1.2集合之间的关系
1.2 集合之间的关系
1.2 集合之间的关系观察下面几个例子:①A={1,2,3},B={1,2,3,4,5};②设A为国兴中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;③设C={x|x是两条边相等的三角形},D={x|x是等腰三角形};④E={2,4,6},F={6,4,2}.你能发现两个集合间有什么关系吗?(2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同样是子集,有什么区别?(3)结合例子④,类比实数中的结论:“若a≤b,且b≤a,则a=b”,在集合中,你发现了什么结论?(4)按升国旗时,每个班的同学都聚集在一起站在旗杆附近指定的区域内,从楼顶向下看,每位同学是哪个班的,一目了然.试想一下,根据从楼顶向下看的,要想直观表示集合,联想集合还能用什么表示?(5)试用Venn图表示例子①中集合A和集合B.(6)已知A B,试用Venn图表示集合A和B的关系.(7)任何方程的解都能组成集合,那么x2+1=0的实数根也能组成集合,你能用Venn图表示这个集合吗?(8)一座房子内没有任何东西,我们称为这座房子是空房子,那么一个集合没有任何元素,应该如何命名呢?(9)与实数中的结论“若a≥b,且b≥c,则a≥c”相类比,在集合中,你能得出什么结论?(1)观察两个集合间元素的特点.(2)从它们含有的元素间的关系来考虑.规定:如果A⊆B,但存在x∈B,且x∉A,我们称集合A是集合B的真子集,记作A B(或B A).(3)实数中的“≤”类比集合中的⊆.(4)把指定位置看成是由封闭曲线围成的,学生看成集合中的元素,从楼顶看到的就是把集合中的元素放在封闭曲线内.教师指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图.(5)封闭曲线可以是矩形也可以是椭圆等等,没有限制.(6)分类讨论:当A⊆B时,A B或A=B.(7)方程x2+1=0没有实数解.(8)空集记为∅,并规定:空集是任何集合的子集,即⊆∅A;空集是任何非空集合的真子集,即∅A(A≠∅).(9)类比子集.结果:(1)①集合A中的元素都在集合B中;②集合A中的元素都在集合B中;③集合C中的元素都在集合D中;④集合E中的元素都在集合F中.可以发现:对于任意两个集合A,B有下列关系:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.(2)例子①中A⊆B,但有一个元素4∈B,且4∉A;而例子②中集合E和集合F中的元素完全相同.(3)若A⊆B,且B⊆A,则A=B.(4)可以把集合中元素写在一个封闭曲线的内部来表示集合.(5)如图1121所示表示集合A,如图1122所示表示集合B.图1-1-2-1图1-1-2-2(6)如图1-1-2-3和图1-1-2-4所示.图1-1-2-3图1-1-2-4(7)不能.因为方程x2+1=0没有实数解.(8)空集.(9)若A⊆B,B⊆C,则A⊆C;若A B,B C,则A C.【当堂训练】1.某工厂生产的产品在重量和长度上都合格时,该产品才合格.若用A表示合格产品的集合,B表示重量合格的产品的集合,C表示长度合格的产品的集合.已知集合A、B、C均不是空集.(1)则下列包含关系哪些成立?A⊆B,B⊆A,A⊆C,C⊆A.(2)试用Venn图表示集合A、B、C间的关系.2.写出集合{a,b}的所有子集,并指出哪些是它的真子集.3.已知集合P={1,2},那么满足Q⊆P的集合Q的个数是( )A.4B.3C.2D.14.集合A中含有n个元素,那么集合A有多少个子集?多少个真子集?5.已知集合A={-1,3,2m-1},集合B={3,m2}.若B⊆A,则实数m=_______.6.已知集合M={x|2-x<0},集合N={x|ax=1},若N M,求实数a的取值范围.7.(1)分别写出下列集合的子集及其个数:∅,{a},{a,b},{a,b,c}.(2)由(1)你发现集合M中含有n个元素,则集合M有多少个子集?8.已知集合A{2,3,7},且A中至多有一个奇数,则这样的集合A有……( )A.3个B.4个C.5个D.6个9.判断正误:(1)空集没有子集. ( )(2)空集是任何一个集合的真子集. ( )(3)任一集合必有两个或两个以上子集. ( )(4)若B⊆A,那么凡不属于集合A的元素,则必不属于B. ( )10.集合A={x|-1<x<3,x∈Z},写出A的真子集.11.(1)下列命题正确的是 ( )A.无限集的真子集是有限集B.任何一个集合必定有两个子集C.自然数集是整数集的真子集D.{1}是质数集的真子集(2)以下五个式子中,错误的个数为 ( )①{1}∈{0,1,2} ②{1,-3}={-3,1} ③{0,1,2}⊆{1,0,2}④∅∈{0,1,2} ⑤∅∈{0}A.5B.2C.3D.4(3)M={x|3<x<4},a=π,则下列关系正确的是 ( )A.a MB.a∉MC.{a}∈MD.{a}M12.判断如下集合A与B之间有怎样的包含或相等关系:(1)A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z};(2)A={x|x=2m,m∈Z},B={x|x=4n,n∈Z}.13.已知集合P={x|x2+x-6=0},Q={x|ax+1=0}满足Q P,求a所取的一切值.14.已知集合A={x∈R|x2-3x+4=0},B={x∈R|(x+1)(x2+3x-4)=0},要使A P⊆B,求满足条件的集合P.15.设A={0,1},B={x|x⊆A},则A与B应具有何种关系?16.集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},(1)若B⊆A,求实数m的取值范围;(2)当x∈Z时,求A的非空真子集个数;(3)当x∈R时,没有元素x使x∈A与x∈B同时成立,求实数m的取值范围.17.已知A ⊆B,且A ⊆C,B={0,1,2,3,4},C={0,2,4,8},则满足上述条件的集合A 共有多少个?【家庭作业】 一、选择题1,下列八个关系式①{0}=φ ②φ=0 ③φ {φ} ④φ∈{φ} ⑤{0}⊇φ ⑥0∉φ⑦φ≠{0} ⑧φ≠{φ}其中正确的个数 ( ) A 、4 B 、5 C 、6 D 、72、集合{1,2,3}的真子集共有 ( )A 、5个B 、6个C 、7个D 、8个3、设一元二次方程ax 2+bx+c=0(a<0)的根的判别式042=-=∆ac b ,则不等式ax 2+bx+c ≥0的解集为( )A 、RB 、φC 、{abx x 2-≠} D 、{a b 2-}4.下列语句:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为 {1,2,3}或{3,2,1};(3)方程(x-1)2(x-2)2=0的所有解的集合可表示为 {1,1,2};(4)集合{54<<x x }是有限集,正确的是 ( )A 、只有(1)和(4)B 、只有(2)和(3)C 、只有(2)D 、以上语句都不对 5.下列四个命题: (1)空集没有了集;(2)空集是任何一个集合的真子集; (3)空集的元素个数为零;(4)任何一个集合必有两个或两个以上的子集. 其中正确的有 (A.0个B.1个C.2个D.3个二、填空题6、在直角坐标系中,坐标轴上的点的集合可表示为7、若方程8x 2+(k+1)x+k-7=0有两个负根,则k 的取值范围是8、集合{a,b,c}的所有子集是 真子集是 ;非空真子集是 9、方程x 2-5x+6=0的解集可表示为方程组的解集可表示为⎩⎨⎧=-=+0231332y x y x10.已知A={菱形},B={正方形},C={平行四边形},那么A,B,C之间的关系是__________.三、解答题11、已知方程x 2-(k 2-9)+k 2-5k+6=0的一根小于1,另一根大于2,求实数k 的取值范围。
高中数学人教版(新教材)必修1学案1:1.2 集合间的基本关系
1.2 集合间的基本关系学习目标1.了解集合之间包含与相等的含义,能识别给定集合的子集;2.理解子集、真子集的概念;3.能使用Venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用,体会数形结合的思想.重点难点重点:集合间的包含与相等关系,子集与其子集的概念;难点:属于关系与包含关系的区别.知识梳理1.集合与集合的关系(1)一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作:()A B B A ⊆⊇或读作:A 包含于B (或B 包含A ).图示:(2)如果两个集合所含的元素完全相同(A B B A ⊆⊆且),那么我们称这两个集合相等.记作:A =B读作:A 等于B. 图示:2. 真子集 若集合A B ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集.记作:A B (或B A )读作:A 真包含于B (或B 真包含A )3.空集不含有任何元素的集合称为空集,记作:∅.规定:空集是任何集合的子集.学习目标探究一子集1.观察以下几组集合,并指出它们元素间的关系:①A ={1,2,3},B ={1,2,3,4,5};②A 为立德中学高一(2)班全体女生组成的集合, B 为这个班全体学生组成的集合; ③A ={x |x >2},B ={x |x >1}.2.子集定义:一般地,对于两个集合A 、B ,如果集合A 中都是集合B 中的元素,我们就说这两个 集合有包含关系,称集合A 为集合B 的.记作:(A B B A ⊆⊇或)读作:(或“”)符号语言:任意有则.3.韦恩图(Venn 图):用一条封闭曲线(圆、椭圆、长方形等)的内部来代表集合叫集合的韦恩图表示.牛刀小试1:图中A 是否为集合B 的子集?牛刀小试2:判断集合A 是否为集合B 的子集,若是则在()打√,若不是则在()打×:①A ={1,3,5}, B ={1,2,3,4,5,6} ( )②A ={1,3,5}, B ={1,3,6,9} ( )③A ={0}, B={x | x 2+2=0} ( )④A ={a,b,c,d }, B ={d,b,c,a } ( )探究二集合相等BB A,A1.观察下列两个集合,并指出它们元素间的关系(1)A ={x |x 是两条边相等的三角形},B ={x |x 是等腰三角形};2.定义:如果集合A 的都是集合B 的元素,同时集合B 都是集合A 的元素,我们就说集合A 等于集合B ,记作.牛刀小试3:()(){}{}12012A x x x B A B =++==--,,.集合与什么关系?探究三真子集1.观察以下几组集合,并指出它们元素间的关系:(1)A ={1,3,5}, B ={1,2,3,4,5,6};(2)A ={四边形}, B ={多边形}.2.定义:如果集合A ⊆B ,但存在元素,且,称集合A 是集合B 的真子集.记作:(或)读作:“A 真含于B ”(或B 真包含A ).探究四空集1.我们把的集合叫做空集,记为φ,并规定:空集是任何集合的子集.空集是任何非空集合的真子集.即φB ,(B φ≠) 例如:方程x 2+1=0没有实数根,所以方程 x 2+1=0的实数根组成的集合为φ.问题:你还能举几个空集的例子吗?2.深化概念:(1)包含关系{}a A ⊆与属于关系a A ∈有什么区别?(2)集合A B 与集合A B ⊆有什么区别?(3)0,{0}与 Φ三者之间有什么关系?3.结论:由上述集合之间的基本关系,可以得到下列结论:(1)任何一个集合是它本身的子集,即.(2)对于集合A 、B 、C ,若,,A B B C ⊆⊆则(类比b a ≤,c b ≤则c a ≤). 例1.写出集合{a ,b }的所有子集,并指出哪些是它的真子集.例2.判断下列各题中集合A 是否为集合B 的子集,并说明理由.(1)A ={1,2,3},B ={x |x 是8的约数};(2)A ={x |x 是长方形},B ={x |x 是两条对角线相等的平行四边形}达标检测1.集合A ={-1,0,1},A 的子集中含有元素0的子集共有( )A .2个B .4个C .6个D .8个2.已知集合M={x|-3<x<2,x∈Z},则下列集合是集合M的子集的为( ) A.P={-3,0,1}B.Q={-1,0,1,2}C.R={y|-π<y<-1,y∈Z}D.S={x||x|≤,x∈N}3.①0∈{0},②∅{0},③{0,1}⊆{(0,1)},④{(a,b)}={(b,a)}.上面关系中正确的个数为( )A.1 B.2C.3 D.44.设集合A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是( )A.{a|a≤2}B.{a|a≤1}C.{a|a≥1}D.{a|a≥2}5.已知集合A={(x,y)|x+y=2,x,y∈N},试写出A的所有子集.——★ 参*考*答*案★——学习过程:探究一1.集合A的元素都属于集合B2.任何一个元素子集集合A含于集合B集合B包含集合Ax∈A,x∈BA⊆B牛刀小试1 集合A不是集合B的子集牛刀小试2 ①√ ②×③×④√探究二集合相等1.(1)中集合A中的元素和集合B中的元素相同.2.任何一个元素任何一个元素A=B牛刀小试3 A=B探究三真子集1.集合A中元素都是集合B的元素,但集合B有的元素不属于集合A.2.x∈Bx AA BB A探究四空集1.不含任何元素2.(1)前者为集合之间关系,后者为元素与集合之间的关系.(2) A = B或A B(3){0}与Φ :{0}是含有一个元素0的集合,Φ是不含任何元素的集合.如Φ{0}不能写成Φ ={0},Φ ∈{0}3.(1)(2)例1.解:集合{a,b}的子集:,{a},{b} ,{a, b}.集合{a,b}真子集:,{a},{b}.例2.解:(1)因为3不是8的约数,所以集合A不是集合B的子集.三、达标检测1.『解析』根据题意,在集合A的子集中,含有元素0的子集有{0}、{0,1}、{0,-1}、{-1,0,1}四个,故选B.『答案』B2.『解析』集合M={-2,-1,0,1},集合R={-3,-2},集合S={0,1},不难发现集合P 中的元素-3∉M,集合Q中的元素2∉M,集合R中的元素-3∉M,而集合S={0,1}中的任意一个元素都在集合M中,所以S⊆M.故选D.『答案』D3.『解析』①正确,0是集合{0}的元素;②正确,∅是任何非空集合的真子集;③错误,集合{0,1}含两个元素0,1,而{(0,1)}含一个元素点(0,1),所以这两个集合没关系;④错误,集合{(a,b)}含一个元素点(a,b),集合{(b,a)}含一个元素点(b,a),这两个元素不同,所以集合不相等.故选B.『答案』B4.『解析』由A={x|1<x<2},B={x|x<a},A⊆B,则{a|a≥2}.『答案』D5.『解』因为A={(x,y)|x+y=2,x,y∈N},所以A={(0,2),(1,1),(2,0)}.所以A的子集有:∅,{(0,2)},{(1,1)},{(2,0)},{(0,2),(1,1)},{(0,2),(2,0)},{(1,1),(2,0)},{(0,2),(1,1),(2,0)}.。
1.2集合间的基本关系及运算
集合间的基本关系及运算【知识要点】1、子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集, 记作A B 或B A.2、集合相等:如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A等于集合B,记作A=B3、真子集:如果A B,且A B,那么集合A称为集合B的真子集,A B .4、设A S,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记作C S A5 、元素与集合、集合与集合之间的关系6 、有限集合的子集个数1 )n 个元素的集合有2n个子集2) n 个元素的集合有2n-1 个真子集3) n 个元素的集合有2n-1 个非空子集4) n 个元素的集合有2n-2 个非空真子集7、交集:由属于集合A且属于集合B的所有元素组成的集合叫A与B的交集,记作A Bo8、并集:由所有属于集合A或属于B的元素构成的集合称为A与B的并集,记A B o9 、集合的运算性质及运用知识应用】1. 理解方法:看到一个集合A里的所有元素都包含在另一个集合里B,那么A就是B的子集,也就是说集合A中的任何一个元素都是集合B中的元素,即由任意x A能推出x Bo【J】例1.指出下列各组中集合A与集合B之间的关系(1)A={-1,1} ,B=Z (2)A={1,3,5,15} ,B={x|x 是15的正约数}【L】例 2.已知集合A={x|-2 x 5},B={x|m+1x 2m-1},若B A,求实数m取值范围。
【C】例3.已知集合A {0,1,2,3},至少有一个奇数,这样的集合A的子集有几个,请一写出。
2. 解题方法:证明2个集合相等的方法:(1)若A 、B 两个集合是元素较少的有限集,可用【C 】例 3.集合 M={x|x=3k-2,k Z},P={y|y=3x+1,x Z},S={z|z=6m+1,m Z}之间的关列举法将元素一一列举出来,比较之或者看集合中的代表元素是否一致且代表元素满足 的条件是否一致,若均一致,则两集合相等。
1.2 集合之间的关系
【课题】1.2 集合之间的关系
【教学目标】
知识目标:
掌握集合之间的关系(子集、真子集、相等)的概念,会判断集合之间的关系.
能力目标:
(1)通过集合语言的学习与运用,培养学生的数学思维能力;
(2)通过集合的关系的图形分析,培养学生的观察能力.
情感目标:
(1)经历利用集合语言描述集合与集合间的关系的过程,养成规范意识,发展严谨的作风;
(2)经历利用图形研究集合间关系的过程,体验“数形结合”的探究方法.
【教学重点】
集合与集合间的关系及其相关符号表示.
【教学难点】
真子集的概念.
【教学设计】
(1)从复习上节课的学习内容入手,通过实际问题导入知识;
(2)通过实际问题引导学生认识真子集,突破难点;
(3)通过简单的实例,认识集合的相等关系;
(4)为学生们提供观察和操作的机会,加深对知识的理解与掌握.
【教学备品】
教学课件.
【课时安排】
2课时.(90分钟)
【教学过程】
是用来表示集合与集合之间关系的符号;
”是用来表示元素与集合之间关系的符号.首先要分清楚对象,然后再根据关系,正确选用符号.
的子集,并且集合
.
空集是任何非空集合的真子集.
对于集合A、B、C,如果A
=9}={3,-3}
x x==x x= |2}
;⑸a{0}∅;
2}2
{|x x。
1.2 集合之间的关系
1.子集对于两个集合A和B,如果集合A中任何一个元素都属于集合B,那么集合A叫做集合B的子集,记作A⊆B或(B⊇A),读作“A包含于B”或“B包含A”.我们规定,空集包含于任何一个集合,空集是任何集合的子集.2.相等的集合对于两个集合A和B,如果A⊆B且B⊆A,那么叫做集合A与集合B相等,记作A=B,读作“集合A等于集合B”.因此,如果两个集合所含的元素完全相同,那么这两个集合相等.3.真子集对于两个集合A、B,如果A⊆B,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,记作A⫋B,读作“A真包含于B”.4.子集的个数5.韦恩图(文氏图)【例题】判断下列说法是否正确,并说明理由.(1)A⊆A;(2)若A⊆B,B⊆C,则A⊆C;(3)∅⊆A;(4)A⫋B,B⫋C,则A⫋C.【例题】在下面写法中,错误写法的个数是()①{0}∈{0,1};②∅⫋{0};③{0,-1,1}={1,-1,0};④0∈∅;⑤{(0,0)}={0}.A.2B.3C.4D.5【判别】a与{a},{0}与∅之间有何区别?【例题】已知a为给定的实数,那么集合M={x|x2-3x-a2+2=0}的子集个数为 . 【例题】设集合A={1,2,3},B={x|x⊆A},求集合B.【例题】设集合A={1,2,3},B={x|x∈A},求集合B.【例题】已知A={x|x2-2x-3=0},B={x|ax-1=0},若B⫋A,试求a的值.【例题】已知集合A={x|x2-3x+2=0},B={x|0<x<5,x∈N},则满足A⫋C⫋B的集合的个数是()A.1B.2C.3D.4【例题】已知集合A={x|-2≤x≤5},B={x|a+1≤x≤2a-1}.(1)若B⊆A,求实数a的取值范围;(2)若A⫋B,求a的范围.。
1.2集合之间的关系
典型例题
例1:用适当的符号(,, , 或=)填空.
(1){, , , }
{ , };
(2) { };
(3)N
Z;
(4)0 ;
(5){1} =
{x | x-1=0};
(6){x|-2<x<3}
{ x|x≥-3 };
典型例题
例2:写出集合 = {, , }的所有子集,并指出哪些是它的真子集.
(2)该集合的所有真子集个数是 .
问题:如果一个集合中有 n 个元素,那么它的所有非空子集个数有多少?
它的非空真子集又有多少个?
结论2:如果一个集合中有 n 个元素;
(1)该集合的所有非空子集个数是 − ;
(2)该集合的所有非空真子集个数是 .
集合M={0,1,3}中,子集个数是 8
{, , }; {, , };
{, , , }
∅, {}
∅; {}; {}; {, }
∅
∅;{}; {};
子集个数
真子集个数
2
=21
1 =21-1
4
=22
3 =22-1
8Байду номын сангаас
=23
7 =23-1
16 =24
15 =24-1
结论1:如果一个集合中有 n 个元素;
(1)该集合的所有子集个数是 ;
练习:判断集合是否为集合的真子集,若是打√, 若不是打×.
(1) = {, , }, = {, , , , , }
(
√
)
(2) = {, , }, = {, , , }
(
×
)
(3) = ∅, = {}.
1.2 集合间的基本关系 教学设计(2)-人教A版高中数学必修第一册
1.2集合间的基本关系教学设计(人教A版)第一节通过研究集合中元素的特点研究了元素与集合之间的关系及集合的表示方法,而本节重点通过研究元素得到两个集合之间的关系,尤其学生学完两个集合之间的关系后,一定让学生明确元素与集合、集合与集合之间的区别。
课程目标1. 了解集合之间包含与相等的含义,能识别给定集合的子集.2. 理解子集.真子集的概念.3. 能使用venn图表达集合间的关系,体会直观图示对理解抽象概念的作用。
数学学科素养1.数学抽象:子集和空集含义的理解;2.逻辑推理:子集、真子集、空集之间的联系与区别;3.数学运算:由集合间的关系求参数的范围,常见包含一元二次方程及其不等式和不等式组;4.数据分析:通过集合关系列不等式组,此过程中重点关注端点是否含“=”及 问题;5.数学建模:用集合思想对实际生活中的对象进行判断与归类。
重点:集合间的包含与相等关系,子集与其子集的概念.难点:难点是属于关系与包含关系的区别.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、问题导入:实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探. 二、 预习课本,引入新课阅读课本7-8页,思考并完成以下问题1. 集合与集合之间有什么关系?怎样表示集合间的这些关系?2. 集合的子集指什么?真子集又是什么?如何用符号表示?3. 空集是什么样的集合?空集和其他集合间具有什么关系?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究 (一)知识整理 1.集合与集合的关系(1)一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作:()A BB A ⊆⊇或读作:A 包含于B(或B 包含A).图示:(2)如果两个集合所含的元素完全相同(A B B A ⊆⊆且),那么我们称这两个集合相等.记作:A =B 读作:A 等于B.图示:2. 真子集若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集。
集合之间的关系(子集
集合之间的关系(子集篇一:集合之间的关系教案1.2集合之间的关系与运算1.2.1 集合之间的关系【学习要求】1.理解子集、真子集、两个集合相等的概念.2.掌握有关子集、真子集的符号及表示方法,能利用Venn图表达集合间的关系.3.会求已知集合的子集、真子集.4.能判断两集合间的包含、相等关系,并会用符号准确地表示出来.【学法指导】通过使用基本的集合语言表示有关的数学对象,感受集合语言在描述客观现实和数学问题中的意义;培养用集合的观点分析问题、解决问题的能力;学习用数学的思维方式解决问题、认识世界.填一填:知识要点、记下疑难点1.子集:一般地,如果集合A中的任意一个元素都是集合B的元素,那么集合A叫做集合B的子集,记作A?B或B?A,读作“A包含于B”,或“B包含A”.2.子集的性质:①A?A(任意一个集合A都是它本身的子集);②??A(空集是任意一个集合的子集).3.真子集:如果集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,记作A B (或BA),读作“A真包含于B ”,或“B真包含A ”.4.维恩图:我们常用平面内一条封闭曲线的内部表示一个集合,这种图形通常叫做维恩(Venn)图.5.集合相等:一般地,如果集合A的每一个元素都是集合B的元素,反过来,集合B的每一个元素也都是集合A的元素,我们就说集合A等于集合B ,记作A=B .用数学语言表示为:如果A?B ,且B?A ,那么A=B .6.一般地,设A={x|p(x)},B={x|q(x)},如果A?B,则x∈A?x∈B,即p(x)?q(x) .反之,如果p(x)?q(x),则A?B研一研:问题探究、课堂更高效[问题情境] 已知任意两个实数a,b,则它们的大小关系可能是ab,那么对任意的两个集合A,B,它们之间有什么关系?今天我们就来研究这个问题.探究点一子集与真子集的概念导引前面我们学习了集合、集合元素的概念以及集合的表示方法.下面我们来看这样三组集合:(1)A={1,3},B={1,3,5,6};(2)C={x|x是长方形},D={x|x是平行四边形};(3)P={x|x是菱形},Q={x|x是正方形}.问题1 哪些集合表示方法是列举法?哪些集合表示方法是描述法?答:集合A,B的表示是用列举法;集合C,D,P,Q的表示是用描述法.问题2 这三组集合每组彼此之间有何关系?答:集合A中的任意一个元素都是集合B的元素,集合C中的任意一个元素都是集合D的元素,集合Q中的任意一个元素都是集合P的元素.小结:一般地,如果集合A中的任意一个元素都是集合B中的元素,那么集合A叫做集合B的子集.记作:A?B或B?A,读作:A 包含于B或B包含A.问题3 类比表示两集合间子集关系的符号与表示两个实数大小关系的等号之间有什么类似之处?答:在实数中如果a大于或等于b,则a,b的关系可表示为a ≥b或b≤a;在集合中如果集合A是集合B的子集,则A,B的关系可表示为A?B(或B?A).所以这是它们的相似之处.问题4 在导引中集合P与集合Q之间的关系如何表示?答:集合P不包含于Q,或Q不包含P,分别记作P Q或QP.问题5 空集与任意一个集合A有什么关系,集合A与它本身有什么关系?答:(1)空集是任意一个集合的子集;(2)任何一个集合A是它本身的子集.问题6 对于集合A,B,C,如果A?B,B?C,那么集合A与C 有什么关系?答:A与C的关系为A?C.问题7 “导引”中集合A中的元素都是集合B的元素,集合B 中的元素不都是集合A的元素,我们说集合A是集合B的真子集,那么如何定义集合A是集合B的真子集?答:如果说集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,记作:A B(或B A),读作“A真包含于B”或“B真包含A”.问题8 集合A,B的关系能不能用图直观形象的表示出来?1 / 3答:能.我们常用平面内一条封闭曲线的内部表示一个集合,这种图形通常叫做维恩(Venn)图.问题9 如何用维恩(Venn)图表示集合A是集合B的真子集?答:如图所示:例1 写出集合A={1,2,3}的所有子集和真子集.分析:为了一个不漏地写出集合A={1,2,3}的所有子集,可以分类写,即空集,含一个元素的子集,含两个元素的子集,含三个元素的子集.解:集合A的所有子集是:?,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.在上述子集中,除去集合A本身,即{1,2,3},剩下的都是A的真子集.3小结:集合A={1,2,3}中有三个元素,其子集的个数为8个,即2个,事实上,如果一个集合含有n个元素,则它的子集个数为2个.跟踪训练1 写出满足{3,4}P?{0,1,2,3,4}的所有集合P.解:由题意知,集合P中一定含有元素3,4并且是至少含有三个元素的集合.此所有满足题意的集合P为{0,3,4},{1,3,4},{2,3,4},{0,1,3,4},{0,2,3,4},{1,2,3,4},{0,1,2,3,4}.探究点二集合的相等问题1 观察下面几个例子,你能发现两个集合间有什么关系吗?(1)集合C={x|x是两条边相等的三角形},D={x|x是等腰三角形};(2)集合C={2,4,6},D={6,4,2};(3)集合A={x|(x+1)(x+2)=0},B={-1,-2}.答:可以看出每组的两个集合的元素完全相同,只是表达形式不同.问题2 与实数中的结论“若a≥b,且b≥a,则a=b”相类比,在集合中,你能得出什么结论?答:若A?B,且B?A,则A=B.小结:一般地,对于两个集合A与B,如果集合A的每一个元素都是集合B的元素,同时集合B的每一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B.即:如果A?B,且B?A,那么A=B.例2 说出下列每对集合之间的关系:(1)A={1,2,3,4,5},B={1,3,5};2(2)P={x|x=1},Q={x||x|=1};(3)C={x|x是奇数},D={x|x是整数}.解(1)B A;(2)P=Q;(3)C D.小结:在两个集合A,B的关系中,有一个集合是另一个集合的“子集”;或一个集合是另一个集合的“真子集”;或两个集合“相等”;另外还可能有“集合A不包含于B”或“集合B不包含于A”.跟踪训练2 用适当的符号(∈,?)填空:(1)0______{0};0______?;?______{0};22(2)?______{x|x+1=0,x∈R};{0}______{x|x+1=0,x∈R};(3)设A={x|x=2n-1,n∈Z},B={x|x=2m+1,m∈Z},C={x|x =4k±1,k∈Z},则A______B______C. 解析(1)0∈{0},0??,?{0};22(2)?={x|x+1=0,x∈R},{0}{x|x+1=0,x∈R};(3)A,B,C均表示所有奇数组成的集合,∴A=B=C.探究点三集合关系与其特征性质之间的关系问题1 已知集合A的特征性质为p(x),集合B的特征性质为q(x).“如果p(x),那么q(x)”是正确命题,试问集合A和B的关系如何?并举例说明.答:集合A是集合B的子集,例如Q={x|x是有理数},P={x|x 是实数},易知Q?P,也容易判断命题“如果x是有理数,则x是实数”是正确命题.这个命题还可以表述为:x是有理数?x是实数,符号“?”表示推出.小结:一般地,设A={x|p(x)},B={x|q(x)},如果A?B,则x∈A?x∈B,即p(x)?q(x).反之,如果p(x)?q(x),则A?B.问题2 如果命题“p(x)?q(x)”和命题“q(x)?p(x)”都是正确的命题,那么怎样表示p(x),q(x)的关系?答:p(x)?q(x),符号“?”表示相互推出.例3 判定下列集合A与集合B的关系:(1)A={x|x是12的约数},B={x|x是36的约数};(2)A={x|x>3},B={x|x>5};(3)A={x|x是矩形},B={x|x是有一个角为直角的平行四边形}.解:(1)因为x是12的约数?x是36的约数,所以A?B;2 / 3n(2)因为x>5?x>3,所以B?A;(3)因为x是矩形?x是有一个角为直角的平行四边形,所以A=B.小结:当判定用特征性质描述法表示的两个集合关系时,一是可用赋值法,二是从两集合元素的特征性质p(x)入手,通过整理化简,看是否是一类元素.跟踪训练3 确定下列每组两个集合的包含关系或相等关系:(1)A={n|n=2k+1,k∈Z}和B={m|m=2l-1,l∈Z};**(2)C={n|n=2k+1,k∈N}和D={m|m=2l-1,l∈N}.解(1)当k∈Z,l∈Z时,n=2k+1?m=2l-1,所以A=B;**(2)当k∈N,l∈N时,n=2k+1?m=2l-1,所以C?D.练一练:当堂检测、目标达成落实处1.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若?A,则A≠?.其中正确的个数是( )A.0B.1C.2D.3解析:由于任何集合都是它本身的子集,故①错;空集只有一个子集就是它本身,故②错;空集是任何非空集合的真子集,故③错;2.满足条件{1,2}M?{1,2,3,4,5}的集合M的个数是( )A.3 B.6C.7 D.8解析:M中含三个元素的个数为3,M中含四个元素的个数也是3,M中含5个元素的个数只有1个,因此符合题意的共7个.3.若集合{2x,x+y}={7,4},则整数x,y分别等于__________.???2x=7?2x=4?解:由集合相等的定义得或?,?x+y=4?x+y =7??7x=??2∴?1y=??2舍?x=2?或???y=5 .∴x,y的值分别是2,5.4.观察下面几组集合,集合A与集合B具有什么关系?(1)A={1,2,3},B={1,2,3,4,5}.(2)A={x|x>3},B={x|3x-6>0}.(3)A={正方形},B={四边形}.(4)A={育才中学高一(11)班的女生},B={育才中学高一(11)班的学生}.解:通过观察就会发现,这四组集合中,集合A都是集合B的一部分,从而有A?B.课堂小结:1.能判断存在子集关系的两个集合,谁是谁的子集,进一步确定其是否为真子集;注意:子集并不是由原来集合中的部分元素组成的集合.2.空集是任何集合的子集,是任何非空集合的真子集.3.注意区别“包含于”,“包含”,“真包含”.4.注意区分“∈”与“?”的不同涵义.3 / 3篇二:集合间的基本关系知识点集合间的基本关系1.“包含”关系—子集注意:A?B有两种可能(1)A是B的一部分,(2)A与B是同一集合。
1.2集合间的基本关系
1.2集合间的基本关系
集合间的基本关系包括包含关系、相等关系和互斥关系。
首先,包含关系指的是一个集合中的所有元素都属于另一个集合,这种关系通常用符号“⊆”来表示。
例如,如果集合A包含于集合B,则可以表示为A⊆B。
其次,相等关系指的是两个集合具有相同的元素,即彼此相互包含,通常用符号“=”来表示。
例如,如果集合A和集合B具有相同的元素,则可以表示为A = B。
最后,互斥关系指的是两个集合没有共同的元素,即它们之间没有交集,通常用符号“∩”来表示。
例如,如果集合A和集合B 没有共同的元素,则可以表示为A∩B = ∅。
这些基本关系在集合论中具有重要的意义,可以帮助我们理解集合之间的包含、相等和互斥关系,从而更好地进行集合运算和推理。
1.2 集合间的基本关系知识点总结与例题讲解
②当 时,则有: ,解之得: ≤ ≤2.
综上,实数 的取值范围为 .
例3.设集合 , ,若 ,则实数 的值取值范围为__________.
分析:在进行分类讨论时要做到不重不漏,特别注意不能漏掉对 的讨论.解决本题还要明白以下两点:(1)空集是任何集合的子集;(2)空集是任何非空集合的真子集.
解:
∵ ,
∴分为两种情况:
(1)当 时,方程 没有实数根
∴ ,解之得Leabharlann ;(2)当 时,则有 或 或
①当 或 时,方程 有两个相等的实数根
∴ ,解之得:
∴ 符合题意;
②当 时,由根与系数的关系定理可得:
解之得: .
综上,实数 的值取值范围为 .
例4.已知集合 .
(1)若 , ,求实数 的取值范围;
(2)若 , ,求实数 的取值范围;
若 ,在未指明A非空时,要分两种情况进行讨论:
① ;
② .
知识点三 集合相等
如果集合A是集合B的子集( ),且集合B是集合A的子集( ),此时集合A与集合B的元素是一样的,集合A与集合B相等,叫做 .
上面也即互为子集的两个集合相等.
集合 的符号表述:若 ,且 ,则 .
如何证明两个集合相等
对于两个集合A,B,若要证明 ,只需证明 与 均成立即可.
(2)空集的只有一个子集,是空集,即它本身.
(3)空集是任何非空集合的真子集,即若 ,则 .
重要提醒:在由集合间的关系确定参数的值或参数的取值范围时,注意对空集的讨论.
知识点六 子集、真子集个数的确定
若集合A含有 个元素,则集合A:
(1)含有 个子集;
(2)含有 个非空子集;
1.2集合间的基本关系课件——2021-2022学年高一上学期数学人教A版(2019)必修第一册
例3 下列各组中的两个集合相等的有
(
)
①P={x|x=2n,n∈Z},Q={x|x=2(n-1),n∈Z};②P={x|
x=2n-1,n∈N*},Q={x|x=2n+1,n∈N*};③P={x|x2-x=0},
Q=
1+ −1
{x|x= 2 ,n∈Z}
A.①②③B.①③
C.②③
【答案】
B
1+ −1
2
=0;当n为偶数时, x=
◆判断集合是否相等的三种方法
1.将两个集合中的元素一一列出,进行比较;
2.观察集合中的代表元素是否一致(等价),且元素特征是否一致,若均一致,
则两集合相等;
3.依据集合A,B是否满足高一月考]下列各组集合中,表示同一集合的
A.6
B.5
C.4
( C )
D.少于4
2.[2020·上海市青浦高级中学高一检测]已知M={x|x=a+ b 2 ,a∈Z,b∈
Z},则下列结论中正确结论的序号是 ①②③ .
①
1
3 2 2
∈M;②Z ⊆M;③若x1,x2∈M,则x1+x2∈M;
④若x1,x2∈M且x2≠0,则 xx1 ∈M.
2
<2>集合间基本关系的判断
③若p(x)⟺q(x),则A=B;④若p(x)⇏q(x),且q(x)⇏p(x),则
集合A,B无包含关系.
◆判断集合间关系的常用方法
3.数形结合法
利用数轴或Venn图.
判断不等式解集间的关系适合用数轴法.
若A⊆B和A⊊B同时成立,则A ⊊ B更能准确地表示集合A,B之间的关系.
(新教材)【人教A版】必修一1.2集合间的基本关系(数学)
角度2 由集合之间的包含关系求参数 【典例】已知集合A={x|-2≤x≤5},B={x|m-6≤x≤ 2m-1},若B⊆A,求实数m的取值范围.
世纪金榜导学号
【思维·引】 分B=∅和B≠∅两种情况讨论,B≠∅时根据B⊆A列不等式 组求m的取值范围.
【解析】
(1)当B=∅时,有m-6>2m-1, 则m<-5,此时B⊆A成立. (2)当B≠∅时,B⊆A,此时满足
【类题·通】 求解有限集合的子集的三个关键点
(1)确定所求集合. (2)合理分类,按照子集所含元素的个数依次写出.
(3)注意两个特殊的集合,即空集和集合本身. 另外,一般地,若集合A中有n个元素,则其子集有2n个, 真子集有(2n-1)个,非空真子集有(2n-2)个.
【习练·破】
满足条件{x|x2-1=0}⊆A
数为 ( )
A.7
B.6
{-1,0,1,2,5}的集合A的个
C.8
D.5
【解析】选A.因为{x|x2-1=0}={-1,1}, 所以{-1,1}⊆A {-1,0,1,2,5}, 所以集合A可以是{-1,1},{-1,1,0},{-1,1,2}, {-1,1,5},{-1,1,0,2},{-1,1,0,5},{-1,1,2,5},共7个 .
(3)由图形的特点可画出Venn图如图所示, 从而C A B D.
(4)方法一:对于集合M,其组成元素是 n ,分子部分表
示所有的整数;对于集合N,其组成元素是2 +n=
,
分子部分表示所有的奇数.由真子集的概念1知,N 2n+M1.
2
2
方法二:用列举法表示集合如下:
M=
,
N=
,
3, 2
1.2 集合之间的关系
【例题精解】
【例1】 用适当的符号(∈,∉,⊆,⊇,⊈,⫋,⫌,=)填空:
(1)2
{2,4,6,8}
(2){a}
{a,b,c,d}
(3){1,3,7}
{1,7}
(4)∅
{0}
(5){矩形}
{平行四边形}
(6)∅
{0,1,2}
(7){4,5,6}
{6,5,4}
(8)∅
{x|x2+1=0,x∈R}
【点评】 正确理解∈,∉,⊆,⊇,⊈,⫋的涵义:元素与集合的关
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/122021/9/122021/9/122021/9/129/12/2021
•14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月12日星期日2021/9/122021/9/122021/9/12
系是“从属关系”:“属于”或“不属于”,集合与集合的关系是
“包含关系”:“包含”或“不包含”;正确区分子集与真子集.
【例2】 (1)集合A={-2,2},B={-2,0,2},则 (
A.A⊈B
B.A⫋BC.A=B)Fra bibliotekD.A∈B
【点评】 由真子集、集合相等的概念,集合与集合的关系
很快排除A、C、D.
(2)已知集合M={x|x2=4}与集合N={-2,2},则下列关系正确的是
D.(1,2)∉{(x,y)|x+y=3,x∈N+,y∈N+}
【答案】B
5.下列关系正确的是 (
A.0⊆{0}
C.(1,2)⊆{(1,2)}
1.2集合间的基本关系-2024-2025学年高一数学必修第一册+课件(人教A版2019)
(2)
集合
⌀
{a}
{a,b}
{a,b,c}
集合的子集
⌀
⌀,{a}
⌀,{a},{b},{a,b}
⌀,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}
子集的个数
1
2
4
8
由此猜想:含n个元素的集合{a1,a2,…,an}的所有子集的个数是2 ?真子集的个数
及非空真子集的个数是2 -2.
确定集合的子集、真子集
设A={x(x-16)(x+5x+4)=0},写出集合A的子集,并指出其中哪些是它的真子集?
解:由(x2-16)(x2+5x+4)=0,得(x-4)(x+1)(x+4)2=0,解方程得x=-4或x=-1
或x=4.
故集合A={-4,-1,4}.由0个元素构成的子集为∅;
由1个元素构成的子集为{-4},{-1},{4};
由2个元素构成的子集为{-4,-1},{-4,4},{-1,4};
由3个元素构成的子集为{-4,-1,4}.
因此集合A的子集为∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4},{4,-1,4}.
真子集为∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4}.
知识讲解
2.填空
一般地,如果集合A的任何一个元素都是集合B的元素,同时集合B
的任何一个元素都是集合A的元素,那么集合A与集合B相等,记作
A=B.
也就是说,若A⊆B,且B⊆A,则A=B.
3.做一做
数学必修一第一章:1.2集合的基本关系
②A={1,3,5}, B={1,3,6,9} (× )
③A={0}, B={x x2-2=0} (× )
④A={a,b,c,d}, B={d,b,c,a} (√ )
思考
例子: 设C={x|x是两条边长相等的三角形}, D={x|x是等腰三角形}.
③{0,-1,1}{-1,0,1}
④⑤{1,2}{} {1},{2} ,{1, 2}
⑥{(0,0)}={0}.
错误个数为
( A)
A.3个 B.4个 C.5个 D.6个
指出下面集合之间的关系: (1)A={ 2,4,5,7 },B={ 2,5 }; (2)P={ x | x2=1 }, Q={ -1,1 }; (3)C={正奇数}, D={正整数}; (4)M={等腰直角三角形},
a 1
练习
1.集合{1,2,3}的子集共有( Nhomakorabea A.8个 B.7个 C.6个 D.5个 2.{0}________∅,0________∅.
3.下列结论正确的是( C ) A.Z⊆N B.N∈R C.Q⊆R D{0}=∅ 4.方程组xx+ -yy= =20 的解构成的 集合是( A )
读作“A真包含于B”或“B真包含
A”
真子集:A B
用韦恩(Venn)图表示为
BA
写出N,Z,Q,R的包含关系,并用Venn图 表示
R QZ N
练习:将下列集合用最恰当的符号联结起来: (1)集合{1,2,3}与{0,1,2,3} ; (2)集合N+、Q、Z、 N与 R; (3)集合 {x|x2-1=0}与{-1,1} .
1、子集定义
1.2集合间的基本关系
解得 a<-4 或 2<a≤3.
综上可得,实数 a 的取值范围为 a<-4 或 a>2.
[类题通法] 利用集合关系求参数应关注三点 (1)分析集合关系时,首先要分析、简化每个集合. (2)此类问题通常借助数轴, 利用数轴分析法, 将各个集合 在数轴上表示出来,以形定数,还要注意验证端点值,做到准 确无误.一般含“=”用实心点表示,不含“=”用空心点表 示. (3)此类问题还要注意“空集”的情况, 因为空集是任何集 合的子集.
(2)满足{1,2} M⊆{1,2,3,4,5}的集合 M 有________个.
[解析] (1)集合 M 的真子集所含有的元素的个数可以有 0 个,1 个或 2 个,含有 0 个为∅,含有 1 个有 3 个真子集{1}, {2},{3},含有 2 个元素有 3 个真子集{1,2}{1,3}和{2,3},共有 7 个真子集,故选 B.
解析 由集合A,B可看出x∈B⇒x∈A,但x∈A⇒x∈B. 答案 C
图示
(1)A B 且 B C,则 A
结论
C;
(2)A⊆B 且 A≠B,则 A
B
4.空集的概念
定义 记法 规定 特性
我们把 不含任何元素 的集合,叫做空集 ∅ 空集是任何集合的子集 ,即∅⊆A (1)空集只有一个子集,即它的本身,∅⊆∅ (2)A≠∅,则∅
[答案] B
(2)指出下列各组集合之间的关系: ①A={-1,1}, B={(-1, -1), (-1,1), (1, -1), (1,1)}; ②A={x|x 是等边三角形},B={x|x 是等腰三角形}; ③M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
子集的引入
.问题:观察下列两组集合,说出集合A与集合B的关系(共性):
(1)A={-1,1},B={-1,0,1,2};
(2)A=N,B=R;
(3)A={x|x为北京人},B= {x|x为中国人};
(4)A= ,B={0}.
通过观察,可以看出上述集合间具有如下特殊性:
(1)集合A的元素-1,1同时是集合B的元素.
(2)集合A中所有元素,都是集合B的元素.
(3)集合A中所有元素都是集合B的元素.
(4)A中没有元素,而B中含有一个元素0,自然A中“元素”也是B中元素.
通过上面4个问题的讨论可以得出子集的概念.再进行两个特例的讨论,即集合A与集合A的关系,空集和其他集合之间的关系.表示集合之间关系的符号可与大于、小于、不大于和不小于等符号相对照,利于学生理解.多利用图示表示集合,帮助学生理解概念.。