(仅供参考)4.-弹性应力应变关系和弹性问题求解
弹性力学:04 应力和应变的关系
广义胡克定律
杨氏模量
单向应力状态时的胡克定律是
x E x
式中 E 称为弹性模量。对于一种材 料在一定温度下,E 是常数。
Chapter 5.1
广义胡克定律
泊松比
在单向拉伸时,在垂直于力作用线的方向发生收缩。
在弹性极限内,横向相对缩短 x 和纵向相对伸长 y
成正比,因缩短与伸长的符号相反,有:
ν
x y
Chapter 5.1
广义胡克定律
根据实验可知,xy只引起 xy 坐标面内的剪应变xy,
而不引起 xz、yz,于是可得
xy
xy
G
同理
yz
yz
G
zx
zx
G
Chapter 5.1
广义胡克定律
于是,得到各向同性材料的应变-应y
1 E
y
ν x
z
z
ij
1 2
ui, j u j.i
协调条件:
ij,kl kl,ij ik , jl jl,ik 0
对于一个假定位移场ui ,其相应的协调应变分量ij 可直接由应
变-位移关系得到。显然,这组协调的应变和位移,仅仅是许 多其他可能的应变和位移场中的一组。
几何可能的位移未必是真实的,真实位移在弹性体内部须满足 以位移表示的平衡微分方程。
应力和应变的关系
1. 本构关系的概念 2. 广义胡克定律 各向同性体 3. 各向异性弹性体 4. 热力学定律与应变能函数 5. 应变能和应变余能(自学) 6. 热弹耦合本构关系(自学) 7. 例题
应力和应变的关系
1. 本构关系的概念 2. 广义胡克定律 各向同性体 3. 各向异性弹性体 4. 热力学定律与应变能函数 5. 应变能和应变余能(自学) 6. 热弹耦合本构关系(自学) 7. 例题
4.应力应变关系
Levy-von Mises 增量理论 Prandtl-Reuss 全量理论
Stress-strain relations
4.2.1 Levy-Mises 增量理论
该理论认为应变增量与相应的偏应力分量成正比
2
(d x d y ) ( x y ) d (d y dz )2 ( y z )2 d2 (d z d x )2 ( z x )2 d2
2 2 2
9 2 2 2 2 2 2 2 d x y y z z x 6 xy yz zx 2
(4-6)
从方程式 (4-3),(4-4)中得,应力可以用应变表示:
ij 2G ij ij
式中,
(4-7)
1 1 2
E
x y z
1 [( x y )2 ( y z )2 ( z x )2 6( xy 2 yz 2 zx 2 )] 2 ( x y ) 2 4G 2 ( x y ) 2
1 2 2 2 ( x y ) 2 ( y z ) 2 ( z x ) 2 6( xy yz zx ) 2
2 2 2
Байду номын сангаас
6d yz 6 yz d2 2 2 6d zx 6 zx d2 2 2 6d zx 6 zx d2
(4-15)
平衡方程式:
x yx 0 y x xy y 0 y x
(4-16)
弹性力学:04 应力和应变的关系
C1133 C2233 C3333 C2333 C3133 C1233 C3233 C1333 C2133
C1123 C2223 C3323 C2323 C3123 C1223 C3223 C1323 C2123
C1131 C2231 C3331 C2331 C3131 C1231 C3231 C1331 C2131
应力和应变的关系
1. 本构关系的概念 2. 广义胡克定律 各向同性体 3. 各向异性弹性体 4. 热力学定律与应变能函数 5. 应变能和应变余能(自学) 6. 热弹耦合本构关系(自学) 7. 例题
应力和应变的关系
1. 本构关系的概念 2. 广义胡克定律 各向同性体 3. 各向异性弹性体 4. 热力学定律与应变能函数 5. 应变能和应变余能(自学) 6. 热弹耦合本构关系(自学) 7. 例题
ij
0ij
2G ij
2 3
G ij
K
2 3
G
E
31 2
G
=
E 2(1 +
ν)
由于偏量和球量相互独立 ,所以有 (因为偏量的球量等于零,球量的偏量等于零)
0 K ; ij 2Gij
Chapter 5.1
广义胡克定律
0 K ; ij 2Gij
第一式说明弹性体的体积变化是由平均应力0引起
ν
x y
Chapter 5.1
广义胡克定律
根据实验可知,xy只引起 xy 坐标面内的剪应变xy,
而不引起 xz、yz,于是可得
xy
xy
G
同理
yz
yz
G
zx
zx
G
Chapter 5.1
广义胡克定律
于是,得到各向同性材料的应变-应力关系:
弹性体力学中的应变与应力关系
弹性体力学中的应变与应力关系弹性体力学是研究物体在力的作用下变形和恢复原状的力学分支学科,研究的对象主要是固体物质。
在弹性体力学中,应变与应力是两个重要的概念,它们描述了物体的变形和受力状态。
应变和应力之间的关系在弹性体力学中具有重要意义,它们可以通过材料力学模型来描述。
应变是物体在受力作用下发生形变的程度。
一般来说,我们可以将应变分为线性应变和非线性应变。
线性应变是指物体的形变与受力成正比。
例如,当我们拉伸一根弹簧时,弹簧的长度会发生变化,而这种形变与拉力之间是线性相关的。
用数学的语言来表达,线性应变可以用应变量ε表示,其与外力F之间存在着关系ε=ΔL/L,其中ΔL为物体长度的增量,L为物体的原始长度。
非线性应变则是指物体的形变与受力不成比例。
在高强度材料的情况下,非线性应变是不可忽视的。
非线性应变与材料的本构关系有关,常用的本构关系模型包括背应变率本构关系、黏弹性本构关系等。
这些模型可以更准确地描述材料的力学行为,使得我们能够更准确地计算应变。
与应变相对应的是应力。
应力可以看作是物体单位面积的受力情况。
一般来说,应力可以分为正应力和剪应力。
正应力是指垂直于物体内部某一面的力的作用情况。
例如,当我们用一把剪刀剪断一根木棍时,剪刀的受力情况可以被描述为正应力。
剪应力则是指平行于物体内部某一面的力的作用情况。
例如,当我们剪断一个绳索时,绳索的受力情况可以被描述为剪应力。
应变与应力之间的关系又可以通过应力-应变曲线来描述。
应力-应变曲线是弹性体力学研究中的一个重要工具,它可以体现材料的力学性质。
一般来说,应力-应变曲线可以分为弹性阶段、屈服阶段、塑性阶段和断裂阶段。
在弹性阶段,应力与应变成正比。
这个阶段的曲线是一个直线,斜率即为弹性模量,用来描述材料的刚度。
当应力超过一定值时,物体进入屈服阶段。
在屈服阶段,物体的应变不再与应力成正比,而是呈现出非线性关系。
此时物体会发生塑性变形,形成剩余应变。
当应力进一步增加时,物体可能发生断裂。
弹性力学弹性材料的应力应变关系与力学行为
弹性力学弹性材料的应力应变关系与力学行为弹性力学是研究物体在受力作用下产生的形变,并研究这种形变与施加力之间的关系的力学学科。
弹性材料是指在受到外力作用时,可以恢复其原有形状和大小的材料。
在弹性力学中,应力应变关系是研究弹性材料变形的重要理论基础,同时也是理解弹性材料力学行为的关键。
一、应力应变关系弹性材料的应力应变关系是指在弹性变形过程中,材料受到的应力与应变之间的关系。
根据前人的研究,线弹性模型是描述弹性材料应力应变关系较为简单的模型。
在线弹性模型中,应力与应变之间满足线性的关系,即应力与应变成正比。
线弹性模型的数学表达为:应力=弹性模量×应变其中,弹性模量是描述材料抵抗形变的能力,常用符号为E,单位为帕斯卡(Pa);应变是材料在受力作用下发生的形变,通常用ε表示。
二、力学行为在实际工程中,弹性材料的力学行为可以通过拉伸试验来研究。
拉伸试验是将材料在两端加以拉伸,观察材料的变形与受力之间的关系。
通过拉伸试验可以得到材料的应力-应变曲线,从而了解其力学行为。
应力-应变曲线通常可分为三个阶段:线弹性阶段、屈服阶段和塑性阶段。
1. 线弹性阶段材料在小应变下,应力与应变之间呈线性关系,即遵循线弹性模型。
在这个阶段,材料受力后会发生弹性形变,一旦撤去外力,材料便会恢复到初始状态。
2. 屈服阶段当应力超过材料的屈服强度时,材料开始发生塑性变形。
此时,材料的应变与外力不再成线性关系,应力-应变曲线开始变得非线性。
3. 塑性阶段在超过屈服阶段后,材料会出现塑性变形,即使撤去外力,材料也不能完全恢复到初始状态。
材料在这个阶段会发生永久性变形。
除了拉伸试验,弹性材料的力学行为还可以通过其他实验方法进行研究,如压缩试验和剪切试验等。
通过这些实验,可以探究材料在不同受力情况下的变形特性。
总结:弹性力学中,弹性材料的应力应变关系是研究弹性材料变形的重要理论基础。
应力应变关系可以通过线弹性模型进行描述,其中应力与应变成正比。
弹塑性力学第四章弹性本构关系资料
产生的x方向应变:
叠加
产生的x方向应变:
同理:
剪应变:
物理方程:
说明:
1.方程表示了各向同性材料的应力与应 变的关系,称为广义Hooke定义。也称 为本构关系或物理方程。
2.方程组在线弹性条件下成立。
. 体积应变与体积弹性模量
令: 则: 令:
sm称为平均应力; q 称为体积应变
eij
1 2G
sij
(4.40)
因为 J1 0, J1' 0 ,所以以上六个式子中独立变量只有5个
因此应力偏张量形式的广义虎克定律,即
eij
1 2G
sij
em
1 3K
sm
(4.41)
用应变表示应力:
或: ✓ 各种弹性常数之间的关系
§4-2 线弹性体本构方程的一般表达式
弹性条件下,应力与应变有唯一确定的对应关系,三维 应力状态下,一点的应力取决于该点的应变状态,应力是应 变的函数(或应变是应力的函数) 6个应力分量可表述为6个应变分量的函数。
式(2)中的系数 有36个.
称为弹性常数,共
由均匀性假设,弹性体各点作用同样应力 时,必产生同样的应变,反之亦然.因此 为 常数,其数值由弹性体材料的性质而定.
式(2)推导过程未引用各向同性假设, 故可适用于极端各向异性体、正交各向异性体、 二维各向同性体以及各向同性体等.
式(2)可用矩阵表示
式(3)可用简写为 称为弹性矩阵.
三、. 弹性常数
1. 极端各向异性体:
物体内的任一点, 沿各个方向的性能都不相 同, 则称为极端各向异性体. (这种物体的材料极 少见)
即使在极端各向异性条件下, 式(2)中的36个 弹性常数也不是全部独立.
关于弹性体受力后某一方向的应力与应变关系
弹性力学中应力与应变为线性关系,应力与应变的比例常数E 被称为弹性系数或扬氏模量,不同的材料有其固定的扬氏模量。
虽然无法对应力进行直接的测量但是通过测量由外力影响产生的应变可以计算出应力的大小。
应力是应变的原因,应变是应力的结果。
应力概念解释:物体由于外因(受力、湿度、温度场变化等)而变形时,在物体内各部分之间产生相互作用的内力,以抵抗这种外因的作用,并力图使物体从变形后的位置回复到变形前的位置。
在所考察的截面某一点单位面积上的内力称为应力。
同截面垂直的称为正应力或法向应力,同截面相切的称为剪应力或切应力。
拓展资料
应力会随着外力的增加而增长,对于某一种材料,应力的增长是有限度的,超过这一限度,材料就要破坏。
对某种材
料来说,应力可能达到的这个限度称为该种材料的极限应力。
极限应力值要通过材料的力学试验来测定。
将测定的极限应力作适当降低,规定出材料能安全工作的应力最大值,这就是许用应力。
材料要想安全使用,在使用时其内的应力应低于它的极限应力,否则材料就会在使用时发生破坏。
工程构件,大多数情形下,内力并非均匀分布,通常“破坏”或“失效”往往从内力集度最大处开始,因此,有必要区别并定义应力概念。
弹性力学中的应力与应变关系
弹性力学中的应力与应变关系弹性力学是力学的一个重要分支,研究物体在外力的作用下产生的形变与应力的关系。
在弹性力学理论中,应力与应变关系是最为核心的概念之一。
本文将探讨弹性力学中的应力与应变关系的基本原理,并从不同角度对其进行分析。
一、基本概念在弹性力学中,应力是描述物体内部单位面积受力情况的物理量。
它可以分为正应力和剪应力。
正应力表示物体在垂直于某一平面上的受力情况,剪应力表示物体在平行于某一平面上的受力情况。
应力的大小一般采用希腊字母σ表示。
应变是描述物体形变情况的物理量。
它可以分为线性应变和体积应变。
线性应变表示物体中某一方向上的长度相对变化,体积应变表示物体在各个方向上的体积变化。
应变的大小可以用希腊字母ε表示。
二、胡克定律胡克定律是描述弹性体材料中应力与应变关系最基本的定律。
其数学表达式为σ = Eε,即应力等于弹性模量与应变之积。
其中,弹性模量E是描述物体对应变的抵抗能力的物理量。
根据胡克定律,应力与应变之间的关系是线性的,即若应变增大,则应力也会相应增大。
胡克定律适用范围有限,对于非线性应力-应变关系的材料,需要采用其他力学模型进行描述。
例如,当外力作用超出一定范围时,弹性体会发生塑性变形,此时应力和应变之间的关系就无法再用胡克定律来描述。
三、材料力学模型由于胡克定律的局限性,研究者们提出了各种各样的材料力学模型来描述应力与应变之间的关系。
其中,最常用的有线性弹性模型、非线性弹性模型和本构模型。
线性弹性模型是胡克定律的拓展,它适用于应力与应变关系呈线性关系的情况。
在这种模型中,应力与应变之间的关系是单一的、唯一的。
当外力作用停止后,物体能够完全恢复到初始状态。
非线性弹性模型适用于应力与应变关系不再呈线性关系的情况。
它可以更好地描述材料的实际变形情况。
在这种模型中,应力与应变之间的关系可以是非线性的、曲线状的。
本构模型是一种综合考虑多种因素的力学模型,它可以更全面地描述材料的应力与应变关系。
第四章应力应变关系
4 应力应变关系4.1弹性变形时应力和应变的关系当材料所受应力小于其线弹性极限时,材料应力应变间的关系服从广义Hooke 定律,即1()1()1()111222x x y z y yx zz z x yxy xy yz yz zx zxE E E G G G εσνσνσεσνσνσεσνσνσετετετ⎧=--⎪⎪⎪=--⎪⎨⎪=--⎪⎪⎪===⎩,, (4.1) 式中,E 为拉压弹性模量,G 为剪切模量,ν为泊松比,对于各向同性材料,三个常数之间满足()21E G ν=+关系。
由上式可得11212()()33m x y z x y z m E E ννεεεεσσσσ--=++=++= (4.2) 于是11()'2x m x m x E G νεεσσσ+-=-= 或1112''22x m x x m G G Eνεεσσσ-=+=+ 类似地可以得到1112''22y m y y m G G E νεεσσσ-=+=+ 1112''22z m z z m G G Eνεεσσσ-=+=+于是,方程(4.1)可写成如下形式1212'00'0000'x xy xz x xy xz m v yx y yz yx y yz m G E m zx zy z zx zy z εγγσττσγεγτστσσγγεττσ-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭即'1122ij ij m ij ij m G Eνεεεσδσ-'=+=+ (4.3)显然,弹性变形包括体积改变的变形和形状改变的变形。
前者与球应力分量成正比,即12m m E νεσ-= (4.4)后者与偏差应力分量成正比,即''12''12''12111222x x m x G y y m y G z z m z G xy xy yz yz zx zxG G G εεεσεεεσεεεσετετετ⎧=-=⎪=-=⎪⎨=-=⎪⎪===⎩,,或简写为2ij ij G σε''= (4.5)此即为广义Hooke 定律。
弹性力学弹性体的应力与应变关系
弹性力学弹性体的应力与应变关系弹性力学是一门研究固体材料在外力作用下的变形和应力分布规律的学科。
其中,弹性体是一类能够在外力作用下发生形变,但恢复力可以将其恢复到原始状态的物质。
弹性体的应力与应变关系是弹性力学中的基本概念和重要理论。
一、什么是应力与应变在力学中,应力是物体受来自外界作用的力引起的单位面积内的力的大小。
它是描述物体受力情况的物理量。
应力可分为正应力和剪应力两种,正应力作用于物体的表面上的垂直方向,而剪应力则作用于物体的表面上的切向方向。
应变是描述材料形变程度的物理量,是物体在受力下发生变形时单位长度的变化。
应变也可分为正应变和剪应变两种,正应变是物体长度在受力作用下产生的相对变化量,而剪应变则是物体形状的变化量与原始尺寸之比。
二、背景知识弹性体的应力与应变关系可以通过背景知识来理解。
弹性体的主要特性是能够在外力的作用下发生形变,但当外力消失时,它能够恢复到原来的形状和尺寸。
这是因为弹性体的分子或原子之间存在着弹性力,当外力作用结束时,弹性力将趋于平衡,使得物体恢复到原来的状态。
三、胡克定律胡克定律是描述弹性体应力与应变关系的基本定律。
根据胡克定律,当外力作用于弹性体时,弹性体内部的应力与应变成正比。
具体数学描述如下:σ = Eε其中,σ代表应力,单位为帕斯卡(Pa),E代表弹性模量,单位为帕斯卡(Pa),ε代表应变,为无单位。
胡克定律适用于弹性体在线性弹性范围内,即应力与应变成正比,并且比例系数恒定。
此时的应力-应变关系为线性关系,称为胡克定律。
超出线性弹性范围后,材料会发生塑性变形。
四、弹性模量弹性模量是表征弹性体抵抗形变的能力大小的物理量。
它是胡克定律中比例系数的倒数,可以用来度量弹性体的刚度。
常见的弹性模量有:1. 杨氏模量(Young's Modulus):用E表示,描述的是物体在拉伸或压缩时的应变与应力之间的关系。
2. 剪切模量(Shear Modulus):用G表示,描述的是物体在受剪时的应变与应力之间的关系。
(整理)弹性力学第四章应力和应变关系
(整理)弹性⼒学第四章应⼒和应变关系第四章应⼒和应变关系知识点应变能原理应⼒应变关系的⼀般表达式完全各向异性弹性体正交各向异性弹性体本构关系弹性常数各向同性弹性体应变能格林公式⼴义胡克定理⼀个弹性对称⾯的弹性体本构关系各向同性弹性体的应⼒和应变关系应变表⽰的各向同性本构关系⼀、内容介绍前两章分别从静⼒学和运动学的⾓度推导了静⼒平衡⽅程,⼏何⽅程和变形协调⽅程。
由于弹性体的静⼒平衡和⼏何变形是通过具体物体的材料性质相联系的,因此,必须建⽴了材料的应⼒和应变的内在联系。
应⼒和应变是相辅相成的,有应⼒就有应变;反之,有应变则必有应⼒。
对于每⼀种材料,在⼀定的温度下,应⼒和应变之间有着完全确定的关系。
这是材料的固有特性,因此称为物理⽅程或者本构关系。
对于复杂应⼒状态,应⼒应变关系的实验测试是有困难的,因此本章⾸先通过能量法讨论本构关系的⼀般形式。
分别讨论⼴义胡克定理;具有⼀个和两个弹性对称⾯的本构关系⼀般表达式;各向同性材料的本构关系等。
本章的任务就是建⽴弹性变形阶段的应⼒应变关系。
⼆、重点1、应变能函数和格林公式;2、⼴义胡克定律的⼀般表达式;3、具有⼀个和两个弹性对称⾯的本构关系;4、各向同性材料的本构关系;5、材料的弹性常数。
§4.1 弹性体的应变能原理学习思路:弹性体在外⼒作⽤下产⽣变形,因此外⼒在变形过程中作功。
同时,弹性体内部的能量也要相应的发⽣变化。
借助于能量关系,可以使得弹性⼒学问题的求解⽅法和思路简化,因此能量原理是⼀个有效的分析⼯具。
本节根据热⼒学概念推导弹性体的应变能函数表达式,并且建⽴应变能函数表达的材料本构⽅程。
根据能量关系,容易得到由于变形⽽存储于物体内的单位体积的弹性势能,即应变能函数。
探讨应变能的全微分,可以得到格林公式,格林公式是以能量形式表达的本构关系。
如果材料的应⼒应变关系是线性弹性的,则单位体积的应变能必为应变分量的齐⼆次函数。
因此由齐次函数的欧拉定理,可以得到⽤应变或者应⼒表⽰的应变能函数。
弹性力学第四章应力应变
当变形较小时,可展开成泰勒级数, 并略去二阶以上的小量。
f1 f1 f1 f1 f1 f1 xy x ( f1 )0 x y z yz xz z 0 x 0 xz 0 y 0 yz 0 xy 0
x C11 x C12 y C13 z C14 yz C15 xz C16 xy y C21 x C22 y C23 z C24 yz C25 xz C26 xy z C31 x C32 y C33 z C34 yz C35 xz C36 xy yz C41 x C42 y C43 z C44 yz C45 xz C46 xy
上式中 cmn(m,n=1,2…6)是弹性系数,共36个,对 于均匀材料它们为常数,称为弹性常数,与坐标无关。
上式即为广义胡克定律,可以看出应 力和应变之间是线性的。 可以证明各弹性常数之间存在关系式 cmn = c nm 。对于最一般的各向异性介质,弹 性常数也只有21个。
§4.2 弹性体变形过程中的功与能
yz C41 x C42 y C43 z C44 yz C45 xz C46 xy
xz C51 x C52 y C53 z C54 yz C55 xz C56 xy
(4-2)
xy C61 x C62 y C63 z C64 yz C65 xz C66 xy
0 0 0
f3 f3 f3 f3 f3 f3 z ( f3 )0 z yz x y xz xy z 0 x 0 xz 0 y 0 yz 0 xy 0
弹性力的应力和应变
剪切形变: 剪切形变:当物体受到力偶作用使物体两个平 行截面间发生相对平行移动产生的形变
s
s 剪切应变 γ = d
d
剪切应力互等定律 作用于互相垂直的假想截面上并垂直于该两平 面交线的剪切应力是相等的
2.4.3 胡克定律
胡克定律反映了力与形变的关系 拉伸应变的胡克定律 剪切应变的胡克定律
σ = Yε τ = Gγ
2.4.1 应力
1、关于几个力的概念 外力:对弹性体整体的作用力 内力:弹性体内的相互作用力 应力是物体中各部分之间相互作用的内力,属于 被动力。 定义:作用在物体内部单位面积上的内力
∆f d f σ = lim = ∆S →0 ∆S dS
可分解为法向和切向,法向为正应力, 可分解为法向和切向,法向为正应力,切向为剪 切应力
其中Y---杨氏模量,G---切变模量,弹性模量反映 了材料对形变的抵抗能力
有形变就能够储存弹性势能
材料正应变的势能
1 YS 1 2 (∆l ) = YVε 2 EP = 2 l0 2
势能密度
1 2 eP = Yε 2 1 2 eP = Gr 2
课后思考题: 1、为什么一本书比一张纸更不容易弯曲? 、为什么一本书比一张纸更不容易弯曲? 2、为什么短而粗的物体更难以扭动? 、为什么短而粗的物体更难以扭动? 一题为弯曲部分 二题为扭转部分
正应力:垂直作用于假想截面S上的拉伸或压缩应 力 N
σ⊥ =
S
剪切应力:切向分力与截面面积的比
T σ // = S
单位:Pa 帕斯卡 量纲:ML-1T-2
2.4.2 应变 直杆的线应变 应变:弹性体内产生相应的形变
线应变:绝对伸长与原长之比 ∆l ∆b ε ε= 纵向应变 横向应变 l0 b0 横向应变一般比纵向应变小3-4倍
弹性力学中的应变与应力关系
弹性力学中的应变与应力关系弹性力学是物理学中的一个重要分支,主要研究物质体积和形状在外力作用下所发生的变化及其原因。
具体来说,就是通过研究应力(反映外力作用效果的物理量)和应变(反映物质形状和体积改变的物理量)之间的关系,来理解和解释物质的弹性行为。
本文将详细阐述应力和应变在弹性力学中的相关内容。
首先,我们需要明确应力和应变的概念,以便更好地理解二者之间的关系。
应力是弹性力学研究的基本物理量,它可以反映物质内部的力的大小和方向。
根据力的分布特点和作用方式,可以将应力分为正应力和剪应力等类型。
与此同时,应变是描述物体位形变化的物理量,它可以反映物体形状和体积的变化情况。
在弹性力学中,应力和应变之间的基本关系通常用应力--应变法则或哈肋定律来描述。
具体来说,对于同一物体,存在一个比例系数(即弹性模量),当其应力不超过一定值(即弹性限度)时,应力和应变之间达到正比关系,即应力等于弹性模量乘以应变。
这就是典型的线性弹性行为。
当然,应力和应变的关系并不总是线性的。
当物体受到的应力超过一定值后,应变可能导致物体的永久性形变,这就涉及到弹性物质的塑性行为。
塑性行为是弹性力学的另一个重要研究方向,对于理解材料的力学行为有着特别重要的意义。
在实际应用中,不同的应力类型和物质性质可能会引起不同的应变特性。
因此,为了更具体、精确地描述和理解应力和应变之间的关系,出现了多种理论和模型,如弹塑性理论、粘弹性理论、破坏理论等。
这些理论和模型都在一定程度上解释了应力和应变之间的复杂关系,并为理解和控制各种物质的弹性行为提供了重要的理论工具。
总的来说,弹性力学中的应力与应变关系是一个复杂而重要的主题,只有深入理解和掌握应力与应变的特性,才能准确地分析和预测物质在受力情况下的弹性行为。
而对于这些知识的理解和应用,在工程技术、材料科学等领域有着广泛的应用前景。
弹塑性力学讲义 第四章应力应变关系
A 中有体积分和面积分,利用柯西公式和散度定理将面积分换成
体积分。
S Fiui dS S ( ijui )n j dS V ( jiui ), j dV
上式代入外力功增量
A ( fi ji, j )ui dV jiui, j dV ijijdV WdVU
弹性主轴
x3 为弹性主轴或材料主轴, 并取另一坐标系 x’i
, 且 x’1
= x1, x’2=x2, x’3=-x3。
4
在两个坐标下,弹性关系保持不变,则[C]中元素减少为 13 个独立系数。
Qi’j
x’1 = x1 x’2=x2 x’3=-x3
代入
x1
1 0 0 1
x2
0 0 0 -1
x3
0
i ' j ' Qi ' k Q j 'l kl
2
i ' j ' Qi ' k Q j 'l kl
得
x ' x1 , x ' x 2
1
3 1
,
x ' x3
3
,
x ' x ' x1 x 2
1 2
x ' x ' x3 x1 , x ' x ' x3 x 2
3 2
应变分量具有相同关系式。
[C]
为对称矩阵
[C]= [C]T。
最后 Eijkl 的独立系数为 21 个——材料为各向异性线弹性材料。 *对各向异性材料的本构关系可见,剪应变引起正应力,正应变也产生 剪应力。 弹性材料性质一般都具有某些对称性,利用对称可简化 [C] 中系数。 2.2 具有一个弹性对称面的材料 若物体内各点都有这样一个平面, 对此平面对称方向其弹性性质相同,则 称此平面为弹性对称面,垂直弹性对称面 的方向称为弹性主轴。 如取弹性对称面为 x1 —x2 面, x1 x3’ x2 x3
弹性力学 第四章应力和应变的关系
vI t
x
x
t
y
y
t
z
z
t
yz
yz
t
xz
xz
t
xy
xy
t
若固定x,y,z的值,则得在dt时间内vI 的增量为,即在上式两边乘以dt
dvI xd x yd y zd z yzd yz xz d xz xyd xy
由于内能密度 vI 是状态的单值函数,dvI 必须是全微分,因此
所以
v
1 2
(
x
x
y y
zz
xy xy
xz xz
zy zy )
张量表示
v
1 2
ij
ij
弹性体应变能 V v dV V
§4-3 各向异性弹性体
(一)极端各向异性弹性体
理论具有36个弹性常数
x c11 x c12 y c13 z c14 xy c15 yz c16 zx y c21 x c22 y c23 z c24 xy c25 yz c26 zx
的值,根据无初始应力假设,( f1)0为0。均匀材料,函数 f1
对应变的一阶偏导数为常数。这是因为对物体内各点来说,
承受相同的应力,必产生相同的应变;反之,物体内各点
有相同的应变,必承受同样的应力。
经过上面的处理后,小变形情况就可简化为
广义胡克定律
x C11 x C12 y C13 z C14 xy C15 yz C16 xz y C21 x C22 y C23 z C24 xy C25 yz C26 xz z C31 x C32 y C33 z C34 xy C35 yz C36 xz xy C41 x C42 y C43 z C44 xy C45 yz C46 xz yz C51 x C52 y C53 z C54 xy C55 yz C56 xz xz C61 x C62 y C63 z C64 xy C65 yz C66 xz
弹塑性力学 应力和应变之间的关系
我所认识的应力和应变之间的关系在单向应力状态下,理想弹性材料的应力和应变之间的关系是满足胡克定律的一一对应的关系。
在三维应力状态下描述一点处的应力状态需要9个分量,相应的应变状态也要用9个应变分量来表示。
对于一个具体的理想弹性体来讲,如果在三维应力状态下,应力与应变之间仍然有线性一一对应关系存在,则称这类弹性体为线性弹性体。
所谓各向弹性体,从力学意义上讲,就是弹性体内的每一点沿各个方向的力学性质都完全相同的。
这类线性弹性体独立的唐兴常数只有两个。
各向同性体本构关系特点:1.主应力与主应变方向重合。
2.体积应力与体积应变成比例。
3.应力强度与应变强度成比例。
4.应力偏量与应变偏量成比例。
工程应用中,常把各向同性弹性体的本构方程写下成11()11()11()x y z xy xy y x z yz yz z y x xz xz E G E G E G εσμσσγτεσμσσγτεσμσσγτ⎧⎡⎤=-+=⎣⎦⎪⎪⎪⎡⎤=-+=⎨⎣⎦⎪⎪⎡⎤=-+=⎪⎣⎦⎩,式中分别为弹性模量、泊松比和剪切模量。
在E G μ、、这三个参数之间,实际上独立的常量只有两个,它们之间存在关系为()21E G μ=+。
屈服条件:弹性和塑性的最主要区别在于变形是可以恢复。
习惯上,根据破坏时变形的大小把工程材料分为脆性材料和塑性材料两类。
对于加载过程如图1OA: 比例阶段;线性弹性阶段AB: 非弹性变形阶段 BC : 初始屈服阶段 s σσ≤ CDE :强化阶段;应变强化硬化阶段EF : 颈缩阶段;应变弱化,软化阶段s σσ≥ C 点为初始屈服点具有唯一性。
在应力超过屈服应力后,如果在曲线上任意一点D 处卸载,应力和应变之间将不再遵循原有的加载曲线规律,而是沿一条接近平行于OA 的直线DO ’变化,直到应力下降为零,这时应变并不为零,即有塑性应变产生。
如果用OD ’表示总应变ε,O ’D ’表示可以恢复的弹性应变eε,OO ’表示不能恢复的塑性应变p ε,则有e p εεε=+,即总应变等于弹性应变加上塑性应变。
弹性力学 第04章应力和应变关系
第四章应力与应变关系§4-1 应力和应变的最一般关系式§4-2 弹性体变形过程中的功和能§4-3 各向异性弹性体§4-4 各向同性弹性体§4-5 弹性常数的测定§4-6 各向同性体应变能密度的表达式显然有5225C C =同理可证nmmn C C =这样就证明了极端各向异性体,只有6+30/2=21个独立的弹性常数。
⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧xy xz yz z y x xy xzyz z y x C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C γγγεεετττσσσ66564636266156554535255146454434244 136353433233 126252423222 16 15 14 13 12 111②具有一个弹性对称面的各向异性弹性体如果物体内的每一点都具有这样一个平面,关于该平面对称的两个方向具有相同的弹性,则该平面称为物体的弹性对称面,而垂直于弹性对称面的方向,称为物体的弹性主方向。
这样,物体的弹性常数从21个变为13个。
若Oyz 为弹性对称面,则(可用坐标变换公式得到)⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧xy xz yz z y x xy xzyz z y x C C C C C C C C C C C C C C C C C C C C γγγεεετττσσσ665656554434244 13433233 1242322214 13 1211100000000000000如果互相垂直的3个平面中有2个式弹性对称面,则第3个平面必然也是弹性对称面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[ ] τ8
=
1 3
(σ 1
) − σ 2 2
+ (σ 2
) − σ 3 2
+ (σ 3
) − σ1 2
Uφ0
=
3
τ
2 8
4G
形状变化应变能密度与八面体剪应力和弹性常数有关
(四)虚功原理
虚功
设一物体在体力Fi和面力Ti作用下处于平衡,其体积为V, 表面积为S。假想给物体一个任意微小的且约束许可的虚位 移δui,则实际力系在虚位移δui上所做的功称为虚功。
+σ y
;
γ zx
=
1 2G
τ
zx
定 律
(三)弹性变形能
弹性变形能
物体由于外力作用而产生弹性变形,使物体内积蓄的能量
弹性变形能密度
单位体积内积蓄的弹性变形能
(三)弹性变形能
简单加载时的弹性变形能密度
单拉
U0
=
1 σε
2
=
1 2
σ2
E
纯剪
U0
=
1 τγ
2
复杂加载时的弹性变形能密度
U0
=
1 2
σ
εij
虚功原理 线弹性条件
∫∫∫ FiδuidV + ∫∫TiδuidS = ∫∫∫σ ijδεijdV
V
S
V
∫∫∫ δU = σ ijδεijdV = σ ijδεij V
( ) U = U εij = U (ui )
∫∫∫δU (ui )dV − ∫∫∫ FiδuidV − ∫∫TiδuidS = 0
[ ] ( ) ( ) U0 σi
=
1 2E
σ2 1
+
σ
2 2
+
σ
2 3
− 2ν
σ1σ 2
+ σ 2σ 3 + σ σ3 1
( ) ( ) ( ) ( ) U0 εij
=λ
2
εx
+εy
+εz
2
+
G
ε
2 x
+
ε
2 y
+
ε
2 z
+
2G
ε2 xy
+
ε
2 yz
+
ε
2 zx
( ) ( ) ( ) U0 εij
3E
(σ 1
+σ2
) + σ 3 2
σm
=
1 3
(σ 1
+σ2
+σ3)
εv
=
3(1− 2ν
E
)σm
=
1− 2ν E
(σ 1
+σ2
+σ3)
体积变化应变能密度取决于弹性常数及平均正应力
(三)弹性变形能
[ ] Uφ0
= U 0 −UV0
= 1+ν
6E
(σ1 − σ 2 )2 + (σ 2 − σ 3 )2 + (σ 3 − σ1 )2
τ
xy
= ε xy
( ) ∂U0 σ ij
∂σ ij
= ε ij
( ) ∂U0 εij
∂ε ij
= σ ij
(三)弹性变形能
体积变化应变能密度+形状变化应变能密度
由于形状变化积蓄的弹性应变能 由于体积变化积蓄的弹性应变能
U 0 = UV0 + Uφ0
UV0
=
3
×
1 2
σ
mε
m
=
1 2
σ
mε
v
=
1− 2ν
V
V
S
假设在虚位移下物体的几何和形状不变,
外力的方向及大小不变
δ
∫∫∫U
(ui
)dV
−
∫∫∫ FiuidV
−
∫∫TiuidS
=
0
V
V
S
δ (U −W ) = δ ∏P = 0
在所有满足给定的几何边界条件的位移场中,其真实的位移 场总是使总势能取最小值
(二)弹性变形本构关系
西北工业大学博士学位论文开题报告
σ
单向拉伸时,当 σ < σs,应力应变的关系是线性的
σ = Eε
虎
克 纯剪切状态下,弹性阶段,线性 定
τ = 2Gγ
律 σ
参数
E-弹性模量 G-剪切模量
G
=
E
2(1 +ν
)
τ γ
τ
(二)弹性变形本构关系
材料在复杂应力状态(σx, σy, 西σz ,北τx工y, τ业yz, τ大zx)学作博用士下 学位论文开题σ报x 告
第四章 弹性应力应变关系和弹性问题求解
本节课主要内容:
(1)弹性理论的基本假设 (2)弹性变形本构关系 (3)弹性变形能 (4)虚功原理 (5)最小总势能原理 (6)圣文南原理 (7)线性叠加原理 (8)弹性问题的求解 (9)例:矩形截面梁的纯弯曲
(一) 弹性理论的基本假设
◇弹性理论的研究对象——理想弹性体 (1)物体是连续的
应力、应变、位移等都是坐标的连续函数
(2)物体是均匀的
弹性常数不随位置坐标而改变
(3)物体各向同性
弹性常数不随方向而改变
(4)物体是完全弹性的
(一) 弹性理论的基本假设
◇弹性理论与塑性理论 (1)线性弹性理论以理想弹性体的微小位移和源自变为前提(2)非线性弹性理论
物体变形不是很微小
(3)塑性理论
物体中应力超过弹性极限,物体将处于塑性流动状态, 此时,应力应变关系不再是弹性关系
在σx单独作用时,由虎克定律得
εx
=
σx E
εy
= εz
=
−νε x
=
−ν
σx
E
x
同理,在σy , σz分别单独作用时
εy
ε = σ y
E ij
=ε
ε ′x
=
ij
ε+z
=δ
εi−j νεmy
==
−ν1σ σy
2GE
′
ij
+ 1− 2ν
E
σ mδ ij
z
y
εz
=
σz
E
εx
=
εy
=
−νε z
=
−ν σ z
虚功原理的位移变分方程 利用高斯散度定理来证明
δW = δU
∫∫∫ FiδuidV + ∫∫TiδuidS = ∫∫∫σ ijδεijdV
V
S
V
虚功原理的证明并没有涉及应力与应变之间的关系,因此,适用于 任何连续体,并不只限于弹性体。 虚功原理与平衡微分方程和应力边界条件实际上是等价的。
(五)最小总势能原理
ij
( ) U0
=
1 2
σ ε1 1 + σ 2ε 2
+ σ 3ε 3
(三)弹性变形能
U0
=
1 2
σ
εij
ij
广义虎克定律
( ) ( ) ( ) ( ) U0 σij
=
1 2E
σ
2 x
+σ
2 y
+σ
2 z
−ν
E
σ xσ y
+ σ yσ z
+ σ zσ x
+
1 2G
τ2 xy
+
τ
2 yz
+
τ
2 zx
虚功原理
在外力作用下处于平衡状态的物体,当经受微小虚位移δui 时,外力在虚位移δui上所做的总虚功δW,等于虚位移δui在 物体内部所引起的总虚应变能。
(四)虚功原理
外力所做的虚功
δW = ∫∫∫ FiδuidV + ∫∫TiδuidS
V
S
物体内总虚应变能
∫∫∫ δU = σ ijδεijdV V
简E
σx
因此,在σx , σy , σz共同作用时为 记
当 τxy 单独作用时
[ ( )] εx
=
1 E
σx
−νε
y
−νε z
=
1 E
σx
−ν
σy
+σz
;
γ xy
=
1 2G
τ
xy
广 义
[ ] ε y
=
1 E
σy
−ν (σ z
+σx)
;
γ yz
=
1 2G
τ
yz
虎 克
[ ( )] εz
=
1 E
σz
−ν
σx
=λ
2
ε1 + ε2
+ε3
2
+G
ε2 1
+
ε
2 2
+
ε
2 3
(三)弹性变形能
上式对σx求偏导
( ) ( )
∂U
0
σ ij
∂σ x
=
1 E
σ
x
−ν
E
σy +σz
= εx
( )
∂U0 σ ∂σ y
ij
=εy
( ) ∂U0 σ ij
∂σ z
= εz
同理
( )
∂U
0
σ ij
∂τ xy
=
1 2G