乘法公式公式的应用(能力提高试题)
人教版 八年级数学上册 14.2 乘法公式 培优训练(含答案)
人教版八年级数学14.2乘法公式培优训练一、选择题(本大题共10道小题)1. 下列各式中,运算结果是9m2-16n2的是()A.(3m+2n)(3m-8n)B.(-4n+3m)(-4n-3m)C.(-3m+4n)(-3m-4n)D.(4n+3m)(4n-3m)2. 下列各式中,能用完全平方公式计算的是()A.(x-y)(x+y) B.(x-y)(x-y)C.(x-y)(-x-y) D.-(x+y)(x-y)3. 若M·(2x-y2)=y4-4x2,则M应为()A.-(2x+y2)B.-y2+2xC.2x+y2D.-2x +y24. 化简(-2x-3)(3-2x)的结果是()A.4x2-9 B.9-4x2C.-4x2-9 D.4x2-6x+95. 为了运用平方差公式计算(x+2y-1)(x-2y+1),下列变形正确的是()A.[x-(2y+1)]2B.[x+(2y-1)][x-(2y-1)]C.[(x-2y)+1][(x-2y)-1]D.[x+(2y-1)]26. 计算(x+1)(x2+1)·(x-1)的结果是()A.x4+1 B.(x+1)4C.x4-1 D.(x-1)47. 如图①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成了一个长方形(如图②),则这个长方形的面积为()A.a2-4b2B.(a+b)(a-b)C .(a +2b )(a -b )D .(a +b )(a -2b )8. 若n 为正整数,则(2n +1)2-(2n -1)2的值( )A .一定能被6整除B .一定能被8整除C .一定能被10整除D .一定能被12整除9. 若(x +a )2=x 2+bx +25,则()A .a =3,b =6B .a =5,b =5或a =-5,b =-10C .a =5,b =10D .a =-5,b =-10或a =5,b =1010. 如果a ,b ,c 是ABC △三边的长,且22()a b ab c a b c +-=+-,那么ABC △是( )A. 等边三角形.B. 直角三角形.C. 钝角三角形.D. 形状不确定.二、填空题(本大题共6道小题)11. 多项式x 2+1添加一个单项式后可变为完全平方式,则添加的单项式可以是________(任写一个符合条件的即可).12. 填空:()()22552516a a a b +-=-13. 如果(x +my )(x -my )=x 2-9y 2,那么m =________.14. 如图,在边长为a 的正方形中剪去一个边长为b 的小正方形(a b >),把剩下的部分拼成一个梯形,分别计算这两个图形的面积,验证了公式_________________.15. 如图,四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a 、b 的恒等式___________.a bb a16.根据图①到图②的变化过程可以写出一个整式的乘法公式,这个公式是____________________.三、解答题(本大题共4道小题)17. 运用完全平方公式计算:(1)(2a +3b )2; (2)(12m +4)2;(3)(-x -14)2; (4)(-13+3b )2.18. 王红同学计算(2+1)(22+1)(24+1)的过程如下:解:原式=(2-1)(2+1)(22+1)(24+1) =(22-1)(22+1)(24+1) =(24-1)(24+1) =28-1.请根据王红的方法求(2+1)(22+1)(24+1)(28+1)…(232+1)+1的个位数字.19. 认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应地,我们可以计算出多项式的展开式,如:(a +b )1=a +b ,(a +b )2=a 2+2ab +b 2,(a +b )3=a 3+3a 2b +3ab 2+b 3,…. 下面我们依次对(a +b )n 展开式的各项系数进一步研究发现,当n 取正整数时可以单独列成如图所示的形式:上面的多项式展开系数表称为“杨辉三角形”.仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)(a +b )n 展开式中共有多少项? (2)请写出多项式(a +b )5的展开式.20. 计算:2111111111124162562n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭答案一、选择题(本大题共10道小题)1. 【答案】C [解析] 因为结果是9m 2-16n 2,9m 2应是相同的项的平方,所以相同项应为3m 或-3m ,16n 2应是相反项的平方,相反项应为-4n 和4n.2. 【答案】B3. 【答案】A[解析] M 与2x -y 2的相同项应为-y 2,相反项应为-2x 与2x ,所以M 为-2x -y 2,即-(2x +y 2).4. 【答案】A[解析] 原式=(-2x -3)(-2x +3)=(-2x)2-32=4x 2-9.5. 【答案】B6. 【答案】C[解析] (x +1)(x 2+1)(x -1)=(x +1)(x -1)(x 2+1) =(x 2-1)(x 2+1) =x 4-1.7. 【答案】A[解析] 根据题意得(a +2b )(a -2b )=a 2-4b 2.8. 【答案】B[解析] 原式=(4n 2+4n +1)-(4n 2-4n +1)=8n ,则原式的值一定能被8整除.9. 【答案】D[解析] 因为(x +a)2=x 2+bx +25,所以x 2+2ax +a 2=x 2+bx +25.所以⎩⎨⎧2a =b ,a 2=25,解得⎩⎨⎧a =5,b =10或⎩⎨⎧a =-5,b =-10.10. 【答案】A【解析】已知关系式可化为2220a b c ab bc ac ++---=,即2221(222222)02a b c ab bc ac ++---=, 所以2221[()()()]02a b b c a c -+-+-=,故a b =,b c =,c a =.即a b c ==.选A .二、填空题(本大题共6道小题)11. 【答案】2x (或-2x 或14x 4) 【解析】x 2+2x +1=(x +1)2;x 2-2x +1=(x -1)2;14x 4+x 2+1=(12x 2+1)2.12. 【答案】()()2254542516a b a b a b +-=- 【解析】()()2254542516a b a b a b +-=-13. 【答案】±3[解析] (x +my)(x -my)=x 2-m 2y 2=x 2-9y 2,所以m 2=9.所以m=±3.14. 【答案】22()()a b a b a b +-=-【解析】左图中阴影部分的面积为22a b -,右图中阴影部分的面积为1(22)()()()2b a a b a b a b +-=+-,故验证了公式22()()a b a b a b +-=-(反过来写也可)15. 【答案】224()()ab a b a b =+--【解析】22()()4a b a b ab -=+-或224()()ab a b a b =+--16. 【答案】(a +b)(a -b)=a 2-b 2三、解答题(本大题共4道小题)17. 【答案】解:(1)原式=4a 2+12ab +9b 2. (2)原式=14m 2+4m +16. (3)原式=x 2+12x +116. (4)原式=19-2b +9b 2.18. 【答案】解:原式=(2-1)(2+1)(22+1)(24+1)(28+1)…(232+1)+1 =(22-1)(22+1)(24+1)(28+1)…(232+1)+1 =(24-1)(24+1)(28+1)…(232+1)+1 =… =264-1+1 =264.因为264的个位数字是6,所以(2+1)(22+1)(24+1)(28+1)…(232+1)+1的个位数字是6.19. 【答案】解:(1)由已知可得:(a +b)1展开式中共有2项, (a +b)2展开式中共有3项, (a +b)3展开式中共有4项, ……则(a +b)n 展开式中共有(n +1)项. (2)(a +b)1=a +b , (a +b)2=a 2+2ab +b 2,(a +b)3=a 3+3a 2b +3ab 2+b 3,…则(a +b)5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5.20. 【答案】41122n --【解析】原式211111************n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭4411121222n n -⎛⎫=-=- ⎪⎝⎭.。
2022-2023学年华东师大版八年级数学上册《12-3乘法公式》同步达标测试题(附答案)
2022-2023学年华东师大版八年级数学上册《12.3乘法公式》同步达标测试题(附答案)一.选择题(共7小题,满分35分)1.下列运算正确的是()A.x2⋅x3=x5B.3x2+2x2=5x4C.(x3)2=x5D.(x+y)2=x2+y22.下列各式中能用平方差公式计算的是()A.(a+b)(﹣a﹣b)B.(a+b)(﹣a+b)C.(﹣a+b)(﹣a+b)D.(a﹣b)(b﹣a)3.若(3b+a)•()=a2﹣9b2,则括号内应填的代数式是()A.﹣a﹣3b B.a+3b C.﹣3b+a D.3b﹣a4.利用图形中面积的等量关系可以得到某些数学公式,例如根据图①我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2,根据图②你能得到的数学公式是()A.(a+b)(a﹣b)=a2﹣b2B.a2﹣b2=(a+b)(a﹣b)C.(a+b)2=a2+2ab+b2D.(a﹣b)2=a2﹣2ab+b25.已知(3x+a)2=9x2+bx+4,则b的值为()A.4B.±6C.12D.±126.若x2﹣2mx+16是完全平方式,则m的值等于()A.2B.2或﹣2C.4或﹣4D.8或﹣87.将972变形正确的是()A.972=902+72B.972=(100+3)(100﹣3)C.972=1002﹣2×100×3+32D.972=902+90×7+72二.填空题(共7小题,满分35分)8.已知x2+y2=34,x﹣y=2,则(x+y)2的值为.9.若(x2+y2﹣1)2=25,则x2+y2=.10.边长为a的正方形ABCD与边长为b的正方形DEFG按如图所示的方式摆放,点A,D,G在同一直线上.已知a+b=10,ab=24.则图中阴影部分的面积为.11.若x+y=9,x﹣y=3,则x2﹣y2的值为.12.若(a+1921)(a+2021)=520,则(a+1921)2+(a+2021)2的值为.13.计算(2+1)×(22+1)×(24+1)…(2128+1)+1=.14.已知a﹣b=2,a2﹣b2=8,则a+b的值是.三.解答题(共7小题,满分50分)15.计算:(2a+b)(a﹣2b)﹣2(a﹣b)2.16.计算:(1)(a﹣b)2;(2)4(x﹣2)2﹣(2x+3)(2x﹣3).17.计算:(1)(﹣2mr2h+3mrh2)÷(﹣mrh);(2)(x+2y+3)(x﹣2y+3).18.计算:(9x﹣2y)(x+y)﹣(﹣3x+y)(﹣3x﹣y).19.(﹣2y+1)2﹣(2y+1)(2y﹣1).20.如图,将边长为(a+b)的正方形剪出两个边长分别为a,b的正方形(阴影部分).观察图形,解答下列问题:(1)根据题意,用两种不同的方法表示阴影部分的面积,即用两个不同的代数式表示阴影部分的面积.方法1:,方法2:;(2)从(1)中你能得到怎样的等式?;(3)运用你发现的结论,解决下列问题:①已知x+y=6,xy=2,求x2+y2的值;②已知(2022﹣x)2+(x﹣2021)2=9,求(2022﹣x)(x﹣2021)的值.21.【知识生成】我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b)2=a2+2ab+b2,基于此,请解答下列问题:【直接应用】(1)若x+y=4,x2+y2=2,求xy的值;【类比应用】(2)填空:①若x(3﹣x)=1,则x2+(x﹣3)2=;②若(x﹣3)(x﹣4)=1,则(x﹣3)2+(x﹣4)2=;【知识迁移】(3)两块全等的特制直角三角板(∠AOB=∠COD=90°)如图2所示放置,其中A,O,D在一直线上,连接AC,BD.若AD=16,S△AOC+S△BOD=68,求一块直角三角板的面积.参考答案一.选择题(共7小题,满分35分)1.解:A、原式=x5,故A符合题意.B、原式=5x2,故B不符合题意.C、原式=x6,故C不符合题意.D、原式=x2+2xy+y2,故D不符合题意.故选:A.2.解:观察只有B选项符合平方差公式的结构特征,(a+b)(﹣a+b)=(b+a)(b﹣a)=b2﹣a2其余选项的均不符合,故选:B.3.解:∵a2﹣9b2=(a+3b)(a﹣3b)=(3b+a)(﹣3b+a),故选:C.4.解:∵左上角正方形的面积=(a﹣b)2,还可以表示为a2﹣2ab+b2,∴(a﹣b)2=a2﹣2ab+b2.故选:D.5.解:∵(3x±2)2=9x2±12x+4,∴b=±12,故选:D.6.解:∵(x±4)2=x2±8x+16,∴﹣2m=±8,∴m=±4,故选:C.7.解:972=(100﹣3)2=1002﹣2×100×3+32.故选:C.二.填空题(共7小题,满分35分)8.解:把x﹣y=2两边平方得:(x﹣y)2=4,即x2﹣2xy+y2=4,∵x2+y2=34,∴2xy=30,则(x+y)2=x2+y2+2xy=34+30=64.故答案为:64.9.解:∵(x2+y2﹣1)2=25,∴x2+y2﹣1=±5,∴x2+y2=6或﹣4,又∵x2+y2≥0,所以x2+y2=6,故答案为:6.10.解:由S阴影部分=S正方形ABCD+S正方形DEFG﹣S△ABC﹣S△AFG可得,S阴影部分=a2+b2﹣a2﹣b(a+b)=a2+b2﹣ab=(a2+b2﹣ab)=[(a+b)2﹣3ab]=×(100﹣72)=14,故答案为:14.11.解:原式=(x+y)(x﹣y)=9×3=27.故答案为:27.12.解:∵(a+1921)(a+2021)=520,(a+2021)﹣(a+1921)=a+2021﹣a﹣1921=100,且[(a+2021)﹣(a+1921)]2=(a+1921)2+(a+2021)2﹣2(a+1921)(a+2021),∴10000=(a+1921)2+(a+2021)2﹣1040,则(a+1921)2+(a+2021)2=11040.故答案为:11040.13.解:原式=(2﹣1)(2+1)×(22+1)×(24+1)…(2128+1)+1=(22﹣1)×(22+1)×(24+1)…(2128+1)+1=(24﹣1)×(24+1)…(2128+1)+1=2256﹣1+1=2256,故答案为:2256.14.解:∵a﹣b=2,a2﹣b2=(a+b)(a﹣b)=8,∴2(a+b)=8,则a+b=4.故答案为:4.三.解答题(共7小题,满分50分)15.解:原式=2a2﹣4ab+ab﹣2b2﹣2(a2﹣2ab+b2)=2a2﹣3ab﹣2b2﹣2a2+4ab﹣2b2=ab﹣4b2.16.解:(1)原式=a2﹣2×a×b+()2=a2﹣3ab+b2;(2)原式=4(x2﹣4x+4)﹣(4x2﹣9)=4x2﹣16x+16﹣4x2+9=25﹣16x.17.解:(1)(﹣2mr2h+3mrh2)÷(﹣mrh)=﹣2mr2h÷(﹣mrh)+3mrh2÷(﹣mrh)=4r﹣6h;(2)(x+2y+3)(x﹣2y+3)=[(x+3)+2y][(x+3)﹣2y]=(x+3)2﹣4y2=x2+6x+9﹣4y2.18.解:(9x﹣2y)(x+y)﹣(﹣3x+y)(﹣3x﹣y)=9x2+9xy﹣2xy﹣2y2﹣(9x2﹣y2)=9x2+9xy﹣2xy﹣2y2﹣9x2+y2=7xy﹣y2.19.解:原式=4y2﹣4y+1﹣(4y2﹣1)=4y2﹣4y+1﹣4y2+1=﹣4y+2.20.解:(1)方法1,阴影部分的面积等于两个正方形的面积和,即a2+b2,方法2,从边长为(a+b)的大正方形面积减去两个长为a,宽为b的长方形面积,即(a+b)2﹣2ab,故答案为:a2+b2,(a+b)2﹣2ab;(2)∵(1)中的两种方法都表示阴影部分面积,∴a2+b2=(a+b)2﹣2ab,故答案为:a2+b2=(a+b)2﹣2ab;(3)①∵0.5xy=2,∴xy=4,又∵x+y=6,∴x2+y2=(x+y)2﹣2xy=62﹣2×4=36﹣8=28;②设a=2022﹣x,b=x﹣2021,则a2+b2=9,a+b=1,∴2(2022﹣x)(x﹣2021)=2ab=(a+b)2﹣(a2+b2)=1﹣9=﹣8,∴(2022﹣x)(x﹣2021)=﹣4,答:(2022﹣x)(x﹣2021)的值为﹣4.21.解:(1)∵x+y=4,x2+y2=2,∴xy==7,答:xy=7;(2)①设x=m,3﹣x=n,则mn=1,m+n=3,∴x2+(x﹣3)2=m2+n2=(m+n)2﹣2mn=9﹣2=7,故答案为:7;②设x﹣3=a,x﹣4=b,则ab=(x﹣3)(x﹣4)=1,a﹣b=1,∴(x﹣3)2+(x﹣4)2=a2+b2=(a﹣b)2+2ab=1+2=3,故答案为:3;(3)设AO=p,DO=q,∵AD=16,S△AOC+S△BOD=68,∴p+q=16,p2+q2=68,即p+q=16,p2+q2=136,∴2pq=(p+q)2﹣(p2+q2)=162﹣136,即pq=60,∴S直角三角板=pq=30,答:一块直角三角板的面积为30.。
专题复习:乘法公式知识点归纳及典例+练习题及答案(师)
专题复习:乘法公式知识点归纳及典例+练习题一、知识概述 1、平方差公式 由多项式乘法得到 (a+b)(a-b) =a -b . 即两个数的和与这两个数的差的积,等于它们的平方差. 2、平方差公式的特征 ①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数; ②右边是乘式中两项的平方差(相同项的平方减去相反项的平方); ③公式中的 a 和 b 可以是具体数,也可以是单项式或多项式; ④对于形如两数和与这两数差相乘的形式,就可以运用上述公式来计算. 3、完全平方公式 由多项式乘法得到(a±b) =a ±2ab+b2 2 2 2 2即两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的 2 倍. 推广形式:(a+b+c) =a +b +c +2ab+2bc+2ca 4、完全平方公式的特征 (a+b) =a +2ab+b 与(a-b) =a -2ab+b 都叫做完全平方公式,为了区别,我们把前者叫做两数 和的完全平方公式,后者叫做两数差的完全平方公式. ①两公式的左边:都是一个二项式的完全平方,二者仅有一个符号不同;右边:都是二次三项式,其 中有两项是公式左边两项中每一项的平方,中间是左边二项式中两项乘积的 2 倍,两者也仅有一个符号不 同. ②公式中的 a、b 可以是数,也可以是单项式或多项式. ③对于形如两数和(或差)的平方的乘法,都可以运用上述公式计算. 5、乘法公式的主要变式 (1)a -b =(a+b)(a-b); (2)(a+b) -(a-b) =4ab; (3)(a+b) +(a-b) =2(a +b ); (4)a +b =(a+b) -2ab=(a-b) +2ab (5)a +b =(a+b) -3ab(a+b). 熟悉这些变形公式,明确它们间联系,综合运用,常可简化解题过程. 注意:(1)公式中的 a,b 既可以表示单项式,也可以表示多项式. (2)乘法公式既可以单独使用,也可以同时使用. (3)这些公式既可以正用,也可以逆用,因此在解题时应灵活地运用公式,以计算简捷为宜.3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2二、典型例题讲解 例 1、计算: (1)(3a+2b)(2b-3a); (2)(x-2y)(-x-2y);(3) (4)(a+b+c)(a-b-c). 解:;(1)原式=(2b+3a)(2b-3a) =(2b) -(3a) =4b -9a2 2 2 2(2)原式=(-2y+x)(-2y-x) =(-2y) -x =4y -x2 2 2 2(3)原式=== (4)原式=[a+(b+c)][a-(b+c)] =a -(b+c)2 2 2 2=a -(b +2bc+c ) =a -b -2bc-c 例 2、计算: (1)2004 -19962 2 2 2 2 22(2)(x-y+z) -(x+y-z)2(3)(2x+y-3)(2x-y-3). 解:(1)2004 -1996 =(2004+1996)(2004-1996) =4000×8=32000 (2)(x-y+z) -(x+y-z)2 2 2 2=[(x-y+z)+(x+y-z)][ (x-y+z)-(x+y-z)]=2x(-2y+2z)=-4xy+4xz (3)(2x+y-3)(2x-y-3)=[(2x-3)+y][(2x-3)-y] =(2x-3) -y =4x -12x+9-y =4x -y -12x+9; 例 3、计算: (1)(3x+4y) ; (3)(2a-b) ;2 2 2 2 2 2 2 2 2(2)(-3+2a) ; (4)(-3a-2b)22解:(1)原式=(3x) +2·3x·4y+(4y) =9x +24xy+16y2 2 22(2)原式=(-3) +2·(-3)·2a+4a =4a -12a+922(3)原式=(2a) +2·2a·(-b)+(-b) =4a -4ab+b2 222(4)原式=[-(3a+2b)] =(3a+2b)2 22=(3a) +2·(3a)·2b+(2b) =9a +12ab+4b2 22例 4、已知 m+n=4, mn=-12,求(1);(2);(3).解:(1);(2);(3)2.例 5、多项式 9x +1 加上一个单项式后,使它能够成为一个整式的完全平方,那么加上的单项式可以是 ________(填上一个你认为正确的即可). 分析: 解答时,很多学生只习惯于课本上的完全平方的顺序,认为只有添加中间(两项的乘积的 2 倍)项,即 9x +1+6x=(3x+1) 或 9x -6x+1=(3x-1) ;但只要从多方面考虑,还会得出2 2 2 2,9x +1-1=9x =(3x) , 9x +1-9x =12, 所以添加的单项式可以是 6x,22222-6x,,-1,-9x .2答案:±6x 或 例 6、计算:或-1 或-9x2,并说明结果与 y 的取值是否有关. 解:从上述结果可以看出,结果中不含 y 的项,因此结果与 y 的取值无关. 点评: (1)利用平方差公式计算的关键是弄清具体题目中,哪一项是公式中的 a,哪一项是公式中的 b; (2)通常在各因式中, 相同项在前, 相反项在后, 但有时位置会发生变化, 因此要归纳总结公式的变化, 使之更准确的灵活运用公式. ①位置变化:(b+a)(-b+a)=(a+b)(a-b)=a -b ; ②符号变化:(-a-b)(a-b)=(-b-a)(-b+a)=(-b) -a =b -a ; ③系数变化:(3a+2b)(3a-2b)=(3a) -(2b) =9a -4b ; ④指数变化:(a +b )(a -b )=(a ) -(b ) =a -b ; ⑤连用公式变化:(a-b)(a+b)(a +b )(a +b ) =(a -b )(a +b )(a +b )=(a -b )(a +b ) =a -b ; ⑥逆用公式变化:(a-b+c) -(a-b-c)2 2 8 8 2 2 2 2 4 4 4 4 4 4 2 2 4 4 3 3 3 3 3 2 3 2 6 6 2 2 2 2 2 2 2 2 2 2=[(a-b+c)+(a-b-c)][(a-b+c)-(a-b-c)] =4c(a-b). 例 7、已知 .求 分析:的值.若直接代入求解则十分繁杂。
【小学数学】人教版小学五年级数学概念、公式汇总(附应用题)
第一单元:小数乘法1、小数乘整数的意义与整数乘法的意义相同;就是求几个相同加数的和的简便运算。
如:1.2×5表示5个1.2是多少。
2、一个数乘纯小数的意义就是求这个数的十分之几、百分几、千分之几……是多少。
如:1.2×0.5表示求1.2的十分之五是多少。
3、小数乘法的计算方法:计算小数乘法;先按整数乘法算出积;再看因数中一共有几位小数;就从积的右边起数出几位;点上小数点。
乘得的积的小数位数不够;要在前面用0补足;再点上小数点。
4、一个数(0除外)乘1;积等于原来的数。
一个数(0除外)乘大于1的数;积比原来的数大。
一个数(0除外)乘小于1的数;积比原来的数小。
5、整数乘法的交换律、结合律和分配率;对于小数乘法也适用。
第二单元:小数除法1、小数除法的意义与整数除法的意义相同;是已知两个因数的积与其中一个因数;求另一个因数的运算。
如:2.4÷1.6表示已知两个因数的积是2.4与其中一个因数是1.6;求另一个因数是多少。
2、小数除以整数;按整数除法的方法去除;商的小数点要和被除数的小数点对齐。
如果除到末尾仍有余数;要添0再继续除。
3、被除数比除数大的;商大于1。
被除数比除数小的;商小于1。
4、计算除数是小数的除法;先移动除数的小数点;使它变成整数;除数的小数点向右移动几位;被除数的小数点也向右移动几位;数位不够的要添0补足。
再按照除数是整数的小数除法进行计算。
5、一个数(0除外)除以1;商等于原来的数。
一个数(0除外)除以大于1的数;商比原来的数小。
一个数(0除外)除以小于1的数;商比原来的数大。
6、A除以B=A÷B;A除B=B÷A;A去除B=B÷A;A被B除=A÷B。
7、一个数的小数部分;从某一位起;一个数字或者几个数字依次不断重复出现;这样的小数叫做循环小数。
8、小数部分的位数是有限的小数;叫做有限小数。
小数部分是无限的小数叫做无限小数。
乘法公式:平方差与完全平方
乘法公式一、细说乘法公式1、平方差公式应用的条件:两个多项式相乘,一个多项式可以看作两数的和,另一个多项式正好是这两数的差,或两多项式中,一项相同,另一项互为相反数结果写成:(相同项)2-(相反项)2 2、完全平方公式:结果可看作对这两数分别平方,再加上它们乘积的2即写成:(a-b )2=a 2+b 2-2ab 试写出:(a-b-c )2=3、完全平方公式相关变形及推广: ○1()()222222a b a b ab a b ab +=+-=-+; ○2ab b a b a 4)()(22=--+; ○3()()()222a b a b a b -+=--=-⎡⎤⎣⎦; ○4()()()222a b a b a b --=-+=+⎡⎤⎣⎦;⑤(a-b+c-d )2 =二、下列能运用什么乘法公式:3、(b-a) (-a-b) 〈比较两项的关系: 〉∴=4、(-a-b )(a+b) 〈比较两项的关系: 〉∴=5、(-a+b )(-a-b) 〈比较两项的关系: 〉∴=6、(a+b) (-a+b) 〈比较两项的关系: 〉∴=7、(-a-b) (a-b) 〈比较两项的关系: 〉∴=8、(-a+b) (a-b) 〈比较两项的关系: 〉∴=平方差公式组题【典型例题】 9、 热身训练 (1)(21x+31y )(31y -21x )=(2)(2x -3y )( )=9y 2-4x 2 (3)(-a +51)(-a -51)=(-a -5)( )=25-a 2 (4)(x-1)(2x +1)( )=4x -1(5)(a+b+c)(a-b-c)= [ a + ( )] [ a - ( )]相同项 相反项用乘法公式运算:(7)1000110199⨯⨯ (8)2010200820092⨯-10.计算:(1)))(()2)(2(222x y y x y x y x x +-++--11.已知02,622=-+=-y x y x ,求5--y x 的值.12.解方程:()()2313154322365=⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛---+-++x x x x x13. 已知两个连续奇数的平方差为2000,则这两个连续奇数分别是多少?14、【初试锋芒】1).1.010.99⨯= 2).2221000252248-= ;3)22(2)(2)(4)x y x y x y -++=4).在下列多项式的乘法中,不能用平方差公式计算的是( )A .()()x y x y --+B .3333()()a b a b -+C .2222()()c d d c -+D .()()m n m n ---【大展身手】 15. 填空题1).若222,10x y x y -=-=则x+y= 2).2(1)(1)(1)x x x +-+= 3).(1)(2)(3)(3)x x x x +---+= 4).=⨯10199 16、选择题1).下列多项式乘法中,可以用平方差公式计算的是( ) A .()()a b a b -+- B .(2)(2)x x ++C .1133x y y x ⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭D .(2)(1)x x -+2).在下列各式中,运算结果是2236y x -的是( ) A. ()()x y x y --+-66 B. ()()x y x y -+-66 C. ()()y x y x 94-+ D. ()()x y x y ---66 17 :解答题 1 ) 计算: 2229995(2)(2)x x x-+--2) 解方程(21)(21)3(2)(2)(1)(2)12x x x x x x -+-+-=+-+完全平方公式组题【典型例题】1.课前热身训练:(1)221⎪⎭⎫ ⎝⎛+-cd (2)()23x y -+ (3)2199(4))2)(2(4)2(2y x y x y x +--- (5))12)(12(-+++y x y x2.已知()222116x m xy y -++是一个完全平方式,求m 的值.3.已知()()227,4a b a b +=-=,求22a b +和a b 的值.4. 若0132=+-a a ,求aa 1+的值.【初试锋芒】1.212a b ⎛⎫-- ⎪⎝⎭运算结果是( )A 、2214a b+B 、2214a b-C 、2214a ab b++D 、221124a ab b++2.运算结果是24221m n mn -+的是( )A 、22(1)m n -B 、22(1)m n -C 、22(1)m n --D 、22(1)m n +3.若224222)(n n m m M n m ++=+-,则M ( )A 、0B 、2m nC 、22m n -D 、24m n4.若249x Nx ++(N 为整数)是一个完全平方式,则N=( )A 、6,-6B 、12C 、6D 、12,-125.已知y x y x y x >=+=+且,7,2522,则x-y 的值等于【大展身手】 1.(35x +)2=22962525x xy y++ 2.22()()a b a b -=+3.()222a b a b +=-+ =2()a b +- 4.()2a b c -+= 4.若7,12,a b ab +==则22a ab b -+=5.要使等式()()22a b M a b -+=+成立,代数式M 应是( )A 、2abB 、4abC 、4ab -D 、2ab - 【中考真题演练】1.(2009枣庄)若3n m =+,则222426m mn n ++-的值为( )A.12B.6C.3D.02.(2009台州)若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式.....,如a b c ++就是完全对称式.下列三个代数式:①2)(b a -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( )A .①② B.①③ C . ②③ D .①②③ 3.(2009北京)已知2514x x -=,求()()()212111x x x ---++的值4.(2009十堰)已知3b a =+,2=ab ,求下列各式的值: (1)22ab b a + (2)22b a +。
人教版数学八年级上册《整式的乘法与因式的分解》 能力拓展训练
八年级上册第14章能力拓展训练一.选择题1.下列各选项中,因式分解正确的是()A.(a2+b2)=(a+b)2B.x2﹣4=(x﹣2)2C.m2﹣4m+4=(m﹣2)2D.﹣2y2+6y=﹣2y(y+3)2.下列运算正确的是()A.a•a5=a4B.2(a﹣b)=2a﹣bC.(a3)2=a5D.a2﹣2a2=﹣a23.下列多项式能用完全平方公式分解因式的是()A.x2﹣2x﹣1B.(a+b)(a﹣b)﹣4abC.a2+ab+b2D.y2+2y﹣14.已知a﹣b=1,ab=12,则a+b等于()A.7B.5C.±7D.±55.下列各式中,计算结果为a6的是()A.a2+a4B.a7÷a C.a8﹣a2D.a2•a36.如图①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成一个长方形,(如图②)则这个长方形的面积为()A.(a+2b)(a﹣2b)B.(a+b)(a﹣b)C.(a+2b)(a﹣b)D.(a+b)(a﹣2b)7.计算(x﹣2)(2x+3)﹣(3x+1)2的结果中,x项的系数为()A.5B.﹣5C.7D.﹣7 8.计算(﹣0.25)2019•42020的结果为()A.4B.﹣4C.D.﹣9.下列各式中,能用平方差公式进行计算的是()A.(﹣2x﹣y)(2x﹣y)B.(﹣2x﹣y)(2x+y)C.(2x﹣y)(y﹣2x)D.(2x﹣y)(2x﹣y)10.42020×(﹣0.25)2019的值为()A.4B.﹣4C.0.25D.﹣0.25二.填空题11.计算a(a﹣b)+b(a﹣b)的结果是.12.不等式2x+15>﹣x的解集是;分解因式:2x2﹣2=.13.以下四个结论正确的是.(填序号)①若(x﹣1)x+1=1,则x只能是2②若(x﹣1)(x2+ax+1)的运算结果中不含x2项,则a=﹣1③若a+b=10,ab=24,则a﹣b=2或a﹣b=﹣2④若4x=a,8y=b,则22x﹣3y可表示为14.若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为.15.若m+n=2,mn=1,则m3n+mn3+2m2n2=.三.解答题16.因式分解(1)x2﹣9;(2)8m2﹣8mn+2n2.17.已知a+b=2,ab=﹣24,(1)求a2+b2的值;(2)求(a+1)(b+1)的值;(3)求(a﹣b)2的值.18.如图,有一块长为(3a+b)米,宽为(2a+b)米的长方形空地,计划修筑东西、南北走向的两条道路,其余进行绿化(阴影部分),已知道路宽为a米,东西走向的道路与空地北边界相距1米,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.19.某学生化简a(a+1)﹣(a﹣2)2出现了错误,解答过程如下:解:原式=a2+a﹣(a2﹣4a+4)(第一步)=a2+a﹣a2﹣4a+4(第二步)=﹣3a+4(第三步)(1)该学生解答过程是从第步开始出错,其错误原因是;(2)请你帮助他写出正确的简化过程.20.小亮在课余时间写了三个算式:32﹣12=8×1,52﹣32=8×2,72﹣52=8×3,通过认真观察,发现任意两个连续奇数的平方差是8的倍数.验证:(1)92﹣72的结果是8的几倍?(2)设两个连续奇数为2n+1,2n﹣1(其中n为正整数),写出它们的平方差,并说明结果是8的倍数;延伸:直接写出两个连续偶数的平方差是几的倍数.参考答案一.选择题1.解:A、原式不能分解,不符合题意;B、原式=(x+2)(x﹣2),不符合题意;C、原式=(m﹣2)2,符合题意;D、原式=﹣2y(y﹣3),不符合题意.故选:C.2.解:A.a•a5=a6,故本选项不合题意;B.2(a﹣b)=2a﹣2b,故本选项不合题意;C.(a3)2=a6,故本选项不合题意;D.a2﹣2a2=﹣a2,故本选项符合题意.故选:D.3.解:a2+ab+b2=(a+b)2.故选:C.4.解:∵a﹣b=1,ab=12,∴(a+b)2=a2+2ab+b2=(a﹣b)2+4ab=1+48=49,∴a+b=±7,故选:C.5.解:(A)a2与a4不是同类项,故A不选.(B)原式=a6,故选B.(C)a8与a2,故C不选.(D)原式=a5,故D不选.故选:B.6.解:图②长方形的长为(a+2b),宽为(a﹣2b),因此阴影部分的面积为(a+2b)(a﹣2b),故选:A.7.解:(x﹣2)(2x+3)﹣(3x+1)2=2x2+3x﹣4x﹣6﹣9x2﹣6x﹣1=﹣7x2﹣7x﹣7,故选:D.8.解:(﹣0.25)2019•42020=(﹣0.25)2019×42019×4=(﹣0.25×4)2019×4=(﹣1)2019×4=(﹣1)×4=﹣4.故选:B.9.解:(﹣2x﹣y)(2x﹣y)=﹣(2x+y)(2x﹣y),能用平方差公式进行计算;(﹣2x﹣y)(2x+y)=﹣(2x+y)2,不能用平方差公式进行计算;(2x﹣y)(y﹣2x)不能用平方差公式进行计算;(2x﹣y)(2x﹣y)=(2x﹣y)2,不能用平方差公式进行计算.故选:A.10.解:42020×(﹣0.25)2019=42019×=[4×]2019×4=﹣1×4=﹣4,故选:B.二.填空题11.解:a(a﹣b)+b(a﹣b)=a2﹣ab+ab﹣b2=a2﹣b2.故答案为:a2﹣b2.12.解:移项,得3x>﹣15,∴x>﹣5.2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1).故答案为:x>﹣5,2(x+1)(x﹣1).13.解:当(x﹣1)x+1=1时,x=﹣1时也成立,故①错误;(x﹣1)(x2+ax+1)=x3+ax2+x﹣x2﹣ax﹣1=x3+(a﹣1)x2+(1﹣a)x﹣1,∵(x﹣1)(x2+ax+1)的运算结果中不含x2项,∴a﹣1=0,解得:a=1,故②错误;∵a+b=10,ab=24,∴(a﹣b)2=(a+b)2﹣4ab=102﹣4×24=4,∴a﹣b=2或a﹣b=﹣2,故③正确;∵4x=a,8y=b,∴22x=a,23y=b,∴22x﹣3y==,故④正确;故答案为:③④.14.解:根据题意得:(x+m)(2﹣x)=2x﹣x2+2m﹣mx,∵x+m与2﹣x的乘积中不含x的一次项,∴m=2;故答案为:2.15.解:∵m+n=2,mn=1,∴m3n+mn3+2m2n2=mn(m2+2mn+n2)=mn(m+n)2=1×22=4.故答案为:4.三.解答题16.解:(1)原式=(x+3)(x﹣3);(2)原式=2(4m2﹣4mn+n2)=2(2m﹣n)2.17.解:(1)因为a+b=2,ab=﹣24,所以a2+b2=(a+b)2﹣2ab=4+2×24=52;(2)因为a+b=2,ab=﹣24,所以(a+1)(b+1)=ab+a+b+1=﹣24+2+1=﹣21;(3)因为a+b=2,ab=﹣24,所以(a﹣b)2=a2﹣2ab+b2=(a+b)2﹣4ab=4+4×24=100.18.解:根据题意得:(3a+b﹣a)(2a+b﹣a)=(2a+b)(a+b)=2a2+3ab+b2(平方米),则绿化的面积是(2a2+3ab+b2)平方米;当a=3,b=2时,绿化面积是:2×32+3×3×2+22=40(平方米).19.解:(1)第二步在去括号时,﹣4a+4应变为4a﹣4.故错误原因为去括号时没有变号.(2)原式=a2+a﹣(a2﹣4a+4)=a2+a﹣a2+4a﹣4=5a﹣4.20.解:(1)92﹣72=81﹣49=32,32是8的4倍;(2)设两个连续奇数为2n+1,2n﹣1(其中n为正整数),则它们的平方差是8的倍数;(2n+1)2﹣(2n﹣1)2=(2n+1﹣2n+1)(2n+1+2n﹣1)=2×4n=8n,故两个连续奇数的平方差是8的倍数.延伸:82﹣62=64﹣36=28,两个连续偶数的平方差是4的倍数.。
乘法公式 培优
第三讲 乘法公式【易错点剖析】1.注意乘法公式的特点,符合公式的特点的多项式乘法才能套用公式.2. 在混合运算时,运用乘法公式计算出来的积要添括号,如果前面是 “-〞要注意变号⑤()()2222x y x y +-⑥()()()()24832124515151...51+++++⑦221.2340.766 2.4680.766++⨯⑧2222211111111...11234910⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭【能力提高】整体思想1、 假设()223m -=,求246m m -+的值.2、 22227,+9a ab b a ab b ++=-=,求()2a b +的值.3、 5,4a b ab ++=,求〔1〕22a b +;〔2〕44a b +;〔3〕44a b -的值4A 、2510x x -+=,求〔1〕221x x+〔2〕322143x x x --+的值4B 、0a ≠,且满足()()()222112329147a a a a a +---+=-, 求〔1〕221a a +〔2〕24255a a a ++的值.5、 ()()22201820171a a -+-=,求()()20182017a a --的值配方法1、()22116x m x --+是一个完全平方式,那么m = .2、264A x x +-+是一个完全平方式,那么A = .1B 、()()2222116x xy y m x y ++--++是一个完全平方式,那么m = .2B 、()()()()222210024400a b k b a a b +++--是一个完全平方式,那么k = . 3、把代数式223x x --化为()2x m k -+的形式,那么m k += .4、假设2228170x y x y ++-+=,求y x 的值.5A 、当x 为多少时,代数式245x x -+有最小值,最小值为多少?5B 、求多项式222451213x xy y y -+-+的最小值及此时,x y 的值.6、试说明:无论x 取何值,225x x ++的值一定为一个正数.7、111100,99,101100100100a xb xc x =+=+=+,求222a b c ab bc ac ++---的值8、22234,52M x x N x x =++=++,试比拟M ,N 的大小.【课后练习】1、 225a b =+,那么()()33a b a b +-= . 2、 2210x x --=,那么221x x += ,441x x += 4、 假设()()2212x mx x x n +--+的展开式中不含2x 和3x 项,那么m = ,n = . 5、6224b a ==,那么23a b -= .6、()()()()241612121212++++的个位数是 .7、计算①()()223131x x +- ②()()2212a a +--8、4821-能被60和70之间的某两个整数整除,求这两个数.9、2220a b c ab bc ac ++---=,求,,a b c 之间的关系.10 、2781,1515P m Q m m =-=-〔x 任意实数〕,试比拟P ,Q 的大小.11、()()20172015100a a --=,求()()22201720156a a -+-+的值。
2021-2022学年湘教版七年级数学下册《2-2-3运用乘法公式进行计算》同步达标测试题(附答案)
2021-2022学年湘教版七年级数学下册《2-2-3运用乘法公式进行计算》同步达标测试题(附答案)一.选择题(共8小题,满分40分)1.下列计算正确的是()A.(﹣2ab2)4=﹣16a4b6B.(﹣a3)2﹣(a2)3=0C.﹣4a3b2÷2ab2=﹣2a2b D.(a+2)2=a2+42.计算:14x4y2÷7x3y=()A.2x7y3B.2xy C.D.23.计算(x3﹣2x2y)÷(﹣x2)的结果是()A.x﹣2y B.﹣x+2y C.﹣x﹣2D.﹣x+24.已知4y2+my+9是完全平方式,求(6m4﹣8m3)÷(﹣2m2)+3m2的值是()A.±48B.±24C.48D.245.若长方形的面积是4a2+8ab+2a,它的一边长为2a,则它的周长为()A.2a+4b+1B.2a+4b C.4a+4b+1D.8a+8b+26.如图1,将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若该纸盒的容积为4a2b,则图2中纸盒底部长方形的周长为()A.4ab B.8ab C.4a+b D.8a+2b7.现有甲、乙两个正方形纸片,将甲、乙并列放置后得到图1,已知点H为AE的中点,连结DH,FH.将乙纸片放到甲的内部得到图2.已知甲、乙两个正方形边长之和为6,图2的阴影部分面积为2,则图1的阴影部分面积为()A.8B.C.10D.118.一个三角形的面积是8×106cm2,且一边长为5×102cm,则这边上的高为()A.1.6×103cm B.1.6×104cm C.3.2×103cm D.3.2×104cm 二.填空题(共8小题,满分40分)9.一个长方形的面积为a3﹣2a2+a,宽为a,则长方形的长为.10.计算(﹣2a2b)3÷4a3b3=.11.若x2﹣(m﹣1)x+49是完全平方式,则实数m=.12.已知x满足(x﹣2020)2+(2022﹣x)2=10,则(x﹣2021)2的值是.13.已知x+=3,那么=.14.如图,两个正方形边长分别为a、b,如果a+b=8,ab=2,则阴影部分的面积为.15.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣4)=10,则x的值为.16.如图,长方形ABCD的边BC=13,E是边BC上的一点,且BE=BA=10.F,G分别是线段AB,CD上的动点,且BF=DG,现以BE,BF为边作长方形BEHF,以DG为边作正方形DGIJ,点H,I均在长方形ABCD内部.记图中的阴影部分面积分别为S1,S2,长方形BEHF和正方形DGIJ的重叠部分是四边形KILH,当四边形KILH的邻边比为3:4时,S1+S2的值为.三.解答题(共7小题,满分40分)17.先化简,再求值:4(m﹣1)2﹣(2m+5)(2m﹣5),其中m=﹣3.18.先化简,再求值[(a﹣2b)2+(a﹣2b)(a+2b)﹣2a(2a﹣b)]÷2a,其中,a=﹣1,.19.先化简,再求值:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷(﹣2x),其中x=﹣,y=1.20.(1)若5a=2,5b=3,5c=6,求52a+3b﹣c的值;(2)若(a﹣2019)2+(2020﹣a)2=5,求(a﹣2019)(a﹣2020)的值.21.(1)先化简再求值:a2﹣3(2a+3)+6a+1,其中a=﹣1.(2)小亮在对代数式2x2+ax﹣y+6﹣2bx2+4x﹣6y+3进行化简后,发现化简的结果与字母x的取值无关,请求出代数式(a﹣b)2的值.22.4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,这个记号就叫做二阶行列式,例如:=1×4﹣2×3=﹣2,若=10,求x的值.23.将7张相同的小长方形纸片(如图1所示)按图2所示的方式不重叠的放在长方形ABCD 内,未被覆盖的部分恰好被分割为两个长方形,面积分别为S1和S2.已知小长方形纸片的长为a,宽为b,且a>b.(1)当a=9,b=3,AD=30时,长方形ABCD的面积是,S1﹣S2的值为;(2)当AD=40时,请用含a、b的式子表示S1﹣S2的值;(3)若AB长度保持不变,AD变长,将这7张小长方形纸片还按照同样的方式放在新的长方形ABCD内,当a、b满足什么关系时,S1﹣S2的值与AD的长度无关?参考答案一.选择题(共8小题,满分40分)1.解:A、原式=16a4b8,不符合题意;B、原式=a6﹣a6=0,符合题意;C、原式=﹣2a2,不符合题意;D、原式=a2+4a+4,不符合题意.故选:B.2.解:14x4y2÷7x3y=2xy,故选:B.3.解:原式=x3÷(﹣x2)﹣2x2y÷(﹣x2)=﹣x+2y.故选:B.4.解:(6m4﹣8m3)÷(﹣2m2)+3m2=﹣3m2+4m+3m2=4m,∵4y2+my+9是完全平方式,∴m=±2×2×3=±12,当m=12时,原式=4×12=48;当m=﹣12时,原式=4×(﹣12)=﹣48;故选:A.5.解:另一边长是:(4a2+8ab+2a)÷2a=2a+4b+1,则周长是:2[(2a+4b+1)+2a]=8a+8b+2.故选:D.6.解:根据题意,得纸盒底部长方形的宽为=4a,∴纸盒底部长方形的周长为:2(4a+b)=8a+2b.故选:D.7.解:设甲正方形边长为x,乙正方形边长为y,则AD=x,EF=y,AE=x+y=6,∴(x+y)2=36,∴x2+y2+2xy=36,∵点H为AE的中点,∴AH=EH=3,∵图2的阴影部分面积=(x﹣y)2=x2+y2﹣2xy=2,∴(x+y)2+(x﹣y)2=36+2,∴x2+y2=19,∴图1的阴影部分面积=x2+y2﹣×3•x﹣×3•y=x2+y2﹣(x+y)=19﹣×6=19﹣9=10,故选:C.8.解:∵面积=×边长×高,∴高=(2×8×106)÷(5×102),=3.2×(106÷102)=3.2×104,故选:D.二.填空题(共8小题,满分40分)9.解:长方形的长为(a3﹣2a2+a)÷a=a2﹣2a+1,故答案为:a2﹣2a+1.10.解:原式=﹣8a6b3÷4a3b3=﹣2a3.故答案为:﹣2a3.11.解:∵x2﹣(m﹣1)x+49是完全平方式,∴﹣(m﹣1)=±14,解得:m=15或﹣13.故答案为:15或﹣13.12.解:∵(x﹣2020)2+(2022﹣x)2=10,∴(x﹣2021+1)2+(x﹣2021﹣1)2=10,设x﹣2021=y,则(y+1)2+(y﹣1)2=10,∴y2+2y+1+y2﹣2y+1=10,∴2y2=8,∴y2=4,∴(x﹣2021)2=4,故答案为:4.13.解:∵x+=3,∴x2+=(x+)2﹣2=7,∴=(x2+)2﹣2=47.14.解:由题意得阴影部分面积为,a²+b²﹣﹣=﹣+=(a²﹣ab+b²)=[(a+b)²﹣3ab],∴当a+b=8,ab=2时,阴影部分面积为,(8²﹣3×2)=×58=29,故答案为:29.15.解:∵(x+1)※(x﹣4)=10,∴(x+1)2﹣(x+1)(x﹣4)=10,∴x2+2x+1﹣(x2﹣4x+x﹣4)=10,∴x2+2x+1﹣x2+4x﹣x+4=10,∴5x=5,∴x=1,故答案为:1.16.解:在矩形ABCD中,AB=CD=10,AD=BC=13.∵四边形DGIJ为正方形,四边形BFHE为矩形,BF=DG,∴四边形KILH为矩形,KI=HL=2DG﹣AB=2DG﹣10.∵BE=BA=10,∴LG=EC=3,∴KH=IL=DG﹣LG=DG﹣3.当矩形KILH的邻边的比为3:4时,(DG﹣3):(2DG﹣10)=3:4,或(2DG﹣10):(DG﹣3)=3:4,解得DG=9或.当DG=9时,AF=CG=1,AJ=4,∴S1+S2=AF•AJ+CE•CG=1×4+1×3=7;当DG=时,AF=CG=,AJ=,∴S1+S2=AF•AJ+CE•CG==.故答案为7或.三.解答题(共7小题,满分40分)17.解:4(m﹣1)2﹣(2m+5)(2m﹣5)=4(m2﹣2m+1)﹣(4m2﹣25)=4m2﹣8m+4﹣4m2+25=﹣8m+29,当m=﹣3时,原式=﹣8×(﹣3)+29=24+29=53.18.解:[(a﹣2b)2+(a﹣2b)(a+2b)﹣2a(2a﹣b)]÷2a =(a2﹣4ab+4b2+a2﹣4b2﹣4a2+2ab)÷2a=(﹣2a2﹣2ab)÷2a=﹣a﹣b,当a=﹣1,=时,原式=﹣(﹣1)﹣=1﹣=.19.解:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷(﹣2x)=(x2﹣4xy+4y2+x2﹣4y2﹣4x2+2xy)÷(﹣2x)=(﹣2x2﹣2xy)÷(﹣2x)=x+y,当x=﹣,y=1时,原式=﹣+1=.20.解:(1)∵5a=2,5b=3,5c=6,∴52a+3b﹣c=52a•53b÷5c=(5a)2•(5b)3÷5c=22×33÷6=4×27÷6=18;(2)设a﹣2019=x,2020﹣a=y,则x+y=1,∵(a﹣2019)2+(2020﹣a)2=5,∴x2+y2=5,∵(x+y)2=x2+2xy+y2,∴xy===﹣2,即(a﹣2019)(2020﹣a)=xy=﹣2;∴(a﹣2019)(a﹣2020)=﹣(2020﹣a)(a﹣2019)=﹣xy=2.21.解:(1)a2﹣3(2a+3)+6a+1=a2﹣6a﹣9+6a+1=a2﹣8,当a=﹣1时,原式=(﹣1)2﹣8=1﹣8=﹣7;(2)2x2+ax﹣y+6﹣2bx2+4x﹣6y+3=(2﹣2b)x2+(a+4)x﹣7y+9,∵化简的结果与字母x的取值无关,∴2﹣2b=0且a+4=0,解得:b=1,a=﹣4,所以(a﹣b)2=(﹣4﹣1)2=25.22.解:根据题中的新定义得:(x+1)(x+1)﹣(x+2)(x﹣2)=10,整理得:x2+2x+1﹣x2+4=10,解得:x=2.5,则x的值为2.5.23.解:(1)长方形ABCD的面积为30×(4×3+9)=630;S1﹣S2=(30﹣9)×4×3﹣(30﹣3×3)×9=63;故答案为:630,63;(2)S1﹣S2=4b(40﹣a)﹣a(40﹣3b)=160b﹣4ab﹣40a+3ab=160b﹣ab﹣40a;(3)∵S1﹣S2=4b(AD﹣a)﹣a(AD﹣3b),整理,得:S1﹣S2=(4b﹣a)AD﹣ab,∵S1﹣S2的值与AD的值无关,∴4b﹣a=0,解得:a=4b.即a,b满足的关系是a=4b.。
乘法公式2两数和(或差)的平方
通过乘法公式和向量外积计算三角 形的面积。
体积计算
01
02
03
长方体体积
通过乘法公式计算长方体 的体积,即长乘以宽乘以 高。
圆柱体体积
利用乘法公式和圆的面积 公式计算圆柱体的体积。
圆锥体体积
通过乘法公式和圆的面积 公式以及高计算圆锥体的 体积。
长度计算
向量的模
通过乘法公式计算向量的 模,即向量各分量的平方 和的平方根。
空间中两点的距离
利用乘法公式和向量减法 计算空间中两点的距离。
圆的周长
通过乘法公式和圆的半径 计算圆的周长。
05 乘法公式在物理中的应用
运动学问题
匀变速直线运动
利用乘法公式推导位移与时间的 关系,如$s = v_0t + frac{1}{2}at^2$。
抛体运动
将乘法公式应用于抛体运动的水 平位移和竖直位移,求解物体的
通过乘法公式的运用, 可以简化复杂的多项 式表达式,降低计算 难度。
方程求解
利用乘法公式将方程化为标准形式, 便于求解未知数。
通过对方程的变形和化简,可以更容 易地找到方程的解,提高解题效率。
在解方程时,可以根据乘法公式的特 点,选择合适的变形方式,简化求解 过程。
不等式证明
利用乘法公式证明不等式,可 以将复杂的不等式化为简单的 形式,便于证明。
运动轨迹。
圆周运动
通过乘法公式计算向心加速度、 线速度、角速度等物理量之间的
关系。
动力学问题
1 2
牛顿第二定律
结合乘法公式,推导物体加速度与作用力、质量 之间的关系,即$F = ma$。
动量定理
应用乘法公式求解物体动量变化与冲量之间的关 系,如$Delta p = Ft$。
人教版初中数学八年级上单元试卷第十四章 整式的乘法与因式分解(能力提升)八年级数学上册单元过关测试
2022-2023学年人教版八年级数学上册单元测试定心卷第十四章 整式的乘法与因式分解(能力提升)时间:100分钟 总分:120分一、选择题目(每题3分,共24分)1.计算()2223x x ⋅-的结果是 ( )A .46x -B .56xC .52x -D .62x【解析】 解:()2223x x ⋅-=46x -,故选:A .【点睛】本题考查单项式乘单项式,熟练掌握运算法则是解答的关键.2.下列单项式中,使多项式216a M +能用平方差公式因式分解的M 是 ( )A .aB .2bC .-16aD .2b -【解析】解:A 、16a 2+a ,不符合平方差公式,不符合题意;B 、16a 2+b 2,不符合平方差公式,不符合题意;C 、16a 2-16a ,不符合平方差公式,不符合题意;D 、16a 2-b 2,符合平方差公式,符合题意.故选:D .【点睛】本题考查了平方差公式:a 2-b 2=(a+b )(a-b ),掌握平方差公式是解题的关键.3.若323b a =+,则代数式224129a ab b -+的值为 ( )A .1-B .9C .7D .5【解析】解:∵323b a =+,∴323b a -=∴()222412932a ab b b a -+=-23= =9.故选:B .【点睛】本题考查求代数式的值,完全平方式,解题关键能发现所给的条件等式与所求代数式之间的关系.4.把一块边长为a 米(5a >)的正方形土地的一边增加5米,相邻的另一边减少5米,变成一块长方形土地,你觉得土地的面积 ( )A .没有变化B .变大了C .变小了D .无法确定【解析】解:由题意得:长方形土地的长为()5a +米,宽为()5a -米,∴长方形的面积为()()()225525m a a a +-=-,正方形的面积为2a 平方米,∴2225a a >-,∴我觉得土地的面积变小了;故选C .【点睛】本题主要考查平方差公式,熟练掌握平方差公式是解题的关键.5.观察图形,用两种不同的方法计算大长方形面积,我们可以验证等式 ( )A .(a +b )(a +2b )=a2+3ab +2b2B .(a +b )(2a +b )=2a2+3ab +b2C .(a +b )(a +2b )=2a2+3ab +b2D .(a +b (2a +b )=a2+3ab +2b2【解析】解:∵长方形的面积=(a +b )(a +2b )长方形的面积=a 2+ab +ab +ab +b 2+b 2= a2+3ab +2b2,∴(a +b )(a +2b )= a 2+3ab +2b 2故选:A .【点睛】本题考查多项式乘以多项式的几何意义,通过几何图形之间的数量关系对多项式乘以多项式做出几何解释.6.阅读材料:数学课上,杨老师在求代数式245x x -+的最小值时,利用公式222)2(a ab b a b ±+=±,对式子作如下变形:22245441(2)1x x x x x ++=+++=++,因为2(2)0x +≥,所以2(2)11x ++≥,当2x =-时,2(2)11x ++=,因此245x x ++的最小值是1.通过阅读,解答问题:当x 取何值时,代数式289x x ---有最大或最小值,是多少?( )A .当4x =时,有最小值7-.B .当4x =-时,有最小值7.C .当4x =-时,有最大值7.D .当4x =时,有最大值7-.【解析】解:289x x ---=()289x x -++=()28167x x -+++=()247x -++∴当4x =-时,有最大值7,故选:C .【点睛】本题考查求代数式的最值,完全平方公式的应用,解题的关键是参照样例对代数式进行变形.7.如图,有两个正方形A ,B ,现将B 放置在A 的内部得到图甲,将A 、B 并列放置,以正方形A 与正方形B 的边长之和为新的边长构造正方形得到图乙,若图甲和图乙中阴影部分的面积分别为1和8,则正方形A 、B 的面积之和为 ( )A .8B .9C .10D .12【解析】解:设大小正方形边长分别为a 、b ,S 阴1=(a ﹣b )2=1,即a 2+b 2﹣2ab =1,S 阴2=(a +b )2﹣a 2﹣b 2=8,得:ab =4.∴a 2+b 2﹣2×4=1,∴a 2+b 2=9.故选:B .【点睛】考查了完全平方式的应用,把阴影部分表示出来是解题的关键.8.若()()35M x x =--,()()26N x x =--,则M 与N 的关系为 ( )A .M NB .M N >C .M N <D .不能确定【解析】 解:∵()()235815M x x x x =--=-+,()()226812N x x x x =--=-+,()228158123M N x x x x -=-+--+=>0,∴M N >.故选:B .【点睛】本题主要考查多项式乘以多项式、整式的加减.注意不要漏项,漏字母,有同类项的合并同类项,掌握多项式乘以多项式的法则是解题的关键.二、填空题目(每题3分,共24分)9.计算:(21)(21)x x -+--_________.【解析】解:(21)(21)x x -+--241x =-.故答案为:241x -【点睛】本题主要考查了平方差公式,熟练掌握平方差公式是解题的关键.10.计算:4.3×202.2+7.6×202.2-1.9×202.2=__________.【解析】解:4.3×202.2+7.6×202.2-1.9×202.2=202.2×(4.3+7.6-1.9)=202.2×10=2022,故答案为:2022.【点睛】本题考查提公因式法分解因式,掌握提公因式的方法是正确应用的前提.11.已知(1)(1)8x y --=,8x y +=,则xy =________.【解析】解:(1)(1)8,x y --=18,xy x y ∴--+=()18,xy x y ∴-++=()7,xy x y ∴=++8,x y ∴+=7815.xy ∴=+=故答案为:15.【点睛】本题主要考查了多项式乘多项式,熟练掌握多项式乘多项式乘法法则是解此题的根据.12.若2(3)9x m x +-+是完全平方式,则m =______.【解析】解:∵2(3)9x m x +-+是完全平方式,∴m −3=±6,解得:m =-3或9.故答案为:-3或9.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.已知21m x =+,132m y +=+,若用含x 的代数式表示y ,则y =______.【解析】∵21m x =+,132m y +=+,∴12m x -=,322m y -=⨯,∴3(1)2y x -=-⨯,即21y x =+,故答案为:21x +.【点睛】本题考查了同底数幂的乘法的逆用,掌握同底数幂的乘法是解答本题的关键.14.若n 满足22(2020)(2022)1n n -+-=,则(2020)(2022)n n --=________.【解析】解:()()()()()()222420202022=20202022+220202022n n n n n n ⎡⎤=-+--+---⎣⎦, 又22(2020)(2022)1n n -+-=,212(2020)(2022)24n n ∴+--==,3(2020)(2022)2n n ∴--=, 故答案为:32.【点睛】本题考查了完全平方公式,能灵活运用完全平方公式进行变形计算是解此题的关键.15.已知6m n -=,216730mn c c +++=,则m +n +c 的值为__________.【解析】解:∵m −n =6,∴m =n +6,∵216730mn c c +++=,∴n (n +6)+c 2+16c +73=0,∴n 2+6n +c 2+16c +73=0,∴n 2+6n +9+c 2+16c +64=0,∴(n +3)2+(c +8)2=0,∴n +3=0,c +8=0,∴n =−3,c =−8,∴m =n +6=−3+6=3,∴m +n +c =3+(−3)+(−8)=−8,∴m +n +c 的值为−8.故答案为:−8.【点睛】本题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.16.如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”,他的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的.“杨辉三角”中有许多规律,如它的每一行的数字正好对应了()na b +(n 为非负整数)的展开式中a 按次数从大到小排列的项的系数,例如:()2222a b a ab b +=++展开式中的系数1,2,1恰好对应图中第三行的数字;()3322333a b a a b ab b +=+++展开式中的系数1,3,3,1恰好对应图中第四行的数字…….请认真观察此图,根据前面各式的规律,写出()5a b +的展开式:()5a b +=______.解:可得:(a+b )4=a 4+4a 3b+6a 2b 2+4ab 3+b 4;则(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5.故答案为:a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.三、解答题(每题8分,共72分)17.计算(1)计算:(2x ﹣y )2﹣(2x +y )(2x ﹣y );(2)用简便方法计算:20212﹣2020×2022.【解析】(1)解:原式=4x 2-4xy +y 2-4x 2+y 2=-4xy +2y 2;(2)解:原式=(2020+1)2-2020×(2020+2)=20202+2×2020×1+1-20202-2020×2=1.【点睛】本题考查整式混合运算,完全平方公式,平方差公式,熟练掌握完全平方公式和平方差公式是解题的关键.18.以下是小鹏化简代数式()()()()221123a a a a a -++---的过程.(1)小鹏的化简过程在第______步开始出错,错误的原因是______.(2)请你帮助小鹏写出正确的化简过程,并计算当0.5a =-时代数式的值.【解析】(1)小鹏在第①步开始出错,(a -2)2≠a 2-2a +4,错误的原因是完全平方公式运用错误. 故答案为:①,完全平方公式运用错误.(2)(a -2)2+(a +1)(a -1)-2a (a -3)=a 2-4a +4+a 2-1-2a 2+6a=2a +3.∴当0.5a =-时,原式=2×(-0.5)+3=2.【点睛】本题考查了整式的混合运算,熟练掌握相关公式及运算法则是解题的关键.19.甲、乙两个同学因式分解2x ax b ++时,甲看错了a ,分解结果为()()48x x +-,乙看错了b ,分解结果为()()26x x -+.求多项式2x ax b ++分解因式的正确结果.【解析】解:∵()()248432x x x x +-=--,甲看错了a 的值,又∵()()226412x x x x -+=+-,乙看错了b 的值,∴4a =,∴多项式()()2243284x ax b x x x x ++=+-=+-.故答案为:()()84x x +-.【点睛】本题考查因式分解和整式化简之间的关系,牢记各自的特点并能灵活应用是解题关键.20.如图,学校有一块长为()2m a b +,宽为()m a b +的长方形土地,四个角留出四个边长为()m b a -的小正方形空地,剩余部分进行绿化.(1)用含a 、b 的式子表示要进行绿化的土地面积;(结果要化简)(2)当6a =,10b =时,求要进行绿化的土地面积.【解析】(1)解:由于S 绿化面积=S 长方形﹣4S 小正方形,因此有,(a +b )(a +2b )﹣4(b ﹣a )2=a 2+3ab +2b 2﹣4a 2+8ab ﹣4b 2=(11ab ﹣3a 2﹣2b 2)(m 2),答:绿化的面积为(11ab ﹣3a 2﹣2b 2)(m 2);(2)解:当a =6,b =10时,原式=660﹣108﹣200=352(m 2)答:当a =6,b =10时,绿化的土地面积为352m 2.【点睛】本题考查完全平方公式的几何背景,多项式乘多项式,单项式乘多项式,掌握完全平方公式的结构特征,多项式乘多项式,单项式乘多项式的计算方法是正确解答的前提.21.计算并观察规律,完成下列问题:例:计算:32022202120222023-⨯⨯解:设2022x =,则原式3(1)(1)x x x x =--⋅⋅+32(1)x x x =--x =2022=.(1)计算:2223224222-⨯;(2)若123456789123456786M =⨯,123456788123456787N =⨯,请比较M 、N 的大小.【解析】(1)设223=x,∴2232-224×122=x2-(x+1)(x-1)=x2-x2+1=1;(2)设123456786=x,∴M=123456789×123456786=(x+3)•x=x2+3x,N=123456788×123456787=(x+2)(x+1)=x2+3x+2,∴M<N.【点睛】本题考查了整式的混合运算,单项式乘多项式,理解例题的解题思路是解题的关键.22.初中数学的一些代数公式可以通过几何图形的面积来推导和验证.如图①,从边长为a的正方形中挖去一个边长为b的小正方形后,将其沿虚线裁剪,然后拼成一个矩形(如图②).(1)通过计算图①和图②中阴影部分的面积,可以验证的公式是:.(2)小明在计算(2+1)(22+1)(24+1)时利用了(1)中的公式:(2+1)(22﹣1)(24+1)=1•(2+1)(22+1)(24+1)=.(请你将以上过程补充完整.)(3)利用以上的结论和方法、计算:12+(3+1)(32+1)(34+1)(38+1)(316+1).【解析】(1)解:图①中阴影部分的面积可以看作两个正方形的面积差,即a2−b2,图②是长为(a+b),宽为(a−b)的长方形,因此面积为(a+b)(a−b),由图①、图②面积相等可得:(a+b)(a −b)=a2−b2,故答案为:(a+b)(a−b)=a2−b2;(2)解:原式=(2−1)•(2+1)(22+1)(24+1)=(22−1)(22+1)(24+1)=(24−1)(24+1)=28−1,故答案为:28−1;(3)解:原式=12+12(3−1)(3+1)(32+1)(34+1)(38+1)(316+1)=12+12(32−1)(32+1)(34+1)(38+1)(316+1)=12+12(34−1)(34+1)(38+1)(316+1)=12+12(38−1)(38+1)(316+1)=12+12(316−1)(316+1)=12+12(332−1)=12+3232−12=3232. 【点睛】本题考查平方差公式的几何背景,掌握平方差公式的结构特征是正确解答的前提,用代数式表示图形中阴影部分的面积是正确解答的关键.23.先阅读,再解答.例:222450x y x y +-++=,求x y +的值.解:∵222450x y x y +-++=∴()2221)440x x y y -++++=( 即()221)20x y -++=( 221)0,(20x y -≥+≥()221020x y ∴-=+=(),()1,2x y ∴==- 1x y ∴+=-(1)已知22464100x y x y +-++=,求xy 的值;(2)已知c a b 、、为ΔABC 的三边,且满足()222220,a b c b a c ++-+=判断ΔABC 的形状,并说明理由.【解析】(1)解:∵22464100x y x y +-++=∴()2269)4410x x y y -++++=( 即()223)210x y -++=( ∵()223)0,210x y -≥+≥( ∴()()2230,210x y -=+= ∴13,2x y ==- ∴32xy =-.(2)解:ΔABC 是等边三角形,理由∵()222220,a b c b a c ++-+=∴()()2222220a ab b b bc c -++-+=∴()()220a b b c +-=-∵()()220,0a b b c -≥-≥∴()()220,0a b b c -=-=∴,a b b c ==即a b c ==∴ΔABC 是等边三角形.【点睛】本题考查了配方法的应用以及非负数的性质,等边三角形的判定,熟练掌握完全平方公式是解题的关键.24.(1)请用两种不同的方法表示图中阴影部分的面积和.方法1:____________________________;方法2:____________________________.(2)请你直接写出三个代数式:()2a b +,22a b +,ab 之间的等量关系.(3)根据(2)中的等量关系,解决如下问题:①已知5m n +=,2220m n +=,求mn 和()2m n -的值;②已知()()222021202374x x -+-=,求()22022x -的值.【解析】解:(1)方法1:两个阴影部分的面积和就是边长为a 的正方形,与边长为b 的正方形的面积和,即22a b +;方法2:两个阴影部分的面积和也可以看作从边长为a b +的正方形面积中减去两个长为a ,宽为b 的长方形面积,即2()2a b ab +-;故答案为:22a b +,2()2a b ab +-;(2)由(1)得,222()2a b a b ab +=+-;(3)①5m n +=,222()252m n m mn n ∴+==++,2220m n +=,25mn ∴=, 即52mn =;222()220515m n m mn n -=-+=-=,答:52mn =,2()15m n -=;②设2021a x =-,2023b x =-,则2a b -=,2222(2021)(2023)74a b x x +=-+-=, 所以2222()7423522a b a b ab +---===, 即(2021)(2023)35x x --=,所以2[(2022)1][(2022)1](2022)135x x x -+--=--=,即2(2022)36x -=.【点睛】本题考查完全平方公式的几何背景,解题的关键是用不同的代数式表示阴影部分的面积.25.在求代数式值的问题中,有时通过观察式子的特点,可以找到较为简单的解法. 例如,若x 满足()()2510x x --=,求()()2225x x ---的值,可以按下列的方法来解: 解:设()2x a -=,()5x b -=,则()()2510ab x x =--=,()()253a b x x -=---=,∴()()22449a b a b ab +=-+=,∴7a b +=±,∴()()()()2222257321x x a b a b a b ---=-=+-=±⨯=±.请仿照上面的方法求解下面的问题:(1)若x 满足()()496x x --=,求()()2249x x -+-的值; (2)将正方形ABCD 和正方形EFGH 按如图所示摆放,点F 在BC 边上,EH 与CD 交于点I ,且1ID =,2CG =,长方形EFCI 的面积为24,以CF 为边作正方形CFMN .设AD x =,①用含x 的代数式直接表示EF 和CF 的长;②求图中阴影部分的面积.【解析】(1)解:设()4x a -=,()9x b -=,则()()496ab x x =--=,()()495a b x x -=---=, ∴()()()22222249252637x x a b a b ab -+-=+=-+=+⨯=;(2)①∵四边形ABCD 是正方形,四边形EFGH 是正方形,四边形EFCI 是长方形,1ID =,2CG =, ∴CD =AD =x ,∴1EF IC x ==-,∴FG =1EF x =-,∴123CF x x =--=-;②∵长方形EFCI 的面积为24,∴()()1324x x --=,设1x a -=,3x b -=,则24ab =,2a b -=,∴()()224100a b a b ab +=-+=,∵0a >,0b >,∴10a b +=,∴()()()()22221320S x x a b a b a b =---=-=+-=阴影.【点睛】本题主要考查了完全平方公式和平分差公式的应用,牢记完全平方公式和平方差公式以及变形公式(a +b )2=(a −b )2+4ab 是解题关键.祝福语祝你考试成功!。
Excel乘法函数公式介绍
Excel乘法函数公式介绍我们为大家收集整理了关于Excel乘法函数公式,以方便大家参考。
1、A1*B1=C1的Excel乘法公式①首先,打开表格,在C1单元格中输入“=A1*B1”乘法公式。
②输入完毕以后,我们会发现在C1 单元格中会显示“0”,当然了,因为现在还没有输入要相乘的数据嘛,自然会显示0了。
③现在我们在“A1”和“B1”单元格中输入需要相乘的数据来进行求积,我分别在A1和B1单元格中输入10和50进行相乘,结果在C1中就会显示出来,等于“500”。
上面主要讲解了两个单元格相乘求积的方法,但是在我们平常工作中,可能会遇到更多数据相乘,下面主要说说多个单元格乘法公式运用,如:“A1*B1*C1*D1”=E1。
2、Excel中多个单元格相乘的乘法公式①在E1单元格中输入乘法公式“=A1*B1*C1*D1”。
②然后依次在A1、B1、C1、D1中输入需要相乘的数据,结果就会显示在“E1”中啦!看看图中的结果是否正确呀!其实,这个方法和上面的差不多,只不过是多了几道数字罢了。
因为在工作中不止是乘法这么简单,偶尔也会有一些需要“加减乘除”一起运算的时候,那么当遇到这种混合运算的时候我们应当如何来实现呢?这里就要看你们小学的数学有没学好了。
下面让我们一起来做一道小学时的数学题吧!3、Excel混合运算的乘法公式,5加10减3乘2除3等于多少?提示:加=+,减=-,乘=*,除=/。
①首先,我们要了解这个公式怎么写,“5+10-3*2/3”这是错误的写法,正确写法应该是“(5+10-3)*2/3”。
②好了,知道公式了,我们是不是应该马上来在Excel中的“F1”中输入“=(A1+B1-C1)*D1/E1”。
③然后依次在A1、B1、C1、D1、E1中输入需要运算的数据。
好了,上面的一些基本乘法公式就已经讲玩了,下面教大家个小技巧,在有多行需要计算的时候该怎么办呢?4、将公式复制到每行或每列①首先用鼠标选中“F1”单元格,直到鼠标变成黑色的十字架的时候,左键按住不动往下拖。
冀教版2020七年级数学下册第八章整式的乘法自主学习能力达标测试题4(附答案)
冀教版2020七年级数学下册第八章整式的乘法自主学习能力达标测试题4(附答案) 1.使()()2283x px x x q ++-+的积中不含2x 和3x 的p,q 的值分别是( )A .0,0p q ==B .3,9p q =-=-C .3,1p q ==D .3,1p q =-= 2.下列运算:(1)2a a a +=;(2)3412a a a ⨯=;(3)()22ab ab = ;(4)()326a a -=.其中错误的个数是A .1B .2C .3D .4 3.下列计算正确的是( )A .5a 3a 2-=B .236(2a )6a =C .32a 2a 2a ÷=D .453a (2a)48a ⋅-=4.下列计算中,结果正确的是( )A .236a a a ⋅=B .(2)(3)6a a a ⋅=C .236()a a =D .623a a a ÷= 5.下列计算正确的是( )A .3x+x=4x 2B .x 6÷x 2=x 3C .(-x 2)3=-x 6D .(-2x )3=-6x 3 6.“末来中国人口会不会突破15亿?“是我国人口政策调整决策中的重要考量,15亿用科学记数法表示为( )A .15×109B .1.5×108C .1.5×109D .1.597.下列计算正确的是( )A .222a? a 2a ⋅=B .824a a a ÷=C .22(2a)4a -=D .325(a )a = 8.用四舍五入法得到近似数4.005万,关于这个数有下列说法,其中正确的是( ) A .它精确到万位B .它精确到0.001C .它精确到万分位D .它精确到十位9.下列等式成立的是( )A .2﹣1=﹣2B .(a 2)3=a 5C .a 6÷a 3=a 2D .﹣2(x ﹣1)=﹣2x +2 10.下列运算正确的是( )A .x 3+x 3=x 6B .3x 3y 2÷xy 2=3x 4C .x 3•(2x )2=4x 5D .(﹣3a 2)2=6a 211.已知x 、y 是实数且满足x 2+xy+y 2﹣2=0,设M=x 2﹣xy+y 2,则M 的取值范围是_____. 12.计算:-2xy(x 2y-3xy 2)=___________.13.引入新数i ,规定i 满足运算律且i ²=-1,那么(3+i )(3-i )的值为_________. 14.随着数系不断扩大,我们引进新数i ,新 i 满足交换率、结合律,并规定:i 2=﹣1,那么(2+i )(2﹣i )=________(结果用数字表示).15.日本地震中发生核泄漏,科学家发现某放射性物的长度约为0.0000041mm ,用科学记数法表示的结果为_____________________mm16.计算:()()12x x +-= __________.17.2018年1月4日在萍乡市第十五届人民代表大会第三次会议报告指出,去年我市城镇居民人均可支配收入33080元,33080用科学记数法可表示为__.18.计算:()341x y --=________________.19.若m+n=2, 则2m 2+4mn+2n 2-1=__________;20.计算:(18a 2-3a )÷3a=_____. 21.计算:(1)3223(46)2a b a b ab ab +-÷.(2)2(32)(21)x x x +-+.(3)(x-2y)(x+2y)-(2y-x)2.22.已知M(2)=(-2)×(-2),M(3)=(-2)×(-2)×(-2),…,M(n)=-2(-2)(-2)?(-2)n ⨯⨯⨯n 个相乘.(1)计算:M(5)+M(6);(2)求2M(2 016)+M(2 017)的值;(3)说明2M(n)与M(n+1)互为相反数.23.仔细阅读材料,再尝试解决问题:完全平方式()222x 2xy y x y ±+=± 以及()2x y ±的值为非负数的特点在数学学习中有广泛的应用,比如探求2610x x ++的最大(小)值时,我们可以这样处理:例如:①用配方法解题如下:2610x x ++原式=2x +6x+9+1=2(3)1x ++ 因为无论x 取什么数,都有()23x +的值为非负数,所以()23x +的最小值为0;此时3x =- 时,进而2(3)1x ++的最小值是0+1=1;所以当3x =-时,原多项式的最小值是1.请根据上面的解题思路,探求:(1)若(x+1)2+(y-2)2=0,则x= ,y= ..(2)若x 2+y 2+6x -4y+13=0,求x ,y 的值;(3)求2810x x -+的最小值24.计算:(1)(a 2)3·(a 2)4÷(a 2)5;(2)(x -y +9)(x +y -9);(3)[(3x +4y )2-3x (3x +4y )]÷(-4y ).25.阅读理解:若x 满足(x -2015)(2002-x )=-302,试求(x -2015)2+(2002-x )2的值.解:设x -2015=a,2002-x =b ,则ab =-302且a +b =(x -2015)+(2002-x )=-13.∵(a +b )2=a 2+2ab +b 2,∴a 2+b 2=(a +b )2-2ab =(-13)2-2×(-302)=773,即(x -2015)2+(2002-x )2的值为773. 解决问题:请你根据上述材料的解题思路,完成下面一题的解答过程,若y 满足(y -2015)2+(y -2016)2=4035,试求(y -2015)(y -2016)的值.26.化简:(1) 22(3)()()2m n m n m n n --+-- (2)224432112x x x x x x x -+⎛⎫÷-++ ⎪+++⎝⎭ 27.计算:(1) 2(4)(31)(3)x x x x -+-+(2) 2(1)(2)(2)x x x +-+-28.解方程(3x -2)(2x -3)=(6x +5)(x -1)+15.参考答案1.C【解析】【分析】()()2283x px x x q ++-+=x 4+(p-3)x 3+(q-3p+8)x 2+(pq-24)x+8q,根据题意得30380p q p -=⎧⎨-+=⎩,解方程组可得. 【详解】()()2283x px x x q ++-+ =x 4-3x 3+qx 2+px 3-3px 2+pqx+8x 2-24x+8q=x 4+(p-3)x 3+(q-3p+8)x 2+(pq-24)x+8q因为不含x 2和x 3项所以30380p q p -=⎧⎨-+=⎩解得31p q =⎧⎨=⎩ 故选:C【点睛】本题考核知识点:整式乘法. 解题关键点:掌握整式乘法法则.2.C【解析】试题解析:(1)2a a a +=,计算结果正确;(2)347a a a ⨯=,原计算结果错误;(3)()222ab a b =,原计算结果错误;(4)()326a a -=-,原计算结果错误.计算结果错误的个数有3个.故选C.3.D【解析】【分析】各项计算得到结果,即可作出判断.【详解】A 、原式=2a ,不符合题意;B 、原式=8a 6,不符合题意;C 、原式=12a 2,不符合题意; D 、原式=48a 5,符合题意,故选D .【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.C【解析】选项A ,235a a a ⋅=,选项A 错误;选项B ,()()2236a a a ⋅= ,选项B 错误;选项C ,()326a a =,选项C 正确;选项D ,624a a a ÷=,选项D 错误.故选C.5.C【解析】A. 3x+x=4x ,故A 选项错误;B. x 6÷x 2=x 4,故B 选项错误;C. (-x 2)3=-x 6,故C 选项正确;D. (-2x )3=-8x 3,故D 选项错误,故选C.6.C【解析】【分析】将15亿用科学计数法表示出来即可.【详解】15亿=150000000=1.5×109.故选C .【点睛】本题主要考查科学计数法的概念:把一个数N 表示成a ×10n (1≤︱a ︱<10,n 是整数)的形式叫做科学记数法.当︱N ︱≥1时,n 等于原数N 的整数位数减1;当︱N ︱<1时,n 是一个负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数位上的零). 7.C【解析】【分析】根据整式的乘除法则即可解题.【详解】A. 232a a 2a ⋅=,所以A 错误B. 826a a a ÷=,所以B 错误,同底数幂相除,底数不变,指数相减C. 22(2a)4a -= ,正确D. 326(a )a =,所以D 错误,幂的乘方要将内外指数相乘.故选C.【点睛】本题考查了整式的乘除运算,熟悉运算法则是解题关键.8.D【解析】试题解析:近似数4.005万精确到十位.故选D .点睛:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.9.D【解析】解:A .2﹣1=12,故原题计算错误; B .(a 2)3=a 6,故原题计算错误;C .a 6÷a 3=a 3,故原题计算错误;D .﹣2(x ﹣1)=﹣2x +2,故原题计算正确.故选D .10.C【解析】试题分析:A 、原式=2x 3,故此选项错误;B 、原式=3x ,故此选项错误;C 、原式=x 3·4x 2=4x 5,故此选项正确;D 、原式=9a 4,故此选项错误.故选:D .11.23≤M≤6 【解析】【分析】把原式的xy 变为2xy-xy ,根据完全平方公式特点化简,然后由完全平方式恒大于等于0,得到xy 的范围;再把原式中的xy 变为-2xy+3xy ,同理得到xy 的另一个范围,求出两范围的公共部分,然后利用不等式的基本性质求出2-2xy 的范围,最后利用已知x 2+xy+y 2-2=0表示出x 2+y 2,代入到M 中得到M=2-2xy ,2-2xy 的范围即为M 的范围.【详解】由2220x xy y ++-=得:22220x xy y xy ++--=,即2()20x y xy +=+≥, 所以2xy ≥-; 由2220x xy y ++-=得:222230x xy y xy -+-+=,即2()230,x y xy -=-≥ 所以32xy ≤, ∴322xy -≤≤, ∴不等式两边同时乘以−2得:()()()322222xy -⨯-≥-≥⨯-,即4243xy -≤-≤, 两边同时加上2得:422242,3xy -+≤-≤+即22263xy ≤-≤, ∵2220,x xy y ++-=∴222x y xy +=-,∴2222M x xy y xy =-+=-,则M 的取值范围是23≤M≤6. 故答案为:23≤M≤6. 【点睛】此题考查了完全平方公式,以及不等式的基本性质,解题时技巧性比较强,对已知的式子进行了三次恒等变形,前两次利用拆项法拼凑完全平方式,最后一次变形后整体代入确定出M 关于xy 的式子,从而求出M 的范围.要求学生熟练掌握完全平方公式的结构特点:两数的平方和加上或减去它们乘积的2倍等于两数和或差的平方.12.-2x 3y 2+6x 2y 3【解析】解:原式=-2x 3y 2+6x 2y 3.故答案为:-2x 3y 2+6x 2y 3.13.10【解析】试题解析:原式()299110.i =-=--= 故答案为:10.14.5【解析】分析:利用平方差公式进行计算,即可得出答案.详解:原式=()222415i -=--=. 点睛:本题主要考查的就是平方差公式的应用以及新运算的使用,属于简单题型.解决这个问题的时候理解新定义是解题的关键.15.4.1⨯10-6【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】∵0.0000041第一个不为零的数字4前面有6个0,∴0.0000041=4.1⨯10-6,故答案为:4.1⨯10-6【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.16.x 2-x-2【解析】分析:按“多项式乘以多项式的法则”进行计算即可.详解:原式=222x x x -+-=22x x --.故答案为:22x x --.点睛:熟记“多项式乘以多项式的乘法法则”是解答本题的关键.17.3.308×104.【解析】【分析】正确用科学计数法表示即可.【详解】解:33080=3.308×104 【点睛】科学记数法的表示形式为10n a ⨯的形式, 其中1<|a|<10,n 为整数.确定n 的值时, 要看把原数变成a 时, 小数点移动了多少位, n 的绝对值与小数点移动的位数相同. 当原数绝对值大于10时, n 是正数; 当原数的绝对值小于1时,n 是负数.18.123xy x -+【解析】【分析】根据单项式乘以多项式运算法则直接进行运算.【详解】()341x y--=-12xy+3x.【点睛】本题考查了单项式与多项式相乘,掌握其运算法则是解决此题的关键.19.7【解析】2m2+4mn+2n2-1=2(m2+2mn+n2)-1=2(m+n)2-1=2×22-1=7,故答案为7.20.6a-1【解析】【分析】直接利用整式的除法运算法则求出答案.【详解】解:(18a2-3a)÷3a=6a-1;故答案为:6a-1.【点睛】本题考查了多项式除以单项式的法则,多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.21.(1)2a2+3ab-12b2(2)6x3+x2+x+2(3)4xy-8y2【解析】【分析】利用多项式乘除以单项式进行计算即可求出答案. 【详解】(1)原式=2a2+3ab-12b2.(2)原式= 6x3-3x2+3x+4x2-2x+2 =6x3+x2+x+2.(3)原式=x2-4y2-(4y2-4xy+x2) = x2-4y2-4y2+4xy-x2=4xy-8y2.本题考查了多项式乘多项式、整式的除法,熟练掌握多项式的运算方法是本题解题的关键. 22. (1) 32;(2) 0;(3) 详见解析.【解析】试题分析:(1)由题意可得M(5)= (-2)5, M(6)= (-2)6,根据乘方的定义进行计算即可;(2)由题意可得M(2 016)= (-2)2016, M(2017)= (-2)2017,根据同底数幂的乘法法则计算后合并即可;(3)类比(2)的方法计算2M(n)+M(n+1)的值,若值为0,则2M(n)与M(n+1)互为相反数,若值不等于0,则2M(n)与M(n+1)不互为相反数.试题解析:(1)M(5)+M(6)=(-2)5+(-2)6=-32+64=32.(2)2M(2 016)+M(2 017)=2×(-2)2 016+(-2)2 017=2×22 016-22 017=22 017-22 017=0.(3)因为2M(n)+M(n+1)=-(-2)×(-2)n +(-2)n+1=-(-2)n+1+(-2)n+1=0,所以2M(n)与M(n+1)互为相反数. 点睛:本题是一道阅读理解题,考查了乘方的意义和同底数幂的乘法法则,弄清阅读材料中的技巧是解本题的关键.23.(1)x=-1,y=2;(2)x=-3,y=2;(3)最小值为-6【解析】试题分析:利用非负数的性质求出最小值,以及此时,x y 的值即可.试题解析:(1)∵()()22120x y ++-=, 1020x y ∴+=-=,,解得12x y =-=,. ()22264130x y x y ++-+=,()()22320x y ++-=,则3020x y +=-=,,解得32x y =-=,,(3)()228104 6.x x x -+=--最小值为 6.-24.(1) a 4;(2) x 2-y 2+18y -81;(3)-3x -4y ;【分析】(1)根据同底数幂的乘除法法则求解即可;(2)利用平方差公式求解即可;(3)先提取公因式,再根据多项式的乘除法法则求解即可.【详解】(1)(a2)3·(a2)4÷(a2)5=a6·a8÷a10=a14÷a10=a4;(2)(x-y+9)(x+y-9)=[x-(y-9)][x+(y-9)]=x2-(y-9)2=x2-y2+18y-81;(3)[(3x+4y)2-3x(3x+4y)]÷(-4y)=4y(3x+4y)÷(-4y)=(12xy+16y2)÷(-4y)=-3x-4y.25.2017.【解析】试题分析:设y-2015=a,y-2016=b,则a2+b2=4035,a-b=1,根据(a-b)2=a2-2ab+b2,可以求出ab,即可解决问题.试题解析:设y-2015=a,y-2016=b,则a2+b2=4035,a-b=1,∵(a-b)2=a2-2ab+b2,∴ab=12[a2+b2-(a-b)2]=2017.∴(y-2015)(y-2016)=2017.26.(1)286m mn;(2)1 x .【解析】【分析】(1)先利用完全平方公式和平方差公式计算,再合并即可得;(2)根据分式混合运算顺序和运算法则计算可得.(1)原式=22222962m mn n m n n -+-+-.=286m mn -.原式=()22224212x x x x x x --÷++++ =()()()()22121222x x x x x x x -+⋅++-+-+ =()2222x x x x -+++=1x. 【点睛】本题主要考查分式的混合运算与整式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则及完全平方公式、平方差公式.27.(1)5x 2-3 ;(2)2x+5.【解析】【分析】利用整式运算的法则展开并化简即可,此外要合理运用完全平方公式以及平方差公式简化计算.【详解】解:(1)原式=2x 2-8x+3x 2+9x-x-3=5x 2-3;(2)原式=x 2+2x+1-(x 2-4)= x 2+2x+1-x 2+4= 2x+5.【点睛】本题考查了整式的运算,注意合理运用完全平方公式以及平方差公式.28.x=-13【解析】【分析】先把方程两边变形,然后再整理计算即可.【详解】解:原方程变形为:6x 2-9x-4x+6=6x 2-6x+5x-5+15,移项、合并同类项得:-12x=4,同除以12,系数化为1,得:x=-13.【点睛】本题考查了解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.。
七年级下册整式的乘除
七年级下册整式的乘除一、整式乘除的意义和基本概念在七年级下册的数学课程中,我们将会学习一项重要的内容——整式的乘除。
整式的乘除是数学基本技能的重要组成部分,它不仅在日常生活和实际应用中有着广泛的应用,而且对于培养我们的逻辑思维和抽象思维能力也具有关键作用。
我们来理解一下什么是整式。
整式是包含加、减、乘、除四种运算的代数式,它不同于我们过去学习的算术式,例如:2x + 3y就不能简单地通过加减得到结果,而是需要我们进行进一步的运算。
二、整式乘除的规则和方法整式的乘除是按照特定的规则进行的。
乘法满足交换律、结合律和分配律,例如,(ab)c=ab(c),(ab)c=a(bc),(a+b)c=ac+bc等。
这些规则可以帮助我们进行大规模的运算,简化复杂的问题。
而除法则有一些不同。
在整式除法中,我们通常通过乘以一个数的倒数来将除法问题转化为乘法问题。
例如,如果我们要计算a除以b,我们可以乘以b的倒数1/b,这样就可以转化为乘法问题a×(1/b)。
三、整式乘除的应用整式的乘除不仅在数学中有着广泛的应用,在我们的日常生活中也有着广泛的应用。
例如,在解决物理问题、化学问题以及工程问题时,我们都需要使用到整式的乘除。
通过这些应用,我们可以看到数学在我们生活中的重要性,以及我们学习数学的意义。
四、结语七年级下册的整式乘除是一项非常重要的数学技能。
我们需要理解其基本概念和规则,掌握其方法,才能有效地应用到实际生活和各种问题中。
通过学习整式的乘除,我们也可以进一步培养我们的逻辑思维和抽象思维能力。
因此,我们应该认真对待这一部分的学习,打好数学基础。
七年级上册整式乘除试卷及答案一、填空题(每题2分,共20分)1、单项式相乘,把他们的_________分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
2、多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的_________,再把所得的积_________。
平方差公式与完全平方公式试题含答案
平方差公式与完全平方公式试题含答案Company number:【0089WT-8898YT-W8CCB-BUUT-202108】乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2归纳小结公式的变式,准确灵活运用公式:① 位置变化,xyyxx 2y 2 ② 符号变化,xyxyx 2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2ab 2ab 4a 2b 2⑤ 换式变化,xyzmxyzmxy 2zm 2 x 2y 2z 22zm +m 2x 2y 2z 22zmm 2⑥ 增项变化,xyzxyzxy 2z 2 x 22xy y 2z 2⑦ 连用公式变化,xyxyx 2y 2x 2y 2x 2y 2x 4y 4⑧ 逆用公式变化,xyz 2xyz 2xyzxyzxyzxyz2x 2y 2z 4xy 4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
解:19992-2000×1998 =19992-(1999+1)×(1999-1)=19992-(19992-12)=+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。
第一章整式乘法-乘法公式拓展提升(教案)
3.注重个体差异,针对不同水平的学生进行有针对性的辅导和指导;
4.定期对学生们进行评价,了解他们在整式乘法方面的掌握程度,以便调整教学策略。
五、教学反思
在今天的教学中,我发现学生们对整式乘法的基础知识掌握得相对扎实,但在乘法公式的运用上还存在一些问题。尤其是在完全平方公式、平方差公式等拓展提升部分,学生们在理解上还有一定的难度。这让我意识到,在今后的教学中,需要更加注重乘法公式的推导过程和实际应用。
课堂上,我尽量用生动的语言和具体的例子来解释乘法公式的来源和运用,但显然,这部分内容对于一些学生来说仍然难以消化。我想,在下一节课中,可以尝试通过更多的互动和实际操作,让学生们亲自参与到公式的推导和应用中来,以提高他们的理解和记忆。
(3)各类乘法公式在实际问题中的综合运用。
举例:
-多项式乘法法则:要求学生掌握(a+b)(c+d)=ac+ad+bc+bd的展开方法;
-完全平方公式:熟练运用a²±2ab+b²=(a±b)²解决实际问题;
-平方差公式:掌握a²-b²=(a+b)(a-b),并能应用于求解相关问题;
-立方和与立方差公式:熟练运用a³+b³=(a+b)(a²-ab+b²)和a³-b³=(a-b)(a²+ab+b²)解决具体问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了整式乘法的基本概念、乘法公式的重要性和应用。通过实践活动和小组讨论,我们加深了对乘法公式的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
初中数学乘法公式
乘法公式概念总汇1、平方差公式平方差公式:两个数的和与这两个数的差的乘积等于这两个数的平方差,即 (a+b )(a-b )=a 2-b 2说明:(1)几何解释平方差公式如右图所示:边长a 的大正方形中有一个边长为b 的小正方形。
第一种:用正方形的面积公式计算:a 2-b 2;第二种:将阴影部分拼成一个长方形,这个长方形长为(a +b ),宽为(a -b ), 它的面积是:(a +b )(a -b )结论:第一种和第二种相等,因为表示的是同一块阴影部分的面积。
所以:a 2-b 2=(a +b )(a -b )。
(2)在进行运算时,关键是要观察所给多项式的特点,是否符合平方差公式的形式,即只有当这两个多项式它们的一部分完全相同,而另一部分只有符合不同,才能够运用平方差公式。
平方差公式的a 和b ,可以表示单项式,也可以表示多项式,还可以表示数。
应用平方差公式可以进行简便的多项式乘法运算,同时也可以简化一些数字乘法的运算 2、完全平方公式完全平方公式:两个数和(或差)的平方,等于它们的平方和,加上(或减去)它们积的两倍,即(a+b )2=a 2+2ab+b 2,(a-b )2=a 2-2ab+b 2这两个公式叫做完全平方公式。
平方差公式和完全平方公式也叫做乘法公式 说明:(1)几何解释完全平方(和)公式 如图用多种形式计算右图的面积 第一种:把图形当做一个正方形来看,所以 它的面积就是:(a +b )2第二种:把图形分割成由2个正方形和2个相同的长方形来看,其中大正方形的的边长是a ,小正方形 的边长是b ,长方形的长是a ,宽是b ,所以它的面积就是:a 2+ab +ab +b 2=a 2+2ab +b 2结论:第一种和第二种相等,因为表示的是同一个图形的面积 所以:(a +b )2=a 2+2ab +b2 (2)几何解释完全平方(差)公式 如图用多种形式计算阴影部分的面积 第一种:把阴影部分当做一个正方形来看,所以 它的面积就是:(a-b )2第二种:把图形分割成由2个正方形和2个相同的 长方形来看,长方形小正方形大正方形阴影S S S S ⨯=2--其中大正方形的的边长是a ,小正方形的边长是b ,长方形的长是(a-b ),宽是b ,所以 它的面积就是:()222222b ab a b b a b a +-=⋅-⋅--结论:第一种和第二种相等,因为表示的是同一个图形的面积所以:()2222bab a b a +-=-(3)在进行运算时,防止出现以下错误:(a+b )2=a 2+b 2,(a-b )2=a 2-b 2。
平方差公式与完全平方公式试题含答案
平方差公式与完全平方公式试题含答案TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2归纳小结公式的变式,准确灵活运用公式:① 位置变化,xyyxx 2y 2 ② 符号变化,xyxyx 2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2ab 2ab 4a 2b 2⑤ 换式变化,xyzmxyzmxy 2zm 2 x 2y 2z 22zm +m 2x 2y 2z 22zmm 2⑥ 增项变化,xyzxyzxy 2z 2 x 22xy y 2z 2⑦ 连用公式变化,xyxyx 2y 2x 2y 2x 2y 2x 4y 4⑧ 逆用公式变化,xyz 2xyz 2xyzxyzxyzxyz2x 2y 2z 4xy 4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
解:19992-2000×1998 =19992-(1999+1)×(1999-1)=19992-(19992-12)=+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平方差公式专项练习题A卷:基础题一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).B卷:提高题一、七彩题1.(多题-思路题)计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.(一题多变题)利用平方差公式计算:2009×2007-20082.(1)一变:利用平方差公式计算:22007200720082006-⨯.(2)二变:利用平方差公式计算:22007 200820061⨯+.二、知识交叉题3.(科内交叉题)解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).三、实际应用题4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.(2007,泰安,3分)下列运算正确的是()A.a3+a3=3a6B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3D.(-13a-4b)(13a-4b)=16b2-19a26.(2008,海南,3分)计算:(a+1)(a-1)=______.C卷:课标新型题1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.3.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。
3.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
练一练 A 组:1.已知()5,3a b ab -==求2()a b +与223()a b +的值。
2.已知6,4a b a b +=-=求ab 与22a b +的值。
3、已知224,4a b a b +=+=求22a b 与2()a b -的值。
4、已知(a +b)2=60,(a -b)2=80,求a 2+b 2及a b 的值B 组:5.已知6,4a b ab +==,求22223a b a b ab ++的值。
6.已知222450x y x y +--+=,求21(1)2x xy --的值。
7.已知16x x -=,求221x x +的值。
8、0132=++x x ,求(1)221x x +(2)441x x +9、试说明不论x,y 取何值,代数式226415x y x y ++-+的值总是正数。
C 组:10、已知三角形 ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形?整式的乘法、平方差公式、完全平方公式、整式的除法(B 卷)综合运用题 姓名:一、请准确填空1、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=________.2、一个长方形的长为(2a +3b ),宽为(2a -3b ),则长方形的面积为________.3、5-(a -b )2的最大值是________,当5-(a -b )2取最大值时,a 与b 的关系是________.4.要使式子0.36x 2+41y 2成为一个完全平方式,则应加上________. 5.(4a m+1-6a m )÷2a m -1=________.6.29×31×(302+1)=________.7.已知x 2-5x +1=0,则x 2+21x=________. 8.已知(2005-a )(2003-a )=1000,请你猜想(2005-a )2+(2003-a )2=________.二、相信你的选择9.若x 2-x -m =(x -m )(x +1)且x ≠0,则m 等于A.-1B.0C.1D.210.(x +q )与(x +51)的积不含x 的一次项,猜测q 应是 A.5 B.51 C.-51 D.-5 11.下列四个算式:①4x 2y 4÷41xy =xy 3;②16a 6b 4c ÷8a 3b 2=2a 2b 2c ;③9x 8y 2÷3x 3y =3x 5y ; ④(12m 3+8m 2-4m )÷(-2m )=-6m 2+4m +2,其中正确的有A.0个B.1个C.2个D.3个12.设(x m -1y n +2)·(x 5m y -2)=x 5y 3,则m n 的值为A.1B.-1C.3D.-313.计算[(a 2-b 2)(a 2+b 2)]2等于A.a 4-2a 2b 2+b 4B.a 6+2a 4b 4+b 6C.a 6-2a 4b 4+b 6D.a 8-2a 4b 4+b 814.已知(a +b )2=11,ab =2,则(a -b )2的值是A.11B.3C.5D.1915.若x 2-7xy +M 是一个完全平方式,那么M 是 A.27y 2 B.249y 2 C.449y 2 D.49y 2 16.若x ,y 互为不等于0的相反数,n 为正整数,你认为正确的是A.x n 、y n 一定是互为相反数B.(x1)n 、(y 1)n 一定是互为相反数C.x 2n 、y 2n 一定是互为相反数D.x 2n -1、-y 2n -1一定相等三、考查你的基本功17.计算(1)(a -2b +3c )2-(a +2b -3c )2;(2)[ab (3-b )-2a (b -21b 2)](-3a 2b 3);(3)-2100×0.5100×(-1)2005÷(-1)-5;(4)[(x +2y )(x -2y )+4(x -y )2-6x ]÷6x .18.(6分)解方程x (9x -5)-(3x -1)(3x +1)=5.四、生活中的数学19.(6分)如果运载人造星球的火箭的速度超过11.2 km/s(俗称第二宇宙速度),则人造星球将会挣脱地球的束缚,成为绕太阳运行的恒星.一架喷气式飞机的速度为1.8×106 m/h,请你推算一下第二宇宙速度是飞机速度的多少倍?五、探究拓展与应用20.计算.(2+1)(22+1)(24+1)=(2-1)(2+1)(22+1)(24+1)=(22-1)(22+1)(24+1)=(24-1)(24+1)=(28-1).根据上式的计算方法,请计算(3+1)(32+1)(34+1)…(332+1)-2364的值.“整体思想”在整式运算中的运用“整体思想”是中学数学中的一种重要思想,贯穿于中学数学的全过程,有些问题局部求解各个击破,无法解决,而从全局着眼,整体思考,会使问题化繁为简,化难为易,思路清淅,演算简单,复杂问题迎刃而解,现就“整体思想”在整式运算中的运用,略举几例解析如下,供同学们参考:1、当代数式532++x x 的值为7时,求代数式2932-+x x 的值.2、已知2083-=x a ,1883-=x b ,1683-=x c ,求:代数式bc ac ab c b a ---++222的值。
3、已知4=+y x ,1=xy ,求代数式)1)(1(22++y x 的值4、已知2=x 时,代数式10835=-++cx bx ax ,求当2-=x 时,代数式835-++cx bx ax 的值5、若123456786123456789⨯=M ,123456787123456788⨯=N试比较M 与N 的大小6、已知012=-+a a ,求2007223++a a 的值.。