初二《全等三角形》数学模型之“一线三等角”模型.doc

合集下载

初中几何 一线三等角模型

初中几何 一线三等角模型

一、一线三等角的起源上面这个图是一线三等角的老祖宗了,旋转一下又会有所变化,如下图。

旋转到更特殊的位置,如下图。

(其实这个角可以是直角,也可以是锐角或钝角。

)“一线三等角”模型一线三等角是一个常见的相似模型,指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。

不同地区对此有不同的称呼,义乌通常称为“K 形图”,哈尔滨通常称为“M 形图”,以下统称为“一线三等角”。

二、一线三等角的两种基本类型1.三等角都在直线的同侧2.三等角分居直线的两侧l三、一线三等角的性质1.一般情况下,由∠1=∠2=∠3,易得△AEC∽△BDE. 2.当等角所对的边相等时,两个三角形全等。

如图,当CE=ED时,易得△AEC≌△BDE.3.“中点型一线三等角”的特殊性质如图,当∠1=∠2=∠3且D 是BC 的中点时,△BDE ∽△CFD ∽△DFE .如图,加画两条垂线......,“一线三等角”就与“四边形中的半角模型”联系在一起了。

半角模型:EF =EM +FN . 4.“中点型一线三等角”的变式 如图,当∠1=∠2且∠AOC =90°+21∠BAC 时,点O 是△ABC 的内心.易证∠4=∠5=∠6,以下就省略了。

四、一线三等角的常用构图下面以等腰三角形为例说明一线三等角的常见构图。

由于角顶点位置的改变,或角绕顶点旋转会产生各种各样的变式,但万变不离其宗:构造相似三角形列比例式解决问题。

当然,特殊情况下也可能是全等。

五、一线三等角的应用1.一线三等角应用的三个层次⑴初级阶段:图形中已经存在“一线三等角”,直接应用模型解题;⑵中级阶段:图形中存在“一线二等角”,补上“一等角”构造此模型;⑶高级阶段:图形中只有直线上的一个角,补上“二等角”构造此模型。

2.在张角问题中,构造“一线三等角”是基本手段之一。

对坐标系中的张角问题,在x轴或y轴(也可以是平行于x轴或y轴的直线)上构造“一线三等角”是解决问题的关键。

八年级数学全等三角形证明方法汇总,全等三角形模型

八年级数学全等三角形证明方法汇总,全等三角形模型

模型一“一线三等角”全等模型基础模型同侧一线三等角已知:点P在线段AB上,∠1=∠2=∠3,且AP=BD(或AC=BP或CP=PD)结论1:△APC≌△BDP异侧一线三等角已知:点P在线段AB的延长线上,∠1=∠2=∠3,且AP=BD(或AC=BP或CP=PD)结论2:△APC≌△BDP结论分析结论1:△APC≌△BDP证明:如图,∵点P在线段AB上,∴∠APC+∠2+∠DPB=180°,在△APC和△BDP中,∠1+∠APC+∠C=180°,∠DPB+∠3+∠D=180°, ∵∠1=∠2=∠3,∴∠DPB=∠C,∠APC=∠D,又∵AP=BD或AC=BP或CP=PD,∴△APC≌△BDP. 结论2:△APC≌△BDP证明:如图,点P在线段AB的延长线上,∵∠1=∠C+∠APC,∠2=∠D+∠BPD,∠3=∠BPD+∠APC,∠1=∠2=∠3,∴∠D=∠APC,∠CAP=∠PBD,∵AP=BD或AC=BP或CP=PD,∴△APC≌△BDP.模型拓展已知:点P在线段AB上,∠1=∠2=∠3,且AP=BD(或AC=BP或CP=PD)已知:点P在线段AB的延长线上,∠1=∠2=∠3,且AP=BD(或AC=BP或CP=PD)一线三垂直钝角一线三等角一线三垂直钝角一线三等角结论3:△APC≌△BDP 结论4:△APC≌△BDP典例小试例1 如图,在△ABC中,AB=AC,点D,E,F分别在边AB,BC,AC上,若∠B=∠DEF,ED=EF,CF=3,则BE的长为( )A.3B.6C.9D.12例2如图,AB、BC、CD、DE是四根长度均为5cm的火柴棒,点A、C、E共线.若AC=6cm,CD⊥BC,则线段CE的长度是( )A.6cmB.7cmC.6√2cmD.8cm例3如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E,CF⊥AD于点F.求证:AF=BE.实战演练1.如图,△ABC中,AC=BC,∠B=45°,A(0,4),C(-2,0),则点B的坐标为______.2.如图,在四边形ABCD中,∠B=∠C=60°,BC=1,点E是BC上一点,若△ADE为等边三角形,则AB+CD的值为_________.3.在△ABC中,AB=AC,AB>BC,点D在边BC上,且CD=2BD,点E,F在线段AD上.∠1=∠2=∠BAC,若△ABC的面积为6,则△ABE与△CDF的面积之和为_______.4.如图①,在△ABC中,AB=AC,点D,A,E三点都在直线l上.若∠BDA=∠AEC=∠BAC=α.(1)猜想并证明DE,BD,CE之间的数量关系;(2)如图②,若α=120°,且△ACF为等边三角形,求证:△DEF为等边三角形.图①图②模型二“半角”全等模型基础模型模型拓展结论分析结论2:①△BDE≌△CDG,△DEF≌△DGF;②EF=BE+FC证明:如图,以点D为旋转中心,线段DE按顺时针方向旋转120°到DG,连接CG,则有DE=DG,∠EDG=120°.∵∠BDE+∠EDC=∠EDC+∠CDG=120°,∴∠BDE=∠CDG.在△BDE和△CDG中,∴△BDE≌△CDG, ∴BE=CG,在△EDF和△GDF中, DE=DG∠EDF=∠GDF=60°怎么用?1.找模型一个角包含着该角的半角,如120°角包含60°角,90°角包含45°角,或者出现12关系,则考虑使用“半角”模型2.用模型①找旋转点(含半角的角的顶点),构造旋转;DF=DF∴EF=GF=FC+CG=FC+BE.典例小试例1 如图,在等边△ABC 中,点E,F 分别在AB,AC 上,点D 为△ABC 外一点,且∠EDF=60°,∠BDC=120°,BD=DC.设△AEF 的周长为C ₁,等边△ABC 的周长为C ₂.若DE=DF,则C1C 2的值为 .例2 如图,已知△ABC 是以点C 为直角顶点的等腰直角三角形,点E 、F 在AB 边上,∠ECF =12∠ACB. 若AE=2,EF=3,则BF 的长为 .实战演练1.如图,在正方形ABCD 中,点E 、F 分别在边BC 、CD 上,∠BAE+∠DAF=45°.若DF=2BE=2,则EF 的长为 .2. 如图,在四边形ABCD 中,AB=AD,∠B=∠D=90°,∠BAD=120°,∠EAF=60°,E,F 分别是BC,CD 上的点,连接AE,AF,EF,若BE=3,DF=5,则EF 的长为_______.3. 如图,在四边形ABCD 中,AB=AD,∠B+∠ADC=180°,延长BC 到点E,延长CD 到点F,使得∠EAF=21∠BAD.求证:EF=BE-FD.4. 如图,在△ABC中,点D,E 均在边BC 上,点D 在点E 的左侧. (1)若∠BAC=90°,AB=AC,且∠DAE=45°.求证:BD 2+CE 2=DE 2.(2)若∠BAC=60°,AB=AC=5,且∠DAE=30°,当BD=1时,求线段CE 的长.模型三 “手拉手”全等模型基础模型 模型拓展 结论分析结论1:△AOC≌△BOD,AC=BD 证明:∵∠AOB=∠COD, ∴∠AOB+∠BOC=∠COD+∠BOC, ∴∠AOC=∠BOD. 在△AOC和△BOD中, OA=OB ∠AOC=∠BOD OC=OD ∴△AOC≌△BOD, ∴AC=BD .结论2:EO 平分∠AED证明:如解图,过点O 作OM⊥AE于点M,ON⊥BD于点N, ∵△AOC≌△BOD, ∴S △AOC =S △BOD ,∴21AC ·OM=21BD ·ON, ∵AC=BD, ∴OM=ON,∴EO 平分∠AED (角平分线性质)典例小试例1 如图,在△ABC中,AC=3,BC=4,∠ACB=30°,以AC,AB 为边向外作等边△ACD,△ABE,连接CE,BD.则CE 的长为( )怎么用? 1.找模型 双等腰(两个等腰三角形),共顶点(顶点O),顶角相等(∠AOB=∠COD),绕点O 旋转一定角度 2.用模型 通常需要连接拉手线,根据旋转角转换及等腰三角形性质证三角形全等A.3B.4C.5D.7例2如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°;②AC=BD;③OM平分∠AOD;④MO平分∠AMD.其中正确的结论个数有( )A.4个B.3个C.2个D.1个实战演练1.如图,正方形ABCD的边长为4,对角线AC的中点为0,点E 是AB上一点,过点O作OF⊥OE,交BC于点F,连接EF,若AE=1,则EF的长为.2.把两个含有45°角大小不同的三角板如图①摆放,将小三角板ADE绕点A按逆时针方向旋转,如图②,连接BD,EC.(1)当DE⊥AC时,AD与BC的位置关系是_________,AE与BC的位置关系是________;(2)如图②,连接BE,当点D在线段BE上时,∠BEC的度数为__________.图①图②3.如图①,等腰△ABC和等腰△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,连接BD、CE,(1)若∠BAC=∠DAE=35°,求证:BD=CE;(2)连接BE,当点D在线段BE上时.①如图②,若∠BAC=∠DAE=60°,则∠BEC的度数为;线段BD与CE之间的数量关系是;②如图③,若∠BAC=∠DAE=90°,AM为△ADE中DE边上的高,请判断∠BEC的度数及线段AM,BE,CE 之间的数量关系并说明理由.图①图②图③模型四“反向手拉手”全等模型基础模型结论分析怎么用?1.找模型双等腰(两个等腰三角形),共顶点(顶点A),顶角相等(∠BAC=∠DAE),对应底角顶点错开相连接(BE,CD)2.用模型反向手拉手的难点在于如何转化为正向手拉手,转化方法为以三角形的一边为对称轴作对称图形典例小试例如图,在△ABC与△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,连接BE,点O是BE的中点,连接AO,若AO=1, 则CD的长为__________.实战演练1.在等腰Rt△AOB和等腰Rt△COD中,∠AOB=∠COD=90°,连接AD、BC,M为AD的中点,连接OM.(1)如图①,请写出OM与BC的数量关系,并说明理由;(2)将图①中的△COD旋转至图②的位置,其他条件不变,(1)中结论是否成立?请说明理由.2.在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,连接BE,CD,点M是CD的中点,连接AM.(1)观察猜想:如图①,当点B,A,E在一条直线上时,线段AM与BE的数量关系是_________________,位置关系是_________________;(2)探究证明:当Rt△ABC和Rt△ADE的位置如图②所示时,(1)中的结论还成立吗?请说明理由;(3)拓展延伸:将题中条件“AB=AC,AD=AE”改为“∠ABC=∠AED=30°”,其他条件不变,如图③,把△ADE绕点A在平面内自由旋转,若AE=2,AB=6.请直接写出AM的取值范围.。

三角形全等几何模型(一线三等角)(人教版)(学生版) 2024-2025学年八年级数学上册专项突破

三角形全等几何模型(一线三等角)(人教版)(学生版) 2024-2025学年八年级数学上册专项突破

专题12.11三角形全等几何模型(一线三等角)第一部分【知识点归纳】【知识点一】一线三直角模型1.基本图形题型特征:如图1,在直线BC上出现三个直角,如图中∠B=∠ACE=∠D=90°图1图2图3解题方法:只要题目再出现一组等边(AB=CD或BC=DE或CA=CE),可证△ABE≌△ECD(AAS 或ASA)结论延伸1:如图2,两个直角三角形在直线两侧时,同样成立结论延伸2:图1中连接AE,得到如图3,可得以下结论:(1)四边形ABDE为直角梯形;AB+DE=BC(上底+下底=高)【知识点二】一线三等角模型图4图5题型特征:如图4,图形的某条线段上出现三个相等的角,如图中∠B=∠ACE=∠D解题方法:只要题目再出现一组等边(BA=CD或BC=DA或CA=DC),必证△ABC≌△CDE(AAS或ASA)结论延伸:如图5,两个三角形在直线两侧时,同样成立第二部分【题型展示与方法点拨】【题型1】直接用“一线三直角”模型求值或证明【例1】(23-24八年级上·安徽合肥·期末)如图,在ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥,BE MN ⊥,垂足分别为D E 、.(1)求证:ADC CEB ≌;(2)若3cm =AD ,5cm BE =,求四边形ABED 的面积.【变式1】(23-24八年级上·湖北武汉·阶段练习)如图,小虎用10块高度都是3cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC BC =,90ACB ∠=︒),点C 在DE 上,点A 和B 分别与木墙的顶端重合,则两堵木墙之间的距离DE 的长度为()A .30cmB .27cmC .21cmD .10cm【变式2】(23-24九年级下·重庆开州·阶段练习)如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 上一点,连接AD .过点B 作BE AD ⊥于点E ,过点C 作CF AD ⊥交AD 的延长线于点F .若5BE =,2CF =,则EF 的长度为.【题型2】直接用“一线三等角”模型求值或证明【例2】(23-24八年级上·新疆昌吉·期中)已知ABC 是直角三角形,90BAC AB AC ∠=︒=,,直线l 经过点A ,分别过点B 、C 向直线l 作垂线,垂足分别为D 、E(1)如图a ,当点B 、C 位于直线l 的同侧时,证明:ABD CAE≌(2)如图b ,锐角ABC 中,AB AC =,直线l 经过点A ,点D 、E 分别在直线l 上,点B ,C 位于l 的同一侧,如果CEA ADB BAC ∠=∠=∠,请找到图中的全等三角形,并写出线段ED EC 、和DB 之间的数量关系【变式1】(21-22八年级上·浙江温州·期中)如图,在△ABC 中,AB =AC =9,点E 在边AC 上,AE 的中垂线交BC 于点D ,若∠ADE =∠B ,CD =3BD ,则CE 等于()A .3B .2C .94D .92【变式2】(23-24七年级下·吉林长春·期中)如图,在ABC 中,AB AC =,AB BC >,点D 在边BC 上,且2CD BD =,点E 、F 在线段AD 上.CFD BED BAC ∠=∠=∠,ABC 的面积为18,则ABE 与CDF 的面积之和.【题型3】构造“一线三直角”模型求值或证明【例3】(23-24八年级上·山西吕梁·期末)数学课上,老师让同学们利用三角形纸片进行操作活动,探究有关线段之间的关系问题情境:如图1,三角形纸片ABC 中,90ACB ∠=︒,AC BC =.将点C 放在直线l 上,点A ,B 位于直线l 的同侧,过点A 作AD l ⊥于点D初步探究:(1)在图1的直线l 上取点E ,使BE BC =,得到图2,猜想线段CE 与AD 的数量关系,并说明理由;(2)小颖又拿了一张三角形纸片MPN 继续进行拼图操作,其中90MPN ∠=︒,MP NP =.小颖在图1的基础上,将三角形纸片MPN 的顶点P 放在直线l 上,点M 与点B 重合,过点N 作NH l ⊥于点H .如图3,探究线段CP ,AD ,NH 之间的数量关系,并说明理由【变式1】(23-24八年级上·新疆喀什·期中)如图,906AC AB BD ABD BC ==∠=︒=,,,则BCD △的面积为()A .9B .6C .10D .12【变式2】(20-21七年级下·黑龙江哈尔滨·期末)如图,在ABC 中,90ABC ∠=︒,过点C 作CD AC ⊥,且CD AC =,连接BD ,若92BCD S = ,则BC 的长为.【题型4】“一线三直(等)角”模型的延伸与拓展【例4】如图,A 点的坐标为(0,3),B 点的坐标为(-3.0),D 为x 轴上的一个动点,AE ⊥AD ,且AE=AD ,连接BE 交y 轴于点M(1)若D点的坐标为(-5.0),求E点的坐标:(2)求证:M为BE的中点(3)当D点在x轴上运动时,探索:OMBD为定值【变式1】(23-24八年级上·陕西西安·阶段练习)勾股定理被誉为“几何明珠”.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图所示,把一个边长分别为3,4,5的三角形和三个正方形放置在大长方形ABCD中,则该长方形中空白部分的面积为()A.54B.60C.100D.110【变式2】已知:四边形ABCD中,AB=AD=CD,∠BAD=90°,三角形ABC的面积为1,则线段AC的长度是.第三部分【中考链接与拓展延伸】1、直通中考【例1】(2021·四川南充·中考真题)如图,90BAC ∠=︒,AD 是BAC ∠内部一条射线,若AB AC =,BE AD ⊥于点E ,CF AD ⊥于点F .求证:AF BE =.【例2】(2023·重庆·中考真题)如图,在Rt ABC △中,90BAC ∠= ,AB AC =,点D 为BC 上一点,连接AD .过点B 作BE AD ⊥于点E ,过点C 作CF AD ⊥交AD 的延长线于点F .若4BE =,1CF =,则EF 的长度为.2、拓展延伸【例1】(22-23八年级下·河南洛阳·期中)综合与实践数学活动课上,老师让同学们以“过等腰三角形顶点的直线”为主题开展数学探究.(1)操作发现:如图甲,在Rt ABC △中,90BAC ∠=︒,且AB AC =,直线l 经过点A .小华分别过B 、C 两点作直线l 的垂线,垂足分别为点D 、E .易证ABD CAE △△≌,此时,线段DE 、BD 、CE 的数量关系为:;(2)拓展应用:如图乙,ABC 为等腰直角三角形,90ACB ∠=︒,已知点C 的坐标为(2,0)-,点B 的坐标为(1,2).请利用小华的发现直接写出点A 的坐标:;(3)迁移探究:①如图丙,小华又作了一个等腰ABC ,AB AC =,且90BAC ∠≠︒,她在直线l 上取两点D 、E ,使得BAC BDA AEC ∠=∠=∠,请你帮助小华判断(1)中线段DE 、BD 、CE 的数量关系是否变化,若不变,请证明;若变化,写出它们的关系式并说明理由;②如图丁,ABC 中,2AB AC =,90BAC ∠≠︒,点D 、E 在直线l 上,且BAC BDA AEC ∠=∠=∠,请直接写出线段DE 、BD 、CE 的数量关系.【例2】(22-23八年级上·广东惠州·期中)如图1,90ACB AC BC AD CE BE CE ∠==⊥⊥,,,,垂足分别为D ,E .(1)若 2.5cm 1.7cm AD DE ==,,求BE 的长.(2)在其它条件不变的前提下,将CE 所在直线变换到ABC 的外部(如图2),请你猜想AD DE BE ,,三者之间的数量关系,并证明你的结论;(3)如图3,将(1)中的条件改为:在ABC 中,AC BC =,D ,C ,E 三点在同一条直线上,并且有BEC ADC BCA α∠=∠=∠=,其中α为任意钝角,那么(2)中你的猜想是否还成立?若成立,请证明;若不成立,请说明理由.。

全等三角形——一线三等角模型

全等三角形——一线三等角模型

全等三角形——一线三等角模型一、一线三等角概念“一线三等角”指的是有三个等角的顶点在同一条直线,这个角可以是直角,也可以是锐角或钝角。

二、一线三等角的类型同侧:锐角 直角 钝角异侧:三、“一线三等角”的性质当∠1=∠2=∠3,且当等角所对的边相等时,则两个三角形全等. 如右图,若 CE=ED ,则△AEC ≌△BDE. 四、“一线三等角”的应用 1.适用于直角的情况例1:在ABC Rt ∆中,︒=∠90ACB ,BC AC =,直线l 经过点C ,且l AE ⊥于点E ,l BF ⊥于点F . (1)当直线l 绕点C 旋转到如图1的位置时,○1图中有几对相等的锐角? ○2求证:AEC ∆≌CFB ∆; ○3试探究AE 、BF 、EF 之间的数量关系,并说明理由; (2)当直线l 绕点C 旋转到如图2的位置时,试探究AE 、BF 、EF 之间的数量关系,并说明理由; (3)当直线l 绕点C 旋转到如图3的位置时,试探究AE 、BF 、EF 之间的数量关系,不必说明理由.图1 图2 图3lFE B ACl FEB AC lFEBAC DCC A BDDC DBADB CAAB2.适用于锐角或钝角的情况例2:如图,在△ABC 中,AB =AC ,BD =CF ,BE =CD , 若∠A =40°,则∠EDF 的度数为( )A. 75°B. 70°C. 65°D. 60°★演练题:(勾股定理)如图,在ABC Rt ∆中,︒=∠90ACB ,BC AC =,点D 为斜边AB 上一点,连接CD ,过点A 作CD AE ⊥于点E .若︒=∠45BED ,4=AE ,则=AB ___________.练习1.如图,ABC ∆是等腰三角形,DE 过直角顶点A ,︒=∠=∠90E D ,则下列结论正确的个数有( ) ○1AE CD =; ○221∠=∠; ○3︒=∠+∠9043; ○4BE AD =; ⑤DE=CD+BE. (A )1个 (B )2个 (C )3个 (D )4个2.(1)已知△ABC 是直角三角形,∠BAC =90°,AB =AC ,直线l 经过点A ,分别从点B 、C 向直线l 作垂线,垂足分别为D 、E .当点B ,C 位于直线l 的同侧时(如图1),易证△ABD ≌△CAE .如图2,若点BC 在直线l 的异侧,其它条件不变,△ABD ≌△CAE 是否依然成立?若成立,请写出证明过程;若不成立,请说明理由.(2)变式一:如图3,△ABC 中,AB =AC ,直线l 经过点A ,点D 、E 分别在直线l 上,点B 、C 位于l 的同一侧,如果∠CEA =∠ADB =∠BAC ,求证:△ABD ≌△CAE .(3)变式二:如图4,△ABC 中,依然有AB =AC ,若点B ,C 位于l 的两侧,如果∠BDA+∠BAC =180°,∠BDA =∠AEC ,求证:BD =CE+DE .4321EB DC AEC DA。

初二《全等三角形》几何模型之一线三等角模型2

初二《全等三角形》几何模型之一线三等角模型2

初⼆《全等三⾓形》⼏何模型之⼀线三等⾓模型2上篇我们简要介绍了⼀线三等⾓之全等模型,本⽂重着介绍初中平⾯⼏何应⽤最⼴的⼀线三等⾓之全等模型中的“K”字型。

模型介绍:记得学习勾股定理证明时,教材介绍了⼀种美国总统的证法,他的证法之所以简洁,就是因为巧妙的构造了“K”字型.如图所⽰,黄⾊部分是不是很像⼀个躺着“K”呢?“K”字型往往以等腰直⾓三⾓形为依托,构造⼀组全等的直⾓三⾓形,从⽽实现边与⾓的转移.模型应⽤:【例1】如图,点A(5,2)绕点O逆时针旋转90度到A',则A'的坐标为____________【⽅法提⽰】由旋转可知OA=OA'∠AOA‘=90°,很容易想到构造⼀线三等⾓之'k'字型,如下图所⽰作AB⊥x轴,A’C⊥x轴,易得△AOB≌A'OC.故A'(-2,5)【例2】如图,在直⾓梯形ABCD中,∠B=90°,AD∥BC,将点C绕点D逆时针旋转90°到点C',若AD=2,△ADC'⾯积等于3,求BC的长.【⽅法提⽰】是不是与[例1]很相似?同样是将⼀条线段旋转了90°,我们知道将线段旋转90°就有等腰直⾓三⾓形,那么,将线段旋转60°会出现什么三⾓形呢?任意度数呢?以它为依托构造“K'字型全等.图1图1是标准的”K“字型,图2是“变异”的”K“字型,显然图2的构造⽐图1更加简便.【例3】(1)模型建⽴:如图①,在等腰直⾓△ABC中,∠ACB=90°,CB=CA,ED经过点C,AD⊥ED,BE⊥ED。

求证:△BEC≌△CDA;(3)拓展应⽤:如图③,在长⽅形ABCD中,点B(8,6),点P是线段BC上⼀动点,0≤PC≤6.已知点D在第⼀象限,且是直线y=2x-6上的⼀点,若△ADP是等腰直⾓三⾓形,且∠ADP=90°,请求点D的坐标.【⽅法提⽰】(1)∵∠1+∠2=90°,∠1+∠3=90°,∴∠2=∠3⼜∵AC=BC,∠D=∠E,∴△BEC≌△CDA(2)作AC⊥AB,交直线m于点C,作CD⊥x轴。

几何模型:一线三等角模型 (最终版)

几何模型:一线三等角模型 (最终版)

初中几何模型之“一线三等角模型”一.【一线三等角概念】“一线三等角”是一个常见的相似模型,指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。

不同地区对此有不同的称呼,“K 形图”,“三垂直”,“弦图”等,以下称为“一线三等角”。

二.【一线三等角的分类】2.1 全等篇_同侧A PA P锐角直角钝角2.2 全等篇_异侧PDPP锐角直角钝角2.3 相似篇_同侧DCA BPP锐角直角钝角2.4 相似篇_异侧PDPP锐角直角钝角三、【性质】1.相似,如图 3-1,由∠1=∠2=∠3,或者α=α2=α3易得△AEC∽△BDE.2.当等角所对的边相等时,则两个三角形全等.如下图,若 CE=ED,则△AEC≌△BDE.异侧结果同样。

3.中点型“一线三等角”——相似中多了一位兄弟如图 3-2,当∠1=∠2=∠3,且 D 是 BC 中点时,△BDE∽△CFD∽△DFE. 4.“中点型一线三等角“的变式(了解)如图 3-3,当∠1=∠2 且1902BOC BAC ∠=︒+∠时,点 O 是△ABC 的内心.可以考虑构造“一线三等角”.5.“一线三等角”的各种变式(图 3-5,以等腰三角形为例进行说明)图 3-5四、【“一线三等角”的应用】1.应用的三种情况.a.图形中已经存在“一线三等角”,直接应用模型解题;b.图形中存在“一线二等角”,构造“一等角”模型解题;c.图形中只有直线上一个角,构造“二等角”模型解题.注意:感觉最后一种情况出现比较多,尤其是压轴题中,经常会有一个特殊角或指导该角的三角函数值时,我经常构造“一线三等角”来解题.2.适应场景:在定边对定角问题中,构造一线三等角是基本手段,尤其是直角坐标系中的张角问题,在 x 轴或 y 轴(也可以是平行于 x 轴或 y 轴的直线)上构造一线三等角解决问题更是重要的手段.3.构造步骤:找角、定线、构相似【引例】例 1如图,l1、l2、l3是同一平面内的三条平行线,l1、l2之间的距离是21/5,l2、l3之间的距离是21/10,等边△ABC 的三个顶点分别在l1、l2、l3上,求△ABC 的边长.思路引导:【脑洞大开-三角构造】例 1 如图,四边形 ABCD 中,∠ABC=∠BAD=90°,∠ACD=45°,AB=3,AD=5.求 BC 的长.横向构造纵向构造斜向构造斜A相似构造:例 2 如图,△ABC 中,∠BAC=45°,AD⊥BC,BD=2,CD=3,求 AD 的长.纵向横向斜向一线三垂直的补形:角含半角补形练一练:1.如图,在△ABC 中,∠BAC=135°, AC= 2AB, AD⊥AC 交 BC 于点 D,若 AD = 2,求△ABC的面积思路提示:【中点型一线三等角】例1、如图,在Rt⊿ABC 中,AB = AC =2,∠A = 90°,现取一块等腰直角三角板,将45° 角的顶点放在BC 中点O 处,三角板的直角边与线段AB、AC 分别交于点E、F,设BE =x,CF = y,∠BOE = α( 45° ≤ α ≤ 90°) .( 1) 试求y 与x 的函数关系式,并写出x 的取值范围;( 2) 试判断∠BEO 与∠OEF 的大小关系?并说明理由;( 3) 在三角板绕O 点旋转的过程中,⊿OEF 能否成为等腰三角形? 若能,求出对应x 的值; 若不能,请说明理由.例2.如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90∘,△DEF的顶点E与△ABC的斜边BC的中点重合。

专题02 全等模型-一线三等角(K字)模型(解析版)

专题02 全等模型-一线三等角(K字)模型(解析版)

专题02全等模型--一线三等角(K 字)模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(一线三等角(K 字)模型)进行梳理及对应试题分析,方便掌握。

模型1.一线三等角(K 型图)模型(同侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。

【常见模型及证法】同侧型一线三等角(常见):锐角一线三等角直角一线三等角(“K 型图”)钝角一线三等角条件:A CED B ∠=∠=∠+CE=DE证明思路:,A B C BED ∠=∠∠=∠+任一边相等BED ACE⇒≅ 例1.(2023·江苏·八年级假期作业)探究:如图①,在ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD m ⊥于点D ,CE m ⊥于点E ,求证:ABD CAE ≌ .应用:如图②,在ABC 中,AB AC =,,,D A E 三点都在直线m 上,并且有BDA AEC BAC ∠=∠=∠.求出,DE BD 和CE 的关系.拓展:如图①中,若10DE =,梯形BCED 的面积______.【答案】探究:证明过程见详解;应用:DE BD CE =+,理由见详解;拓展:50【分析】探究:90BAC ∠=︒,AB AC =,可知ABC 是等腰直角三角形,BD m ⊥,CE m ⊥,可知90BDA AEC ∠=∠=︒,可求出BAD ACE ∠=∠,根据角角边即可求证;应用:AB AC =,,,D A E 三点都在(1)如图①,若AB AC ⊥,则BD 与AE 的数量关系为___________,CE 与AD 的数量关系为(2)如图②,判断并说明线段BD ,CE 与DE 的数量关系;(3)如图③,若只保持7BDA AEC BD EF cm ∠=∠==,,点A 在线段DE 上以2cm/s 的速度由点例3.(2022·陕西七年级期末)(1)【问题发现】如图1,△ABC与△CDE中,∠B=∠E=∠ACD=90°,AC=CD,B、C、E三点在同一直线上,AB=3,ED=4,则BE=_____.(2)【问题提出】如图2,在Rt△ABC 中,∠ABC=90°,BC=4,过点C作CD⊥AC,且CD=AC,求△BCD的面积.(3)【问题解决】如图3,四边形ABCD中,∠ABC=∠CAB=∠ADC=45°,△ACD面积为12且CD的长为6,求△BCD的面积.【答案】(1)7;(2)S△BCD=8;(3)S△BCD=6.【分析】(1)∠B=∠E=∠ACD=90°,据同角的余角相等,可得∠ACB=∠D,由已知条件可证△ABC≌△CED,运动(D 不与B 、C 重合),连接AD ,作40ADE ∠=︒,DE 交线段AC 于E .(1)当115BDA ∠=︒时,EDC ∠=_____︒,BAD ∠=_____︒,AED =∠_____︒;点D 从B 向C 运动时,BDA ∠逐渐变_____(填“大”或“小”);(2)当DC 等于多少时,ABD DCE ≌△△,请说明理由;(3)在点D 的运动过程中,ADE V 的形状可以是等腰三角形吗?若可以,请直接写出BDA ∠的度数,若不可以,请说明理由.【答案】(1)25,25,65,小(2)当2DC =时,ABD DCE ≌△△,理由见解析;(3)当BDA ∠的度数为110︒或80︒时,ADE V 的形状是等腰三角形.【分析】(1)先求出ADC ∠的度数,即可求出EDC ∠的度数,再利用三角形的外角性质即可求出AED ∠的度数,根据点D 从B 向C 运动时,BAD ∠逐渐增大,而B ∠不变化,180B BAD BDA ∠+∠+∠=︒,即可得到答案;(2)根据全等三角形的判定条件求解即可;(3)先证明当ADE V 时等腰三角形,只存在AD ED =或AE DE =两种情况,然后分这两种情况讨论求解即可;【详解】(1)解:∵115BDA ∠=︒,∴18011565ADC ∠=︒-︒=︒,∵40ADE ∠=︒,∴25EDC ADC ADE ∠︒=∠-∠=,∵ADC ADE EDC B BAD ∠=∠+∠=∠+∠,∴25BAD EDC ∠=∠=︒,∴65AED EDC C ︒∠=∠+∠=;∵点D 从B 向C 运动时,BAD ∠逐渐增大,而B ∠不变化,180B BAD BDA ∠+∠+∠=︒,∴点D 从B 向C 运动时,BDA ∠逐渐变小,故答案为:25,25,65,小;(2)解:当2DC =时,ABD DCE ≌△△,理由:∵40B C ∠=∠=︒,∴140DEC EDC ∠+∠=︒,又∵40ADE ∠=︒,∴140ADB EDC ∠+∠=︒,∴ADB DEC ∠=∠,又∵2AB AC ==,∴()AAS ABD DCE ≌△△;(3)解:当BDA ∠的度数为110°或80°时,ADE V 的形状是等腰三角形,理由:∵40C ADE ∠=∠=︒,AED C EDC ∠=∠+∠,∴AED ADE ∠>∠,∴当ADE V 时等腰三角形,只存在AD ED =或AE DE =两种情况,模型2.一线三等角(K 型图)模型(异侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。

一线三等角,全等相似两边找.doc

一线三等角,全等相似两边找.doc

一线三等角,全等相似两边找一线三等角模型学习目标:用“一线三等角”基本模型,解决全等三角形、相似三角形中的相关问题重点:掌握“一线三等角”基本模型难点:“一线三等角”基本模型的提炼、变式和运用所谓“一线三等角”,通俗地讲就是一条直线上有三个相等的角,一般就会存在相似三角形,当对应边也相等时,就会有全等三角形,即:“一线三等角,全等相似两边找”看一下它的基本模型:锐角型:如图,等腰△ABC中,∠DEF=∠B=∠C,图中有没有相似三角形?请说明理由。

∵∠1+∠4=180°-∠B,∠1+∠2=180°-∠DEF∠B=∠DEF∴∠2=∠4又∵∠B=∠C∴△BDE∽△CEF钝角型:如图,四边形ABCD中,∠DEC=∠A=∠B,找出图中相似三角形并证明。

∵∠1+∠4=180°-∠A,∠1+∠2=180°-∠DEC∠A=∠DEC∴∠2=∠4又∵∠A=∠B∴△ADE∽△BEC直角型:如图,A、B、C三点共线,∠A=∠C=∠DBE=90°,用同样的方法,易证△ABD∽△CEB,直角型的三垂直我们又把它叫做“三垂直模型”,它的应用更加广泛,考试出现的概率最大全等型:如图,B、C、D三点共线,∠B=∠D=∠ACE,AB=CD,求证△ABC≌△CDE.由一线三等角,易证∠1=∠A又∵AB=CD,∠B=∠D∴△ABC≌△CDE(ASA)由以上基本模型发现,一线三等角模型中,一定存在相似三角形,有可能存在全等三角形(全等是相似的一种特殊情况)中点型“一线三等角”模型如图,等腰三角形ABC中,AB=AC,∠EDF=∠B,D是BC边的中点,请找出图中所有的相似三角形,并证明。

我们通过观察发现,以上“一线三等角模型”有个共同点,三个角均在直线的同一侧,当这三个角不在同一侧时,会有相似三角形存在吗?如下图,自己找出相似三角形并证明。

典型例题:。

全等之一线三等角模型(含答案)

全等之一线三等角模型(含答案)

全等之一线三等角模型1. 一线三垂直【核心考点】:只要出现等腰直角三角形,可以过直角点作一条直线,然后过°顶点作该直线的垂线,构造三垂直模型.必有如下全等三角形:【经典图形】:【变式图形】:由得由得≌≌(1)(2)1.如图,正方形的顶点在直线上,,于点,于点.求证:≌.若,求点到直线的距离.2.如图,直线经过正方形的顶点,分别过正方形的顶点、作于点,于点,若,,则的长为 .(1)(2)3.如图,在中,,,于点,于点,,.求证:.求线段的长度.4.如图,点在线段上,,,,且,,,,求的度数.5.如图,是等腰直角三角形,点坐标为,点坐标为,过作轴的垂线,垂足为点,则 .6.如图,为等腰直角三角形,点坐标为,点坐标为,过作轴的垂线,垂足为点,则点坐标为 .(1)(2)7.如图,,,,,垂足分别为,.证明:≌.若,,求的长.(1)(2)(3)8.在中,,,直线经过点,且于,于.当直线绕点旋转到图①的位置时,求证:.图当直线绕点旋转到图②的位置时.求证:.图当直线绕点旋转到图③的位置时,试问:、、有怎样的等量关系?请写出这个等量关系,并加以证明.图9.如图,课间小明拿着老师的等腰三角板玩,不小心掉到两条凳子之间(凳子与地面垂直).已知,.则两条凳子的高度之和为 .A. B. C. D.10.如图,且,且,请按照图中所标注的数据,计算图中实线所围成的图形的面积是( ).(1)(2)11.如图,中,,,是过点的一条直线,且点,在的同侧时,于,于.求证:.变成如图,,在的异侧时,,,关系如何?并加以证明.(1)(2)(3)12.如图所示,已知、为直线上两点,点为直线上方一动点,连接、,另以、为边向外作正方形和正方形,过点作于点,过点作于点.如图,当点恰好在直线上时,(此时与重合),试说明.如图,当、两点都在直线的上方时,试探求三条线段、、之间数量关系,并说明理由.如图,当点在直线的下方时,线段,、之间的数量关系又如何?请写出你的结论,并说明理由.2. 一线三等角【核心考点】:只要在一条直线上出现三个角相等,一般都可以构造全等三角形解决问题.【经典图形】:A. B. C. D.13.如图,在等边中,,点在上,且,点是上一动点,连结,将线段绕点逆时针旋转得到线段,要使点恰好落在上,则的长是( ).14.如图,已知中,点为上一点,,两点分别在边,上,若,,,,则.ACBFDE 15.如图,在等腰三角形中,,.点在边上,,点,在线段上,.若的面积为,则与的面积之和为 .16.感知:如图①,点在正方形的边上,于点,于点,可知≌.(不要求证明)拓展:如图②,点,分别在的边,上.点,在内部的射线上,,分别是,的外角.已知,,求证:≌.应用:如图③,在等腰三角形中,,.点在边上,,点,在线段上,.若的面积为,则与的面积之和为 .图图图图图图(1)(2)(3)17.某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图,已知:在中,,,直线经过点,直线,直线,垂足分别为点、.求证:.组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图,将()中的条件改为:在中,,、、三点都在直线上,并且有(其中为任意锐角或钝角),请问结论是否成立?如成立,请你给出证明;若不成立,请说明理由.数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图,是角平分线上的一点,且和均为等边三角形,、分别是直线上点左右两侧的动点(、、互不重合),在运动过程中线段的长度始终为,连接、.若,则周长是 .(请直接写出答案)(1)(2)18.如图,是经过顶点的一条直线,,、分别是直线上两点,且.若直线经过的内部,且、在直线上,请解决下面两个问题:①如图①,若,,则;(填“”、“”、“”);图②如图②,若,请添加一个关于与关系的条件 ,使①中的两个结论仍然成立,并证明这两个结论.图如图③,若直线经过的外部,,请提出、、三条线段数量关系的合理猜想(不要求证明).图全等之一线三等角模型1. 一线三垂直【核心考点】:只要出现等腰直角三角形,可以过直角点作一条直线,然后过°顶点作该直线的垂线,构造三垂直模型.必有如下全等三角形:【经典图形】:【变式图形】:由得由得≌≌【备注】【教法指导】通过例1.1可以详细给学生示范一下三垂直模型的书写过程,其中倒角用的是“同角的余角相等”,提醒书生注意1.如图,正方形的顶点在直线上,,于点,于点.(1)(2)(1)(2)【解析】【标注】求证:≌.若,求点到直线的距离.【答案】(1)(2)证明见解析..∵四边形是正方形,,,∴,,,∴,,∴,∴在与中,,∴≌.过作,∵四边形是正方形,,∴,,,,∴,,,∴在与中,,∴≌,∴,∴在中,,,,∴点到直线的距离.【知识点】正方形与全等综合2.【解析】【标注】如图,直线经过正方形的顶点,分别过正方形的顶点、作于点,于点,若,,则的长为 .【答案】∵四边形是正方形,∴,,∵则是直角三角形,∴,,又∵,∴,在和中,,∴≌,∴,∴.【知识点】三垂直模型3.如图,在中,,,于点,于点,,.(1)(2)(1)(2)【解析】【标注】求证:.求线段的长度.【答案】(1)(2)证明见解析..∵,,,∴,,∴,在和中,,∴≌,∴.∵≌,∴,,∴.【知识点】三垂直模型4.【解析】如图,点在线段上,,,,且,,,,求的度数.【答案】.连接、.∵,,.∴.【标注】在和中,∴≌∴,,∴.∴为等腰三角形.同理可得为等腰三角形.∴..【能力】分析和解决问题能力【知识点】SAS【知识点】全等三角形的性质5.【解析】【标注】如图,是等腰直角三角形,点坐标为,点坐标为,过作轴的垂线,垂足为点,则.【答案】由三垂直模型易证≌,∴.【知识点】坐标与距离;三垂直模型6.如图,为等腰直角三角形,点坐标为,点坐标为,过作轴的垂线,垂足为点,则点坐标为 .【解析】【标注】【答案】由三垂直模型易证≌,∴,,∴点坐标为,故答案为:.【知识点】根据坐标描点、根据点写坐标;三垂直模型(1)(2)7.(1)【解析】如图,,,,,垂足分别为,.证明:≌.若,,求的长.【答案】(1)(2)证明见解析..∵,,,∴,∴,,∴,在和中,(2)【标注】,∴≌.∵≌,∴,,∴().【知识点】一线三等角模型(1)(2)(3)8.在中,,,直线经过点,且于,于.当直线绕点旋转到图①的位置时,求证:.图当直线绕点旋转到图②的位置时.求证:.图当直线绕点旋转到图③的位置时,试问:、、有怎样的等量关系?请写出这个等量关系,并加以证明.图【答案】(1)(2)(3)证明见解析.证明见解析..(1)(2)(3)【解析】【标注】∵中,,∴,又直线经过点,且于,于,∴,∴,∴,在和中,,∴≌(),∴,,∴.∵中,,直线经过点,且于,于,∴,,而,∴≌,∴,,∴.∵中,,直线经过点,且于,于,∴,,∴,∵,∴≌,∴,,∴;、、之间的关系为.【能力】推理论证能力【能力】运算能力【知识点】AAS【知识点】全等三角形的对应边与角9.如图,课间小明拿着老师的等腰三角板玩,不小心掉到两条凳子之间(凳子与地面垂直).已知,.则两条凳子的高度之和为 .【解析】【标注】【答案】由题意可得:,,,在和中,,∴(),故,,则两条凳子的高度之和为:.故答案为:.【知识点】全等三角形实际生活中的应用A. B. C. D.10.方法一:【解析】如图,且,且,请按照图中所标注的数据,计算图中实线所围成的图形的面积是( ).【答案】A ∵,,∴,∵在和中,,方法二:【标注】∴≌(),同理 ≌(),∴,,,,∵梯形的面积,,,∴图中实线所围成的图形的面积.∵且,,,,,∴,,≌,∴,.同理证得≌得,.故,故.故选:.【知识点】三垂直模型(1)(2)11.如图,中,,,是过点的一条直线,且点,在的同侧时,于,于.求证:.变成如图,,在的异侧时,,,关系如何?并加以证明.(1)(2)【解析】【标注】【答案】(1)(2)证明见解析...∵,,,∴,∴,∴.∵,在和中,,∴≌,∴,,∴.∵,∴.成立.∵,,,∴.∵,,∴.∵,在和中,,∴≌,∴,.∵,∴.【能力】推理论证能力【能力】分析和解决问题能力【知识点】全等三角形的性质【知识点】AAS(1)(2)(3)12.(1)【解析】如图所示,已知、为直线上两点,点为直线上方一动点,连接、,另以、为边向外作正方形和正方形,过点作于点,过点作于点.如图,当点恰好在直线上时,(此时与重合),试说明.如图,当、两点都在直线的上方时,试探求三条线段、、之间数量关系,并说明理由.如图,当点在直线的下方时,线段,、之间的数量关系又如何?请写出你的结论,并说明理由.【答案】(1)(2)(3)证明见解析...∵四边形和为正方形,(2)(3)∴,,,∴,∵,∴,∴,∵,∴≌(),∴.,理由如下:过点作于,∵,∴,∴,∵四边形为正方形,∴,,∴,∴,∴≌(),∴,同理得:,∵,∴.,理由如下:过点作于,【标注】∵,∴,∴,∵四边形为正方形,∴,,∴,∴,∴≌(),∴,同理得:,∵,∴.【知识点】正方形与全等综合2. 一线三等角【核心考点】:只要在一条直线上出现三个角相等,一般都可以构造全等三角形解决问题.【经典图形】:【备注】【教法指导】注意三个相等的角度可以在直线同侧,也可以在直线异侧.A. B. C. D.13.【解析】如图,在等边中,,点在上,且,点是上一动点,连结,将线段绕点逆时针旋转得到线段,要使点恰好落在上,则的长是( ).【答案】B如图所示∵,,∴,∵为等边三角形,∴,∵线段绕点逆时针旋转得到线段,【标注】要使点恰好落在上,∴,,∵,,∴,在和中,∵,∴≌,∴.故选.【知识点】等边三角形的性质14.【解析】【标注】如图,已知中,点为上一点,,两点分别在边,上,若,,,,则.ACBFDE 【答案】∵,,∴,在和中,,∴≌,∴,∵,,∴.【知识点】一线三等角模型15.【解析】【标注】如图,在等腰三角形中,,.点在边上,,点,在线段上,.若的面积为,则与的面积之和为 .【答案】∵,∴与等高,底边比值为,∴与面积比为,又的面积为,∴与面积分别为和.∵,∴.∵,,∴.在和中,,∴≌.∴,∴.【知识点】三角形的周长与面积问题16.感知:如图①,点在正方形的边上,于点,于点,可知≌.(不要求证明)拓展:如图②,点,分别在的边,上.点,在内部的射线上,,分别是,的外角.已知,,求证:≌.【解析】【标注】应用:如图③,在等腰三角形中,,.点在边上,,点,在线段上,.若的面积为,则与的面积之和为 .图图图【答案】见解析拓展:证明:∵,∴.∵,,又,∴.在和中,,∴≌.应用:解:∵,∴.∵,,,∴.在和中,,∴≌.∴.∵在中,,∴.∵,∴.∴.【知识点】全等三角形实际生活中的应用17.某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.图图图(1)(2)(3)图(1)【解析】如图,已知:在中,,,直线经过点,直线,直线,垂足分别为点、.求证:.组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图,将()中的条件改为:在中,,、、三点都在直线上,并且有(其中为任意锐角或钝角),请问结论是否成立?如成立,请你给出证明;若不成立,请说明理由.数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图,是角平分线上的一点,且和均为等边三角形,、分别是直线上点左右两侧的动点(、、互不重合),在运动过程中线段的长度始终为,连接、.若,则周长是 .(请直接写出答案)【答案】(1)(2)(3)证明见解析.证明见解析.如图,∵直线,直线,∴,∵,∴,∵,∴,在与中,,∴≌,∴,,∴,∴.图(2)图(3)【标注】.如图,证明如下:∵,∴,∴,在和中,,∴≌,∴,,∴,∴.∵≌,∴,,∵和均为等边三角形,∴,,∴,即,在和中,,∴≌,∴且,∵,∴,∴,∴是等边三角形,∴.【知识点】多解或多种判定混合(1)18.如图,是经过顶点的一条直线,,、分别是直线上两点,且.若直线经过的内部,且、在直线上,请解决下面两个问题:21(2)【标注】①如图①,若,,则 ; (填“”、“”、“”);图②如图②,若,请添加一个关于与关系的条件 ,使①中的两个结论仍然成立,并证明这两个结论.图如图③,若直线经过的外部,,请提出、、三条线段数量关系的合理猜想(不要求证明).图【答案】(1)(2)();.,先证明,再证明≌..【知识点】全等三角形的性质。

初二上学期全等三角形专题之一线三等角模型教案(有答案)

初二上学期全等三角形专题之一线三等角模型教案(有答案)

一线三等角互动精讲【知识梳理】【例题精讲】题型一、一线三等角(直角)例1、已知如图1,△ABC中∠BAC=90°,AB=AC,AE是过A的一条直线,且B、C在AE的异侧,BD⊥AE于E,CE⊥AE于E.(1)证明:BD=DE+CE;(2)若直线AE绕点A点顺时针旋转,当点B、C在AE同侧且BD<CE,其它条件不变,在图2上画出此时的图,并直接写出BD与DE、CE的关系,不须证明;(3)继续绕点A顺时针旋转,当B、C在AE同侧且BD>CE其它条件不变,在图3上画出此时的图,并写出BD与DE、CE的关系,请加以证明.例2、已知△ABC中,∠ABC=90°,AB=BC,点A、B分别是x轴和y轴上的一动点。

(1) 如图1,若点C的横坐标为-4,求点B的坐标;(2) 如图2,BC交x轴于D,若点C的纵坐标为3,A(5,0),求点D的坐标;(3) 如图3,分别以OB、AB为直角边在第三、四象限作等腰直角△OBF和等腰直角△ABE,EF交y轴于M,求S△BEM∶S△ABO。

5432215215221=⨯⨯+⨯⨯=⨯⨯+=OD OD S S S DCMDMB BCM △△△ ∴⎪⎭⎫ ⎝⎛-0,54D题型二、一线三等角(一般角)例3、如图,在△ABC中,AB=AC,P、M分别在BC、AC边上,且∠APM=∠B,AP=MP,求证:△APB≌△PMC例4、已知,M是等边△ABC边BC上的点,如图,连接AM,过点M作∠AMH=60°,MH与∠ACB的邻补角的平分线交于点H,过H作HD⊥BC于点D(1) 求证:MA=MH(2) 猜想写出CB、CM、CD之间的数量关系式,并加以证明【课堂练习】1、如图,等腰Rt △ACB 中,∠ACB=90°,∠CAB=∠CBA=45°,AC=BC ,E 点为射线CB 上一动点,连接AE ,作AF ⊥AE 且AF=AE .(1)如图1,过F 点作FG ⊥AC 交AC 于G 点,求证:△AGF ≌△ECA, AG=EC ; (2)如图2,在(1)的条件下,连接BF 交AC 于D 点,若AD=3CD ,求证:E 点为BC 中点;(3)如图3,当E 点在CB 的延长线上时,连接BF 与AC 的延长线交于D 点,若34=BE BC ,则________=CDAD2、等腰Rt△ABC中,AC=AB,∠BAC=90°,点A、点B分别是y轴、x轴上的两个动点。

全等三角形中“一线三等角”模型

全等三角形中“一线三等角”模型

第11讲全等三角形中“一线三等角”模型(核心考点讲与练)【基础知识】过等腰直角三角形的直角顶点或者正方形直角顶点的一条直线。

过等腰直角三角形的另外两个顶点作该直线的垂线段,会有两个三角形全等(AAS)常见的两种图形:【考点剖析】1、已知:在△ABC中,∠BAC=90°,AB=AC,AE是多点A的一条直线,且BD⊥AE于D,CE⊥AE于点E.当直线AE处于如图1的位置时,有BD=DE+CE,请说明理由.当直线AE处于如图2的位置时,则BD、DE、CE的关系如何?请说明理由.解析:(1)∵BD⊥AE,CE⊥AE∴∠BDA=∠AEC=90°∵∠BAC=90°∴∠BAD+∠EAC=90°∴∠ABD=∠EAC在△ABD和△CAE中∠ADB=∠CEA=90°∠ABD=∠EACAB=CA∴△ABD≌△CAE(AAS)AD=CE,BD=AE∵AE=AD+DE∴BD=DE+CE(2)在△ABD和△CAE中∠ADB=∠CEA=90°AB=CA∴△ABD≌△CAE(AAS)∴AD=CE,BD=AE∵AE=DE-AD∴BD=DE-CE.2、如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B,C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.当DC等于多少是,△ABD≌△DCE?请证明你的结论.解析:∵∠B=40°∴∠BAD+∠BDA=140°∵∠ADE=40°∴∠BAD=∠CDE在△ABD和△DCE中∠B=∠C∠BAD=∠CDEAB=DC∴△ABD≌△DCE3、已知:在等腰直角△ABC中,∠BAC=90°,AB=AC,E是AC边上的点,AF⊥BE交BC于点D,如果AE=CD 证明:BF平分∠ABC证明:AB+AE=BC【解析】(1)作AC的垂线交AD的延长线于点M证△BAE≌△ACM(AS A)得CM=AE=CD∴∠M=∠CDM=∠AEB=∠BAD∴AB=BD∴BF平分∠ABD(等腰三角形三线合一)(2)AB+AE=BD+DC=BC4、如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于D,CE⊥BD的延长线于点E,求证:CE=BD.解析:延长CE、BA相交于点F.∵∠EBF+∠F=90°,∠ACF+∠F=90°∴∠EBF=∠ACF.又∵AB=AC,∠BAC=∠CAF∴△ABD≌△ACF(ASA)∴BD=CF在△BCE和△BFE中∠EBF=∠CBEBE=BE∠CEB=∠FEB∴△BCE≌△BFE(ASA)∴CE=EF∴CE=CF=BD【过关检测】一.选择题(共7小题)1.(2021秋•兰陵县期末)如图,AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=6cm,DE=2cm,则BD等于( )A.6cm B.8cm C.10cm D.4cm【分析】由题中条件求出∠BAC=∠DCE,可得直角三角形ABC与CDE全等,进而得出对应边相等,即可得出结论.【解答】解:∵AB⊥BD,ED⊥BD,∴∠B=∠D=∠ACE=90°,∴∠BAC+∠ACB=90°,∠ACB+∠ECD=90°,∴∠BAC=∠ECD,∵在Rt△ABC与Rt△CDE中,,∴Rt△ABC≌Rt△CDE(AAS),∴BC=DE=2cm,CD=AB=6cm,∴BD=BC+CD=2+6=8cm,故选:B.【点评】本题主要考查了全等三角形的判定及性质,应熟练掌握.2.(2021秋•九龙坡区校级期末)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=7cm,BE=3cm,则DE的长是( )A.3cm B.3.5cm C.4cm D.4.5cm【分析】根据同角的余角相等,得∠CAD=∠BCE,再利用AAS证明△ACD≌△CBE,得CD=BE=3cm,CE=AD=7cm,从而得出答案.【解答】解:∵AD⊥CE,BE⊥CE,∴∠BEC=∠CDA=90°,∴∠CAD+∠ACD=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠CAD=∠BCE,在△ACD与△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=3cm,CE=AD=7cm,∴DE=CE﹣CD=7﹣3=4cm,故选:C.【点评】本题主要考查了等腰直角三角形的性质,全等三角形的判定与性质,证明△ACD≌△CBE是解题的关键.3.(2022春•北碚区校级期中)如图,在四边形ABCD中,AD⊥AB,AC⊥BC,且AD=CD=AB=2,则BC为( )A.1B.C.D.【分析】过点D作DE⊥AC于点E,证明△DAE≌△ABC(AAS),由全等三角形的性质得出AE=BC,设CB=x,则AC=2x,由勾股定理得出(2x)2+x2=22,求出x的值则可得出答案.【解答】解:过点D作DE⊥AC于点E,∵AD⊥AB,AC⊥BC,∴∠DAB=∠ACB=90°,∴∠DAE+∠CAB=90°,∠CAB+∠B=90°,∴∠DAE=∠B,又∵AD=AB,∴△DAE≌△ABC(AAS),∴AE=BC,∵AD=CD,DE⊥AC,∴AE=CE,设CB=x,则AC=2x,∵AC2+BC2=AB2,∴(2x)2+x2=22,∴x,∴BC,故选:B.【点评】本题考查了直角三角形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的性质,熟练掌握勾股定理是解题的关键.4.(2021秋•合肥期末)如图,E为线段BC上一点,∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,则BE的长度为( )A.12B.10C.8D.6【分析】根据一线三等角模型证明△ABE≌△ECD,可得AB=EC,即可解答.【解答】解:∵∠ABE=∠AED=90°,∴∠A+∠AEB=90°,∠AEB+∠DEC=90°,∴∠A=∠DEC,∵∠ABE=∠ECD=90°,AE=ED,∴△ABE≌△ECD(AAS),∴AB=CE=8∵BC=20,∴BE=BC﹣CE=20﹣8=12,故选:A.【点评】本题考查了等腰直角三角形,全等三角形的判定与性质,熟练掌握一线三等角模型是解题的关键.5.(2021秋•岑溪市期末)如图,在等腰直角三角形ABC中,AB=BC,∠ABC=90°,点B在直线l上,过A作AD⊥l于D,过C作CE⊥l于E.下列给出四个结论:①BD=CE;②∠BAD与∠BCE互余;③AD+CE=DE.其中正确结论的序号是( )A.①②B.①③C.②③D.①②③【分析】根据同角的余角相等可得∠ABD=∠BCE,再根据“AAS”可得△ABD≌△BCE,再逐项分析可得结论.【解答】解:∵AD⊥l,CE⊥l,∴∠ADB=∠BEC=90°,∵∠ABC=90°,∴∠ABD+∠EBC=∠BCE+∠EBC=90°,即∠ABD=∠BCE,在△ABD和△BEC中,,∴△ABD≌△BCE(AAS),∴BD=CE,故①正确;∵∠BAD+∠ABD=90°,∠ABD=∠BCE,∴∠BAD+∠BCE=90°,即∠BAD与∠BCE互余,故②正确;∵△ABD≌△BCE,∴AD=EB,DB=CE,∵BE+D=DE,∴AD+CE=DE,故③正确.故选:D.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△ABD≌△CBE是解题的关键.6.(2020秋•襄汾县期末)如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,连接AE、BD、FG,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,则下列结论中:①AE=BD;②AG=BF;③FG∥BE;④CF=CG,以上结论正确的有( )A.1个B.2个C.3个D.4个【分析】首先根据等边三角形的性质,得到BC=AC,CD=CE,∠ACB=∠BCD=60°,然后由SAS判定△BCD≌△ACE,根据全等三角形的对应边相等即可证得①正确;又由全等三角形的对应角相等,得到∠CBD=∠CAE,根据ASA,证得△BCF≌△ACG,即可得到②正确,同理证得CF=CG,得到△CFG 是等边三角形,易得③正确;证出△CFG是等边三角形,得出FG=CG.【解答】解:∵△ABC和△DCE均是等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,∴∠BCD=∠ACE,在△BCD与△ACE中,,∴△BCD≌△ACE(SAS),∴AE=BD,(①正确)∠CBD=∠CAE,∵∠BCA=∠ACG=60°,在△BCF与△ACG中,,∴△BCF≌△ACG(ASA),∴AG=BF,(②正确);同理:△DFC≌△EGC(ASA),∴CF=CG,∴△CFG是等边三角形,∴∠CFG=∠FCB=60°,∴FG∥BE,(③正确).∵∠ACG=60°,∴△CFG是等边三角形,∴FG=CG,故④正确;故选:D.【点评】此题考查了等边三角形的判定与性质与全等三角形的判定与性质.此题图形比较复杂,解题的关键是仔细识图,合理应用数形结合思想.7.(2021秋•武昌区校级月考)如图,在Rt△ABC中,∠ABC=90°,BD是高,E是△ABC外一点,BE=BA,∠E=∠C,若DE BD,AD,BD,则△BDE的面积为( )A.B.C.D.【分析】根据SAS证明△ABF与△BED全等,进而利用全等三角形的性质解答即可.【解答】解:∵∠ABD=∠C=∠E,AB=BE,在BD上截取BF=DE,在△ABF与△BED中,,∴△ABF≌△BED(SAS),∴S△BDE =S△ABF.∴S△ABDBD•AD••.∵DE BD,∴BF BD,∴S△ABF S△ABD,∴S△BDE.故选:C.【点评】此题考查全等三角形的判定和性质,关键是根据SAS证明△ABF与△BED全等.二.填空题(共6小题)8.(2021秋•台江区期末)如图,已知∠CDE=90°,∠CAD=90°,BE⊥AD于B,且DC=DE,若BE=7,AB=4,则BD的长为 3 .【分析】利用AAS证明△ACD≌△BDE,得BE=AD,从而解决问题.【解答】解:∵BE⊥AD,∴∠EBD=∠CAD=90°,∴∠BDE+∠ADC=90°,∠BDE+∠E=90°,∴∠E=∠ADC,在△ACD和△BDE中,,∴△ACD≌△BDE(AAS),∴BE=AD,∴BD=AD﹣AB=BE﹣AB=7﹣4=3,故答案为:3.【点评】本题主要考查了全等三角形的判定与性质,同角的余角相等等知识,证明△ACD≌△BDE是解题的关键.9.(2021秋•重庆期末)如图,已知AB=AD,请添加一个条件,使得△ABC≌△ADC,则添加的条件可以为 ∠BAC=∠DAC,CB=CD (只填写一个即可).【分析】根据全等三角形的判定方法即可解决问题.【解答】解:由题意AB=AD,AC=AC,∴根据SAS,可以添加∠BAC=∠DAC,使得△ABC≌△ADC,根据SSS,可以添加CB=CD,使得△ABC≌△ADC,故答案为:∠BAC=∠DAC,CB=CD.【点评】本题考查全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.10.(2021秋•北仑区期末)如图,等边三角形ABC中,放置等边三角形DEF,且点D,E分别落在AB,BC上,AD=5,连结CF,若CF平分∠ACB,则BE的长度为 2.5 .【分析】如图,在BC上截取EG=BD,连接FG,根据SAS证明△BED≌△GFE,得FG=CG=BE,最后证明AD=2BE可得结论.【解答】解:如图,在BC上截取EG=BD,连接FG,∵△ABC和△DEF是等边三角形,∴DE=EF,AB=BC,∠DEF=∠B=∠ACB=60°,∵∠DEC=∠BDE+∠B=∠DEF+∠FEG,∴∠BDE=∠FEG,在△BED和△GFE中,,∴△BED≌△GFE(SAS),∴∠B=∠EGF=60°,BE=FG,∵FG平分∠ACB,∴∠ACF=∠ECF=30°,∵∠EGF=∠GFC+∠FCG,∴∠GFC=∠GCF=30°,∴FG=CG=BE,∵AB=BC,BD=EG,∴AD=BE+CG=2BE=5,∴BE=2.5.故答案为:2.5.【点评】本题考查了等边三角形性质,全等三角形判定和性质,解决问题的关键是作辅助线,构造三角形全等.11.(2021秋•苏州期末)勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了以勾股定理为背景的邮票.如图,在Rt△ABC中,∠BAC=90°,AC=3,AB=4.分别以AB,AC,BC为边向外作正方形ABMN,正方形ACKL,正方形BCDE,并按如图所示作长方形HFPQ,延长BC交PQ于G.则长方形CDPG的面积为 12 .【分析】如图,过点A作AA'⊥BC于A',先根据面积法可得AA'的长,证明△AA'C≌△CGK(AAS),可得CG=AA',最后根据长方形的面积公式可计算其答案.【解答】解:如图,过点A作AA'⊥BC于A',∵∠BAC=90°,AC=3,AB=4,∴BC=5,AB•AC BC•AA',∵S△ABC∴,∴AA',∵四边形ACKL是正方形,∴AC=CK,∠ACK=90°,∴∠ACA'+∠KCG=∠ACA'+∠CAA'=90°,∴∠KCG=∠CAA',在△AA'C和△CGK中,,∴△AA'C≌△CGK(AAS),∴CG=AA',∴长方形CDPG的面积=CD•CG=512.故答案为:12.【点评】本题考查了勾股定理和三角形全等的性质和判定,正确作辅助线构建三角形全等是本题的关键.12.(2021秋•房山区期末)如图,在△ABC中,AB=AC,D,E,F分别是BC,AC,AB上的点,且BF=CD,BD=CE,∠FDE=α,则∠A的度数是 (180°﹣2α) 度.(用含α的代数式表示)【分析】根据已知条件可推出BDF≌△CDE,从而可知∠EDC=∠FDB,则∠EDF=∠B.【解答】解:∵AB=AC,∴∠B=∠C,在△BDF和△CED中,,∴△BDF≌△CDE(SAS),∴∠EDC=∠DFB,∴∠EDF=∠B=(180°﹣∠A)÷2=90°∠A,∵∠FDE=α,∴∠A=180°﹣2α,故答案为:(180°﹣2α).【点评】本题考查了全等三角形的判定与性质及等腰三角形的性质及三角形内角和定理;此题能够发现全等三角形,再根据平角的定义和三角形的内角和定理发现∠EDF=∠B.再根据三角形的内角和定理以及等腰三角形的性质进行推导.13.(2021秋•蜀山区期末)如图,在△ABC中,点D、E分别为边AC、BC上的点,且AD=DE,AB=BE,∠A=70°,则∠CED= 110 度.【分析】根据SSS证明△ADB与△EDB全等,进而利用全等三角形的性质解答即可.【解答】解:在△ADB与△EDB中,,∴△ADB≌△EDB(SSS),∴∠A=∠DEB=70°,∴∠CED=180°﹣∠DEB=180°﹣70°=110°,故答案为:110.【点评】此题考查全等三角形的判定和性质,关键是根据SSS证明△ADB与△EDB全等.三.解答题(共12小题)14.(2021秋•赫山区期末)如图在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN 于点D,BE⊥MN于点N,求证:(1)△ADC≌△CEB;(2)DE=AD+BE.【分析】(1)由垂直得∠ADC=∠BEC=90°,由同角的余角相等得:∠DAC=∠BCE,因此根据AAS 可以证明)△ADC≌△CEB;(2)由(1)中的全等得:DC=BE,AD=EC,根据线段的和可得结论.【解答】证明:(1)∵AD⊥MN,BE⊥MN,∴∠ADC=∠BEC=90°,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠DAC=∠BCE,在△ADC和△CEB中,∵,∴△ADC≌△CEB;(2)∵△ADC≌△CEB,∴DC=BE,AD=EC,∵DE=DC+EC,∴DE=BE+AD.【点评】本题考查了全等三角形的性质和判定,属于常考题型,熟练掌握全等三角形的判定方法是关键;在证明角相等时常利用同角的余角相等来证明角的大小关系;要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.15.(2021秋•霍林郭勒市期末)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE 于D,AD=2.5cm,DE=1.7cm,求BE的长.【分析】先证明△ACD≌△CBE,再求出EC的长,解决问题.【解答】解:∵BE⊥CE于E,AD⊥CE于D∴∠E=∠ADC=90°∵∠BCE+∠ACE=∠DAC+∠ACE=90°∴∠BCE=∠DAC∵AC=BC∴△ACD≌△CBE∴CE=AD,BE=CD=2.5﹣1.7=0.8(cm).【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.再根据全等三角形的性质解决问题.16.(2021秋•嵊州市期末)【问题提出】(1)已知:如图1,AD⊥DE于点D,BE⊥DE于点E,点C在线段DE上,AC=BC且AC⊥BC,求证:△ADC≌△CEB.【问题解决】(2)如图2,点D,C,E在直线l上.点A,B在l的同侧,AC⊥BC,若AD=AC=BC=BE=5cm,CD=6cm,求CE的长.【分析】(1)根据同角的余角相等可得∠A=∠BCE,然后利用AAS即可证明结论;(2)作AG⊥CD于G,BH⊥CE于H,根据等腰三角形的性质得CG=3cm,利用勾股定理得AG=4cm,由(1)同理得,△ACG≌△CBH(AAS),得CH=AG=4cm,从而得出答案.【解答】(1)证明:∵AD⊥DE于点D,BE⊥DE,∴∠D=∠E=90°,∴∠ACD+∠BCE=90°,∠ACD+∠A=90°,∴∠A=∠BCE,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);(2)解:作AG⊥CD于G,BH⊥CE于H,∵AD=AC,AG⊥CD,∴CG=3cm,在Rt△ACG中,由勾股定理得,AG=4cm,由(1)同理得,△ACG≌△CBH(AAS),∴CH=AG=4cm,∵BC=BE,BH⊥CE,∴CE=2CH=8cm.【点评】本题主要考查了全等三角形的判定与性质,等腰三角形的性质,勾股定理等知识,熟练掌握基本几何模型是解题的关键.17.(2021秋•顺义区期末)已知:在△ABC中,AB=AC,直线l过点A.(1)如图1,∠BAC=90°,分别过点B,C作直线l的垂线段BD,CE,垂足分别为D,E.①依题意补全图1;②用等式表示线段DE,BD,CE之间的数量关系,并证明.(2)如图2,当∠BAC≠90°时,设∠BAC=α(0°<α<180°),作∠CEA=∠BDA=α,点D,E在直线l上,直接用等式表示线段DE,BD,CE之间的数量关系为 DE=BD+CE .【分析】(1)①由题意画出图形即可;②证明△CEA≌△ADB(AAS),根据全等三角形的性质得到AD=CE,BD=AE,结合图形证明结论;(2)根据三角形的外角性质得到∠ABD=∠CAE,证明△ABD≌△CAE,根据全等三角形的性质解答.【解答】解:(1)①依题意补全图形如图1所示.②用等式表示DE,BD,CE之间的数量关系为DE=BD+CE.证明:∵CE⊥l,BD⊥l,∴∠CEA=∠ADB=90°.∴∠ECA+∠CAE=90°.∵∠BAC=90°,直线l过点A,∴∠CAE+∠BAD=180°﹣∠BAC=90°.∴∠ECA=∠BAD.又∵AC=AB,∴△CEA≌△ADB(AAS),∴CE=AD,AE=BD.∴DE=AE+AD=BD+CE.(2)用等式表示DE,BD,CE之间的数量关系为DE=BD+CE,理由如下:∵∠BAE是△ABD的一个外角,∴∠BAE=∠ADB+∠ABD,∵∠BDA=∠BAC,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE.故答案为:DE=BD+CE.【点评】本题是三角形综合题,考查了三角形全等的判定和性质、直角三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.18.(2021秋•海淀区期末)如图,在△ABC中,∠B=∠C,点D,E在BC边上,AD=AE.求证:CD=BE.【分析】根据AAS证明△ACE与△ABD全等,进而利用全等三角形的性质解答即可.【解答】证明:∵AD=AE,∴∠AED=∠ADE,∴∠CEA=∠BDA,在△ACE与△ABD中,,∴△ACE≌△ABD(AAS),∴CE=BD,∴CE+ED=DB+ED,即CD=BE.【点评】此题考查全等三角形的判定和性质,关键是根据AAS证明△ACE与△ABD全等.19.(2021秋•番禺区期末)如图,在△ABC中,AB=AC,点D在AB上,点E在AC上,AD=AE.求证:CD=BE.【分析】根据AB=AC得出∠DBC=∠ECB,利用SAS证明△BDC≌△CEB,进而利用全等三角形的性质解答即可.【解答】证明:∵AB=AC,∴∠DBC=∠ECB,∵AD=AE,∴AB﹣AD=AC﹣AE,即DB=EC,在△DBC和△ECB中,,∴△BDC≌△CEB(SAS),∴CD=BE.【点评】本题考查全等三角形的判定和性质,解题的关键是利用SAS证明△BDC≌△CEB解答.20.(2021秋•南关区期末)如图,CD∥AB,CD=CB,点E在BC上,∠D=∠ACB.(1)求证:CE=AB.(2)若∠A=125°,则∠BED的度数是 55° .【分析】(1)根据ASA证明△DEC与△CAB全等,进而利用全等三角形的性质解答即可;(2)根据全等三角形的性质解答即可.【解答】证明:(1)∵CD∥AB,∴∠B=∠DCE,在△DEC与△CAB中,,∴△DEC≌△CAB(ASA),∴CE=AB;解:(2)∵△DEC≌△CAB,∴∠CED=∠A=125°,∴∠BED=180°﹣125°=55°,故答案为:55°.【点评】本题主要考查了全等三角形的判定与性质,根据ASA证明△DEC与△CAB全等是解题的关键.21.(2021秋•永吉县期末)如图,点D,E在△ABC的边BC上,AB=AC,AD=AE.(1)图中有 6 个三角形(包括△ABC),有 2 对全等三角形.(2)求证:BD=CE.【分析】(1)根据等边对等角的性质可得∠B=∠C,∠ADE=∠AED,再根据等角的补角相等可得∠ADB=∠AEC,然后根据“角角边”即可得到全等三角形.(2)根据AAS证明△ABE和△ACD全等,进而利用全等三角形的性质解答即可.【解答】解:(1)图中有△ABD,△ADE,△AEC,△ABE,△ADC,△ABC,∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED,∴180°﹣∠ADE=180°﹣∠AED,即∠ADB=∠AEC,在△ABD和△ACE中,,∴△ABD≌△ACE(AAS),在△ABE和△ACD中,,∴△ABE≌△ACD(AAS).故答案为:6;2;(2)证明:∵AB=AC,∴∠B=∠C.∵AD=AE,∴∠1=∠2.在△ABE和△ACD中,∴△ABE≌△ACD(AAS).∴BE=CD.∴BE—DE=CD—DE.∴BD=CE.【点评】本题考查了全等三角形的判定与性质,等腰三角形的性质,根据等边对等角的性质得到相等的角是解题的关键.22.(2021秋•莱阳市期末)如图,在△ABC中,AB=AC,点D在BC边上,点E在AC边上,连接AD,DE.已知∠1=∠2,AD=DE.(1)求证:△ABD≌△DCE;(2)若BD=3,CD=5,求AE的长.【分析】(1)根据AAS可证明△ABD≌△DCE;(2)得出AB=DC=5,CE=BD=3,求出AC=5,则AE可求出.【解答】(1)证明:∵AB=AC,∴∠B=∠C,在△ABD与△DCE中,,∴△ABD≌△DCE(AAS);(2)解:∵△ABD≌△DCE,∴AB=DC=5,CE=BD=3,∵AC=AB,∴AC=5,∴AE=AB﹣EC=5﹣3=2.【点评】本题考查了全等三角形的判定与性质,等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.23.(2021秋•涡阳县期末)如图,把一块直角三角尺ABC的直角顶点C放置在水平直线MN上,在△ABC 中,∠C=90°,AC=BC,试回答下列问题:(1)若把三角尺ABC绕着点C按顺时针方向旋转,当AB∥MN时,∠2= 45 度;(2)在三角尺ABC绕着点C按顺时针方向旋转过程中,分别作AM⊥MN于M,BN⊥MN与N,若AM =6,BN=2,求MN.(3)三角尺ABC绕着点C按顺时针方向继续旋转到图3的位置,其他条件不变,则AM、BN与MN之间有什么关系?请说明理由.【分析】(1)先求出∠B=45°,再用平行线的性质,即可求出答案;(2)先用同角的余角相等判断出∠2=∠CAM,同理:∠1=∠CBN,进而判断出△AMC≌△CNB (ASA),得出AM=CN,MC=BN,即可求出答案;(3)同(2)的方法,即可得出结论.【解答】解:(1)在△ABC中,AB=AC,∠ACB=90°,∴∠B=∠A=45°,∵AB∥MB,∴∠2=∠B=45°,故答案为45;(2)∵AM⊥MN于M,BN⊥MN于N,∴∠AMC=90°,∠BNC=90°.∴∠1+∠CAM=90°,又∵∠1+∠2=90°,∴∠2=∠CAM,同理:∠1=∠CBN,在△AMC和△CNB中,,∴△AMC≌△CNB(ASA),∴AM=CN,MC=BN,∴MN=MC+CN=AM+BN=2+6=8;(3)MN=BN﹣AM,理由:同(2)的方法得,△AMC ≌△CNB (ASA ),∴AM =CN ,MC =BN ,∴MN =MC ﹣CN =BN ﹣AM .【点评】此题是几何变换综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,同角的余角相等,判断出△AMC ≌△CNB 是解本题的关键.24.(2021秋•青山区期末)如图,△ABC 为等腰直角三角形,∠ABC =90°,△ABD 为等腰三角形,AD =AB =BC ,E 为DB 延长线上一点,∠BAD =2∠CAE .(1)若∠CAE =20°,求∠CBE 的度数;(2)求证:∠BEC =135°;(3)若AE =a ,BE =b ,CE =c .则△ABC 的面积为 .(用含a ,b ,c 的式子表示)【分析】(1)由等腰三角形的性质求出∠D =∠DBA =70°,由三角形内角和定理可得出答案;(2)过点A 作AF ⊥DE 于点F ,过点C 作CG ⊥DE 于点G ,证明△BAF ≌△CBG (AAS ),由全等三角形的性质得出AF =BG ,BF =CG ,得出AF =EF =BG ,BF =CG ,由等腰直角三角形的性质可得出结论;(3)根据S △ABC =S △AEB +S △AEC ﹣S △BEC 可得出结论.【解答】(1)解:∵∠CAE =20°,∠BAD =2∠CAE ,∴∠BAD =40°,∵AD =AB ,∴∠D =∠DBA =70°,又∵∠ABC =90°,∴∠CBE =180°﹣70°﹣90°=20°;(2)证明:过点A 作AF ⊥DE 于点F ,过点C 作CG ⊥DE 于点G ,∴∠AFB =∠ABC =∠CGB =90°,又∵AD =BC =AB ,∴∠BAC =∠ACB =45°,∠FAB ∠DAB =∠CAE ,∵∠FAB +∠FBA =∠FBA +∠CBG =90°,∴∠FAB =∠CBG =∠CAE ,在△BAF 和△CBG 中,,∴△BAF ≌△CBG (AAS ),∴AF =BG ,BF =CG ,∵∠CBG =∠CAE ,∴∠AEF =∠ACB =45°,∴AF =EF =BG ,BF =CG ,∴BF =EG =CG ,∴∠CEG =∠AEF =45°,∴∠AEC =90°,∴∠BEC =135°;(3)解:由(2)可知CG =BF ,AF =EF ,∴CG =BF =EF ﹣BE =AF ﹣BE ,∵S △ABC =S △AEB +S △AEC ﹣S △BEC ,∴S △ABC BE •CGBE •(AF ﹣BE ).故答案为:.【点评】本题属于三角形综合题,考查了三角形内角和定理,等腰直角三角形的性质,等腰三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确作出辅助线,证明△BAF≌△CBG.25.(2021秋•岳阳期末)直线l经过点A,△ABC在直线l上方,AB=AC.(1)如图1,∠BAC=90°,过点B,C作直线l的垂线,垂足分别为D、E.求证:△ABD≌△CAE;(2)如图2,D,A,E三点在直线l上,若∠BAC=∠BDA=∠AEC=α(α为任意锐角或钝角),猜想线段DE、BD、CE有何数量关系?并给出证明;(3)如图3,∠BAC=90°过点B作直线l上的垂线,垂足为F,点D是BF延长线上的一个动点,连结AD,作∠DAE=90°,使得AE=AD,连结DE,CE.直线l与CE交于点G.求证:G是CE的中点.【分析】(1)由直角三角形的性质证出∠ABD=∠CAE,可证明△ABD≌△CAE(AAS);(2)证明△ABD≌△CAE(AAS),由全等三角形的性质得出BD=AE,DA=EC,则可得出结论;(3)分别过点C、E作CM⊥l,EN⊥l,由(1)可知△ABF≌△CAM,△ADF≌△EAN,得出AF=CM,AF=EN,证明△CMG≌△ENG(AAS),由全等三角形的性质得出CG=EG,则可得出结论.【解答】(1)证明:∵BD⊥l,CE⊥l,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=90°,∵∠BAC=90°,∴∠CAE+∠DAB=90°,∴∠ABD=∠CAE,在△ABD与△CAE中,,∴△ABD≌△CAE(AAS);(2)解:猜想:DE=BD+CE,∵∠BDA=∠BAC=α,∴∠ABD+∠DAB=180°﹣∠BDA=180°﹣α,∠CAE+∠DAB=180°﹣∠BAC=180°﹣α,∴∠ABD=∠CAE,在△ABD与△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,DA=EC,∴DE=AE+DA=BD+CE;(3)证明:分别过点C、E作CM⊥l,EN⊥l,由(1)可知△ABF≌△CAM,△ADF≌△EAN,∴AF=CM,AF=EN,∴CM=EN,∵CM⊥l,EN⊥l,∴∠CMG=∠ENG=90°,在△CMG与△ENG中,,∴△CMG≌△ENG(AAS),∴CG=EG,∴G为CE的中点.【点评】本题是三角形综合题,考查了全等三角形的判定和性质,直角三角形的性质,等腰三角形的性质等知识,添加恰当辅助线构造全等三角形是本题的关键.。

初二《全等三角形》数学模型之“一线三等角”模型.doc

初二《全等三角形》数学模型之“一线三等角”模型.doc

初二《全等三角形》数学模型之“一线三等角”模型.doc
初二《全等三角形》数学模型之“一线三等
角”模型
在初中数学《全等三角形》中有许多的模型,这些模型是数学重要知识点的总结与运用,很多几何题中都有数学模型的影子,掌握好这些模型,孩子们学习几何就会比较简单,成绩不会差。

今天我要与大家分享是“一线三等角”模型,那么什么是“一线三等角”?顾名思义,一线三等角是指三个相等的角的顶点在同一条直线上。

这个模型贯穿初中几何的始终,初三讲《相似三角形》时这也是一个非常重要的知识点。

下面我们具体分析一下这个模型。

例题一:如图∠1=∠2=∠3,且它们的顶点在直线AB上,这就是一个一线三等角模型。

模型分析:
因为∠1=∠2=∠3,
所以:
∠ACE+∠AEC=∠CFB+∠BFC=∠ACE+∠BCF
易得:∠ACE=∠CFB,∠AEC=∠FCB
进而有△AEC∽△BCF(这是相似三角形一个重要的判定,我们将在初三学习),
如果再添加一组对应边相等,如CE=CF,或者是AE=BC,那么就有△AEC≌△BCF.。

八年级全等模型第1讲一线三等角课件

八年级全等模型第1讲一线三等角课件
斜边中点定理
中位线定理
证明角度相等方法
④角度的和差关系
⑤证明角所在的三角形全等或类似
⑥四点共圆,对角互补
⑦圆周角定理
⑧等(同)角的余(补)角相等
课堂练习
例1、已知:在△ABC中,AB=AC,∠BAC=90° ,过点A作直线l,过B,C分别作BD⊥l于点D,CE⊥l于点E.
(1)如图1,当直线l在△ABC的外部时,求证:DE= BD+CE;
CD= DE,∠CDE=45°求证:BD= BC.
【解答】已知在等腰Rt△ABC中,∠ACB=90°
∴∠B=45°∵CD= DE,∠CDE=45°


∴∠DCE=



180°−∠
2
= 67.5°
在△DCB中,同理∠CDB=180°-∠DCE-∠B=67.5°
∴∠DCE=∠CDB
∴BD= BC
对应边相等即可,再根据线段的和差关系不难解出答案。
课堂练习
二、等边三角形中的“一线三等角”
例1、如图,△ABC为等边三角形,D,E,F分别AB , BC,AC上的点,∠DEF= 60°, BD=CE.求证:BE= CF.

【解答】
已知△ABC为等边三角形
∴∠B=∠C=60°
∴∠BED+∠BDE=120°
∵∠DEF=60°
∴∠BED+∠FEC=120°
∴∠BDE=∠FEC
在△BED和△FCE中
∠ = ∠ = 60°
∵ ቐ =
∠ = ∠
∴△BED≌△FCE(ASA)
∴BE=CF
【分析】本题关键在于求证△BED≌△FCE(ASA)

一线三等角

全等模型 —“一线三等角”

全等模型 —“一线三等角”

全等模型—“一线三等角”一线三等角模型,顾名思议,一线三等角是指三个相等的角的顶点在同一条直线上,这个模型贯穿初中几何的始终,在相似三角形这个章节中是很重要的知识点,下面来具体分析一下。

1,等腰直角三角形一线三等角模型口诀:多个垂直先倒角相等,互余角少不了分析1:已知△OAB是等腰直角三角形,过点O作直线CD且AD⊥CD,BC⊥CD,由题意得,∵△OAB是等腰直角三角形∴∠BOA=90°OB=OA即∠COB+∠AOD=90°又因为AD⊥CD,BC⊥CD所以∠COB+∠CBO=90°(互余角)∠DAO+∠AOD=90°(互余角)因此∠CBO+∠DAO=90°(互余角)则有∠COB=∠DAO∠CBO=∠AOD综上结论,则有在△BCO和△ODA中∠COB=∠DAOOB=OA(角边角)∠CBO=∠AOD因此△BCO≌△ODA分析2,已知△OAB是等腰直角三角形,做一条直线穿过∠BOA,AD⊥CD,BC⊥CD,如下图所示:由题意得,∵△OAB是等腰直角三角形∴∠BOA=90°OB=OA即∠COB+∠AOD=90°又因为AD⊥CD,BC⊥CD所以∠COB+∠CBO=90°(互余角)∠DAO+∠AOD=90°(互余角)因此∠CBO+∠DAO=90°(互余角)则有∠COB=∠DAO,∠CBO=∠AOD综上结论,则有在△BCO和△ODA中,∠COB=∠DAO,OB=OA,∠CBO=∠AOD因此△BCO≌△ODA“一线三等角”全等模型——适用于直角的情况条件:∠BAC=∠BFA=∠AEC=90°,AC=BA,结论:△ACE≌△BAF.由题意得,∵∠BAC=∠BFA=∠AEC=90°∴∠EAC+∠BAF=90°(互余角),∠EAC+∠ECA=90°,∠ABF+∠BAF=90°,即∠ABF=∠EAC,在△ACE和△BAF中,∠ABF=∠EAC∠BFA=∠AEC(角角边)AC=BA因此:△ACE≌△BAF(AAS)则有:CE=AF,AE=BF,EF=CE+BF.条件:∠BAC=∠BFA=∠AEC=90°,AC=BA,结论:△ACE≌△BAF由题意得,∵∠BAC=∠BFA=∠AEC=90°∴∠EAC+∠BAF=90°(互余角)∠EAC+∠ECA=90°∠ABF+∠BAF=90°即∠ABF=∠EAC在△ACE和△BAF中∠ABF=∠EAC∠BFA=∠AEC(角角边)AC=BA因此:△ACE≌△BAF(AAS)则有:CE=AF AE=BFEF=BF-EC【典例1】:已知,如图所示,B,C,E三点在同一条直线上,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A,∠A与∠D互为余角B,∠A=∠DCEC,△ABC≌△CED D,∠ACB=∠DCE【答案】D【精准解析】由题意得因为AC⊥CD,所以∠ACD=90°,所以∠ACB+∠DCE=90°故选择D 又因为∠B=∠E=90°所以∠A+∠ACB=90°∠D+∠DCE=90°∠A=∠DCE∠ACB=∠D故B正确所以∠A+∠D=90°故A正确再根据全等三角形判定定理得:AC=CD∠B=∠E∠A=∠DCE因此最终答案是D2,“一线三等角”全等模型的拓展——同时也适用于锐角和钝角的情况条件:∠CAE=∠B=∠D,AC=AE结论:△ABC≌△EDA由题意得,∠CAB+∠CAE+∠EAD=180°∠CAB+∠B+∠C=180°∵∠CAE=∠B∴∠C=∠EAD在△CAB和△EAD中,∠B=∠D,∠C=∠EAD,AC=AE,因此△CAB≌△EAD(AAS)所以BC=AD,AB=DE,BD=BC+DE由题意得,∠CAB+∠CAE+∠EAD=180°∠CAB+∠B+∠C=180°∵∠CAE=∠B∴∠C=∠EAD在△CAB和△EAD中,∠B=∠D,∠C=∠EAD,AC=AE,因此△CAB≌△EAD(AAS),锐角和钝角的结论:BC=AD,AB=DE,BD=BC+DE.【典例2】:在三角形ABC中,∠A=40°,∠B=∠C,BE=CD,BD=CF,求∠EDF的度数?【答案】由题意得在△BDE和△CFD中BE=CD∠B=∠C(边角边)BD=CF所以△BDE≌△CFD∵∠BDE+∠EDF+∠FDC=180°∠BDE+∠B+∠BED=180°∵∠EDF=∠B又因为∠A=40°∠B=∠C根据三角形内角和得∠B=∠EDF=∠B=70°=70°因此∠EDF=∠B=70°【精准解析】根据已知条件证明△BDE≌△CFD,即ED=DF,∠EDF=∠B=∠C,因此属于一线三等角模型,已知∠A=40°,即先求∠B=∠C=70°,即可得出答案【典例3】如图,在三角形ABC中,依然有AB=AC,若点B,C位于直线l的两侧,若果∠BDA+∠BAC=180°,∠BDA=∠AEC,求证BD=CE+DE【答案】由题意得∵∠BDA+∠BAC=180°∠BDA+∠BDE=90°∴∠BAC=∠BDE又∵∠ABD+∠BAD=∠BDE∠CAE+∠BAD=∠BAC∴∠ABD=∠CAE在△BDA和△CEA中∠ABD=∠CAE∠BDA=∠AEC(角角边)AB=AC所以△BDA≌△CEA即AD=CE BD=AE因此BD=CE+DE【精准答案】首先证明△BDA≌△CEA,由此得到AD=CE BD=AE,即可得出答案。

(完整版)几何模型:一线三等角模型

(完整版)几何模型:一线三等角模型

一线三等角模型一.一线三等角概念“一线三等角”是一个常见的相似模型, 上构成的相似图形,这个角可以是直角, 不同的称呼,“K 形图”, 二•一线三等角的分类 全等篇指的是有三个等角的顶点在同一条直线 也可以是锐角或钝角。

不同地区对此有 “弦图”三、“一线三等角” 1. 一般情况下,如图2•当等角所对的边相等时,则两个三角形全等 易得△ AE3A BDE..如图 3-1,若 CE=ED 则厶 AE3A BDE.锐角同侧异侧相似篇 锐角同侧异侧“三垂直”,等,以下称为“一线三等角”。

的性质3-1,由/1 = / 2=7 3,AVABOCff构造模型解题在图3-4造“一线三等角如图3- 4 如图3-3,当/仁/ 2且 BOC 90 4•“中点型一线三等角“的变式(了中点时,△ BD 0A CFS A DFE.阳3-13.中点型“一线三等角”如图3-2,当/仁/ 2=7 3,且 D 是BC^3-3图 3^“中点型一线三等角”通常与三角形的内心或旁心相关,1 90BAC 这是内心的性质,反之未必是内心 .2(右图)中,如果延长 BE 与CF ,交于点P ,则点D 是厶PEF 的旁心-BAC 时,点0是厶ABC 的内心.可以考虑构 25.“一线三等角”的各种变式(图 3-5,以等腰三角形为例进行说明图3-5其实这个第4图,延长DC 反而好理解.相当于两侧型的,不延长理解,以为 是一种新型的,同侧穿越型?不管怎么变,都是由三等角确定相似三角形来进 行解题 四、“一线三等角”的应用 1.“一线三等角”应用的三种情况.a. 图形中已经存在“一线三等角”,直接应用模型解题;b. 图形中存在“一线二等角”,不上“一等c.图形中只有直线上一个角,不上“二等角”构造模型解题•体会:感觉最后一种情况出现比较多,尤其是压轴题中,经常会有一个特殊角或指导该角的三角函数值时,我经常构造“一线三等角”来解题•2.在定边对定角问题中,构造一线三等角是基本手段,尤其是直角坐标系中的张角问题,在x 轴或y轴(也可以是平行于x轴或y轴的直线)上构造线三等角解决问题更是重要的手段•3.构造一线三等角的步骤:找角、定线、构相似在DC的延长銭上截取CE= —, CD的延怅:規上藪取DF= —>贝I」mZAEP= t3nZPFB= t3M J»JZAEP= ZPFH= a= ZAPR ,所1^APAlw ABPF .在CP上蔵取CE= —, 1£ DP蒙取DF=—,则tmZAEC= tanZBFD=taDGiWlZAEC= ZBFD= a= ZA?B^^iPAE«iBPF ・坐标系中,要讲究“线”的特殊性如图3-6,线上有一特殊角,就考虑构造同侧型一线三等角当然只加这两条线通常是不够的,为了利用这个特殊角导线段的关系,过C、D两点作直线I的垂线是必不可少的。

全等典型模型:“一线三等角”模型

全等典型模型:“一线三等角”模型

《三角形证明》题型解读11 全等典型模型:“一线三等角”模型【知识梳理】(一)“一线三等角模型”题型特征:图形的某条线段上出现三个相等的角,如图中∠B=∠2=∠C解题方法:只要题目再出现一组等边(BE=AC 或EF=AE 或BF=EC ),必证△BEF ≌△CAE (AAS 或ASA )(二)“三垂直模型”(“一线三直角模型”)1.基本图形题型特征:图形的某条线段上出现三个直角,如图中∠B=∠AED=∠C=90°解题方法:只要题目再出现一组等边(AB=EC 或BE=DC 或AE=DE ),必证△ABE ≌△ECD (AAS 或ASA )2.两种变化图形(1)“交叉型”三垂直模型(2)“L 型”三垂直模型【典型例题】 例1.如图,在△ABC 中,AB=AC=2,∠B=40º,点D 在线段BC 上运动(点D 不与点B 、C 重合),连接AD ,作∠ADE=40º,DE 交线段AC 于点E .(1)当∠BDA=115°时,∠EDC=________,∠AED=___________;(2)线段DC 的长度为何值时,△ABD ≌△DCE ,请说明理由; (3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,求∠BDA 的度数;若不可以,请说明理 由.证∠1+∠2=°,∠2+∠A=°,∴∠1=∠A 又∠B=∠C ,若AB ≅FC若AB ~FC 21A B F E D C 证∠1+∠2=°,∠2+∠A=°,∴∠1=∠A 又∠B=∠C ,若AB ≅EC若AB ~EC 21A B CE D 证明:∵∠1+∠2=90°,∠2+∠A=90°,∴∠1=∠A 又∵∠B=∠C ,若其中有一组边相等,则证ABE ≅FCD;若没有边相等,则证ABE ~FCD;C (1(2ED CB A(1)若有等边,则△ABE≌△BDC(AAS )(2)若无等边,则△ABE∽△BDC(AA )D CA CE D B例2.如图,长方形ABCD 中,E 在AD 上,且EF ⊥EC ,EF=EC ,DE=2,长方形的周长为16,求AE 的长..例3.在△ABC 中AB =AC ,∠BAC =90°,分别过B 、C 作过A 点的直线的垂线,垂足为D 、E .(1)求证:△AEC ≌△BDA ;(2)如果CE =2,BD =4,求ED 的长是多少?例4.(1)已知,如图①,在△ABC 中,∠BAC=90°,AB=AC ,直线m 经过点A ,BD ⊥m 于点D ,CE ⊥m 于点E ,求证:DE=BD+CE ;(2)如图②,将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角,请问结论DE=BD+CE 是否成立?若成立,请你给出证明;若不成立,请说明理由.例5.如图,正方形ABCD 中,P 、Q 分别是边AB 、BC 上的两个动点,P 、Q 同时分别从A 、B 出发,点P 沿AB 向B 运动;点Q 沿BC 向C 运动,速度都是1个单位长度/秒.运动时间为t 秒.连结AQ 、DP 相交于点F ,求证:AQ ⊥DP ;A C E D BA B C D E F 图F E DC B A。

专题11 全等三角形中的一线三等角模型(解析版)

专题11 全等三角形中的一线三等角模型(解析版)

专题11全等三角形中的一线三等角模型【模型1】三垂直全等模型【说明】上图三垂直模型中,只要知道一组对应边相等,即可证明两三角形全等。

【模型2】一线三直角全等模型【说明】上图中的两个三角形中三组对应角相等,只要知道一组对应边相等,即可证明两三角形全等。

【模型3】一线三等角与一组对应边相等全等模型【说明】上图中可根据平角的概念和三角形内角和定理可求得的两个三角形中三组对应角相等,只要再知道一组对应边相等,即可证明两三角形全等。

【例1】如图,AC =CE ,∠ACE =90°,AB ⊥BD ,ED ⊥BD ,AB =6cm ,DE =2cm ,则BD 等于()A .6cmB .8cmC .10cmD .4cm【答案】B 【分析】根据题意证明ABC CDE △≌△即可得出结论.【解析】解:∵AB ⊥BD ,ED ⊥BD ,∴90ABC CDE ∠=∠=︒,∵∠ACE =90°,∴90ACB DCE ∠+∠=︒,∵90ACB BAC ∠+∠=︒,∴BAC DCE ∠=∠,在ABC 和CDE △中,90ABC CDE BAC DCE AC CE ∠=∠=︒⎧⎪∠=∠⎪⎨⎪⎪⎩=,∴()ABC CDE AAS ≌,∴6cm AB CD ==,2cm BC DE ==,∴268cm BD BC CD =+=+=,故选:B .【例2】如图所示,ABC 中,,90AB AC BAC =∠=︒.直线l 经过点A ,过点B 作BE l ⊥于点E ,过点C 作CF l ⊥于点F .若2,5==BE CF ,则EF =__________.【答案】7【分析】根据全等三角形来实现相等线段之间的关系,从而进行计算,即可得到答案;【解析】解:∵BE ⊥l ,CF ⊥l ,∴∠AEB =∠CFA =90°.∴∠EAB +∠EBA =90°.又∵∠BAC =90°,∴∠EAB +∠CAF =90°.∴∠EBA =∠CAF .在△AEB 和△CFA 中∵∠AEB =∠CFA ,∠EBA =∠CAF ,AB =AC ,∴△AEB ≌△CFA .∴AE =CF ,BE =AF .∴AE +AF =BE +CF .∴EF =BE +CF .∵2,5==BE CF ,∴257EF =+=;故答案为:7.【例3】(1)观察理解:如图1,∠ACB =90°,AC =BC ,直线l 过点C ,点A ,B 在直线l 同侧,BD ⊥l ,AE ⊥l ,垂足分别为D ,E ,求证:△AEC ≌△CDB .(2)理解应用:如图2,过△ABC边AB、AC分别向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I.利用(1)中的结论证明:I是EG的中点.(3)类比探究:①将图1中△AEC绕着点C旋转180°得到图3,则线段ED、EA和BD的关系_______;∥,AB⊥BC,AD=2,BC=3,将腰DC绕D点逆②如图4,直角梯形ABCD中,AD BC时针旋转90°至DE,△AED的面积为.【答案】(1)见解析;(2)见解析;(3)①ED=EA-BD;②1【分析】(1)根据同角的余角相等可得∠A=∠BCD,再利用AAS证得△AEC≌△CDB,即可;(2)分别过点E、G向HI作垂线,垂足分别为M、N,由(1)可证得△EMA≌△AHB,△ANG ≌△CHA ,从而得到EM =GN ,可得到△EMI ≌△GNI ,从而得到EI =IG ,即可求证;(3)①由(1)得:△AEC ≌△CDB ,可得CE =BD ,AE =CD ,即可;②过点C 作CP ⊥AD 交AD 延长线于点P ,过点E 作EQ ⊥AD 交AD 延长线于点Q ,根据旋转的性质可得根据题意得:∠CDE =90°,CD =DE ,再由(1)可得△CDP ≌△DEQ ,从而得到DP =EQ ,然后根据两平行线间的距离,可得AP =BC ,进而得到PD =1,即可求解.【解析】(1)证明:∵BD ⊥l ,AE ⊥l ,∴∠AEC =∠BDC =90°,又∵∠ACB =90°∴∠A +∠ACE =∠ACE +∠BCD =90°,∴∠A =∠BCD ,在△AEC 和△CDB 中,AEC CDB A BCD AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEC ≌△CDB (AAS );(2)证明:分别过点E 、G 向HI 作垂线,垂足分别为M 、N,由(1)得:△EMA ≌△AHB ,△ANG ≌△CHA ,∴EM =AH ,GN =AH ,∴EM =GN ,在△EMI 和△GNI 中,90EIM GIN EMI GNI EM GN ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△EMI ≌△GNI (AAS );∴EI =IG ,即I 是EG 的中点;(3)解:①由(1)得:△AEC ≌△CDB ,∴CE =BD ,AE =CD ,∵ED =CD -CE ,∴ED =EA -BD ;故答案为:ED =EA -BD②如图,过点C 作CP ⊥AD 交AD 延长线于点P ,过点E 作EQ ⊥AD 交AD 延长线于点Q ,根据题意得:∠CDE =90°,CD =DE ,由(1)得:△CDP ≌△DEQ ,∴DP =EQ ,直角梯形ABCD 中,AD BC ∥,AB ⊥BC ,∴AB ⊥AD ,∴AB ∥CP ,∴BC ⊥CP ,∵BC =3,∴AP =BC =3,∵AD =2,∴DP =AP -AD =1,∴EQ =1,∴△ADE 的面积为1121122AD EN 创=.故答案为:1一、单选题1.如图,点P ,D 分别是∠ABC 边BA ,BC 上的点,且4BD =,60ABC ∠=︒.连结PD ,以PD 为边,在PD 的右侧作等边△DPE ,连结BE ,则△BDE 的面积为()A .B .2C .4D .【答案】A【分析】要求BDE ∆的面积,想到过点E 作EF BC ⊥,垂足为F ,因为题目已知60ABC ∠=︒,想到把ABC ∠放在直角三角形中,所以过点D 作DG BA ⊥,垂足为G ,利用勾股定理求出DG 的长,最后证明GPD FDE ∆≅∆即可解答.【解析】解:过点E 作EF BC ⊥,垂足为F ,过点D 作DG BA ⊥,垂足为G ,在Rt BGD 中,4BD =,60ABC ∠=︒,30BDG ∴∠=︒,122BG BD ∴==,GD ∴=PDE ∆是等边三角形,60PDE ∴∠=︒,PD DE =,180120PDB EDF PDE ∴∠+∠=︒-∠=︒,60ABC ∠=︒,180120PDB BPD ABC ∴∠+∠=︒-∠=︒,BPD EDF ∴∠=∠,90PGD DFE ∠=∠=︒,()GPD FDE AAS ∴∆≅∆,GD EF ∴==,BDE ∴∆的面积12BD EF =⋅,142=⨯⨯,=故选:A .2.课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),∠ACB =90°,AC =BC ,从三角板的刻度可知AB =20cm ,小聪想知道砌墙砖块的厚度(每块砖的厚度相等),下面为砌墙砖块厚度的平方的是().A .20013cm 2B .15013cm 2C .10013cm 2D .5013cm 2【答案】A【分析】设每块砖的厚度为x cm ,则AD =3x cm ,BE =2x cm ,然后证明△DAC ≌△ECB 得到CD =BE =2x cm ,再利用勾股定理求解即可.【解析】解:设每块砖的厚度为x cm ,则AD =3x cm ,BE =2x cm ,由题意得:∠ACB =∠ADC =∠BEC =90°,∴∠ACD +∠DAC =∠ACD +∠BCE =90°,∴∠DAC =∠ECB ,又∵AC =CB ,∴△DAC ≌△ECB (AAS ),∴CD =BE =2x cm ,∵222AC BC AB +=,222AD DC AC +=,∴()()222232220x x +=,∴220013x =,故选A .3.一天课间,顽皮的小明同学拿着老师的等腰直角三角板玩,不小心将三角板掉到两根柱子之间,如图所示,这一幕恰巧被数学老师看见了,于是有了下面这道题:如果每块砖的厚度a =8cm ,则DE 的长为()A .40cmB .48cmC .56cmD .64cm【答案】C 【分析】由等腰直角三角形的性质可得∠ACB =90°,AC =CB ,因此可以考虑证明△ACD 和△CBE 全等,可以证明DE 的长为7块砖的厚度的和.【解析】解:由题意得∠ADC =∠CEB =∠ACB =90°,AC =CB ,∴∠ACD =90°﹣∠BCE =∠CBE ,在△ACD 和△CBE 中,ADC CEB ACD CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (AAS ),∴CD=BE=3a,AD=CE=4a,∴DE=CD+CE=3a+4a=7a,∵a=8cm,∴7a=56cm,∴DE=56cm,故选C.二、填空题4.如图,直线l1⊥l3,l2⊥l3,垂足分别为P、Q,一块含有45°的直角三角板的顶点A、B、C分别在直线l1、l2、线段PQ上,点O是斜边AB的中点,若PQ,则OQ的长等于_____.【答案】6【分析】由“AAS”可证△ACP≌△CBQ,可得AP=CQ,PC=BQ,由“AAS”可证△APO≌△BHO,可得AP=BH,OP=OH,由等腰直角三角形的性质和直角三角形的性质可求解.【解析】解:如图,连接PO,并延长交l2于点H,∵l1⊥l3,l2⊥l3,∴l1∥l3,∠APC=∠BQC=∠ACB=90°,∴∠PAC+∠ACP=90°=∠ACP+∠BCQ,∴∠PAC=∠BCQ,在△ACP和△CBQ中,∠=∠⎧⎪∠=∠⎨⎪=⎩PAC BCQ APC BQC AC BC ,∴△ACP ≌△CBQ (AAS ),∴AP =CQ ,PC =BQ ,∴PC +CQ =AP +BQ =PQ,∵AP ∥BQ ,∴∠OAP =∠OBH ,∵点O 是斜边AB 的中点,∴AO =BO ,在△APO 和△BHO 中,∠=∠⎧⎪∠=∠⎨⎪=⎩AOP BOH APO BHO AO BO ,∴△APO ≌△BHO (AAS ),∴AP =BH ,OP =OH ,∴BH +BQ =AP +BQ =PQ ,∴PQ =QH,∵∠PQH =90°,∴PHPQ =12,∵OP =OH ,∠PQH =90°,∴OQ =12PH =6.故答案为:65.如图,已知ABC 是等腰直角三角形,∠ACB =90°,AD ⊥DE 于点D ,BE ⊥DE 于点E ,且点C 在DE 上,若AD =5,BE =8,则DE 的长为_____.【答案】13【分析】先根据AD ⊥DE ,BE ⊥DE ,∠ADC =∠CEB =90°,则∠DAC +∠DCA =90°,△ABC 是等腰直角三角形,∠ACB =90°,可得AC =CB ,推出∠DAC =∠ECB ,即可证明△DAC ≌△ECB得到CE =AD =5,CD =BE =8,由此求解即可.【解析】解:∵AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠CEB =90°,∴∠DAC +∠DCA =90°,∵△ABC 是等腰直角三角形,∠ACB =90°,∴∠DCA +∠BCE =90°,AC =CB∴∠DAC =∠ECB ,∴△DAC ≌△ECB (AAS ),∴CE =AD =5,CD =BE =8,∴DE =CD +CE =13,故答案为:13.三、解答题6.已知:如图,AB ⊥BD ,ED ⊥BD ,C 是BD 上的一点,AC ⊥CE ,AB =CD ,求证:BC =DE.【答案】见解析【分析】根据直角三角形全等的判定方法,ASA 即可判定三角形全等.【解析】证明:∵AB ⊥BD ,ED ⊥BD ,AC ⊥CE (已知)∴∠ACE =∠B =∠D =90°(垂直的意义)∵∠BCA +∠DCE +∠ACE =180°(平角的意义)∠ACE =90°(已证)∴∠BCA +∠DCE =90°(等式性质)∵∠BCA +∠A +∠B =180°(三角形内角和等于180°)∠B =90°(已证)∴∠BCA +∠A =90°(等式性质)∴∠DCE =∠A (同角的余角相等)在△ABC 和△CDE 中,A DCE AB CD B D ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△CDE (ASA )∴BC =DE (全等三角形对应边相等)7.如图,∠B =∠C =∠FDE =80°,DF =DE ,BF =1.5cm ,CE =2cm ,求BC的长.【答案】3.5【分析】由平角定义及三角形内角和定理解得EDC BFD ∠=∠,继而证明()BFD CDE AAS ≅V V ,得到=1.5,=2BF CD BD CE ==,最后根据线段的和差解题.【解析】解:∠B =∠C =∠FDE =80°,100,100BDF EDC BDF BFD ∴∠+∠=︒∠+∠=︒EDC BFD∴∠=∠在BFD △与CDE △中,B C EDC BFD DE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩()BFD CDE AAS ∴≅=1.5,=2BF CD BD CE ∴==2 1.5 3.5BC BD DC ∴=+=+=.8.感知:(1)数学课上,老师给出了一个模型:如图1,90BAD ACB AED ∠=∠=∠=︒,由12180BAD ∠+∠+∠=︒,2180D AED ∠+∠+∠=︒,可得1D ∠=∠;又因为90ACB AED =∠=︒,可得ABC DAE △△∽,进而得到BC AC=______.我们把这个模型称为“一线三等角”模型.应用:(2)实战组受此模型的启发,将三等角变为非直角,如图2,在ABC 中,10AB AC ==,12BC =,点P 是BC 边上的一个动点(不与B 、C 重合),点D 是AC 边上的一个动点,且APD B ∠=∠.①求证:ABP PCD △△∽;②当点P 为BC 中点时,求CD 的长;拓展:(3)在(2)的条件下如图2,当APD △为等腰三角形时,请直接写出BP 的长.【答案】感知:(1)AEDE;应用:(2)①见解析;②3.6;拓展:(3)2或113【分析】(1)根据相似三角形的性质,即可求解;(2)①根据等腰三角形的性质得到∠B=∠C,根据三角形的外角性质得到∠BAP=∠CPD,即可求证;②根据相似三角形的性质计算,即可求解;(3)分PA=PD、AP=AD、DA=DP三种情况,根据等腰三角形的性质、相似三角形的性质,即可求解.【解析】感知:(1)∵△ABC∽△DAE,∴BC AC AE DE=,∴BC AE AC DE=,故答案为:AE DE;应用:(2)①∵∠APC=∠B+∠BAP,∠APC=∠APD+∠CPD,∠APD=∠B,∴∠BAP=∠CPD,∵AB=AC,∴∠B=∠C,∴△ABP∽△PCD;②BC=12,点P为BC中点,∴BP=PC=6,·∵△ABP∽△PCD,∴AB BPPC CD=,即1066CD=,解得:CD=3.6;拓展:(3)当PA=PD时,△ABP≌△PCD,∴PC=AB=10,∴BP=BC-PC=12-10=2;当AP=AD时,∠ADP=∠APD,∵∠APD =∠B =∠C ,∴∠ADP =∠C ,不合题意,∴AP ≠AD ;当DA =DP 时,∠DAP =∠APD =∠B ,∵∠C =∠C ,∴△BCA ∽△ACP ,∴BC AC AC CP =,即121010CP=,解得:253CP =,∴25111233BP BC CP =-=-=,综上所述,当APD △为等腰三角形时,BP 的长为2或113.9.问题背景:(1)如图①,已知ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D ,E ,易证:DE =______+______.(2)拓展延伸:如图②,将(1)中的条件改为:在ABC 中,AB AC =,D ,A ,E 三点都在直线m 上,并且有BDA AEC BAC ∠=∠=∠,请求出DE ,BD ,CE 三条线段的数量关系,并证明.(3)实际应用:如图③,在ACB △中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点A 的坐标为()6,3-,请直接写出B 点的坐标.【答案】(1)BD ;CE ;证明见详解;(2)DE=BD+CE ;证明见详解;(3)点B 的坐标为()1,4B .【分析】(1)根据全等三角形的判定和性质得到AE BD =,AD CE =,结合图形解答即可;(2)根据三角形内角和定理、平角的定义证明ABD CAE ∠=∠,证明ABD CAE ≌,根据全等三角形的性质得到AE BD =,AD CE =,结合图形解答即可;(3)根据AEC CFB ≌,得到3CF AE ==,4BF CE OE OC ==-=,根据坐标与图形性质解答即可.【解析】(1)证明:∵BD m ⊥,CE m ⊥,∴90ADB CEA ∠=∠=︒,∵90BAC ∠=︒,∴90BAD CAE ∠+∠=︒,∵90BAD ABD ∠+∠=︒,∴ CAE ABD ∠=∠,在ADB 和CEA 中ABD CAE ADB CEA AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADB CEA ≌,∴AE BD =,AD CE =,∴DE AE AD BD CE =+=+,即:DE BD CE =+,故答案为:BD ;CE ;(2)解:数量关系:DE BD CE =+,证明:在ABD 中,180ABD ADB BAD ∠=︒-∠-∠,∵180CAE BAC BAD ∠=︒-∠-∠,BDA AEC ∠=∠,∴ABD CAE ∠=∠,在ABD 和CAE 中,ABD CAE BDA AEC AB CA ∠∠⎧⎪∠∠⎨⎪⎩===∴ABD CAE ≌,∴AE BD =,AD CE =,∴DE AD AE BD CE =+=+;(3)解:如图,作AE x ⊥轴于E ,BF x ⊥轴于F,由(1)可知,AEC CFB ≌,∴3CF AE ==,4BF CE OE OC ==-=,∴1OF CF OC =-=,∴点B 的坐标为()1,4B .10.在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA =∠AEC=∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是;(2)如图2,当0<α<180时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由.【答案】(1)DE=BD+CE.(2)DE=BD+CE仍然成立,证明见解析【分析】(1)由∠BDA=∠BAC=∠AEC=90°得到∠BAD+∠EAC=∠BAD+∠DBA=90°,进而得到∠DBA=∠EAC,然后结合AB=AC得证△DBA≌△EAC,最后得到DE=BD+CE;(2)由∠BDA=∠BAC=∠AEC=α得到∠BAD+∠EAC=∠BAD+∠DBA=180°﹣α,进而得到∠DBA=∠EAC,然后结合AB=AC得证△DBA≌△EAC,最后得到DE=BD+CE.【解析】(1)解:DE=BD+CE,理由如下,∵∠BDA=∠BAC=∠AEC=90°,∴∠BAD+∠EAC=∠BAD+∠DBA=90°,∴∠DBA=∠EAC,∵AB=AC,∴△DBA≌△EAC(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE,故答案为:DE=BD+CE.(2)DE=BD+CE仍然成立,理由如下,∵∠BDA=∠BAC=∠AEC=α,∴∠BAD+∠EAC=∠BAD+∠DBA=180°﹣α,∴∠DBA=∠EAC,∵AB=AC,∴△DBA≌△EAC(AAS),∴BD=AE,AD=CE,∴DE =AD +AE =BD +CE ;11.如图,90,ABC FA AB ∠=⊥于点A ,点D 在直线AB 上,,AD BC AF BD ==.(1)如图1,若点D 在线段AB 上,判断DF 与DC 的数量关系和位置关系,并说明理由;(2)如图2,若点D 在线段AB 的延长线上,其他条件不变,试判断(1)中结论是否成立,并说明理由.【答案】(1)DF =DC ,DF ⊥DC ;理由见解析(2)成立,理由见解析【分析】(1)先证△ADF ≌△BCD ,得DF =DC ,ADF BCD ∠=∠,再证∠FDC =90°即可得垂直;(2)先证△ADF ≌△BCD ,得DF =DC ,ADF BCD ∠=∠,再证∠FDC =90°即可得垂直.【解析】(1)解:∵90,ABC FA AB ∠=⊥,∴90ABC DAF ∠∠==,在△ADF 与△BCD 中AF BD DAF ABC AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△BCD ,∴DF =DC ,ADF BCD ∠=∠,∵∠BDC +∠BCD =90°,∴∠BDC +∠ADF =90°,∴∠FDC =90°,即DF ⊥DC .(2)∵90,ABC FA AB ∠=⊥,∴90DBC DAF ∠∠==,在△ADF 与△BCD 中AF BD DAF DBC AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△BCD ,∴DF =DC ,ADF BCD ∠=∠,∵∠BDC +∠BCD =90°,∴∠BDC +∠ADF =90°,∴∠FDC =90°,即DF ⊥DC .12.在直线m 上依次取互不重合的三个点,,D A E ,在直线m 上方有AB AC =,且满足BDA AEC BAC α∠=∠=∠=.(1)如图1,当90α=︒时,猜想线段,,DE BD CE 之间的数量关系是____________;(2)如图2,当0180α<<︒时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)应用:如图3,在ABC 中,BAC ∠是钝角,AB AC =,,BAD CAE BDA AEC BAC ∠<∠∠=∠=∠,直线m 与CB 的延长线交于点F ,若3BC FB =,ABC 的面积是12,求FBD 与ACE 的面积之和.【答案】(1)DE =BD +CE(2)DE =BD +CE 仍然成立,理由见解析(3)△FBD 与△ACE 的面积之和为4【分析】(1)由∠BDA =∠BAC =∠AEC =90°得到∠BAD +∠EAC =∠BAD +∠DBA =90°,进而得到∠DBA =∠EAC ,然后结合AB =AC 得证△DBA ≌△EAC ,最后得到DE =BD +CE ;(2)由∠BDA =∠BAC =∠AEC =α得到∠BAD +∠EAC =∠BAD +∠DBA =180°﹣α,进而得到∠DBA =∠EAC ,然后结合AB =AC 得证△DBA ≌△EAC ,最后得到DE =BD +CE ;(3)由∠BAD >∠CAE ,∠BDA =∠AEC =∠BAC ,得出∠CAE =∠ABD ,由AAS 证得△ADB ≌△CAE ,得出S △ABD =S △CEA ,再由不同底等高的两个三角形的面积之比等于底的比,得出S △ABF 即可得出结果.【解析】(1)解:DE =BD +CE ,理由如下,∵∠BDA =∠BAC =∠AEC =90°,∴∠BAD +∠EAC =∠BAD +∠DBA =90°,∴∠DBA =∠EAC ,∵AB =AC ,∴△DBA ≌△EAC (AAS ),∴AD =CE ,BD =AE ,∴DE =AD +AE =BD +CE ,故答案为:DE =BD +CE .(2)DE =BD +CE 仍然成立,理由如下,∵∠BDA =∠BAC =∠AEC =α,∴∠BAD +∠EAC =∠BAD +∠DBA =180°﹣α,∴∠DBA =∠EAC ,∵AB =AC ,∴△DBA ≌△EAC (AAS ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE ;(3)解:∵∠BAD <∠CAE ,∠BDA =∠AEC =∠BAC ,∴∠CAE =∠ABD ,在△ABD 和△CAE 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CAE (AAS ),∴S △ABD =S △CAE ,设△ABC 的底边BC 上的高为h ,则△ABF 的底边BF 上的高为h ,∴S △ABC =12BC •h =12,S △ABF =12BF •h ,∵BC =3BF ,∴S △ABF =4,∵S △ABF =S △BDF +S △ABD =S △FBD +S △ACE =4,∴△FBD 与△ACE 的面积之和为4.13.通过对下面数学模型的研究学习,解决下列问题:(1)如图1,∠BAD =90°,AB =AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥AC 于点E .由∠1+∠2=∠2+∠D =90°,得∠1=∠D .又∠ACB =∠AED =90°,可以推理得到△ABC ≌△DAE .进而得到AC =,BC =AE .我们把这个数学模型称为“K 字”模型或“一线三等角”模型;(2)如图2,∠BAD =∠CAE =90°,AB =AD ,AC =AE ,连接BC ,DE ,且BC ⊥AF 于点F ,DE 与直线AF 交于点G .求证:点G 是DE 的中点;(深入探究)(3)如图,已知四边形ABCD 和DEGF 为正方形,△AFD 的面积为S 1,△DCE 的面积为S 2,则有S 1S 2(填“>、=、<”)【答案】(1)DE ;(2)见解析;(3)=【分析】(1)根据全等三角形的性质可直接进行求解;(2)分别过点D 和点E 作DH ⊥FG 于点H ,EQ ⊥FG 于点Q ,进而可得∠BAF =∠ADH ,然后可证△ABF ≌△DAH ,则有AF =DH ,进而可得DH =EQ ,通过证明△DHG ≌△EQG 可求解问题;(3)过点D 作DO ⊥AF 交AF 于O ,过点E 作EN ⊥OD 交OD 延长线于N ,过点C 作CM ⊥OD 交OD 延长线于M ,由题意易得∠ADC =∠90°,AD =DC ,DF =DE ,然后可得∠ADO =∠DCM ,则有△AOD ≌△DMC ,△FOD ≌△DNE ,进而可得OD =NE ,通过证明△ENP ≌△CMP 及等积法可进行求解问题.【解析】解:(1)∵ABC DAE △≌△,∴AC DE =;(2)分别过点D 和点E 作DH ⊥FG 于点H ,EQ ⊥FG 于点Q ,如图所示:∴90DAH ADH ∠+∠=︒,∵90BAD ∠=︒,∴90BAF DAH ∠+∠=︒,∴BAF ADH ∠=∠,∵BC AF ⊥,∴90BFA AHD ∠=∠=︒,∵AB DA =,∴△ABF ≌△DAH ,∴AF =DH ,同理可知AF =EQ ,∴DH =EQ ,∵DH ⊥FG ,EQ ⊥FG ,∴90DHG EQG ∠=∠=︒,∵DGH EGQ∠=∠∴△DHG ≌△EQG ,∴DG =EG ,即点G 是DE 的中点;(3)12S S =,理由如下:如图所示,过点D 作DO ⊥AF 交AF 于O ,过点E 作EN ⊥OD 交OD 延长线于N ,过点C 作CM ⊥OD 交OD 延长线于M∵四边形ABCD 与四边形DEGF 都是正方形∴∠ADC =∠90°,AD =DC ,DF =DE∵DO ⊥AF ,CM ⊥OD ,∴∠AOD =∠CMD =90°,∠OAD +∠ODA =90°,∠CDM +∠DCM =90°,又∵∠ODA +∠CDM =90°,∴∠ADO =∠DCM ,∴△AOD ≌△DMC ,∴AOD DMC S S =△△,OD =MC ,同理可以证明△FOD ≌△DNE ,∴FOD DNE S S =△△,OD =NE ,∴MC =NE ,∵EN ⊥OD ,CM ⊥OD ,∠EPN =∠CMP ,∴△ENP ≌△CMP ,∴ENP CMP S S △△=,∵,ADF AOD FOD DCE DCM CMP DEN ENP SS S S S S S S =+=-++,∴DCE DCM DEN AOD FOD S S S S S =+=+,∴DCE ADF S S △△=即12S S =.14.(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在ABC 中,90BAC ∠=︒,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点D ,E .求证:DE BD CE =+.(2)组员小明想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在ABC 中,AB AC =,D ,A ,E 三点都在直线l 上,并且有BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请问结论DE BD CE =+是否成立?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过ABC 的边AB ,AC 向外作正方形ABDE 和正方形ACFG ,AH 是BC 边上的高.延长HA 交EG 于点I .若7AEG S =△,则AEI S =△______.【答案】(1)见解析;(2)结论成立,理由见解析;(3)3.5【分析】(1)由条件可证明△ABD ≌△CAE ,可得DA =CE ,AE =BD ,可得DE =BD +CE ;(2)由条件可知∠BAD +∠CAE =180°-α,且∠DBA +∠BAD =180°-α,可得∠DBA =∠CAE ,结合条件可证明△ABD ≌△CAE ,同(1)可得出结论;(3)由条件可知EM =AH =GN ,可得EM =GN ,结合条件可证明△EMI ≌△GNI ,可得出结论I 是EG 的中点.【解析】解:(1)证明:如图1中,∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD +∠CAE =90°,∵∠BAD +∠ABD =90°,∴∠CAE =∠ABD ,在△ADB 和△CEA 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴DE =AE +AD =BD +CE .(2)解:成立.理由:如图2中,∵∠BDA =∠BAC =α,∴∠DBA +∠BAD =∠BAD +∠CAE =180°-α,∴∠DBA =∠CAE ,在△ADB 和△CEA 中,BDA AEC DBA CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴DE =AE +AD =BD +CE .(3)如图3,过E 作EM ⊥HI 于M ,GN ⊥HI 的延长线于N.∴∠EMI =∠GNI =90°由(1)和(2)的结论可知EM =AH =GN∴EM =GN在△EMI 和△GNI 中,GIN EIM EM GN GNI EMI ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EMI ≌△GNI (AAS ),∴EI =GI ,∴I 是EG 的中点.∴S △AEI =12S △AEG =3.5.故答案为:3.5.15.(1)模型建立,如图1,等腰直角三角形ABC 中,∠ACB =90°,CB =CA ,直线ED 经过点C ,过A 作AD ⊥ED 于D ,过B 作BE ⊥ED 于E .求证:△BEC ≌△CDA ;(2)模型应用:①已知直线y =34x +3与y 轴交于A 点,与x 轴交于B 点,将线段AB 绕点B 逆时针旋转90度,得到线段BC ,过点A ,C 作直线,求直线AC 的解析式;②如图3,矩形ABCO ,O 为坐标原点,B 的坐标为(8,6),A ,C 分别在坐标轴上,P 是线段BC 上动点,已知点D 在第一象限,且是直线y =2x ﹣5上的一点,若△APD 是不以A 为直角顶点的等腰直角三角形,请直接写出所有符合条件的点D的坐标.【答案】(1)见解析;(2)137y x =-+;(3)(3,1)或(913),或1923(33,【分析】(1)由条件可求得EBC ACD ∠=∠,利用AAS 可证明BEC CDA ≌;(2)由直线解析式可求得A 、B 的坐标,利用模型结论可得CE BO =,BE AO =,从而可求得C 点坐标,利用待定系数法可求得直线AC 的解析式;(3)分两种情况考虑:如图2所示,当90ADP ∠=︒时,AD PD =,设D 点坐标为(,25)x x -,利用三角形全等得到1128x x -+=,易得D 点坐标;如图3所示,当90APD ∠=︒时,AP PD =,设点P 的坐标为(8,)m ,表示出D 点坐标为(14,8)m m -+,列出关于m 的方程,求出m 的值,即可确定出D 点坐标;如图4所示,当90ADP ∠=︒时,AD PD =时,同理求出D 的坐标.【解析】解:(1)由题意可得,90ACB ADC BEC ∠=∠=∠=︒,∴90EBC BCE BCE ACD ∠+∠=∠+∠=︒,∴EBC ACD ∠=∠,在BEC △和CDA 中EBC ACD E D BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()BEC CDA AAS ≌;(2)过点C 作CD x ⊥轴于点D ,如图2,在334y x =+中,令0y =可求得4x =-,令0x =可求得3y =,∴3OA =,4OB =同(1)可证得CDB BOA ≌,∴4CD BO ==,3BD AO ==,∴437OD =+=,∴()7,4C -且()0,3A ,设直线AC 解析式为3y kx =+,把C 点坐标代入可得734k -+=,解得17k =-,∴直线AC 解析式为137y x =-+;(3)如图2,当90ADP ∠=︒时,AD PD =,过点D 作DE OA ⊥于E ,过点D 作DF BC ⊥于F ,同理可得:AED DFP△≌△设D 点坐标为(,25)x x -,则6(25)112AE DF x x ==--=-,∵DE DF EF BC +==,即1128x x -+=,解得3x =,可得D 点坐标(3,1);如图3,当90APD ∠=︒时,AP PD =,过点P 作PE OA ⊥于E ,过点D 作DF PE ⊥于F ,设点P 的坐标为()8,m ,同理可得:APE PDF ≌△△,∴6PF AE m ==-,8DF PE ==,∴D 点坐标为()14,8m m -+,∴()82145m m +=--,得5m =,∴D 点坐标(913),;如图4,当90ADP ∠=︒时,AD PD =时,同理可得ADE DPF △△≌,设(,25)D n n -,则DE PF n ==,25OE n =-,AE DF =则256211DF AE n n ==--=-,∵8DE DF EF OC +===∴2118n n +-=,解得193n =,23253n -=∴D 点坐标1923()33,,综上可知满足条件的点D 的坐标分别为(3,1)或(913),或1923(33,.。

一线三等角模型

一线三等角模型
• 如图,已知AC⊥CF,EF⊥CF,AB⊥BE,AB=BE.证明:∆ABC≌∆BEF.
找准“桥梁”,利用“同角或等角的余角相等”这个判定
模型初探——“一线三等角”同侧
• 如图,已知∠ADB=∠BAC=∠AEC,AB=BE.证明:∆ABD≌∆CAE.
模型初探——“一线三等角”异侧
• 如图,已知AC⊥AP,DB⊥AP,DP⊥PC,PC=DP.证明:∆APC≌∆BDP.
模型初探——“一线三等角”异侧
• 如图,已知∠EAC=∠DBA=∠DPC,PC=DP.证明:∆APC≌∆BDP.
E
典例练习
总结与回顾
1、由“一线三等角”基本图形搭建桥梁可以得到全等三角形; 2、学习几何最重要是学会归纳一些简单的基本图形,学会从复杂的图形里提炼基本图形,并将其作为解决问 题的手段和方法;
一线三等角模型
学习目标: 1.熟悉“一线三等角”的基本图形,并能解决全等中的问题; 2.通过抽象模型、图形变换等方法提高综目录
1 全等三角形的性质与判定
2 模型初探 3 典例练习 4 总结与回顾
全等三角形的性质与判定
模型初探——“一线三等角”同侧
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∴∠BAD+∠CAE=90° ∵∠BAD+∠ABD=90° ∴∠CAE=∠ABD 又∵AB=AC ∴△ADB≌△CEA ∴AE=BD,AD=CE ∴DE=AE+AD=BD+CE; (2)如图,将(1)中的条件改为:在△ABC 中,AB=AC, D、A、E 三点都在直线 m 上,并且有∠BDA=∠AEC=∠ BAC=a,其中 a 为任意锐角或钝角.请问结论 DE=BD+ CE 是否成立?如成立,请你给出证明;若不成立,请说明 理由. 【解析】 (2)∵∠BDA=∠BAC=α ∴∠DBA+∠BAD=∠BAD+∠CAE=180°—α ∴∠DBA=∠CAE ∵∠BDA=∠AEC=α,AB=AC ∴△ADB≌△CEA ∴AE=BD,AD=CE ∴DE=AE+AD=BD+CE; (3)拓展与应用:如图,D、E 是 D、A、E 三点所在直线 m 上的两动点(D、A、E 三点互不重合),点 F 为∠BAC 平
模型性质总结 1、题目中只要满足“一线三等角”的条件,必相似; 2、题目如果两个条件:“一线三等角”和对应边相等的两 个条件,必全等。 模型常见背景: “一线三等角”的背景图形一般为正方形、等边三角形、等 腰三角形等等。 1. 正方形 ABCD,有一个直角的顶点在边 AB 上 2. 等边三角形 ABC,有一个 60°角的顶点在边 AB 上 3. 等腰直角三角形 ABC,有一个 45°角的顶点在边 AB 上 4.一线三直角 ①∠ACB=90°,AD⊥CE,BE⊥CE ②AD⊥AC,EC⊥AC,DC⊥EC 典型例题 (1)如图,已知:在△ABC 中,∠BAC=90°,AB=AC, 直线 m 经过点 A,BD⊥直线 m, CE⊥直线 m,垂足分别为点 D、E.证明:DE=BD+CE. 【解析】 ∵BD⊥直线 m,CE⊥直线 m ∴∠BDA=∠CEA=90° ∵∠BAC=90°
分线上的一点,且△ABF ቤተ መጻሕፍቲ ባይዱ△ACF 均为等边三角形,连接 BD、 CE,若∠BDA=∠AEC=∠BAC,试判断△DEF 的形状.
【解析】 (3)易知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE, ∵△ABF 和△ACF 均为等边三角形 ∴∠ABF=∠CAF=60° ∴∠DBA+∠ABF=∠CAE+∠CAF ∴∠DBF=∠FAE,∵BF=AF ∴△DBF≌△EAF(如下图所示) ∴DF=EF,∠BFD=∠AFE ∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60° ∴△DEF 为等边三角形. 方法提炼 1 若题目中有一线三等角,可以直接证明相似或全等实 现边与角的转化; 2 若题目中没有给出一线三等角,可以根据需要来构造。 综上所述,“一线三等角”是一个非常重要的模型,孩子们 遇到这种情况时千万不要惊慌,就朝着三角形全等和相似考 虑,肯定是没有问题的
初二《全等三角形》数学模型之“一线三等 角”模型
在初中数学《全等三角形》中有许多的模型,这些模 型是数学重要知识点的总结与运用,很多几何题中都有数学 模型的影子,掌握好这些模型,孩子们学习几何就会比较简 单,成绩不会差。
今天我要与大家分享是“一线三等角”模型,那么什么是 “一线三等角”?顾名思义,一线三等角是指三个相等的角的 顶点在同一条直线上。这个模型贯穿初中几何的始终,初三 讲《相似三角形》时这也是一个非常重要的知识点。下面我 们具体分析一下这个模型。
例题一:如图∠1=∠2=∠3,且它们的顶点在直线 AB 上, 这就是一个一线三等角模型。
模型分析: 因为∠1=∠2=∠3, 所以: ∠ACE+∠AEC=∠CFB+∠BFC=∠ACE+∠BCF 易得:∠ACE=∠CFB,∠AEC=∠FCB 进而有△AEC∽△BCF(这是相似三角形一个重要的判 定,我们将在初三学习), 如果再添加一组对应边相等,如 CE=CF,或者是 AE=BC, 那么就有△AEC≌△BCF.
相关文档
最新文档