点.∴△=4﹣4(k+1)>0.解得k<0.∴一次函数y=kx﹣k的图象经过第一二四象限.反比例函数y=的图象在第二四象限.故选:D.考点六反比例函数的实际应用解决反比例函数的实际问题时.先确定函数解析式.再利用图象找出解决问题的方案.特别注意自变量的取值范围.【例8】如图.△OAC和△BAD都是等腰直角三角形.∠ACO=∠ADB=90°.反比例函数y=k在第一象限的图象经过点B.若xOA2−AB2=12.则k的值为______.【解析】设B点坐标为(a,b).∵△OAC和△BAD都是等腰直角三角形.∴OA=√2AC.AB=√2AD.OC=AC.AD=BD.∵OA2−AB2=12.∴2AC2−2AD2=12.即AC2−AD2=6.∴(AC+AD)(AC−AD)=6.∴(OC+BD)⋅CD=6.∴a⋅b=6.∴k=6.故答案为:6..(其中mk≠0)图象交于【例9】如图.一次函数y=kx+b与反比例函数y=mxA(−4,2).B(2,n)两点.(1)求一次函数和反比例函数的表达式;(2)求△ABO的面积;(3)请直接写出当一次函数值大于反比例函数值时x 的取值范围.【解析】(1)∵一次函数y =kx +b 与反比例函数y =m x(mk ≠0)图象交于A(−4,2).B(2,n)两点.根据反比例函数图象的对称性可知.n =−4. ∴{2=−4k +b−4=2k +b .解得{k =−1b =−2.故一次函数的解析式为y =−x −2. 又知A 点在反比例函数的图象上.故m =−8. 故反比例函数的解析式为y =−8x ; (2)在y =−x −2中.令y =0.则x =−2. ∴OC =2.∴S △AOB =12×2×2+12×2×4=6; (3)根据两函数的图象可知:当x <−4或0<x <2时.一次函数值大于反比例函数值.第一部分 选择题一、选择题(本题有10小题.每题4分.共40分)1.下列函数:①2x y =;②2y x =;③12y x=-;④12y x -=中.是反比例函数的有( ) A .1个 B .2个 C .3个D .4个【答案】C【解析】①不是正比例函数.②③④是反比例函数.故选C .2.点A 为反比例函数图象上一点.它到原点的距离为5.则x 轴的距离为3.若点A 在第二象限内.则这个函数的解析式为( )A .y =12xB .y =-12xC .y =112xD .y =-112x【答案】C【解析】∵反比例函数y =-中.k =-6.∴只需把各点横纵坐标相乘.结果为-6的点在函数图象上.四个选项中只有C 选项符合.故选C . 3. 已知点A (1.m ).B (2.n )在反比例函数(0)ky k x=<的图象上.则( ) A .0m n << B .0n m << C .0m n >>D .0n m >>【答案】A【解析】∵反比例函数(0)k y k x =<.它的图象经过A (1.m ).B (2.n )两点.∴m =k <0.n =2k<0.∴0m n <<.故选A .4. 如图.等腰三角形ABC 的顶点A 在原点.顶点B 在x 轴的正半轴上.顶点C 在函数y =kx(x >0)的图象上运动.且AC =BC .则△ABC 的面积大小变化情况是( )A .一直不变B .先增大后减小C .先减小后增大D .先增大后不变【答案】A【解析】如图.作CD ⊥AB 交AB 于点D .则S △ACD =.∵AC =BC .∴AD =BD .∴S △ACD =S △BCD . ∴S △ABC =2S △ACD =2×=k .∴△ABC 的面积不变.故选A .6x 2k2k5.如图.点.点都在反比例函数的图象上.过点分别向轴、轴作垂线.垂足分别为点..连接...若四边形的面积记作.的面积记作.则( )A .B .C .D .【答案】C【解析】解:点P (m.1).点Q (−2.n )都在反比例函数y =的图象上. ∴m×1=−2n =4.∴m =4.n =−2.∵P (4.1).Q (−2.−2).∵过点P 分别向x 轴、y 轴作垂线.垂足分别为点M.N.∴S 1=4.作QK ⊥PN.交PN 的延长线于K.则PN =4.ON =1.PK =6.KQ =3. ∴S 2=S △PQK −S △PON −S 梯形ONKQ =×6×3−×4×1−(1+3)×2=3.∴S 1:S 2=4:3.故选:C .6. 已知一次函数y 1=kx +b 与反比例函数y 2=kx在同一直角坐标系中的图象如图所示.则当y 1<y 2时.x 的取值范围是( )(,1)P m (-2,)Q n 4y x=P x y M N OP OQ PQ OMPN 1S POQ △2S 12:2:3S S =12:1:1S S =12:4:3S S =12:5:3S S =4x121212A .x <-1或0<x <3B .-1<x <0或x >3C .-1<x <0D .x >3【答案】B【解析】根据图象知.一次函数y 1=kx +b 与反比例函数y 2=kx的交点是(-1.3).(3.-1).∴当y 1<y 2时.-1<x <0或x >3.故选B .7.如图.在平面直角坐标系xOy 中.函数()0y kx b k =+≠与()0my m x=≠的图象相交于点()()2,3,6,1A B --.则不等式mkx b x+>的解集为( )A .6x <-B 60x -<<.或2x >C .2x >D 6x <-.或02x <<8. 如图.直线l ⊥x 轴于点P .且与反比例函数y 1=1k x(x >0)及y 2=2k x (x >0)的图象分别交于点A .B .连接OA .OB .已知△OAB 的面积为2.则k 1-k 2的值为( )A .2B .3C .4D .-4【答案】C【解析】根据反比例函数k 的几何意义可知:△AOP 的面积为12k .△BOP 的面积为22k. ∴△AOB 的面积为12k −22k . ∴12k −22k =2.∴k 1–k 2=4.故选C . 9. 一次函数y =ax +b 与反比例函数a by x-=.其中ab <0.a 、b 为常数.它们在同一坐标系中的图象可以是( )A .B .C .D .【答案】C【解析】A .由一次函数图象过一、三象限.得a >0.交y 轴负半轴.则b <0.满足ab <0. ∴a −b >0.∴反比例函数y =a bx-的图象过一、三象限.所以此选项不正确; B .由一次函数图象过二、四象限.得a <0.交y 轴正半轴.则b >0.满足ab <0. ∴a −b <0.∴反比例函数y =a bx-的图象过二、四象限.所以此选项不正确; C .由一次函数图象过一、三象限.得a >0.交y 轴负半轴.则b <0.满足ab <0.∴a −b >0.∴反比例函数y =a bx的图象过一、三象限.所以此选项正确; D .由一次函数图象过二、四象限.得a <0.交y 轴负半轴.则b <0.满足ab >0.与已知相矛盾. 所以此选项不正确.故选C .10. 如图.一次函数与x 轴.y 轴的交点分别是A(−4,0).B(0,2).与反比例函数的图象交于点Q .反比例函数图象上有一点P 满足:①PA ⊥x 轴;②PO =√17(O 为坐标原点).则四边形PAQO 的面积为( )A. 7B. 10C. 4+2√3D. 4−2√3【答案】C【解析】∵一次函数y =ax +b 与x 轴.y 轴的交点分别是A(−4,0).B(0,2). ∴−4a +b =0.b =2. ∴a =12.∴一次函数的关系式为:y =12x +2. 设P(−4,n).∴√(−4)2+n 2=√17. 解得:n =±1.由题意知n =−1.n =1(舍去). ∴把P(−4,−1)代入反比例函数y =mx . ∴m =4.反比例函数的关系式为:y =4x .解{y =12x +2y =4x 得.{x =−2+2√3y =√3+1.{x =−2−2√3y =1−√3. ∴Q(−2+2√3,√3+1).∴四边形PAQO 的面积=12×4×1+124×2+12×2×(−2+2√3)=4+2√3. 故选:C .第二部分 填空题二、填空题(本题有6小题.每题4分.共24分)11.若正比例函数的图象与某反比例函数的图象有一个交点的纵坐标是2.则该反比例函数的解析式为________. 【答案】 【解析】令y=2x 中y=2.得到2x=2.解得x=1.∴正比例函数的图象与某反比例函数的图象交点的坐标是(1,2). 设反比例函数解析式为.将点(1,2)代入.得. ∴反比例函数的解析式为.故答案为:. 12.如图.直线y =x 与双曲线()0ky k x=>的一个交点为A .且OA =2.则k 的值为__________.【答案】2【解析】∵点A 在直线y =x 上.且OA =2.∴点A的坐标为把得.∴k=2.故答案为:2. 13. 已知(),3A m 、()2,B n -在同一个反比例函数图像上.则m n =__________.【答案】23-【解析】设反比例函数解析式为()0ky k x=≠.将(),3A m 、()2,B n -分别代入.得 3k m =.2k n =-. 2y x =2y x=2y x =ky x=122k =⨯=2y x =2y x=(22),(22),ky x=22=∴2332k m k n ==--. 故答案为:23-. 14.平面直角坐标系xOy 中.点A (a .b )(a >0.b >0)在双曲线y =上.点A 关于x 轴的对称点B 在双曲线y =.则k 1+k 2的值为__________. 【答案】0【解析】∵点A (a .b )(a >0.b >0)在双曲线y =上.∴k 1=ab ; 又∵点A 与点B 关于x 轴对称.∴B (a .–b ).∵点B 在双曲线y =上.∴k 2=–ab ;∴k 1+k 2=ab +(–ab )=0.故答案为:0. 15.如图.点A 是反比例函数图象上的一点.过点A 作轴.垂足为点C .D 为AC 的中点.若的面积为1.则k 的值是【答案】4【解析】点A 的坐标为(m.2n ).∴.∵D 为AC 的中点.∴D (m.n ). ∵AC ⊥轴.△ADO 的面积为1.∴. ∴.∴ 16. 如图.反比例函数y =24x(x >0)的图象与直线y =32x 相交于点A .与直线y =kx(k ≠0)相交于点B .若△OAB 的面积为18.则k 的值为______.【答案】41k x2k x1k x2k x y x=AC x ⊥AOD ∆2mn k =x ()ADO11121222S AD OC n n m mn =⋅=-⋅==2mn =24k mn ==【解析】:由题意得.{y =24xy =32x .解得:{x 1=4y 1=6.{x 2=−4y 2=−6(舍去). ∴点A(4,6).(1)如图1.当y =kx 与反比例函数的交点B 在点A 的下方. 过点A 、B 分别作AM ⊥x 轴.BN ⊥x 轴.垂足分别为M 、N . 设点B 坐标为(b,24b ).则ON =b .BN =24b.∴点A(4,6).∴OM =4.AM =6;∵S △AOB =S △AOM +S 梯形AMNB −S △BON =S 梯形AMNB . ∴18=12(6+24b)(b −4).解得.b 1=8.b 2=−2(舍去) ∴点B(8,3).代入y =kx 得. k =38; (2)如图2.当y =kx 与反比例函数的交点B 在点A 的上方. 过点A 、B 分别作AM ⊥y 轴.BN ⊥y 轴.垂足分别为M 、N . 设点B 坐标为(b,24b ).则ON =24b.BN =b .∴点A(4,6).∴OM =6.AM =4;∵S △AOB =S △AOM +S 梯形AMNB −S △BON =S 梯形AMNB . ∴18=12(b +4)(24b −6). 解得.b 1=2.b 2=−8(舍去) ∴点B(2,12).代入y =kx 得. k =6;故答案为:6或38.第三部分 解答题三、解答题(本题有6小题.共56分)17. 如图.已知A (–4.n ).B (2.–4)是一次函数y =kx +b 和反比例函数y =的图象的两个交点.(1)求一次函数和反比例函数的解析式; (2)求△AOB 的面积.【答案】(1)y =–x –2.y =–;(2)6【解析】(1)∵B (2.–4)在y =图象上. ∴m =–8.∴反比例函数的解析式为y =–. ∵点A (–4.n )在y =–图象上. ∴n =2. ∴A (–4.2).∵一次函数y =kx +b 图象经过A (–4.2).B (2.–4).∴.解得.∴一次函数的解析式为y =–x –2;(2)如图.令一次函数y =–x –2的图象与y 轴交于C 点.mx8xmx 8x8x4224k b k b -+=+=-⎧⎨⎩12k b =-=-⎧⎨⎩当x=0时.y =–2. ∴点C (0.–2). ∴OC =2.∴S △AOB =S △ACO +S △BCO =×2×4+×2×2=6. 18.如图.已知反比例函数y x=与一次函数y =x +b 的图象在第一象限相交于点A (1.-k +4). (1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B 的坐标.并根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.【答案】(1).y =x +1;(2)B 的坐标为(-2.-1).x <-2或0<x <1 【解析】(1)∵已知反比例函数经过点A (1.-k +4). ∴.即-k +4=k . ∴k =2.∴A (1.2).∵一次函数y =x +b 的图象经过点A (1.2). ∴2=1+b .∴b =1.∴反比例函数的表达式为. 一次函数的表达式为y =x +1.12122y x=ky x=41kk -+=2y x=(2)由.消去y .得x 2+x -2=0. 即(x +2)(x -1)=0. ∴x =-2或x =1. ∴y =-1或y =2.∴或.∵点B 在第三象限. ∴点B 的坐标为(-2.-1).由图象可知.当反比例函数的值大于一次函数的值时.x 的取值范围是x <-2或0<x <1. 19.如图.一次函数的图象与反比例函数(为常数且)的图象相交于.两点.(1)求反比例函数的表达式;(2)将一次函数的图象沿轴向下平移个单位.使平移后的图象与反比例函数的图象有且只有一个交点.求的值.【答案】(1);(2)b 的值为1或9. 【解析】(1)由题意.将点代入一次函数得: 将点代入得:.解得 则反比例函数的表达式为; (2)将一次函数的图象沿轴向下平移个单位得到的一次函数的解析式为联立整理得: 12y x y x ⎧=+⎪⎨=⎪⎩21x y ⎧=-⎨=-⎩12x y ⎧=⎨=⎩5y x =+ky x=k 0k ≠(1,)A m -B 5y x =+y b (0)b >ky x=b 4y x=-(1,)A m -5y x =+154m =-+=(1,4)A -∴(1,4)A -ky x=41k =-4k =-4y x =-5y x =+y b 5y x b =+-54y x by x =+-⎧⎪⎨=-⎪⎩2(5)40x b x +-+=一次函数的图象与反比例函数的图象有且只有一个交点 关于x 的一元二次方程只有一个实数根此方程的根的判别式解得则b 的值为1或9.20.如图.一次函数y =kx +b (k 、b 为常数.k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点.且与反比例函数y =(n 为常数.且n ≠0)的图象在第二象限交于点C .CD ⊥x 轴.垂足为D .若OB =2OA =3OD =12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E .求△CDE 的面积; (3)直接写出不等式kx +b ≤的解集.【答案】(1)y =–2x +12;(2)140;(3)x ≥10.或–4≤x <0 【解析】(1)由已知.OA =6.OB =12.OD =4.∵CD ⊥x 轴.∴OB ∥CD .∴△ABO ∽△ACD . ∴=.∴=.∴CD =20. ∴点C 坐标为(–4.20).∴n =xy =–80. ∴反比例函数解析式为:y =–. 把点A (6.0).B (0.12)代入y =kx +b 得:.解得.∴一次函数解析式为:y =–2x +12; (2)当–=–2x +12时.解得x 1=10.x 2=–4; 当x =10时.y =–8.∴点E 坐标为(10.–8). ∴S △CDE =S △CDA +S △EDA =×20×10+×8×10=140; 5y x b =+-4y x=-∴2(5)40x b x +-+=∴2(5)440b ∆=--⨯=121,9b b ==nxnxOA AD OBCD 61012CD80x0612k b b =+=⎧⎨⎩212k b =-=⎧⎨⎩80x1212(3)不等式kx +b ≤.从函数图象上看.表示一次函数图象不高于反比例函数图象; ∴由图象得.x ≥10.或–4≤x <0. 21.如图.一次函数y =k 1x +b 的图象与反比例函数y=的图象相交于A 、B 两点.其中点A 的坐标为(–1.4).点B 的坐标为(4.n ).(1)根据图象.直接写出满足k 1x +b >的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上.且S △AOP ∶S △BOP =1∶2.求点P 的坐标. 【答案】(1)x <–1或0<x <4;(2)y =–(3)P (.)【解析】(1)∵点A 的坐标为(–1.4).点B 的坐标为(4.n ).由图象可得:k 1x +b >的x 的取值范围是x <–1或0<x <4; (2)∵反比例函数y =的图象过点A (–1.4).B (4.n ). ∴k 2=–1×4=–4.k 2=4n .∴n =–1.∴B (4.–1). ∵一次函数y =k 1x +b 的图象过点A .点B .∴. 解得k =–1.b =3.∴直线解析式y =–x +3.反比例函数的解析式为y =–; (3)设直线AB 与y 轴的交点为C .∴C (0.3).∵S △AOC =×3×1=. ∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=. n x2k x 2k xx 332k x2k x 11441k b k b -+=+=-⎧⎨⎩4x 12321212152∵S△AOP :S △BOP =1:2.∴S △AOP =×=. ∴S △COP =–=1.∴×3x P =1.∴x P =. ∵点P 在线段AB 上.∴y =–+3=.∴P (.).22.如图.反比例函数1k y x=和一次函数2y mx n =+相交于点()1,3A .()3,B a -. (1)求一次函数和反比例函数解析式;(2)连接OA.试问在x 轴上是否存在点P.使得OAP ∆为以OA 为腰的等腰三角形.若存在.直接写出满足题意的点P 的坐标;若不存在.说明理由.【答案】(1)22y x =+(2)见解析【解析】(1)∵反比例函数1k y x =和一次函数2y mx n =+相交于点()1,3A .()3,B a -. ∴k=1×3=3.∴13y x=. ∴-3a=3.解得:a=-1.∴B(-3.-1).∴331m n m n +=⎧⎨-+=-⎩.解得:12m n =⎧⎨=⎩. ∴22y x =+;(2)设P(t.0).∵()1,3A .∴222(1)(03)(1)9t t -+-=-+t 221310+. 15213525232122323732373∵OAP ∆为以OA 为腰的等腰三角形.∴OA=AP 或OA=OP.当OA=AP 时.22(1)9(10)t -+=.解得:1220t t ==,(不符合题意.舍去). ∴P(2.0);当OA=OP 时.t 10解得:10.∴10.0)或P(10.0).综上所述:存在点P.使OAP ∆为以OA 为腰的等腰三角形.点P 坐标为:(2.0) 或10.0)或(10.0).。

(中考考点梳理)反比例函数-中考数学一遍过

(中考考点梳理)反比例函数-中考数学一遍过

考点10 反比例函数一、反比例函数的概念1.反比例函数的概念一般地,函数kyx=(k是常数,k≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx-=的形式.自变量x的取值范围是x≠0的一切实数,函数的取值范围也是一切非零实数.2.反比例函数kyx=(k是常数,k≠0)中x,y的取值范围反比例函数kyx=(k是常数,k≠0)的自变量x的取值范围是不等于0的任意实数,函数值y的取值范围也是非零实数.二、反比例函数的图象和性质1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限.由于反比例函数中自变量x≠0,函数y≠0,所以,它的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴.(2)性质:当k>0时,函数图象的两个分支分别在第一、三象限,在每个象限内,y随x的增大而减小.当k<0时,函数图象的两个分支分别在第二、四象限,在每个象限内,y随x的增大而增大.表达式kyx=(k是常数,k≠0)k k>0 k<0大致图象所在象限第一、三象限第二、四象限增减性在每个象限内,y随x的增大而减小在每个象限内,y随x的增大而增大2.反比例函数图象的对称性反比例函数的图象既是轴对称图形,又是中心对称图形,其对称轴为直线y=x和y=-x,对称中心为原点.3.注意(1)画反比例函数图象应多取一些点,描点越多,图象越准确,连线时,要注意用平滑的曲线连接各点.(2)随着|x|的增大,双曲线逐渐向坐标轴靠近,但永远不与坐标轴相交,因为反比例函数kyx=中x≠0且y≠0.(3)反比例函数的图象不是连续的,因此在谈到反比例函数的增减性时,都是在各自象限内的增减情况.当k>0时,在每一象限(第一、三象限)内y随x的增大而减小,但不能笼统地说当k>0时,y随x 的增大而减小.同样,当k<0时,也不能笼统地说y随x的增大而增大.三、反比例函数解析式的确定1.待定系数法确定解析式的方法仍是待定系数法,由于在反比例函数kyx=中,只有一个待定系数,因此只需要一对对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤(1)设反比例函数解析式为kyx=(k≠0);(2)把已知一对x,y的值代入解析式,得到一个关于待定系数k的方程;(3)解这个方程求出待定系数k;(4)将所求得的待定系数k的值代回所设的函数解析式.四、反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解. (1)正比例函数与一次函数所围成的三角形面积.如图①,S △ABC =2S △ACO =|k |;(2)如图②,已知一次函数与反比例函数ky x=交于A 、B 两点,且一次函数与x 轴交于点C ,则S △AOB =S △AOC +S △BOC =1||2A OC y ⋅+1||2B OC y ⋅=1(||||)2A B OC y y ⋅+; (3)如图③,已知反比例函数ky x=的图象上的两点,其坐标分别为()A A x y ,,()B B x y ,,C 为AB 延长线与x 轴的交点,则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-. 五、反比例函数与一次函数的综合 1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时,联立两个解析式,构造方程组,然后求出交点坐标.针对12y y >时自变量x 的取值范围,只需观察一次函数的图象高于反比例函数图象的部分所对应的x 的范围.例如,如下图,当12y y >时,x 的取值范围为A x x >或0B x x <<;同理,当12y y <时,x 的取值范围为0A x x <<或B x x <.2.求一次函数与反比例函数的交点坐标(1)从图象上看,一次函数与反比例函数的交点由k 值的符号来决定. ①k 值同号,两个函数必有两个交点;②k 值异号,两个函数可能无交点,可能有一个交点,也可能有两个交点;(2)从计算上看,一次函数与反比例函数的交点主要取决于两函数所组成的方程组的解的情况. 六、反比例函数的实际应用解决反比例函数的实际问题时,先确定函数解析式,再利用图象找出解决问题的方案,特别注意自变量的取值范围.考向一 反比例函数的定义1.反比例函数的表达式中,等号左边是函数值y ,等号右边是关于自变量x 的分式,分子是不为零的常数k ,分母不能是多项式,只能是x 的一次单项式.2.反比例函数的一般形式的结构特征:①k ≠0;②以分式形式呈现;③在分母中x 的指数为1.典例1 下列函数中,y 与x 之间是反比例函数关系的是 A .xyB .3x +2y =0C .y =D .y =【答案】Ak x 21x1.下列函数:①2x y =;②2y x =;③12y x=-;④12y x -=中,是反比例函数的有 A .1个 B .2个 C .3个D .4个考向二 反比例函数的图象和性质当k >0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内,y 随x 的增大而减小.当k <0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内,y 随x 的增大而增大.学科=网双曲线是由两个分支组成的,一般不说两个分支经过第一、三象限(或第二、四象限),而说图象的两个分支分别在第一、三象限(或第二、四象限).典例2 在同一坐标系中,函数y=和y =–kx +3的大致图象可能是 A . B .C .D .kx【答案】D【解析】A 、由反比例函数图象得函数y =(k 为常数,k ≠0)中k >0,根据一次函数图象可得–k >0,则k <0,则选项错误; B 、由反比例函数图象得函数y =(k 为常数,k ≠0)中k >0, 根据一次函数图象可得–k >0,则k <0,则选项错误; C 、由反比例函数图象得函数y =(k 为常数,k ≠0)中k <0, 根据一次函数图象可得–k <0,则k >0,则选项错误; D 、由反比例函数图象得函数y =(k 为常数,k ≠0)中k >0, 根据一次函数图象可得–k <0,则k >0,故选项正确. 故选D .典例3 反比例函数3y x=-的图象在 A .第一、二象限 B .第一、三象限 C .第二、三象限D .第二、四象限【答案】D【解析】因为30k =-<,故图象在第二、四象限,故选D . 典例4 已知点A (1,m ),B (2,n )在反比例函数(0)ky k x=<的图象上,则 A .0m n << B .0n m << C .0m n >>D .0n m >>【答案】A【解析】∵反比例函数(0)ky k x=<,它的图象经过A (1,m ),B (2,n )两点,∴m =k <0,n =2k<0,∴0m n <<,故选A .2.对于函数4y x=,下列说法错误的是 kxkxkxkxA .这个函数的图象位于第一、第三象限B .这个函数的图象既是轴对称图形又是中心对称图形C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小3.下列函数中,当x <0时,y 随x 的增大而减小的是 A .y =x B .y =2x –1 C .y =D .y=–4.如图是三个反比例函数y =1k x ,y =2kx ,y =3k x在x 轴上方的图象,由此观察得到k 1,k 2,k 3的大小关系为A .k 1>k 2>k 3B .k 3>k 2>k 1C .k 2>k 3>k 1D .k 3>k 1>k 2考向三 反比例函数解析式的确定1.反比例函数的解析式ky x=(k ≠0)中,只有一个待定系数k ,确定了k 值,也就确定了反比例函数,因此要确定反比例函数的解析式,只需给出一对x ,y 的对应值或图象上一个点的坐标,代入k y x=中即可.2.确定点是否在反比例函数图象上的方法:(1)把点的横坐标代入解析式,求出y 的值,若所求值等于点的纵坐标,则点在图象上;若所求值不等于点的纵坐标,则点不在图象上.(2)把点的横、纵坐标相乘,若乘积等于k ,则点在图象上,若乘积不等于k ,则点不在图象上.典例5 若反比例函数的图象经过点()32,-,则该反比例函数的表达式为 A .6y x=B .6y x=-3x 1xC .3y x=D .3y x=-【答案】B【解析】设反比例函数为:ky x=.∵反比例函数的图象经过点(3,-2),∴k =3×(-2)=-6.故反比例函数为:6y x=-,故选B . 典例6 如图,某反比例函数的图象过点M (-2,1),则此反比例函数表达式为A .y =2xB .y =-2xC .y =12xD .y =-12x【答案】B【解析】设反比例函数表达式为y =k x ,把M (2-,1)代入y =k x 得,k =(-2)×1=-2,∴2y x=-,故选B .典例7 如图,C 1是反比例函数y=在第一象限内的图象,且过点A(2,1),C 2与C 1关于x 轴对称,那么图象C 2对应的函数的表达式为__________(x >0).【答案】y =–【解析】∵C 2与C 1关于x 轴对称, ∴点A 关于x 轴的对称点A ′在C 2上, ∵点A (2,1), ∴A ′坐标(2,–1),kx2x∴C 2对应的函数的表达式为y =–, 故答案为y =–.5.已知反比例函数y =-6x,下列各点中,在其图象上的有 A .(-2,-3) B .(2,3) C .(2,-3)D .(1,6)6.点A 为反比例函数图象上一点,它到原点的距离为5,则x 轴的距离为3,若点A 在第二象限内,则这个函数的解析式为A .y =12xB .y =-12xC .y =112xD .y =-112x7.在平面直角坐标系中,点P (2,a )在反比例函数y =的图象上,把点P 向上平移2个单位,再向右平移3个单位得到点Q ,则经过点Q 的反比例函数的表达式为__________.考向四 反比例函数中k 的几何意义三角形的面积与k 的关系 (1)因为反比例函数ky x=中的k 有正负之分,所以在利用解析式求矩形或三角形的面积时,都应加上绝对值符号.(2)若三角形的面积为12|k |,满足条件的三角形的三个顶点分别为原点,反比例函数图象上一点及过此点向坐标轴所作垂线的垂足.典例8 如图,点A 为函数ky x=(x >0)图象上的一点,过点A 作x 轴的平行线交y 轴于点B ,连接OA ,如果△AOB 的面积为2,那么k 的值为2x2x2xA .1B .2C .3D .4【答案】D【解析】设点A 坐标为(m ,n ),则有AB =m ,OB =n ,由题意可得:12mn =2,所以mn =4,又点A 在双曲线ky x=上,所以k =mn =4,故选D . 典例9 如图,已知双曲线经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C ,若△OBC 的面积为9,则k =__________.【答案】6ky x=【名师点睛】过反比例函数图象上的任一点分别向两坐标轴作垂线段,垂线段与两坐标轴围成的矩形面积等于|k |,结合函数图象所在的象限可以确定k 的值,反过来,根据k 的值,可以确定此矩形的面积.在解决反比例函数与几何图形综合题时,常常需要考虑是否能用到k 的几何意义,以简化运算.8.如图,A 、B 两点在双曲线4y x=的图象上,分别经过A 、B 两点向轴作垂线段,已知1S =阴影,则12S S +=A .8B .6C .5D .49.如图,点A ,B 是反比例函数yx >0)图象上的两点,过点A ,B 分别作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连接OA 、BC ,已知点C (2,0),BD =3,S △BCD =3,则S △AOC 为A.2 B.3 C.4 D.610.如图,等腰三角形ABC的顶点A在原点,顶点B在x轴的正半轴上,顶点C在函数y=kx(x>0)的图象上运动,且AC=BC,则△ABC的面积大小变化情况是A.一直不变B.先增大后减小C.先减小后增大D.先增大后不变考向五反比例函数与一次函数的综合反比例函数与一次函数综合的主要题型:(1)利用k值与图象的位置的关系,综合确定系数符号或图象位置;(2)已知直线与双曲线表达式求交点坐标;(3)用待定系数法确定直线与双曲线的表达式;(4)应用函数图象性质比较一次函数值与反比例函数值的大小等.解题时,一定要灵活运用一次函数与反比例函数的知识,并结合图象分析、解答问题.典例10 在同一平面直角坐标系中,函数1yx=-与函数y=x的图象交点个数是A.0个B.1个C.2个D.3个【答案】A【解析】∵y =x 的图象是过原点经过一、三象限,1y x=-的图象在第二、四象限内,但不过原点,∴两个函数图象不可能相交,故选A . 典例11 已知一次函数y 1=kx +b 与反比例函数y 2=kx在同一直角坐标系中的图象如图所示,则当y 1<y 2时,x 的取值范围是A .x <-1或0<x <3B .-1<x <0或x >3C .-1<x <0D .x >3【答案】B【解析】根据图象知,一次函数y 1=kx +b 与反比例函数y 2=kx的交点是(-1,3),(3,-1),∴当y 1<y 2时,-1<x <0或x >3,故选B .【名师点睛】本题主要考查函数图象的交点,把不等式转化为函数图象的高低是解题的关键,注意数形结合思想的应用. 典例12 如图,已知直线y =–xy x>0)交于A 、B 两点,连接OA ,若OA ⊥AB ,则k 的值为A .B .C D 【答案】B【解析】如图,过A 作AE ⊥OD 于E ,139102710∵直线解析式为y =–xC (0D (0), ∴OC ODRt △COD 中,CD =10,∵OA ⊥AB ,∴CO ×DO =CD ×AO , ∴AO =3,∴AD =9, ∵OD ×AE=AO ×AD ,∴AE∴Rt △AOE 中,OE,∴A), ∴代入双曲线yk=,故选B .11.已知反比例函数y =kx(k ≠0),当x >0时,y 随x 的增大而增大,那么一次函数y =kx -k 的图象经过 A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限D .第二、三、四象限12.如图,已知A (–4,n ),B (2,–4)是一次函数y =kx +b 和反比例函数y =的图象的两个交点. (1)求一次函数和反比例函数的解析式; (2)求△AOB 的面积.13121212122710mx考向六 反比例函数的应用用反比例函数解决实际问题的步骤(1)审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系; (2)设:根据常量与变量之间的关系,设出函数解析式,待定的系数用字母表示; (3)列:由题目中的已知条件列出方程,求出待定系数; (4)写:写出函数解析式,并注意解析式中变量的取值范围; (5)解:用函数解析式去解决实际问题.典例13 某化工车间发生有害气体泄漏,自泄漏开始到完全控制利用了40min ,之后将对泄漏有害气体进行清理,线段DE 表示气体泄漏时车间内危险检测表显示数据y 与时间x (min )之间的函数关系(0≤x ≤40),反比例函数y=对应曲线EF 表示气体泄漏控制之后车间危险检测表显示数据y 与时间x (min )之间的函数关系(40≤x ≤?).根据图象解答下列问题: (1)危险检测表在气体泄漏之初显示的数据是__________;kx(2)求反比例函数y =__________的表达式,并确定车间内危险检测表恢复到气体泄漏之初数据时对应x 的值.(2)将x =40代入y =1.5x +20,得y =80,∴点E (40,80), ∵点E 在反比例函数y=的图象上, ∴80=,得k =3200, 即反比例函数y=,当y =20时,20=,得x =160,即车间内危险检测表恢复到气体泄漏之初数据时对应x 的值是160.13.如图为某种材料温度y (℃)随时间x (min )变化的函数图象.已知该材料初始温度为15℃,温度上升阶段y 与时间x 成一次函数关系,且在第5分钟温度达到最大值60℃后开始下降;温度下降阶段,温度y 与时间x 成反比例关系.(1)分别求该材料温度上升和下降阶段,y 与x 间的函数关系式;(2)根据工艺要求,当材料的温度高于30℃时,可以进行产品加工,问可加工多长时间?kx40k3200x 3200x1.下列函数中,y 是x 的反比例函数的是 A .x (y –1)=1B .15y x =- 1C 3y x =.21D y x=.2.已知反比例函数y =8k x-的图象位于第一、三象限,则k 的取值范围是 A .k >8 B .k ≥8 C .k ≤8D .k <83.已知反比例函数y =kx的图象过点A (–3,2),则k 的值为 A .3 B .6C .–6D .–34.已知点A (2,y 1)、B (4,y 2)都在反比例函数ky x=(k <0)的图象上,则y 1、y 2的大小关系为 A .y 1>y 2 B .y 1<y 2C .y 1=y 2D .无法确定5.如图,在平面直角坐标系xOy 中,函数()0y kx b k =+≠与()0my m x=≠的图象相交于点()()2,3,6,1A B --,则不等式mkx b x+>的解集为A .6x <-B 60x -<<.或2x >C .2x >D 6x <-.或02x <<6.如图,点A 、点B 是函数y =kx的图象上关于坐标原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积是4,则k 的值是A .–2B .±4C .2D .±27.反比例函数y =a x (a >0,a 为常数)和y =2x 在第一象限内的图象如图所示,点M 在y =ax 的图象上,MC ⊥x 轴于点C ,交y =2x 的图象于点A ;MD ⊥y 轴于点D ,交y =2x 的图象于点B .当点M 在y =ax的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点.其中正确结论的个数是A .0个B .1个C .2个D .3个8.如图,平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别落在x 、y 轴上,点B 坐标为(6,4),反比例函数y =6x的图象与AB 边交于点D ,与BC 边交于点E ,连接DE ,将△BDE 沿DE 翻折至△B 'DE 处,点B '恰好落在正比例函数y =kx 图象上,则k 的值是A .-25B .-121C.-15D.-1249.如图,直线y=x A,且OA=2,则k的值为__________.10.如图,直线分别与反比例函数2yx=-和3yx=的图象交于点A和点B,与y轴交于点P,且P为线段AB的中点,作AC⊥x轴于点C,BD⊥x轴交于点D,则四边形ABCD的面积是__________.11.如图,正方形ABCD的边长为2,AD边在x轴负半轴上,反比例函数y=kx(x<0)的图象经过点B和CD边中点E,则k的值为__________.12.如图,已知点P(6,3),过点P作PM⊥x轴于点M,PN⊥y轴于点N,反比例函数y=kx的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k=__________.13.如图,已知反比例函数ky x与一次函数y =x +b 的图象在第一象限相交于点A (1,-k +4). (1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B 的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.14.如图,一次函数y =kx +b (k 、b 为常数,k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y=(n 为常数,且n ≠0)的图象在第二象限交于点C .CD ⊥x 轴,垂足为D ,若OB =2OA =3OD =12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E ,求△CDE 的面积; (3)直接写出不等式kx +b ≤的解集.nxnx15.一般情况下,中学生完成数学家庭作业时,注意力指数随时间x(分钟)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)分别求出线段AB和双曲线CD的函数关系式;(2)若学生的注意力指数不低于40为高效时间,根据图中信息,求出一般情况下,完成一份数学家庭作业的高效时间是多少分钟?1.(2018·辽宁省阜新市)反比例函数y=kx的图象经过点(3,–2),下列各点在图象上的是A.(–3,–2)B.(3,2)C.(–2,–3)D.(–2,3)2.(2018·甘肃省天水市)函数y1=x和y2=1x的图象如图所示,则y1>y2的x取值范围是A.x<–1或x>1 B.x<–1或0<x<1 C.–1<x<0或x>1 D.–1<x<0或0<x<13.(2018·黑龙江省大庆市)在同一直角坐标系中,函数y=kx和y=kx–3的图象大致是A.B.C.D.4.(2018·广西玉林市)如图,点A,B在双曲线y=3x(x>0)上,点C在双曲线y=1x(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于A B.C.4 D.5.(2018·吉林省长春市)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=kx(x>0)的图象上,若AB=2,则k的值为A.4 B.C.2 D6.(2018·广西贺州市)如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(–3,–2),B(2,3)两点,则不等式y1>y2的解集是A.–3<x<2 B.x<–3或x>2 C.–3<x<0或x>2 D.0<x<27.(2018·山东省日照市)已知反比例函数y=–8x,下列结论:①图象必经过(–2,4);②图象在第二,四象限内;③y随x的增大而增大;④当x>–1时,则y>8.其中错误的结论有A.3个B.2个C.1个D.0个8.(2018·四川省攀枝花市)如图,已知点A在反比例函数y=kx(x>0)的图象上,作Rt△ABC,边BC在x轴上,点D为斜边AC的中点,连接DB并延长交y轴于点E,若△BCE的面积为4,则k=__________.9.(2018·四川省泸州市)一次函数y=kx+b(k≠0)的图象经过点A(2,–6),且与反比例函数y=–12 x的图象交于点B(a,4).(1)求一次函数的解析式;(2)将直线AB向上平移10个单位后得到直线l:y1=k1x+b1(k1≠0),l与反比例函数y2=6x的图象相交,求使y1<y2成立的x的取值范围.1.【答案】C【解析】①不是正比例函数,②③④是反比例函数,故选C.2.【答案】C【解析】根据反比例函数的图象与性质,可由题意知k =4>0,其图象在一三象限,且在每个象限内y 随x 增大而减小,它的图象既是轴对称图形又是中心对称图形,故选C . 3.【答案】C【解析】A 、为一次函数,k 的值大于0,y 随x 的增大而增大,不符合题意; B 、为一次函数,k 的值大于0,y 随x 的增大而增大,不符合题意; C 、为反比例函数,k 的值大于0,x <0时,y 随x 的增大而减小,符合题意; D 、为反比例函数,k 的值小于0,x <0时,y 随x 的增大而增大,不符合题意; 故选C . 4.【答案】B 【解析】由图知,yyyk 1<0,k 2>0,k 3>0,又当x =1时,有k 2<k 3,∴k 3>k 2>k 1,故选B . 5.【答案】C【解析】∵反比例函数y =-中,k =-6,∴只需把各点横纵坐标相乘,结果为-6的点在函数图象上,四个选项中只有C 选项符合,故选C .7.【答案】y =【解析】∵点P (2,a )在反比例函数y =的图象上, ∴代入得:a ==1, 即P 点的坐标为(2,1),∵把点P 向上平移2个单位,再向右平移3个单位得到点Q , ∴Q 的坐标是(5,3),设经过点Q 的反比例函数的解析式是y =, 把Q 点的坐标代入得:c =15, 即y =, 故答案为:y =. 8.【答案】B6x15x2x22c x15x15x【解析】∵点A 、B 是双曲线y =上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k |=4,∴S 1+S 2=4+4-1×2=6,故选B .10.【答案】A【解析】如图,作CD ⊥AB 交AB 于点D ,则S △ACD =,∵AC =BC ,∴AD =BD ,∴S △ACD =S △BCD , ∴S △ABC =2S △ACD =2×=k ,∴△ABC 的面积不变,故选A .11.【答案】B【解析】∵当x >0时,y 随x 的增大而增大,∴反比例函数(k ≠0)的图象在二、四象限,∴k <0,∴一次函数y =kx -k 的图象经过第一、二、四象限,故选B . 12.【解析】(1)∵B (2,–4)在y =图象上, ∴m =–8.∴反比例函数的解析式为y =–. ∵点A (–4,n )在y =–图象上, ∴n =2,∴A (–4,2).∵一次函数y =kx +b 图象经过A (–4,2),B (2,–4),∴,解得.∴一次函数的解析式为y =–x –2;(2)如图,令一次函数y =–x –2的图象与y 轴交于C 点,4x2k2kky x=mx8x8x4224k b k b -+=+=-⎧⎨⎩12k b =-=-⎧⎨⎩当x =0时,y =–2, ∴点C (0,–2). ∴OC =2,∴S △AOB =S △ACO +S △BCO=×2×4+×2×2=6. 13.【解析】(1)当0≤x <5时,为一次函数,设一次函数表达式为y =kx +b ,由于一次函数图象过点(0,15),(5,60),所以,解得:,所以y =9x +15,当x ≥15时,为反比例函数,设函数关系式为:y =, 由于图象过点(5,60),所以m =300. 则y =;学-科网 (2)当0≤x <5时,y =9x +15=30,得x =, 因为y 随x 的增大而增大,所以x >, 当x ≥5时,y ==30, 得x =10,因为y 随x 的增大而减小, 所以x <10,10–=. 答:可加工min . 1.【答案】C121215560b k b =+=⎧⎨⎩159b k ==⎧⎨⎩mx300x5353300x 53253253【解析】由反比例函数的定义知,是y 关于x 的反比例函数,其余的不是y 关于x 的反比例函数.故选C . 2.【答案】A【解析】∵反比例函数y =的图象位于第一、三象限,∴k –8>0,解得k >8,故选A . 3.【答案】C 【解析】∵函数的图象过点A (–3,2),∴,解得.故选C .6.【答案】C【解析】∵反比例函数的图象在第一、三象限,∴k >0, ∵BC ∥x 轴,AC ∥y 轴,且点A 、点B 关于坐标原点对称, ∴S △AOD =S △BOE =k ,∴S 矩形OECD =2△AOD =k , ∴S △ABC =S △AOD +S △BOE +S 矩形OECD =2k =4,解得k =2. 故选C .8.【答案】【解析】∵矩形OABC ,∴CB ∥x 轴,AB ∥y 轴,∵点B 坐标为(6,4),∴D 的横坐标为6,E 的纵坐标为4,∵D ,E 在反比例函数y =的图象上,∴D (6,1),E (,4),∴BE =6-=,BD =4-1=3,∴ED =BB ′,交ED 于F ,过B ′作B ′G ⊥BC 于G ,∵B ,B ′关13y x=8k x-k y x=23k =-6k =-126x 32329232于ED 对称,∴BF =B ′F ,BB ′⊥ED ,∴BF •ED =BE •BD ,即BF=3×,∴BF,∴BB,设EG =x ,则BG =-x,∵BB ′2-BG 2=B ′G 2=EB ′2-GE 2,∴()2-(-x )2=()2-x 2,∴x =,∴EG =,∴CG =,∴B ′G =,∴B ′(,-),∴k=-,故选B .9.【答案】2【解析】∵点A在直线y =x 上,且OA =2,∴点A 得,,∴k=2,故答案为:2. 10.【答案】5【解析】过点作轴,垂足于点;过点作轴,垂足为点.∵点是中点,∴.易得△APF ≌△BPE ,∴,∴,故答案为5.11.【答案】-4【解析】∵正方形ABCD 的边长为2,∴AB =AD =2,设B (,2),∵E 是CD 边中点,∴E (-2,1),∴-2=k ,解得k =-4,故答案为:-4. 329292929245264526421354134213213121ky x==A AF y ⊥FB BE y ⊥E P AB PA PB =APF BPE S S = ABCD ACOF EODB S S S =+ 23=-+5=2k 2k2k12.【答案】6【解析】∵点P (6,3),∴点A 的横坐标为6,点B 的纵坐标为3,代入反比例函数y =得,点A 的纵坐标为,点B 的横坐标为,即AM =,NB =,∵S 四边形OAPB =12,即S矩形OMPN -S △OAM -S △NBO =12,6×3-×6×-×3×=12,解得k =6,故答案为:6. 13.【解析】(1)∵已知反比例函数经过点A (1,-k +4), ∴,即-k +4=k , ∴k =2,∴A (1,2).∵一次函数y =x +b 的图象经过点A (1,2),∴2=1+b ,∴b =1,∴反比例函数的表达式为, 一次函数的表达式为y =x +1. (2)由,消去y ,得x 2+x -2=0, 即(x +2)(x -1)=0,∴x =-2或x =1.∴y =-1或y =2.∴或. ∵点B 在第三象限,∴点B 的坐标为(-2,-1),由图象可知,当反比例函数的值大于一次函数的值时,x 的取值范围是x <-2或0<x <1.14.【解析】(1)由已知,OA =6,OB =12,OD =4,∵CD ⊥x 轴,∴OB ∥CD ,∴△ABO ∽△ACD ,k x6k 3k 6k 3k 126k 123k k y x =41k k -+=2y x=12y x y x ⎧=+⎪⎨=⎪⎩21x y ⎧=-⎨=-⎩12x y ⎧=⎨=⎩∴=,∴=,∴CD =20, ∴点C 坐标为(–4,20),∴n =xy =–80,∴反比例函数解析式为:y =–, 把点A (6,0),B (0,12)代入y =kx +b 得:,解得, ∴一次函数解析式为:y =–2x +12;(2)当–=–2x +12时,解得x 1=10,x 2=–4; 当x =10时,y =–8,∴点E 坐标为(10,–8),∴S △CDE =S △CDA +S △EDA =×20×10+×8×10=140; (3)不等式kx +b ≤,从函数图象上看,表示一次函数图象不高于反比例函数图象; ∴由图象得,x ≥10,或–4≤x <0.(2)将y =40代入y 1=2x +30得:2x +30=40,解得:x =5,将y =40代入y 2=得:x =55. 55-5=50.所以完成一份数学家庭作业的高效时间是50分钟. 1.【答案】D【解析】∵反比例函数y =的图象经过点(3,–2),∴xy =k =–6, A 、(–3,–2),此时xy =–3×(–2)=6,不合题意;B 、(3,2),此时xy =3×2=6,不合题意;C 、(–2,–3),此时xy =–3×(–2)=6,不合题意;OA AD OB CD 61012CD80x0612k b b =+=⎧⎨⎩212k b =-=⎧⎨⎩80x1212n x2200xk xD 、(–2,3),此时xy =–2×3=–6,符合题意;故选D .【名师点睛】此题主要考查了反比例函数图象上点的坐标特征,正确得出k 的值是解题关键. 2.【答案】C【解析】观察图象可知当–1<x <0或x >1时,直线在双曲线的上方,所以y 1>y 2的x 取值范围是–1<x <0或x >1,故选C .【名师点睛】本题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,熟练掌握数形结合思想是解本题的关键.3.【答案】B【解析】分两种情况讨论:①当k >0时,y =kx –3与y 轴的交点在负半轴,过第一、三、四象限,反比例函数的图象在第一、三象限;②当k <0时,y =kx –3与y 轴的交点在负半轴,过第二、三、四象限,反比例函数的图象在第二、四象限,观察只有B 选项符合,故选B .【名师点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,熟练掌握它们的性质才能灵活解题.4.【答案】B【解析】点C 在双曲线y =上,AC ∥y 轴,BC ∥x 轴, 设C (a ,),则B (3a ,),A (a ,),∵AC =BC ,∴=3a –a ,解得a=1(负值已舍去), ∴C(1,1),B(3,1),A(1,3),∴AC =BC =2,∴Rt △ABC 中,AB,故选B .【名师点睛】本题主要考查了反比例函数图象上点的坐标特征,注意反比例函数图象上的点(x,y )的横纵坐标的积是定值k ,即xy =k .5.【答案】A【解析】作BD ⊥AC 于D ,如图,∵△ABC 为等腰直角三角形,∴AC AB ,∴BD =AD =CD ,∵AC ⊥x 轴,∴C (,),把C (,)代入y =得k =4,故选A . 1x1a 1a 3a31–a a k x【名师点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=(k 为常数,k ≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k 是解题的关键.6.【答案】C【解析】∵一次函数y 1=kx +b (k 、b 是常数,且k ≠0)与反比例函数y 2=(c 是常数,且c ≠0)的图象相交于A (–3,–2),B (2,3)两点,∴不等式y 1>y 2的解集是–3<x <0或x >2,故选C .【名师点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.【名师点睛】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是解题关键.8.【答案】8【解析】∵BD 为Rt △ABC 的斜边AC 上的中线,∴BD =DC ,∴∠DBC =∠ACB ,又∠DBC =∠EBO ,∴∠EBO =∠ACB ,又∠BOE =∠CBA =90°,∴△BOE ∽△CBA ,∴,即BC ×OE =BO ×AB . 又∵S △BEC =4, ∴BC •EO =4, 即BC ×OE =8=BO ×AB =|k |.∵反比例函数图象在第一象限,k >0.∴k =8.故答案是:8.【名师点睛】本题考查反比例函数系数k 的几何意义.反比例函数y =中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k |,是经常考查的一个知识点;这里体现了数形结合的思k xc xBO OE BC AB=12k x想,做此类题一定要正确理解k 的几何意义.9.【解析】(1)∵反比例函数y =–的图象过点B (a ,4), ∴4=–,解得:a =–3, ∴点B 的坐标为(–3,4).学=科网将A (2,–6)、B (–3,4)代入y =kx +b 中,,解得:, ∴一次函数的解析式为y =–2x –2.(2)直线AB 向上平移10个单位后得到直线l 的解析式为:y 1=–2x +8.联立直线l 和反比例函数解析式成方程组,,解得,, ∴直线l 与反比例函数图象的交点坐标为(1,6)和(3,2).画出函数图象,如图所示.观察函数图象可知:当0<x <1或x >3时,反比例函数图象在直线l 的上方,∴使y 1<y 2成立的x 的取值范围为0<x <1或x >3.【名师点睛】反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、待定系数法求一次函数解析式以及解方程组,解题的关键是:(1)根据点A 、B 的坐标利用待定系数法求出直线AB 的解析式;(2)联立两函数解析式成方程组,通过解方程组求出两函数图象的交点坐标.12x 12a2634k b k b +-⎧⎨-+⎩==22k b -⎩-⎧⎨==286y x y x =-+=⎧⎪⎨⎪⎩1116x y ⎧⎨⎩==2232x y ⎧⎨⎩==。

中考数学真题分类函数专题(反比例函数)试题及答案详解

中考数学真题分类函数专题(反比例函数)试题及答案详解

中考数学真题分类之函数专题——反比例函数一.反比例函数的定义(共2小题) 1.已知反比例函数的解析式为y =|a|−2x,则a 的取值范围是( )A .a ≠2B .a ≠﹣2C .a ≠±2D .a =±2 2.等腰三角形底角与顶角之间的函数关系是( )A .正比例函数B .一次函数C .反比例函数D .二次函数二.反比例函数的图象(共1小题)3.已知ab <0,一次函数y =ax ﹣b 与反比例函数y =ax在同一直角坐标系中的图象可能( )A .B .C .D .三.反比例函数的性质(共2小题)4.反比例函数y =2x的图象位于( )A .第一、三象限B .第二、三象限C .第一、二象限D .第二、四象限5.关于反比例函数y =5x 的图象,下列说法正确的( ) A .经过点(2,3) B .分布在第二、第四象限 C .关于直线y =x 对称D .x 越大,越接近x 轴四.反比例函数系数k 的几何意义(共3小题)6.如图,矩形OABC 的边AB 与x 轴交于点D ,与反比例函数y =kx(k >0)在第一象限的图象交于点E ,∠AOD =30°,点E 的纵坐标为1,△ODE 的面积是4√33,则k 的值是 .7.如图,矩形ABCD 的顶点A ,B 在x 轴上,且关于y 轴对称,反比例函数y =k1x(x >0)的图象经过点C ,反比例函数y =k 2x(x <0)的图象分别与AD ,CD 交于点E ,F ,若S △BEF =7,k 1+3k 2=0,则k 1等于 .8.如图,菱形ABCD 的边AB 在x 轴上,点A 的坐标为(1,0),点D (4,4)在反比例函数y =k x(x >0)的图象上,直线y =23x +b 经过点C ,与y 轴交于点E ,连接AC ,AE .(1)求k ,b 的值; (2)求△ACE 的面积.五.反比例函数图象上点的坐标特征(共8小题)9.如图,点A ,B 是直线y =x 上的两点,过A ,B 两点分别作x 轴的平行线交双曲线y =1x(x >0)于点C ,D .若AC =√3BD ,则3OD 2﹣OC 2的值为( )A .5B .3√2C .4D .2√310.、若点(﹣1,y 1),(2,y 2),(3,y 3)在反比例函数y =kx(k <0)的图象上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 3>y 2>y 1C .y 1>y 3>y 2D .y 2>y 3>y 111.如图,点A ,B 在双曲线y =3x(x >0)上,点C 在双曲线y =1x(x >0)上,若AC ∥y 轴,BC ∥x 轴,且AC =BC ,则AB 等于( ) A .√2 B .2√2 C .4 D .3√212.反比例函数y =k x(x <0)的图象如图所示,下列关于该函数图象的四个结论:①k >0;②当x <0时,y 随x 的增大而增大;③该函数图象关于直线y =﹣x 对称;④若点(﹣2,3)在该反比例函数图象上,则点(﹣1,6)也在该函数的图象上.其中正确结论的个数有 个.13.已知:函数y 1=|x |与函数y 2=1|x|的部分图象如图所示,有以下结论:①当x <0时,y 1,y 2都随x 的增大而增大; ②当x <﹣1时,y 1>y 2;③y 1与y 2的图象的两个交点之间的距离是2; ④函数y =y 1+y 2的最小值是2. 则所有正确结论的序号是 . 14.如图,在平面直角坐标系中,反比例y =kx(k >0)的图象和△ABC 都在第一象限内,AB =AC =52,BC ∥x 轴,且BC =4,点A 的坐标为(3,5).若将△ABC 向下平移m 个单位长度,A ,C 两点同时落在反比例函数图象上,则m 的值为 .15.一个不透明的口袋中有三个完全相同的小球,球上分别标有数字﹣1,1,2.第一次从袋中任意摸出一个小球(不放回),得到的数字作为点M 的横坐标x ;再从袋中余下的两个小球中任意摸出一个小球,得到的数字作为点M 的纵坐标y .(1)用列表法或树状图法,列出点M (x ,y )的所有可能结果;(2)求点M (x ,y )在双曲线y =−2x上的概率.16.如图,已知菱形ABCD 的对称中心是坐标原点O ,四个顶点都在坐标轴上,反比例函数y =k x(k ≠0)的图象与AD 边交于E (﹣4,12),F (m ,2)两点. (1)求k ,m 的值;(2)写出函数y =kx图象在菱形ABCD 内x 的取值范围.六.待定系数法求反比例函数解析式(共3小题) 17.如图,在平面直角坐标系xOy 中,A (﹣1,2).(1)将点A 向右平移3个单位长度,再向上平移1个单位长度,得到点B ,则点B 的坐标是 .(2)点C 与点A 关于原点O 对称,则点C 的坐标是 . (3)反比例函数的图象经过点B ,则它的解析式是 . (4)一次函数的图象经过A ,C 两点,则它的解析式是 .18.如图,已知平行四边形OABC 中,点O 为坐标原点,点A (3,0),C (1,2),函数y =kx (k ≠0)的图象经过点C . (1)求k 的值及直线OB 的函数表达式: (2)求四边形OABC 的周长.19.如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,2),将线段AB绕点A 顺时针旋转90°得到线段AC ,反比例函数y =kx(k ≠0,x >0)的图象经过点C .(1)求直线AB 和反比例函数y =kx (k ≠0,x >0)的解析式;(2)已知点P 是反比例函数y =kx (k ≠0,x >0)图象上的一个动点,求点P 到直线AB 距离最短时的坐标.七.反比例函数与一次函数的交点问题(共5小题)20.如图,在同一平面直角坐标系中,一次函数y 1=kx +b (k 、b 是常数,且k ≠0)与反比例函数y 2=cx(c 是常数,且c ≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <221.如图,一次函数y 1=(k ﹣5)x +b 的图象在第一象限与反比例函数y 2=kx的图象相交于A ,B 两点,当y 1>y 2时,x 的取值范围是1<x <4,则k = .22.已知直线y =ax (a ≠0)与反比例函数y =kx(k ≠0)的图象一个交点坐标为(2,4),则它们另一个交点的坐标是 .23.如图,已知反比例函数y =k x(x >0)的图象与一次函数y =−12x +4的图象交于A 和B (6,n )两点. (1)求k 和n 的值;(2)若点C (x ,y )也在反比例函数y =kx(x >0)的图象上,求当2≤x ≤6时,函数值y 的取值范围.24.如图,一次函数y =mx +b 的图象与反比例函数y =kx的图象交于A (3,1),B (−12,n )两点.(1)求该反比例函数的解析式;(2)求n 的值及该一次函数的解析式.八.反比例函数的应用(共1小题)25.南宁至玉林高速铁路已于去年开工建设.玉林良睦隧道是全线控制性工程,首期打通共有土石方总量为600千立方米,设计划平均每天挖掘土石方x 千立方米,总需用时间y 天,且完成首期工程限定时间不超过600天. (1)求y 与x 之间的函数关系式及自变量x 的取值范围;(2)由于工程进度的需要,实际平均每天挖掘土石方比原计划多0.2千立方米,工期比原计划提前了100天完成,求实际挖掘了多少天才能完成首期工程?九.反比例函数综合题(共1小题)26.在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D(0,8),AC,BD交于点E.(1)如图(1),双曲线y=k1x过点E,直接写出点E的坐标和双曲线的解析式;(2)如图(2),双曲线y=k2x 与BC,CD分别交于点M,N,点C关于MN的对称点C′在y轴上.求证△CMN~△CBD,并求点C′的坐标;(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线y=k3x与AD交于点P.当△AEP为等腰三角形时,求m的值.参考答案与试题解析一.反比例函数的定义(共2小题) 1.【解答】解:根据反比例函数解析式中k 是常数,不能等于0,由题意可得:|a |﹣2≠0, 解得:a ≠±2, 故选:C . 2.【解答】解:设等腰三角形的底角为y ,顶角为x ,由题意,得y =−12x +90°, 故选:B .二.反比例函数的图象(共1小题)3.【解答】解:若反比例函数y =ax经过第一、三象限,则a >0.所以b <0.则一次函数y =ax ﹣b 的图象应该经过第一、二、三象限;若反比例函数y =ax经过第二、四象限,则a <0.所以b >0.则一次函数y =ax ﹣b 的图象应该经过第二、三、四象限. 故选项A 正确; 故选:A .三.反比例函数的性质(共2小题) 4.【解答】解:∵k =2>0,∴反比例函数经过第一、三象限; 故选:A .5.【解答】解:A 、把点(2,3)代入反比例函数y =5x得2.5≠3不成立,故A 选项错误;B 、∵k =5>0,∴它的图象在第一、三象限,故B 选项错误;C 、反比例函数有两条对称轴,y =x 和y =﹣x ;当x <0时,x 越小,越接近x 轴,故C 选项正确;D 、反比例函数有两条对称轴,y =x 和y =﹣x ;当x <0时,x 越小,越接近x 轴,故D 选项错误. 故选:C .四.反比例函数系数k 的几何意义(共3小题) 6.【解答】解:如图,作EM ⊥x 轴于点M ,则EM =1. ∵△ODE 的面积是4√33, ∴12OD •EM =4√33,∴OD =8√33. 在直角△OAD 中,∵∠A =90°,∠AOD =30°, ∴∠ADO =60°,∴∠EDM =∠ADO =60°.在直角△EMD 中,∵∠DME =90°,∠EDM =60°, ∴DM =EM tan60°=√3=√33, ∴OM =OD +DM =3√3, ∴E (3√3,1).∵反比例函数y =kx(k >0)的图象过点E ,∴k =3√3×1=3√3. 故答案为3√3.7.【解答】解:设点B 的坐标为(a ,0),则A 点坐标为(﹣a ,0) 由图象可知,点C (a ,k 1a),E (﹣a ,−k 2a),D (﹣a ,k 1a),F (−a3,k 1a) 矩形ABCD 面积为:2a •k 1a=2k 1∴S △DEF =DE⋅DF 2=23a×(−2k 2a)2=−23k 2S △BCF =CF⋅BC2=43a×k 1a2=23k 1S △ABE =AB⋅AE2=2a×(−k 2a)2=−k 2∵S △BEF =7∴2k 1+23k 2−23k 1+k 2=7 ①∵k 1+3k 2=0∴k 2=−13k 1代入①式得43k 1+53×(−13k 1)=7解得k 1=9 故答案为:9 8.【解答】解:(1)由已知可得AD =5, ∵菱形ABCD ,∴B (6,0),C (9,4),∵点D (4,4)在反比例函数y =kx(x >0)的图象上, ∴k =16,将点C (9,4)代入y =23x +b ,∴b =﹣2;(2)E (0,﹣2),直线y =23x ﹣2与x 轴交点为(3,0), ∴S △AEC =12×2×(2+4)=6;五.反比例函数图象上点的坐标特征(共8小题) 9.【解答】解:延长CA 交y 轴于E ,延长BD 交y 轴于F . 设A 、B 的横坐标分别是a ,b , ∵点A 、B 为直线y =x 上的两点, ∴A 的坐标是(a ,a ),B 的坐标是(b ,b ).则AE =OE =a ,BF =OF =b .∵C 、D 两点在交双曲线y =1x (x >0)上,则CE =1a,DF =1b. ∴BD =BF ﹣DF =b −1b,AC =1a−a .又∵AC =√3BD , ∴1a−a =√3(b −1b),两边平方得:a 2+1a2−2=3(b 2+1b2−2),即a 2+1a 2=3(b 2+1b2)﹣4,在直角△ODF 中,OD 2=OF 2+DF 2=b 2+1b2,同理OC 2=a 2+1a2, ∴3OD 2﹣OC 2=3(b 2+1b 2)﹣(a 2+1a2)=4.故选:C .10.【解答】解:∵k <0,∴在每个象限内,y 随x 值的增大而增大, ∴当x =﹣1时,y 1>0, ∵2<3, ∴y 2<y 3<y 1 故选:C .11.【解答】解:点C在双曲线y=1x上,AC∥y轴,BC∥x轴,设C(a,1a ),则B(3a,1a),A(a,3a),∵AC=BC,∴3a −1a=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2√2,故选:B.12.【解答】解:观察反比例函数y=kx (x<0)的图象可知:图象过第二象限,∴k<0,所以①错误;因为当x<0时,y随x的增大而增大;所以②正确;因为该函数图象关于直线y=﹣x对称;所以③正确;因为点(﹣2,3)在该反比例函数图象上,所以k=﹣6,则点(﹣1,6)也在该函数的图象上.所以④正确.所以其中正确结论的个数为3个.故答案为3.13.【解答】解:补全函数图象如图:①当x<0时,y1随x的增大而减小,y2随x的增大而增大;故①错误;②当x<﹣1时,y1>y2;故②正确;③y1与y2的图象的两个交点之间的距离是2;故③正确;④∵(x﹣1)2≥0,∴x2+1≥2|x|,∵y=y1+y2=|x|+1|x|=x2+1|x|≥2,∴函数y =y 1+y 2的最小值是2. 故④正确.综上所述,正确的结论是②③④. 故答案为②③④.14.【解答】解:∵AB =AC =52,BC =4,点A (3,5). ∴B (1,72),C (5,72), 将△ABC 向下平移m 个单位长度,∴A (3,5﹣m ),C (5,72−m ), ∵A ,C 两点同时落在反比例函数图象上,∴3(5﹣m )=5(72−m ), ∴m =54;故答案为54;15.【解答】解:(1)用树状图表示为: 点M (x ,y )的所有可能结果;(﹣1,1)(﹣1,2)(1,﹣1)(1,2)(2,﹣1)(2,1)共六种情况.(2)在点M 的六种情况中,只有(﹣1,2)(2,﹣1)两种在双曲线y =−2x上, ∴P =26=13;因此,点M (x ,y )在双曲线y =−2x上的概率为13.16.【解答】解:(1)∵点E (﹣4,12)在y =k x上,∴k =﹣2,∴反比例函数的解析式为y =−2x, ∵F (m ,2)在y =−2x上,∴m =﹣1.(2)函数y =kx图象在菱形ABCD 内x 的取值范围为:﹣4<x <﹣1或1<x <4.六.待定系数法求反比例函数解析式(共3小题) 17.【解答】解:(1)将点A 向右平移3个单位长度,再向上平移1个单位长度,得到点B ,则点B 的坐标是(2,3);(2)点C 与点A 关于原点O 对称,则点C 的坐标是(1,﹣2);(3)设反比例函数解析式为y =kx, 把B (2,3)代入得:k =6,∴反比例函数解析式为y =6x;(4)设一次函数解析式为y =mx +n ,把A (﹣1,2)与C (1,﹣2)代入得:{−m +n =2m +n =−2,解得:{m =−2n =0,则一次函数解析式为y =﹣2x .故答案为:(1)(2,3);(2)(1,﹣2);(3)y =6x;(4)y =﹣2x .18.【解答】解:(1)依题意有:点C (1,2)在反比例函数y =kx(k ≠0)的图象上,∴k =xy =2, ∵A (3,0) ∴CB =OA =3, 又CB ∥x 轴, ∴B (4,2),设直线OB 的函数表达式为y =ax , ∴2=4a ,∴a =12,∴直线OB 的函数表达式为y =12x ;(2)作CD ⊥OA 于点D , ∵C (1,2),∴OC =√12+22=√5, 在平行四边形OABC 中, CB =OA =3,AB =OC =√5,∴四边形OABC 的周长为:3+3+√5+√5=6+2√5, 即四边形OABC 的周长为6+2√5.19.【解答】解:(1)将点A(1,0),点B(0,2),代入y=mx+b,∴b=2,m=﹣2,∴y=﹣2x+2;∵过点C作CD⊥x轴,∵线段AB绕点A顺时针旋转90°得到线段AC,∴△ABO≌△CAD(AAS),∴AD=OB=2,CD=OA=1,∴C(3,1),∴k=3,∴y=3x ;(2)设与AB平行的直线y=﹣2x+h,联立﹣2x+h=3x ,∴﹣2x2+hx﹣3=0,当△=h2﹣24=0时,h=2√6或﹣2√6(舍弃),此时点P到直线AB距离最短;∴P(√62,√6);七.反比例函数与一次函数的交点问题(共5小题)20.【解答】解:∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=c x (c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2.故选:C.21.【解答】解:由已知得A、B的横坐标分别为1,4,所以有{k −5+b =k4(k −5)+b =k 4解得k =4, 故答案为4. 22.【解答】解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(2,4)关于原点对称, ∴该点的坐标为(﹣2,﹣4). 故答案为:(﹣2,﹣4).23.【解答】解:(1)当x =6时,n =−12×6+4=1, ∴点B 的坐标为(6,1). ∵反比例函数y =kx 过点B (6,1),∴k =6×1=6. (2)∵k =6>0,∴当x >0时,y 随x 值增大而减小, ∴当2≤x ≤6时,1≤y ≤3.24.【解答】解:(1)∵反比例函数y =kx的图象经过A (3,1), ∴k =3×1=3,∴反比例函数的解析式为y =3x;(2)把B (−12,n )代入反比例函数解析式,可得 −12n =3, 解得n =﹣6,∴B (−12,﹣6),把A (3,1),B (−12,﹣6)代入一次函数y =mx +b ,可得{1=3m +b−6=−12m +b,解得{m =2b =−5,∴一次函数的解析式为y =2x ﹣5.八.反比例函数的应用(共1小题)25.【解答】解:(1)根据题意可得:y =600x, ∵y ≤600, ∴x ≥1;(2)设实际挖掘了m天才能完成首期工程,根据题意可得:600 m −600m+100=0.2,解得:m=﹣600(舍)或500,检验得:m=500是原方程的根,答:实际挖掘了500天才能完成首期工程.九.反比例函数综合题(共1小题)26.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴DE=EB,∵B(6,0),D(0,8),∴E(3,4),∵双曲线y=k1x 过点E,∴k1=12.∴反比例函数的解析式为y=12x.(2)如图2中,∵点M,N在反比例函数的图象上,∴DN•AD=BM•AB,∵BC=AD,AB=CD,∴DN•BC=BM•CD,∴DNBM =CDBC,∴DNCD =BMCB,∴CNCD =CMCB,∵∠MCN =∠BCD , ∴△MCN ∽△BCD , ∴∠CNM =∠CDB , ∴MN ∥BD ,∴△CMN ∽△CBD . ∵B (6,0),D (0,8),∴直线BD 的解析式为y =−43x +8, ∵C ,C ′关于MN 对称, ∴CC ′⊥MN , ∴CC ′⊥BD , ∵C (6,8),∴直线CC ′的解析式为y =34x +72, ∴C ′(0,72).(3)如图3中,①当AP =AE =5时,∵P (m ,5),E (m +3,4),P ,E 在反比例函数图象上, ∴5m =4(m +3), ∴m =12.②当EP =AE 时,点P 与点D 重合,∵P (m ,8),E (m +3,4),P ,E 在反比例函数图象上, ∴8m =4(m +3), ∴m =3.③显然PA ≠PE ,若相等,点P 在点E 的下方,显然不可能. 综上所述,满足条件的m 的值为3或12.。

中考专题反比例函数常见模型

中考专题反比例函数常见模型
同理可证∠3=∠4
模型九:等角2——对称型
结论:正比例函数图象与双曲线交于Q、R两点,
则∠1=∠2,∠3=∠4
证明:作P点关于点O对称点S,
连SR,SP,SQ
易证四边形PQSQ为平行四边形
由模型八可知∠2=∠5,
又∵PR∥QS,∴∠5=∠1,
∴∠1=∠2
∵∠2+∠4=90°,∠3+∠1=90°
∴∠3=∠4
|k|等于双曲线上任意一点作x轴、y轴的垂线的矩形的面积。
二、反比例函数的基本模型
模型一、对称性
结论:
∵正比例、反比例函数的图象都是关于原点成中心对称图形,
∴①OA=OB,OC=OD;
②四边形ACBD是平行四边形;
模型二:双曲矩形
结论:1、不论P在双曲线上何处,
2、当OA在x轴上平移时,
同理:当OB在y轴上平移时,
等底同高可证,证明略
模型三:双曲三角形
结论:
1、不论P在双曲线上何处,
2、不论O'在y轴上何处,
同底等高可证,证明略
模型四:等分面积
结论:
3、若Q为AB中点,则P也必为BC中点。
由2可得,证明略
模型五:三角转梯形
结论:
模型六:斜向平行线
结论:过双曲线上任意两点P、Q分别作PC⊥y轴于C,QA⊥x轴于A,连结AC,则PQ∥AC
由模型七得
∵ABQP为平行四边形
∴PQ∥AB,AP∥BQ,PQ=AB,AP=BQ
∴∠2=∠6=∠EPA
∵∠PEA=∠BCQ=90°
∴பைடு நூலகம்PEA≌△BCQ(AAS)∴PE=BC=a,
∵OM=a+b,OC=b,∴CM=OM-OC=a

中考数学分类(含答案)反比例函数

中考数学分类(含答案)反比例函数

反比例函数分类精选一、选择题1.(2010安徽芜湖)二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y = a x与正比例函数y =(b +c )x 在同一坐标系中的大致图象可能是()A .B .C .D .【答案】B2.(2010甘肃兰州) 已知点(-1,1y ),(2,2y ),(3,3y )在反比例函数x k y 12--=的图像上. 下列结论中正确的是A .321y y y >>B .231y y y >>C .213y y y >>D . 132y y y >>【答案】B3.(2010山东青岛)函数y ax a =-与ay x=(a ≠0)在同一直角坐标系中的图象可能是( )【答案】D4.(2010山东日照)已知反比例函数y =x2,则下列点中在这个反比例函数图象的上的是 (A )(-2,1) (B )(1,-2) (C )(-2,-2) (D )(1,2) 【答案】D5.(2010四川凉山)已知函数25(1)m y m x -=+是反比例函数,且图像在第二、四象限内,则m 的值是A .2B .2-C .2±D .12- 【答案】B6.(2010浙江宁波)已知反比例函数1y x=,下列结论不正确...的是 (A)图象经过点(1,1) (B)图象在第一、三象限(C)当1x >时,01y << (D)当0x <时,y 随着x 的增大而增大 【答案】D7.(2010 浙江台州市)反比例函数xy 6=图象上有三个点)(11y x ,,)(22y x ,,)(33y x ,,其中3210x x x <<<,则1y ,2y ,3y 的大小关系是(▲)A .321y y y <<B .312y y y <<C .213y y y <<D .123y y y << 【答案】B 8.(2010四川眉山)如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为A .12B .9C .6D .4【答案】B9.(2010浙江绍兴)已知(x 1, y 1),(x 2, y 2),(x 3, y 3)是反比例函数xy 4-=的图象上的三个点,且x 1<x 2<0,x 3>0,则y 1,y 2,y 3的大小关系是( )A. y 3<y 1<y 2B. y 2<y 1<y 3C. y 1<y 2<y 3D. y 3<y 2<y 1 【答案】A10.(2010 嵊州市)如图,直线)0(<=k kx y 与双曲线xy 2-=交于),(),,(2211y x B y x A 两点,则122183y x y x -的值为( )A.-5B.-10C.5D.10【答案】B11.(2010山东聊城)函数y 1=x (x ≥0),y 2=4x(x>0)的图象如图所示,下列结论:①两函数图象的交点坐标为A (2,2);②当x >2时,y 2>y 1;③直线x =1分别与两函数图象相交于B 、C 两点,则线段BC 的长为3; ④当x 逐渐增大时,y 1的值随x 的增大而增大,y 2的值随x 的增大减少. 其中正确的是( )A .只有①②B .只有①③C .只有②④D .只有①③④【答案】D12.(2010 四川南充)如图,直线2y x =+与双曲线ky x=相交于点A ,点A 的纵坐标为3,k 的值为( ).(A )1 (B )2 (C )3 (D )4 【答案】C13.(2010江西)如图,反例函数4y x=图象的对称轴的条数是( ) A .0 B .1 C .2 D .3(第9题)yy 1=xy 2=4xx第11题图【答案】C14.(2010福建福州)已知反比例函数的图象y =kx过点P (1,3),则该反比例函数图象位于( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限 【答案】B 15.(2010江苏无锡)如图,已知梯形ABCO 的底边AO 在x 轴上,BC ∥AO ,AB ⊥AO ,过点C 的双曲线ky x=交OB 于D ,且OD :DB=1:2,若△OBC 的面积等于3,则k 的值()A . 等于2B .等于34C .等于245D .无法确定16.(2010年上海)在平面直角坐标系中,反比例函数 y = kx ( k <0 ) 图像的量支分别在( )A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限【答案】B17.(2010山东临沂) 已知反比例函数7y x=-图象上三个点的坐标分别是1(2,)A y -、(第6题图)2(1,)B y -、3(2,)C y ,能正确反映1y 、2y 、3y 的大小关系的是(A )123y y y >>(B )132y y y >>(C )213y y y >>(D )231y y y >> 【答案】C18.(2010 山东莱芜)已知反比例函数xy 2-=,下列结论不正确...的是 A .图象必经过点(-1,2) B .y 随x 的增大而增大 C .图象在第二、四象限内 D .若x >1,则y >-2【答案】B19.(2010福建宁德)反比例函数1y x=(x >0)的图象如图所示,随着x 值的增大,y 值( ).A .减小B .增大C .不变D .先减小后不变 【答案】A20.(2010年贵州毕节)函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是( )A .1k >B .1k <C .1k >-D .1k <- 【答案】A. 21.(2010浙江湖州)如图,已知在直角梯形AOBC 中,AC ∥OB ,CB ⊥OB ,OB =18,BC =12,AC =9,对角线OC 、AB 交于点D ,点E 、F 、G 分别是CD 、BD 、BC 的中点,以O 为原点,直线OB 为x 轴建立平面直角坐标系,则G 、E 、D 、F 四个点中与点A 在同一反比例函数图像上的是( ) A .点G B .点E C .点D D .点F .【答案】A .22.(2010江苏常州)函数2y x=的图像经过的点是第8题图(第10题)A.(2,1)B.(2,1)-C.(2,4)D.1(,2)2-【答案】A23.(2010 山东滨州)如图,P 为反比例函数y=kx的图象上一点,PA ⊥x 轴于点A, △PAO 的面积为6.下面各点中也在这个反比例函数图象上的点是( )A.(2,3)B. (-2,6)C. (2,6)D. (-2,3)【答案】B24.(2010湖北荆门)在同一直角坐标系中,函数y=kx+1和函数y=xk(k 是常数且k ≠0)的图象只可能是A .B .C .D .【答案】B25.(2010山东潍坊)若正比例函数y =2kx 与反比例函数y =kx(k ≠0)的图象交于点A (m ,1),则k 的值是( ). AB.2或-2 C.2D【答案】B26.(2010湖南怀化)反比例函数)0(1>-=x xy 的图象如图1所示, 随着x 值的增大,y 值( )图1A .增大B .减小C.不变 D.先增大后减小 【答案】A27.(2010湖北荆州)如图,直线l是经过点(1,0)且与y 轴平行的直线.Rt △ABC 中直角边AC=4,BC=3.将BC 边在直线l上滑动,使A ,B 在函数xky =的图象上. 那么k 的值是A .3B .6 C.12 D .415【答案】D28.(2010湖北鄂州)正比例函数y=x 与反比例函数ky x=(k ≠0)的图像在第一象限交于点A,且,则k 的值为A.2B.1C.D.2【答案】B29.(2010山东泰安)函数y=2x+1与函数y=kx的图象相交于点(2,m),则下列各点不在函数y=kx 的图象上的是 ()A.(-2,-5) B.(52,4) C.(-1,10) D.(5,2)【答案】C30.(2010云南红河哈尼族彝族自治州)不在函数xy 12=图像上的点是 A .(2,6) B.(-2,-6) C.(3,4) D.(-3,4) 【答案】D31.(2010黑龙江哈尔滨)反比例函数xk y 3-=的图像,当0>x 时,y 随x 的增大而增大,则k 的数值范围是( ) (A )2<k (B )3≤k (C )3>k(D ).3≥k【答案】A32.(2010四川内江)函数y =x +1x中自变量x 的取值范围是A .x ≥-1B .x >-1C .x ≥-1且x ≠0D .x >-1且x ≠0【答案】C33.(2010四川内江)如图,反比例函数y =kx(x >0)的图象经过矩形OABC 对角线的交点M ,分别与AB 、BC 相交于点D 、E .若四边形ODBE 的面积为6,则k 的值为A .1B .2C .3D .4【答案】B34.(2010 福建三明)在反比例函数xky -=1的图象的每一条曲线上,y 都随x 的增大而增大,则k 的值可能是( ) A .—1 B .0 C .1D .2【答案】D35.(2010 山东东营)如图所示,反比例函数1y 与正比例函数2y 的图象的一个交点是(21)A ,,若210y y >>,则x 的取值范围在数轴上表示为()(A【答案】D36.(2010 湖北孝感)双曲线xyxy21==与在第一象限内的图象如图所示,作一条平行于y轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()A.1 B.2C.3 D.4【答案】A37.(2010 广东汕头)已知一次函数1-=kxy的图像与反比例函数xy2=的图像的一个交点坐标为(2,1),那么另一个交点的坐标是()A.(-2,1) B.(-1,-2) C.(2,-1) D.(-1,2) 【答案】B38.(2010 云南玉溪)如图2所示的计算程序中,y与x之间的函数关系对应的图象所在的象限是A. 第一象限B. 第一、三象限C. 第二、四象限D. 第一、四象限【答案】C39.(2010 湖南湘潭)在同一坐标系中,正比例函数xy=与反比例函数xy2=的图象大致是图2【答案】B40.(2010 甘肃)如图,矩形ABOC 的面积为3,反比例函数ky x=的图象过点A ,则k =( )A .3B .5.1-C .3-D .6-【答案】C41.(2010广西桂林)若反比例函数ky x=的图象经过点(-3,2),则k 的值为 ( ). A .-6 B .6 C .-5 D .5【答案】A42.(2010湖北十堰)方程x 2+2x -1=0的根可看成函数y =x +2与函数1y x=的图象交点的横坐标,用此方法可推断方程x 3+x -1=0的实根x 所在范围为( ) A . 102x -<< B .102x << C .112x << D .312x << 【答案】C43.(2010 广西玉林、防城港)直线l 与双曲线C 在第一象限相交于A 、B 两点,其图象信息如图4所示,则阴影部分(包括边界)横、纵坐标都是整数的点(俗称格点)有: ( )A .4个B .5 个C .6个D .8个【答案】B 44.(2010 山东荷泽)某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (kPa )是气球体积V 的反比例函数,其图象如图所示,当气球内的气压大于120 kPa 时,气球将爆炸,为了安全,气球的体积应该A .不大于45m 3 B .小于45m 3C .不小于54m 3D .小于54m 3第8题图【答案】C45.如图,平面直角坐标系中,OB 在x 轴上,∠ABO =90°,点A 的坐标为(1,2)。

2024年四川中考数学真题分类汇编——反比例函数

2024年四川中考数学真题分类汇编——反比例函数

2024年四川中考数学真题分类汇编——反比例函数一成都如图,在平面直角坐标系xOy 中,直线y x m =-+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0k y k x=<图象上.(1)求a ,b ,m 的值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.如图,一次函数y kx b =+(k 、b 为常数,0k ≠)的图象与反比例函数m y x=(m 为常数,0m ≠)的图象交于点()2,3A ,(),2B a -.(1)求反比例函数和一次函数的解析式;(2)若点C 是x 轴正半轴上的一点.且90BCA ∠=︒.求点C 的坐标.如图,一次函数22y x =-+与反比例函数(0)k y x x=<的图象交于点()1,A m -.(1)求m 的值和反比例函数k y x=的解析式;(2)将直线22y x =-+向下平移h 个单位长度(0)h >后得直线y ax b =+,若直线y ax b =+与反比例函数(0)k y x x =<的图象的交点为(),2B n ,求h 的值,并结合图象求不等式k ax b x<+的解集.如图,一次函数y ax b =+(a ,b 为常数,0a ≠)的图象与反比例函数k y x=(k 为常数,0k ≠)的图象交于(2,4)A ,(,2)B n -两点.(1)求一次函数和反比例函数的解析式.(2)直线AB 与x 轴交于点C ,点(,0)P m 是x 轴上的点,若PAC △的面积大于12,请直接写出m 的取值范围.如图,已知反比例函数1k y x=和一次函数2y mx n =+的图象相交于点()3,A a -,3,22B a ⎛⎫+- ⎪⎝⎭两点,O 为坐标原点,连接OA ,OB .(1)求1k y x=与2y mx n =+的解析式;(2)当12y y >时,请结合图象直接写出自变量x 的取值范围;(3)求AOB 的面积.如图,已知点、在反比例函数的图象上,过点的一次函数的图象与轴交于点.(1)求、的值和一次函数的表达式;(2)连结,求点到线段的距离.如图,在平面直角坐标系xOy 中,一次函数y kx b =+与x 轴相交于点()2,0A -,与反比例函数a y x=的图象相交于点()2,3B .(1)求一次函数和反比例函数的解析式;(2)直线()2x m m =>与反比例函数()0a y x x =>和()20y x x=->的图象分别交于点C ,D ,且2OBC OCD S S =△△,求点C 的坐标.如图,在平面直角坐标系中,一次函数与反比例函数的图象交于点,,与轴,轴分别交于,两点.(1)求一次函数和反比例函数的表达式;(2)若点在轴上,当的周长最小时,请直接写出点的坐标;(3)将直线向下平移个单位长度后与轴,轴分别交于,两点,当时,求的值.如图,直线y kx b =+经过(0,2),(1,0)A B --两点,与双曲线(0)my x x =<交于点(,2)C a .(1)求直线和双曲线的解析式.(2)过点C 作CD x ⊥轴于点D ,点P 在x 轴上,若以O ,A ,P 为顶点的三角形与BCD △相似,直接写出点P 的坐标.如图,一次函数y ax b =+的图象与反比例函数k y x=的图象相交于A 、B 两点,其中点A 的坐标为()2,3-,点B 的坐标为()3,n (1)求这两个函数的表达式;(2)根据图象,直接写出关于x 的不等式k ax b x+<的解集十一遂宁如图,一次函数()10y kx b k =+≠的图象与反比例函数()20m y m x=≠的图象相交于()()1,3,1A B n -,两点.(1)求一次函数和反比例函数的表达式;(2)根据图象直接写出12y y >时,x 的取值范围;(3)过点B 作直线OB ,交反比例函数图象于点C ,连结AC ,求ABC 的面积.十二宜宾如图,一次函数.()0y ax b a =+≠的图象与反比例函数()0k y k x=≠的图象交于点()()1,4,1A B n -、.(1)求反比例函数和一次函数的表达式;(2)利用图象,直接写出不等式k ax b x+<的解集;(3)已知点D 在x 轴上,点C 在反比例函数图象上.若以A 、B 、C 、D 为顶点的四边形是平行四边形,求点C 的坐标.十三自贡如图,在平面直角坐标系中,一次函数y kx b =+的图象与反比例函数m y x=的图象交于(6,1)A -,(1,)B n两点.(1)求反比例函数和一次函数的解析式;(2)P 是直线2x =-上的一个动点,PAB 的面积为21,求点P 坐标;(3)点Q 在反比例函数m y x =位于第四象限的图象上,QAB 的面积为21,请直接写出Q 点坐标.十四凉山如图,正比例函数112y x =与反比例函数()20k y x x =>的图象交于点()2A m ,.(1)求反比例函数的解析式;(2)把直线112y x =向上平移3个单位长度与()20k y x x =>的图象交于点B ,连接,AB OB ,求AOB 的面积.。

中考一轮复习反比例函数(知识点梳理+典型例题 )

中考一轮复习反比例函数(知识点梳理+典型例题 )

反比例函数一、反比例函数的概念:一般地,形如 y = xk ( k 是常数, k≠0 ) 的函数叫做反比例函数。

注意:(1)常数 k 称为比例系数,k 是非零常数;(2)解析式有三种常见的表达形式:① y = xk (k ≠ 0) , ② 指数形式:1(0)y kx k -=≠; ③ 乘积形式:(0)xy k k =≠ ※反比例函数解析式可写成xy= k (k≠0)它表明反比例函数中自变量x 与其对应函数值y 之积,总等于常数k(3)自变量x 的取值范围是0x ≠,函数y 的取值范围是0y ≠。

例:点A (-1,1)是反比例函数m y x=的图象上一点,则m 的值为( ) A. 0 B. -2 C. -1 D. 1二、反比例函数的图象(1)形状与位置:反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。

(2)变化趋势:由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴(坐标轴又称为双曲线的渐近线)。

三、反比例函数的性质(1)对称性:反比例函数的图像是关于原点对称的中心对称图形,同时也是轴对称图形,有两条对称轴,分别是一、三象限和二、四象限的角平分线,即直线y x =±。

(注:过原点的直线与双曲线的两个交点关于原点对称)(2)双曲线的位置:当k>0时,双曲线位于一、三象限(x ,y 同号);当k<0时,双曲线位于二、四象限(x ,y 同号异号),反之也成立。

(3)增减性: 当k>0时,双曲线走下坡路,在同一象限内,y 随x 的增大而减小;当k<0时,双曲线走上坡路,在同一象限内,y 随x 的增大而增大。

反之也成立。

※注:① 在利用反比例函数的增减性比较坐标大小时,一定通过画图解决,这是一个易错点);② 在反比例函数y 随x 的变化情况中一定注明在每一个象限内例1 已知反比例函数x y 2-=,下列结论不正确的是( )A .图象必经过点(-1,2)B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则y >-2例2 若ab >0,则一次函数y=ax+b 与反比例函数y=ab x在同一坐标系数中的大致图象是( ) A .B .C . D .例3 若点(﹣3,y 1),(﹣2,y 2),(﹣1,y 3)在反比例函数y=﹣图象上,则下列结论正确的是( )A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 3>y 2>y 1变式训练:1.正比例函数y=kx 和反比例函数21k y x+=-(k 是常数且k≠0)在同一平面直角坐标系中的图象可能是( ) A .B .C .D . 2.反比例函数y=m x的图象如图所示,以下结论: ①常数m <-1; ②在每个象限内,y 随x 的增大而增大; ③若A (-1,h ),B (2,k )在图象上,则h <k ; ④若P (x ,y )在图象上,则P′(-x ,-y )也在图象上.其中正确的是( )A .①②B .②③C .③④D .①④3.已知点A (1,m ),B (2,n )在反比例函数(0)k y k x=<的图象上,则( ) A. 0m n << B. 0n m << C. 0m n >> D. 0n m >>(4)k 的几何意义:如图,设点P (a ,b )是反比例函数y=xk 上任意一点,作PA ⊥x 轴于A 点,PB ⊥y 轴于B 点,则矩形PBOA 的面积是k (三角形PAO 和三角形PBO 的面积都是k 21;面积是正数,所以k 要加绝对值)例1 如图,点A 是反比例函数(x >0)图象上一点,过点A 作x 轴的平行线,交反比例函数(x >0)的图象于点B ,连接OA 、OB ,若△OAB 的面积为2,则k 的值为______.例2 反比例函数y=(a >0,a 为常数)和y=在第一象限内的图象如图所示,点M在y=的图象上,MC ⊥x 轴于点C ,交y=的图象于点A ;MD ⊥y 轴于点D ,交y=的图象于点B ,当点M 在y=的图象上运动时,以下结论:①S △ODB =S △OCA ; ②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点.其中正确结论的个数是( )A .0B .1C .2D .3变式训练:1、如图,点A 是反比例函数y=k x(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上.已知平行四边形ABCD 的面积为6,则k 的值为( )A. 6B. 3C. ﹣6D. ﹣32、如图,直线(0)x t t =>与反比例函数k y x =(x >0)、1y x-=(x >0)的图象分别交于B 、C 两点,A 为y 轴上任意一点,△ABC 的面积为3,则k 的值为( )A. 2B. 3C. 4D. 53、如图,已知双曲线y =k x(k>0)与直角三角形OAB 的直角边AB 相交于点C ,且BC =3AC ,若△OBC 的面积为3,则k =_________.4.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y=的图象上,则k 的值为 .四、直线与双曲线相交(1)交点坐标即为直线关系式和双曲线关系式联立所得方程组的解。

初三中考一轮复习(11)反比例函数 题型分类 含答案(全面 非常好)

初三中考一轮复习(11)反比例函数  题型分类 含答案(全面 非常好)

教学主题 一轮复习反比例函数教学目标掌握反比例函数题型重 要 知识点 1.反比例函数 2. 3. 易错点教学过程反比例函数考点1:反比例函数的图象和性质 1、一般地,函数xky =(k 是常数,k ≠0)叫做反比例函数,其图象是叫双曲线。

2、当k >0时,图象的两个分支分别在第一、三象限。

在每个象限内,y 随x 的增大而减小。

当k <0时,图象的两个分支分别在第二、四象限。

在每个象限内,y 随x 的增大而增大。

3、对于双曲线上的点A 、B ,有两种三角形的面积(S △AOB)要会求(会表示),如图所示.考点1、反比例函数图像与性质1、函数2y x =与函数1y x-=在同一坐标系中的大致图像是 ( )【答案】B2、如图是我们学过的反比例函数图象,它的函数解析式可能是 ( )【答案】 BA .2y x =B .4y x=C .3y x=-D .12y x =3、若点12(1,),(2,)A y B y 是双曲线3y x=上的点,则1y 2y (填“>”,“<”“=”). 【答案】> 4、如图,反比例函数ky x=的图象经过点A (-1,-2).则当x >1时,函数值y 的取值范围是( )A.y >1B.0<y <1C. y >2D.0< y <2【答案】D6.如图,已知直线12y x =-经过点P (2-,a ),点P 关于y 轴的对称点P ′在反比例函数2ky x=(0≠k )的图象上. (1)求点P ′的坐标;(2)求反比例函数的解析式,并直接写出当y 2<2时自变量x 的取值范围.【答案】(1)∴P ′(2,4).(2) k =8,自变量x 的取值范围x <0或x >4. 考点3:反比例函数解析式中k 的几何意义 相关知识:设()P x y ,是反比例函数ky x=图象上任一点,过点P 作x 轴、y 轴的垂线,垂足为A ,则(1)△OPA 的面积111222OA PA xy k ===g .(2)矩形OAPB 的面积OA PA xy k ===g 。

2020中考专题复习----反比例函数

2020中考专题复习----反比例函数

第1讲 反比例函数的有关面积问题(一)【学习目标】1.理解并掌握反比例函数中的比例系数k 的几何意义;2.会灵活运用k 的几何意义求图形面积或由图形面积求k 的值.【重难点】k 的几何意义和面积的转化.知识点与方法技巧梳理:k 的几何意义1.过反比例函数y =kx图象上任意一点P (x ,y )作两坐标轴的垂线,两垂足、原点、P 点组成一个矩形,则矩形的面积S =|x |·|y |=|x y |=|k |.2.反比例函数y =kx图象上任意一点P (x ,y )作x 轴或y 轴的垂线,垂足、原点、P 点组成一个直角三角形,则三角形的面积S =1 2 |x |·|y |=1 2 |x y |=12|k |.【例1】若直线y =kx (k >0)与函数y =1x的图象交于A 、C 两点,AB ⊥x 轴于B ,则△ABC 的面积为( )A .1B .2C .kD .k2【变式】如图,A 、B 是函数y =2x的图象上关于原点O 对称的任意两点,AC ∥y 轴,BC ∥x 轴,则△ABC的面积为____________.【例2】如图,在x 轴的正半轴上依次间隔相等的距离取点A 1,A 2,A 3,A 4,A 5,分别过这些点作x 轴的垂线与反比例函数y =2x的图象相交于点P 1,P 2,P 3,P 4,P 5,连接OP 1,A 1P 2,A 2P 3,A 3P 4,A 4P 5,得到Rt △OP 1A 1,Rt △A 1P 2A 2,Rt △A 2P 3A 3,Rt △A 3P 4A 4,Rt △A 4P 5A 5,设它们的面积分别为S 1,S 2,S 3,S 4,S 5,则S 1+S 2+S 3+S 4+S 5=_____________.【变式】如图,在x 轴的正半轴上依次间隔相等的距离取点A 1,A 2,A 3,A 4,…,A n ,分别过这些点作x轴的垂线与反比例函数y =1x的图象相交于点P 1,P 2,P 3,P 4,…,P n ,再分别过P 2,P 3,P 4,…,P n 作P 2B 1⊥A 1P 1,P 3B 2⊥A 2P 2,P 4B 3⊥A 3P 3,…,P n B n -1⊥A n -1P n -1,垂足分别为B 1,B 2,B 3,B 4,…,B n -1,连接P 1P 2,P 2P 3,P 3P 4,…,P n -1P n ,得到Rt △P 1B 1P 2,Rt △P 2B 2P 3,Rt △P 3B 3P 4,…,Rt △P n -1B n -1P n ,设它们的面积分别为S 1,S 2,S 3,…,S n ,则S 1+S 2+S 3+…+S n =_____________.(用含n 的式子表示)【例3】如图,正方形OABC 的面积为9,点B 在反比例函数y =kx(k >0,x >0)的图象上.(1)求反比例函数的解析式;(2)点P 是反比例函数图象上异于点B 的一点,过点P 分别作x 轴、y 轴的垂线,垂足为E 、F .设矩形OEPF 和正方形OABC 不重合的两部分的面积和为S ,当S =92时,求点P 的坐标.【变式】如图,正方形OABC 的面积是4,点B 在反比例函数y =kx(k >0,x <0)的图象上,若点R 是该反比例函数图象上异于点B 的任意一点,过点R 分别作x 轴、y 轴的垂线,垂足为M 、N ,从矩形OMRN 的面积中减去其与正方形OABC 重合部分的面积,记剩余部分的面积为S ,则当S =m (m 为常数,且0<m <4)时,求点R 的坐标(用含m 的代数式表示).【例3】如图,在△OAB 中,C 是AB 的中点,反比例函数y =kx(k>0)在第一象限的图象经过A 、C 两点,若△OAB 的面积为9,则k 的值为____________.【变式1】如图,A 、B 是双曲线y =kx上的两点,过A 点作AC ⊥x 轴于C ,交OB 于D ,若D 为OB 的中点,△ADO 的面积为1,则k 的值为____________.【变式2】如图,反比例函数y =k x (k >0,x >0)的图象经过Rt △AOB 的斜边OA 上的点C ,且 OC OA = 13,与AB 边交于点D ,连接OD ,若△AOD 的面积为8,则k 的值为【能力提升】1.如图,正方形ABCD 的边长为2,AB ∥x 轴,AD ∥y 轴,顶点A在双曲线y =12x上,边CD 、BC 分别交双曲线于E 、F ,且线段AE 恰好经过原点,则△AEF 的面积为2A (-1,0),B (0,-2),AD 边交y 轴于点E ,S四边形BCDE =5S △ABE .反比例函数ky x的图象经过点C ,与BC 边交于另一点F ,则点F 的坐标为____________.3.已知直线y =1 2 x 与双曲线y =kx(k >0)交于A 、B 两点,且点A 的横坐标为4.过原点O 的另一条直线交双曲线y =kx(k >0)于C 、D 两点(点C 在第一象限),若以A 、B 、C 、D 为顶点的四边形的面积为24,则点C 的坐标为________________.4.如图,A 、B 两点在第一象限,点A 在反比例函数y =kx的图象上,交反比例函数y =k x 的图象于D ,连接OB 交反比例函数y =kx图中阴影部分的面积和最小时,点C 的坐标为____________.5.如图,双曲线2y x =、2y x=-O 是对角线AC 与BD 的交点,若阴影部分的面积为10,AB 所在直线的解析式为y =2x +b ,则点A 的坐标为____________. 6.已知A (-3,0),B (0,-4),P 为反比例函数y =12x(x >0)图象上的动点,PC ⊥x 轴于C ,PD ⊥y 轴于D ,则四边形ABCD 面积的最小值为____________.7.一次函数y =ax +b 的图象分别与x 轴、y 轴交于点A 、B ,与反比例函数ky x=的图象相交于点C 、D ,作CE ⊥x 轴于E ,DF ⊥y 轴于F ,连接EF .(1)如图1,若点C 、D 在反比例函数图象的同一分支上,试证明:①EF ∥AB ;②AC =BD ; (2)如图2,若点C 、D 在分别在反比例函数图象的不同分支上,(1)中的结论是否还成立,请证明.图1 图2第2讲 反比例函数的有关面积问题(二)【学习目标】1.理解并掌握反比例函数中的比例系数k 的几何意义;2.会灵活运用k 的几何意义求图形面积或由图形面积求k 的值.【重难点】k 的几何意义和面积的转化.【例1】如图,双曲线交矩形OABC 的边于点D 、E ,若BD =2AD ,四边形ODBE 的面积为8,则k 的值为____________.【变式1】如图,反比例函数y =kx(k>0)的图象与矩形ABCO 的两边相交于E 、F 两点.若E 是AB 的中点,S △BEF =2,则k 的值为____________.【变式2】如图,知矩形OABC 的一边OA 在x 轴上,OC 在y 轴上,O 为坐标原点,连接OB ;双曲线y=kx交BC 于D ,交OB 于E ,连接OD ,若BE =2OE ,△OBD 的面积等于S ,则k 的值为____________.【例2】如图,点A 在反比例函数y =kx(x>0)的图象上,AB ⊥y 轴于B ,点C 在x 轴正半轴上,且OC=2AB ,点E 在线段AC 上,且AE =3EC ,D 是OB 的中点,△ADE 的面积是9,则k =_____________.【变式】如图,B 、D 两点均在双曲线y =kx上,BC ⊥y 轴于C ,点D 为AB 的中点,点E 在线段OC 上,且CE =2OE ,若△BDE 的面积为7,则k 的值为_____________.【例3】如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数y =-k2+5k -62x的图象上.若点A 的坐标为(-3,-2),则k 的值为【变式】如图,平面直角坐标系中,□OABC 的顶点C 的坐标为(3,4),边OA 在x 轴正半轴上,P 为对角线AC 上一点,过点P 分别作DE ∥OC ,FG ∥OA 交平行四边形各边,若反比例函数y =kx的图象经过点D ,四边形BCFG 的面积为8,则k 的值为_____________.【例4】如图,在平面直角坐标系xO y 中,直线y =3 2x 与双曲线y =6x相交于A ,B 两点,C 是第一象限内双曲线上一点,连接CA 并延长交y 轴于点P ,连接BP ,BC .若△PBC 的面积是20,则点C 的坐标为_____________.【变式】如图,点A 、B 在双曲线y =k x 的第一象限分支上,AO 的延长线交第三象限的双曲线y =kx于点C ,AB 的延长线与x 轴交于点D ,连接CD 与y 轴交于点E ,若AB =BD ,S △ODE=94,则k =___________.【能力提升】1.如图,A 是反比例函数ky x=2OC ,CD ⊥x 轴于D ,交反比例函数图象于点B ,若S △ABC =8,则2.如图,矩形OABC 中,D 是对角线OB 上的一点,OD =2 3OB ,反比例函数y =kx(x >0)的图象经过点D ,分别与边AB 、BC 交于点E 、F ,若四边形BFDE 的面积为 56,则k 的值为_____________,矩形OABC 的面积为_____________.3.Rt △ABC 在直角坐标系中的位置如图所示,∠ACB =90°,AC =2BC ,反比例函数y =kx在第一象限的图象与AB 边交于点D (2,m ),与BC 边交于点E (4,n ),且△BDE 的面积为2,则k =__________. 4.如图,△AOB 为等边三角形,点B 的坐标为(-2,0),过点C (2,0)的直线交AO 于D ,交AB 于E ,E5.如图,在平面直角坐标系中,正方形ABCD 的中心在原点O ,且一组对边与x 轴平行,点P (3a ,a )是反比例函数y =kx(k>0)的图象与正方形的一个交点,若图中阴影部分的面积为14,则k 的值为____________.6.如图,A 、B 是反比例函数y =k x 图象上的两点,AC ⊥y 轴于C ,BD ⊥x 轴于D ,AC =BD = 14OC ,S 四边形ABDC=14,则k =____________.7.如图,已知平行四边形OABC 的面积为18,对角线AC 、OB 交于点D ,双曲线y =kx(k >0)经过C 、D 两点,则k 的值为____________.8.如图,平行四边形OABC的边OA在x轴的负半轴上,顶点B、C在第二象限,反比例函数y=kx的图象经过点C,与线段OB、AB分别交于点D、E,若BD=2OD,△OCE的面积为8,则k的值为____________.9.如图,平行四边形ABCD中,点C在y轴正半轴上,点D在反比例函数y=kx(x>0)的图象上,且CD∥x轴,AC的延长线交x轴于点E,若△BCE的面积为2,则k的值为_____________.10.如图,四边形ABCD的顶点都在坐标轴上,AB∥CD,△ABD与△ACD的面积分别为10和20,若双曲线y=kx恰好经过BC的中点E,则k的值为____________.第3讲 反比例函数经典题1.如图,在平面直角坐标系中,□OABC 的顶点A 在x 轴上,顶点B 的坐标为(2k,2k),反比例函数y =kx在第一象限的图象将□OABC 分成上、下两部分,其面积分别为S 1、S 2,则S 1、S 2的大小关系是_____________.变式3:如图,直线y =kx +b (k <0,b >0)与x 轴、y 轴交于点A 、B ,与反比例函数my=的图象交于点C 、D .若BD =DC ,△OCD 的面积为6,求反比例函数的解析式.3.如图,一次函数y =mx (m >0)与反比例函数y =kx的图象的图象交于A 、B 两点,点P 是第一象限内反比例函数图象上的动点,直线P A 、PB 与y 轴分别交于点C 、D,求证:PC =PD .4.如图,点A 、B 是直线y =x 上的两点,过A 、B 两点分别作y 轴的平行线交双曲线y =1x(x >0)于C 、D 两点.若BD =2AC ,则4OC 2-OD 2的值为____________.5.如图,直线l 与x 轴、y 轴交于点A (2,0)、B (0,2),点P 双曲线2(0)y x =>上一动点,过点P 作PM ⊥x 轴于M ,PN ⊥y 轴于N ,分别交直线l 于E 、F . (1)求AF ·BE 的值; (2)求证:∠EOF =45°.6.如图,直线y =-x +1与x 轴、y 轴交于点A 、B ,点P 为双曲线(00)ky k x x=>>,上一动点,过点P 作PM ⊥x 轴于M ,PN ⊥y 轴于N ,分别交直线AB 于E 、F ,∠EOF =45°. (1)求证:△AOF ∽△BEO ; (2)求双曲线的解析式.7.如图,P 为双曲线y =3x上的一点,过点P 作x 轴、y 轴的垂线,分别交直线y =-3x +m 于D 、C 两点,若直线y =-3x +m 与y 轴交于点A ,与x 轴交于点B ,则AD ·BC 的值为____________.8.如图,在Rt △OAB 中,O 为坐标原点,直角顶点A 在x 轴的正半轴上,OA =2,AB =4,反比例函数y=kx(k>0)的图象分别与边OB 、AB 交于点C 、D ,若以B 、C 、D 为顶点的三角形与△BAO 相似,则k 的值为____________.9.11.如图,矩形OABC 的面积为2,反比例函数y =kx(k>0)的图象与矩形的两边AB 、BC 分别交于点E 、F ,则四边形OAEF 面积的最大值为___________.12.如图,矩形OABC 的面积为定值,反比例函数y =kx(k>0)的图象与矩形OABC 的边AB 、BC 分别交于点E 、F ,若四边形OAEF 面积的最大值为 54,则k =___________,矩形OABC 的面积为___________.13.如图,直线l 分别交x 、y 轴的正半轴于点E 、F ,交反比例函数y =kx(k>0,x>0)的图象于点A 、C (A 在C 的左侧),AB ⊥x 轴于B ,CD ⊥x 轴于D ,连接OA 、BC ,若BD =OB +DE ,S △AOF+S △CDE=1,则△ABC 的面积为_____________.14.如图,点A 、B 在反比例函数y =1x(x>0)的图象上,点A 在点B 的左侧,且OA =OB ,点A 关于y 轴的对称点为A ′,点B 关于x 轴的对称点为B ′,连接A ′B ′ 分别交OA 、OB 于点D 、C ,若四边形ABCD 的面积为65,则点A 的坐标为______________.15.如图,矩形AOBC 中,OA =4,OB =6,反比例函数y =k x(k >0)的图象与边AC 、BC 分别交于点E 、F ,将△CEF 沿EF 对折后,C 点恰好落在OB 上,则k =____________.17.18.如图,点A 是反比例函数y = 22 x的图象第一象限分支上的动点,连接AO 并延长交另一分支于点B ,以AB 为斜边作等腰直角三角形ABC ,顶点C 在第四象限,AC 与x 轴交于点P ,连接BP ,当BP 平分∠ABC 时,点C 的坐标是____________.20.如图,点A (a ,3)在反比例函数y = k x (k >0,x >0)的图象上,点P 为反比例函数y = k x(k>0,x>0)图象上的一个动点,当△OAP 为等腰三角形且满足条件的P 点恰好只有2个时,k 的值为_____________.21.在平面直角坐标系xO y 中,等边△PQM 的顶点P 、Q 在x 轴上,顶点M 在反比例函数y = 3x的图象上,若P 点坐标为(t ,0),且满足条件的等边△PQM 恰好有三个,则t 的值为_____________.4.如图,双曲线交矩形OABC 的边于点D 、E ,求证:DE ∥AC .5.如图,点A、B在双曲线的同一分支上,AC⊥x轴于C,BD⊥y轴于D,求证:DC∥AB.12.如图P是函数y=kx(k>0,x>0)图象上一点,直线y=-x+1分别交x轴、y轴于点A、B,过点P 分别作PM⊥x轴于点M,交AB于点E,作PN⊥y轴于点N,交AB于点F,则AF·BE的值为___________.(用含k的代数式表示)13.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=kx在第一象限的图象经过点B,若OA2-AB2=12,则k的值为__________.14.如图,在平面直角坐标系中,点A、B分别在x轴、y轴的正半轴上,OA=4,AB=5,点D在反比例函数y=kx(k>0)的图象上,DA⊥OA,点P在y轴负半轴上,PD⊥BD,OP=7,则k的值为_________xO MPABNEFADBCO xy12。

专题20反比例函数(3个知识点4种题型1种中考考法)(原卷版)-初中数学北师大版9年级上册

专题20反比例函数(3个知识点4种题型1种中考考法)(原卷版)-初中数学北师大版9年级上册

专题20反比例函数(3个知识点4种题型1种中考考法)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.反比例函数的概念及表达式(重点)知识点2.反比例函数表达式的确定(重点)知识点3.根据实际问题列反比例函数的表达式(重点)【方法二】实例探索法题型1.根据反比例函数的概念求未知字母的值题型2.反比例关系的应用题型3.反比例函数关系的判断及应用题型4.应用几何图形中的数量关系建立反比例函数关系【方法三】仿真实战法考法.反比例函数的概念【方法四】成果评定法【学习目标】1.理解反比例函数的概念,会判断一个函数是不是反比例函数。

2.能结合具体问题确定反比例函数的表达式,并会确定实际问题中自变量的取值范围,求出函数值。

【知识导图】【倍速学习四种方法】【方法一】脉络梳理法知识点1.反比例函数的概念及表达式(重点)如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例.即xy k=,或表示为kyx=,其中k是不等于零的常数.一般地,形如kyx=(k为常数,0k≠)的函数称为反比例函数,其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.注意:(1)在kyx=中,自变量x是分式kx的分母,当0x=时,分式kx无意义,所以自变量x的取值范围是,函数y的取值范围是0y≠.故函数图象与x轴、y轴无交点.(2)kyx=()可以写成()的形式,自变量x的指数是-1,在解决有关自变量指数问题时应特别注意系数这一条件.(3)kyx=()也可以写成的形式,用它可以迅速地求出反比例函数的比例系数k,从而得到反比例函数的解析式.【例1】(2023春•邗江区期末)下列式子中,表示y是x的反比例函数的是()A.xy=1B.y=C.y=D.y=【变式】(2022秋•怀化期末)下列函数不是反比例函数的是()A.y=3x﹣1B.y=﹣C.xy=5D.y=知识点2.反比例函数表达式的确定(重点)待定系数法求反比例函数解析式一般步骤:【例2】(2022秋·九年级单元测试)已知y=y1-y2,y1与x成反比例,y=5;当x=1时,y=-1;求当x=-1时,y的值.知识点3.根据实际问题列反比例函数的表达式(重点)【方法二】实例探索法题型1.根据反比例函数的概念求未知字母的值一、单选题2.(2022秋•岳阳县期末)若函数y=(m+4)x|m|﹣5是反比例函数,则m的值为()A.4B.﹣4C.4或﹣4D.03.(2022秋•惠来县期末)函数y=x k﹣1是反比例函数,则k=()A.3B.2C.1D.0题型2.反比例关系的应用k15.(2023春·上海浦东新·九年级校考阶段练习)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,16.(2022秋·河北保定·九年级校联考阶段练习)写出下列函数关系式,指出其中的正比例函数和反比例函题型4.应用几何图形中的数量关系建立反比例函数关系19.(2022春·九年级课时练习)如图,某养鸡场利用一面长为11m 的墙,其他三面用栅栏围成矩形,面积为260m ,设与墙垂直的边长为x m ,与墙平行的边长为y m .(1)直接写出y 与x 的函数关系式为______;(2)现有两种方案5x =或6x =,试选择合理的设计方案,并求此栅栏总长.20.如图,在矩形ABCD 中,点P 是BC 边上一动点,连接AP ,过点D 作DE AP ⊥于点E.设AP x =,DE y =,若6AB =,8BC =,试求y 与x 之间的函数关系式.【方法三】仿真实战法考法.反比例函数的概念1.(2023•临沂)正在建设中的临滕高速是我省“十四五”重点建设项目.一段工程施工需要运送土石方总量为105m3,设土石方日平均运送量为V(单位:m3/天),完成运送任务所需要的时间为t(单位:天),则V与t满足()A.反比例函数关系B.正比例函数关系C.一次函数关系D.二次函数关系2.(2018•柳州)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2B.a≠﹣2C.a≠±2D.a=±2【方法四】成果评定法一、单选题A.①②B.9.(2022春·九年级课时练习)下列选项中,能写成反比例函数的是(A.人的体重和身高B.正三角形的边长和面积二、填空题18.(2021春·全国·九年级专题练习)已知反比例函数的解析式为三、解答题19.(2023秋·九年级课时练习)下列例系数.。

反比例函数知识点归纳(重点)

反比例函数知识点归纳(重点)

中考复习反比例函数基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.图像越远离坐标轴越小,图象的弯曲度越大.图像越靠近坐标轴(2)图象的位置和性质:与坐标轴没有交点,当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数一、选择1.(2009年泸州)已知反比例函数xky=的图象经过点P(一l,2),则这个函数的图象位于A.第二、三象限 B.第一、三象限 C.第三、四象限 D.第二、四象限2.(2009年宁波市)反比例函数kyx=在第一象限的图象如图所示,则k的值可能是()A.1 B.2 C.3 D.43.(2009河池)如图5,A、B是函数2yx=的图象上关于原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积记为S,则()A.2S= B.4S= C.24S<< D.4S>4.(2009年娄底)市一小数学课外兴趣小组的同学每人制作一个面积为200cm2的矩形学具进行展示. 设矩形的宽为x cm,长为y cm,那么这些同学所制作的矩形长y(cm)与宽x(cm)之间的函数关系的图象大致是 ( )【关键词】反比例函数5.(2009年娄底)一次函数y=kx+b与反比例函数y=kx的图象如图5所示,则下列说法正确的是()A.它们的函数值y随着x的增大而增大B.它们的函数值y随着x的增大而减小C.k<0D.它们的自变量x的取值为全体实数OBxyCA图56.(2009丽水市)如图,点P 在反比例函数1y x =(x > 0)的图象上,且横坐标为2. 若将点P 先向右平移两个单位,再向上平移一个单位后所得的像为点P '.则在第一象限内,经过点P '的反比例函数图象的解析式是A .)0(5>-=x xy B.)0(5>=x x y C. )0(6>-=x x y D. )0(6>=x x y7.(2009恩施市)一张正方形的纸片,剪去两个一样的小矩形得到一个“E ”图案,如图所示,设小矩形的长和宽分别为x 、y ,剪去部分的面积为20,若210x ≤≤,则y 与x 的函数图象是( )8.(2009年广西南宁)在反比例函数1ky x-=的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( ) A .1- B .0 C .1 D .2【关键词】反比例函数9.(2009年鄂州)如图,直线y=mx 与双曲线y=xk交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM,若ABM S ∆=2,则k 的值是( ) A .2B 、m-2C 、mD 、4P210 5O x y2 10 5O x y2 10 10O x y2 10 10O x yyx1222 A . B . C . D .【关键词】一次函数与反比例函数的综合应用10.(2009泰安)如图,双曲线)0(>k xky =经过矩形QABC 的边BC 的中点E ,交AB 于点D 。

若梯形ODBC 的面积为3,则双曲线的解析式为A .x y 1=B .x y 2=C . x y 3=D .xy 6=11.(2009年南宁市)在反比例函数1ky x-=的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( )A .1-B .0C .1D .2 12.(2009年衡阳市)一个直角三角形的两直角边长分别为y x ,,其面积为2,则y 与x 之间的关系用图象表示大致为( )13.(2009年日照)已知点M (-2,3 )在双曲线xky =上,则下列各点一定在该双曲线上的是( ) A.(3,-2 )B.(-2,-3 )C.(2,3 )D.(3,2)1.(2009年广西梧州)已知点A (11x y ,)、B (22x y ,)是反比例函数xky =(0>k )图象上的两点,若210x x <<,则有( ) A .210y y <<B .120y y <<C .021<<y yD .012<<y y14.(2009年本溪)反比例函数(0)ky k x=≠的图象经过点(23)-,,则该反比例函数 A B C D y xOy xOy xOyxOyA B CO图象在()A.第一、三象限B.第二、四象限C.第二、三象限D.第一、二象限15.(2009年漳州)矩形面积为4,它的长y与宽x之间的函数关系用图象大致可表示为()16.(2009年哈尔滨)点(13)P,在反比例函数kyx=(0k≠)的图象上,则k的值是().A.13B.3 C.13- D.3-【关键词】反比例函数图像的性质17.(2009年兰州)如图2,在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线3yx=(0x>)上的一个动点,当点B的横坐标逐渐增大时,OAB△的面积将会A.逐渐增大 B.不变 C.逐渐减小 D.先增大后减小二、填空:1.(2009年滨州)已知点A是反比例函数3yx=-图象上的一点.若AB垂直于y轴,垂足为B,则AOB△的面积=.2.(2009仙桃)如图,已知双曲线)0k(xky>=经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C.若△OBC的面积为3,则k=____________..3.(2009年台州市)请你写出一个图象在第一、三象限的反比例函数.答:.4.(2009年义乌)已知,点p是反比例函数2yx=图像上的一个动点,p的半径为1,当p 与坐标轴相交时,点p的横坐标x的取值范围是yO AB图25.(2009柳州)反比例函数 xm y 1+=的图象经过点(2,1),则m 的值是 . 【答案】1 6.(2009年甘肃白银)反比例函数的图象经过点P (2-,1),则这个函数的图象位于第 象限.7.(2009年河南)点A (2,1)在反比例函数y kx=的图像上,当1﹤x ﹤4时,y 的取值范围是 .8.(2009江西)函数()()1240y x x y x x==>≥0,的图象如图所示,则结论: ①两函数图象的交点A 的坐标为()22,; ②当2x >时,21y y >; ③当1x =时,3BC =;④当x 逐渐增大时,1y 随着x 的增大而增大,2y 随着x 的增大而减小. 其中正确结论的序号是 .9.(2009年新疆)若梯形的下底长为x ,上底长为下底长的13,高为y ,面积为60,则y 与x 的函数关系是____________.(不考虑x 的取值范围) 10.(2009年牡丹江市)如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S += .4x11.(2009白银市)反比例函数的图象经过点P (2-,1),则这个函数的图象位于第 象限.12.(2009年清远)已知反比例函数ky x=的图象经过点(23),,则此函数的关系式是 .13.(2009年益阳市)如图4,反比例函数xky =)0(<k 的图象与经过原点的直线l 相交于A 、B 两点,已知A 点坐标为)1,2(-,那么B 点的坐标为 .14.(2009年济宁市)如图,⊙A 和⊙B 都与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x=的图象上,则图中阴影部分的面积等于 .15.(2009年福州)已知, A 、B 、C 、D 、E 是反比例函数16y x=(x>0)图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图5所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是 (用含π的代数式表示)A BO xyxABO1S2S8题图x y 1A B O1 l16.(2009年广西钦州)如图是反比例函数y =kx在第二象限内的图象,若图中的矩形OABC 的面积为2,则k =_▲_.17.(2009年甘肃定西)反比例函数的图象经过点P (2-,1),则这个函数的图象位于第 象限.(2009年莆田)如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点12345A A A A A 、、、、分别作x 轴的垂线与反比例函数()20y x x=≠的图象相交于点12345P P P P P 、、、、,得直角三角形1112233344455OP A A P A A P A A P A A P A 2、、、、,并设其面积分别为12345S S S S S 、、、、,则5S 的值为 ..18.(2009年包头)如图,已知一次函数1y x =+的图象与反比例函数ky x=的图象在第一象限相交于点A ,与x 轴相交于点C AB x ,⊥轴于点B ,AOB △的面积为1,则AC 的长为 (保留根号)19.(2009临沂)如图,过原点的直线l 与反比例函数1y x=-的图象交于M ,N 两点,根据图象猜想线段MN 的长的最小值是___________.220.(2009年兰州)如图11,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数 1y x=(0x >)的图象上,则点E 的坐标是( , ). 【关键词】反比例函数的图像和性质21.(2009年常德市)如图1,已知点C 为反比例函数6y x=-上的一点,过点C 向坐标轴引垂线,垂足分别为A 、B ,那么四边形AOBC 的面积为 .22.(2009年陕西省)13.若A(x 1,y 1),B(x 2,y 2)是双曲线xy 3=上的两点,且x 1>x 2>0,则y 1 y 2(填“>”“=”“<”).23. (2009武汉)如图,直线43y x =与双曲线k y x =(0x >)交于点A .将直线43y x =向右平移92个单位后,与双曲线k y x =(0x >)交于点B ,与x 轴交于点C ,若2=BCAO,则k = .24.(2009年上海市)反比例函数2y x=图像的两支分别在第 象限.25.(2009年黄冈市)已知点(3,3)-是反比例函数图象上的一点,则此反比例函数图象的解析式是____________________________.26.(2009成都)如图,正方形OABC 的面积是4,点B 在反比例函数(00)ky k x x=><,的图象上.若点R 是该反比例函数图象上异于点B 的任意一点,过点R 分别作x 轴、y 轴的垂线,垂足为M 、N ,从矩形OMRN 的面积中减去其与正方形OABC 重合部分的面积,记剩余部分的面积为S .则当S=m(m 为常数,且0<m<4)时,点R 的坐标是________________________Oxy ABC图1(用含m 的代数式表示)【关键词】反比例函数的面积三、解答: 1.(2009释放过程中,室内每立方米空气中的含药量y (毫克)与时间x 放完毕后,y 与x 成反比例,如图9(1)写出从药物释放开始,y 与x 之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量降低到毫克以下时,学生方可进入教室,那么从药物释放开始, 至少需要经过多少小时后,学生才能进入教室 2.(2009年嘉兴市)如图,曲线C 是函数xy 6=在第一象限内的图象,抛物线是函数422+--=x x y 的图象.点),(y x P n (12n =,,)在曲线C 上,且x y ,都是整数.(1)求出所有的点()n P x y ,;(2)在n P 中任取两点作直线,求所有不同直线的条数;(3)从(2)的所有直线中任取一条直线,求所取直线与抛物线有公共点的概率.图93.(2009年天津市)已知图中的曲线是反比例函数5m y x-=(m 为常数)图象的一支. (Ⅰ) 这个反比例函数图象的另一支在第几象限常数m 的取值范围是什么(Ⅱ)若该函数的图象与正比例函数2y x =的图象在第一象内限的交点为A ,过A 点作x 轴的垂线,垂足为B ,当OAB △的面积为4时,求点A 的坐标及反比例函数的解析式.4.(2009年湘西自治州)21.在反比例函数xky =的图像的每一条曲线上,y 都随x 的增大而减小.(1) 求k 的取值范围;(2) 在曲线上取一点A ,分别向x 轴、y 轴作垂线段,垂足分别为B 、C ,坐标原 点为O ,若四边形ABOC 面积为6,求k 的值. 【关键词】反比例函数性质 5.(2009年衢州)水产公司有一种海产品共2 104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:格x (元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y (千克)与销售价格x (元/千克)之间都满足这一关系.(1) 写出这个反比例函数的解析式,并补全表格; (2) 在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出 6.(2009年舟山)水产公司有一种海产品共2 104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y (千克)与销售价格x (元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y (千克)与销售价格x (元/千克)之间都满足这一关系.(1) 写出这个反比例函数的解析式,并补全表格; (2) 在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出(3) 在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务 7.(2009年重庆)已知:如图,在平面直角坐标系xOy 中,直线AB 分别与x y 、轴交于点B 、A ,与反比例函数的图象分别交于点C 、D ,CE x ⊥轴于点E ,1tan 422ABO OB OE ∠===,,.(1)求该反比例函数的解析式; (2)求直线AB 的解析式.8. (2009年宜宾)已知:如图,在平面直角坐标系x O y 中,Rt △OCD 的一边OC 在x 轴上,∠C=90°,点D 在第一象限,OC=3,DC=4,反比例函数的图象经过OD 的中点A . (1)求该反比例函数的解析式;(2)若该反比例函数的图象与Rt △OCD 的另一边DC 交于点B ,求过A 、B 两点的直线的解析式.x9.(2009年长沙)反比例函数21m y x-=的图象如图所示,1(1)A b -,,2(2)B b -,是该图象上的两点.(1)比较1b 与2b 的大小; (2)求m 的取值范围.10.(2009宁夏)已知正比例函数1y k x =1(0)k ≠与反比例函数22(0)k y k x=≠的图象交于A B 、两点,点A 的坐标为(21),. (1)求正比例函数、反比例函数的表达式;(2)求点B 的坐标.11.(2009肇庆)如图 7,已知一次函数1y x m =+(m 为常数)的图象与反比例函数 2k y x=(k 为常数, 0k ≠)的图象相交于点 A (1,3).(1)求这两个函数的解析式及其图象的另一交点B 的坐标; (2)观察图象,写出使函数值12y y ≥的自变量x 的取值范围.12.(2009年南充)如图,已知正比例函数和反比例函数的图象都经过点(33)A ,. (1)求正比例函数和反比例函数的解析式;(2)把直线O A 向下平移后与反比例函数的图象交于点(6)B m ,,求m 的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与x 轴、y 轴分别交于C 、D ,求过A 、B 、D 三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数的图象上是否存在点E ,使四边形O ECD 的面积1S 与四边形O ABD的面积S满足:123S S=若存在,求点E的坐标;若不存在,请说明理由.13.(2009年温州)如图,在平面直角坐标系中,直线AB与Y轴和X轴分别交于点A、点8,与反比例函数y一罟在第一象限的图象交于点c(1,6)、点D(3,x).过点C作CE上y 轴于E,过点D作DF上X轴于F.(1)求m,n的值;(2)求直线AB的函数解析式;(3)求证:△AEC∽△DFB.14.(2009年兰州)如图14,已知(4)A n-,,(24)B-,是一次函数y kx b=+的图象和反比例函数myx=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求方程0=-+xmbkx的解(请直接写出答案);(4)求不等式0<-+xmbkx的解集(请直接写出答案).15.(2009年遂宁)如图,已知直线y=ax+b经过点A(0,-3),与x轴交于点C,且与双曲线相交于点B(-4,-a),D.yxO CDBA336⑴求直线和双曲线的函数关系式; ⑵求△CDO (其中O 为原点)的面积.16.(2009年济南)已知:如图,正比例函数y ax =的图象与反比例函数ky x=的图象交于点()32A ,.(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值 (3)()M m n ,是反比例函数图象上的一动点,其中03m <<,过点M 作直线MN x ∥轴,交y 轴于点B ;过点A 作直线AC y ∥轴交x 轴于点C ,交直线MB 于点D .当四边形OADM 的面积为6时,请判断线段BM 与DM 的大小关系,并说明理由.17.(2009年重庆市江津区)如图,反比例函数xy 2=的图像与一次函数b kx y +=的图像交于点A(m,2),点B(-2, n ),一次函数图像与y 轴的交点为C 。

相关文档
最新文档