幂的运算_1-课件
第1课有理数、幂的运算
![第1课有理数、幂的运算](https://img.taocdn.com/s3/m/d01e6a0553d380eb6294dd88d0d233d4b14e3fda.png)
第1课 有理数、幂的运算1.实数的分类例1下列说法中,错误的有 ( ) ①742-是负分数;②1.5不是整数;③非负有理数不包括0;④正整数、负整数统称为有理数;⑤0是最小的有理数;⑥3.14不是有理数。
A 、1个B 、2个C 、3个D 、4个2.概念清晰:正数、负数、绝对值、相反数、数轴三要素(画数轴时注意点)、奇数、偶数、合数、质数、非负数、自然数、整数、正整数、负整数、近似数、有效数字 例2 下列说法正确的是 ( )A 、符号不同的两个数互为相反数B 、一个有理数的相反数一定是负有理数C 、432与2.75都是411-的相反数 D 、0没有相反数例3 有理数a 、b 0-11ab则( )A .a + b <0B .a + b >0;C .a -b = 0D .a -b >0 3.科学记数法实数无理数(无限不循环小数)负整数 (有限或无限循环小数) 整数分数正无理数 负无理数实数负数整数 分数 无理数有理数正数整数分数无理数有理数根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数, 表示时关键要正确确定a 的值以及n 的值。
在确定n 的值时,看该数是大于或等于1 还是小于1-n 为它第一个有效数字前0例4 《广东省2009算总投资726 A .107.2610⨯ 元 C .110.72610⨯ 元例5 用科学记数法表示4.有理数的运算法则有理数加法法则 绝对值的加数的符号,并用较大的绝对值有理数的减法法则 有理数的乘法法则 有理数的除法法则 把绝对值 。
有理数的混合运算 先 ,注意:例6 (1) )2132(⨯-5.幂的运算即 (m 、n 相除,底数不变,指数相减,即即(n nn a a 1=-(a≠0,n 为正整数)。
例7 若m ·23=26,则m 等于 A .2 B .例8 下列运算正确的是A .x 2+ x 3 = x 5B .x 4·x 2 = x 6C .x 6÷x 2 = x 3D .( x 2 )3 = x 8当堂反馈1.如果60m 表示“向北走60m”,那么“向南走40m”可以表示为 A .-20m B .-40m C .20m D .40m2.–5的绝对值是 ( ) A 、5 B 、–5 C 、51 D 、51- 3.已知a -=a ,则a 是 ( )A 、正数B 、负数C 、负数或0D 、正数或04.用“>”连接032,,---正确的是 ( )A 、032>-->-B 、302-->>-C 、023<-<--D 、203-<<--5.下列说法正确的是 ( )A 、两个有理数相加,和一定大于每一个加数B 、异号两数相加,取较大数的符号C 、同号两数相加,取相同的符号,并把绝对值相加D 、异号两数相加,用绝对值较大的数减去绝对值较小的数 6.两个互为相反数的数之积 ( )A 、符号必为负B 、一定为非正数C 、一定为非负数D 、符号必为正7.下面说法正确的有( )① π的相反数是-3.14;②符号相反的数互为相反数;③ -(-3.83.8;④ 一个数和它的相反数不可能相等;⑤正数与负数互为相反数. A.0个 B.1个 C.2个 D.3个 8.下列算式中,积为负数的是 ( ) A 、)5(0-⨯ B 、)10()5.0(4-⨯⨯ C 、)2()5.1(-⨯ D 、)32()51()2(-⨯-⨯-9.下列各组数中,相等的是( )A 、–1与(–4)+(–3)B 、3-与–(–3)C 、432与169 D 、2)4(-与–1610.l 米长的小棒,第1次截止一半,第2次截去剩下的一半,如此下去,第6次后剩下的小棒长为( )-3 A 、121 B 、321 C 、641 D 、128111.数轴上距离原点2.4个单位长度的点有 个,它们分别是 。
北师大版七年级下册 第1讲 幂的运算 --基础班
![北师大版七年级下册 第1讲 幂的运算 --基础班](https://img.taocdn.com/s3/m/b0cd8734b52acfc789ebc93b.png)
第1讲 幂的运算⎧⎪⎪⎨⎪⎪⎩同底数幂的乘法幂的乘方幂的运算积的乘方同底数幂的除法知识点1 同底数幂的乘法1.同底数幂的乘法(1)同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.m n m n a a a +⋅=(m ,n 是正整数)(2)推广:m n p m n p a a a a ++⋅⋅=(m ,n ,p 都是正整数)在应用同底数幂的乘法法则时,应注意:①底数必须相同,如32与52,()322a b与()422a b ,()2x y -与()3x y -等;②a 可以是单项式,也可以是多项式;③按照运算性质,只有相乘时才是底数不变,指数相加.(3)概括整合:同底数幂的乘法,是学习整式乘除运算的基础,是学好整式运算的关键.在运用时要抓住“同底数”这一关键点,同时注意,有的底数可能并不相同,这时可以适当变形为同底数幂.【典例】1.如果a 2n ﹣1•a n+2=a 7,则n 的值是____ 【答案】2【解析】解:∵a 2n ﹣1•a n+2=a 2n ﹣1+n+2=a 3n+1,a 2n ﹣1•a n+2=a 7, ∴ a 3n+1= a 7,∴3n+1=7,解得n=2.【方法总结】本题考查了同底数幂的乘法,熟记同底数幂相乘,底数不变指数相加是解题的关键.根据同底数幂的乘法的性质,底数不变,指数相加,确定积的次数,再列方程即可求得m的值.【随堂练习】1.如果等式x3•x m=x6成立,那么m=___【答案】3【解析】解:x3•x m=x3+m∵等式x3•x m=x6成立,x3•x m=x3+m∴x3+m=x6∴3+m=6,解得:m=3.【典例】1.已知a m=3,a n=6,a k=4,求a m+n+k的值.【答案】略.【解析】解:a m+n+k=a m•a n•a k∵a m=3,a n=6,a k=4,∴a m+n+k=a m•a n•a k=3×6×4=72.故a m+n+k的值为72.【方法总结】本题主要考查同底数幂的乘法法则逆用,熟练掌握性质并灵活运用是解题的关键,先根据同底数幂的乘法的运算法逆用,将a m+n+k变形为a m•a n•a k,然后将a m=3,a n=6,a k=4,代入a m•a n•a k,求解即可.【随堂练习】1. 若a m=6,a n=7,则a m+n的值是____【答案】42【解析】解:a m+n=a m•a n,∵a m=6,a n=7,∴a m+n=a m•a n=6×7=42,【典例】1.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013①,将等式两边同时乘2得:2S=2+22+23+24+25+…+22013+22014②将②减去①得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).【答案】(1)略;(2)略.【解析】解:(1)设S=1+2+22+23+24+…+210①,将等式两边同时乘2得:2S=2+22+23+24+…+210+211②,将②减去①得:2S﹣S=211﹣1,即S=211﹣1,则1+2+22+23+24+…+210=211﹣1;(2)设S=1+3+32+33+34+…+3n①,两边同时乘3得:3S=3+32+33+34+…+3n+3n+1②,②﹣①得:3S﹣S=3n+1﹣1,即S=(3n+1﹣1),则1+3+32+33+34+…+3n=(3n+1﹣1).【方法总结】此题考查了同底数幂的乘法,弄清题中的技巧是解本题的关键.解答此题常用的方法是“a 倍的错位相减”即可求解.如:求1+a+a2+a3+a4+…+a n(a不等于0)的和.解:设S=1+a+a2+a3+a4+…+a n①,两边同时乘a得:aS=a+a2+a3+a4+…+a n+a n+1②,②﹣①得:aS﹣S=a n+1﹣1,即S=(a n+1﹣1),则1+a+a2+a3+a4+…+a n=(a n+1﹣1).注意:将①式乘以a得到②式,然后运用②﹣①,就是运用“a倍的错位相减”法.【随堂练习】1.在求1+6+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①然后在①式的两边都乘以6,得:6S=6+62+63+64+65+66+67+68+69+610②②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S=,得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2014的值?你的答案是()A. B. C. D.a2014﹣1【答案】B.【解析】解:设S=1+a+a2+a3+a4+…+a2014,①则aS=a+a2+a3+a4+…+a2014+a2015,②,②﹣①得:(a﹣1)S=a2015﹣1,∴S=,即1+a+a2+a3+a4+…+a2014=,故选:B知识点2 幂的乘方1.幂的乘方(1)幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)注意:①幂的乘方的底数指的是幂的底数;②性质中“指数相乘”指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加”的区别.【典例】1.若81x=312,则x=__________.【答案】3.【解析】解:81x=34x,∵81x=312,∴34x=312,即34x=312,∴4x=12,x=3,故答案为:3.【方法总结】本题考查了幂的乘方的应用,关键是把原式化成底数相同的形式.先根据幂的乘方法则把81x化成34x,即可得出4x=12,解方程即可求解.【随堂练习】1.若(x3)m=x12,则m的值为()【答案】4【解析】解:∵(x3)m=x12,(x3)m=x3m,∴x3m= x12,∴3m=12,解得m=4.【典例】1.已知3x=a,3y=b,则32x+3y=_____【答案】a2b3【解析】解:∵32x+3y=32x•33y=(3x)2•(3y)3∴当3x=a,3y=b时,原式=(3x)2•(3y)3=a2b3,【方法总结】本题主要考查幂的乘方与积的乘方,要熟练掌握幂的乘方法则(底数不变,指数相乘)和积的乘方法则(把每一个因式分别乘方,再把所得的幂相乘).将32x+3y转化为(3x)2•(3y)3是解答本题的关键.【随堂练习】1.已知a m=2,a n=,a2m+3n的值为____【答案】【解析】解:∵a2m+3n= a2m×a3n=(a m)2×(a n)3∴a2m+3n =(a m)2×(a n)3∵a m=2,a n=,∴a2m+3n=(a m)2×(a n)3=22×()3=.【典例】1.比较3555,4444,5333的大小.【答案】略.【解析】解:∵3555=35×111=(35)111=243111,4444=44×111=(44)111=256111,5333=53×111=(53)111=125111,又∵256>243>125,∴256111>243111>125111,即4444>3555>5333.【方法总结】本题主要考查了幂的大小比较的方法.一般说来,比较几个幂的大小,可以把它们的底数变得相同,或者把它们的指数变得相同,再分别比较它们的指数或底数.【随堂练习】1.比较(27)4与(34)3的大小,可得()A.(27)4=(34)3B.(27)4>(34)3C.(27)4<(34)3D.无法确定【答案】A.【解析】解:∵(27)4=(33)4=312,(34)3=312,∴(27)4=(34)3,故选:A知识点3 积的乘方1.积的乘方(1)积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.(ab)n=a n•b n(n是正整数)注意:①因式是三个或三个以上积的乘方,法则仍适用;②运用时数字因数的乘方应根据乘方的意义,计算出最后的结果.【典例】1.用简便方法计算下列各题:(1)()2016×(﹣1.25)2017(2)(2)10×(﹣)10×()11.【解析】解:(1)()2016×(﹣1.25)2017=()2016×(﹣)2017=()2016×(﹣)2016×(﹣)=[×(﹣1.25)]2016×(﹣)=()2016×(﹣)=﹣;(2)(2)10×(﹣)10×()11=()10×(﹣)10×()11=()10×(﹣)10×()10×=[×(﹣)×]10×=.【方法总结】此题主要考查了积的乘方运算,利用底数转化法进行幂的运算是解题关键,如(1)中底数分别是和﹣,乘积正好是-1;如(2)中底数分别是、﹣、,乘积正是-1,-1的偶次幂是1,-1的奇次幂是-1,运算较为便捷.【随堂练习】1. 计算(﹣0.25)2013×42013的结果是_____【答案】-1【解析】解:原式=(﹣0.25×4)2013=(﹣1)2013=﹣1.【典例】1.(1)已知a n=3,b n=5,求(a2b)n的值;(2)若2n=3,3n=4,求36n.【解析】解:(1)∵(a2b)n=(a2)n• b n=a2×n•b n= (a n)2•b n;∴(a2b)n = (a n)2•b n∴(a2b)n = (a n)2•b n=32×5=45;(2)36n═(62)n=(6n)2=【(2×3)n】2=(2n×3n)2=(3×4)2=144.【方法总结】本题主要考查幂的乘方与积的乘方,解题的关键是熟练掌握幂的乘方法则:底数不变,指数相乘和积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.如(1)中,需要将(a2b)n转变为(a n)2•b n,(2)中,需要将36n转变为(2n×3n)2.【随堂练习】1. 已知x n=2,y n=1;则(x2y)2n=()【答案】16【解析】解:∵(x2y)2n = x2×2n•y2n=x4n•y2n=(x n)4•(y n)2∴(x2y)2n =(x n)4•(y n)2∴当x n=2,y n=3时,(x2y)2n =(x n)4•(y n)2=24×12=16×1=16,知识点4 同底数幂的除法1.同底数幂的除法同底数幂的除法法则:底数不变,指数相减.a m÷a n=a m﹣n(a≠0,m,n是正整数,m>n)①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.2.零指数幂零指数幂:a0=1(a≠0)由a m÷a m=1,a m÷a m=a m﹣m=a0可推出a0=1(a≠0)注意:00无意义.3.负整数指数幂负整数指数幂:a﹣p=(a≠0,p为正整数)注意:①a≠0;②计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(﹣3)﹣2=(﹣3)×(﹣2)的错误.③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.④在混合运算中,始终要注意运算的顺序.【典例】1.(a+b+c)n+3÷(a+b+c)n﹣1=()A.(a+b+c)2B.(a+b+c)4C.(a+b+c)2n+1D.a4+b4+c4【答案】B.【解析】解:(a+b+c)n+3÷(a+b+c)n﹣1=(a+b+c)n+3﹣n+1=(a+b+c)4.故选:B【方法总结】此题主要考查了同底数幂的乘除运算:底数不变,指数相减.【随堂练习】1. (x﹣y)n+3÷(x﹣y)n﹣1【答案】(x﹣y)4【解析】解:(x﹣y)n+3÷(x﹣y)n﹣1=(x﹣y)n+3﹣n+1=(x﹣y)4.【典例】1.若2018m=5,2018n=4,则20183m﹣2n等于____【答案】【解析】解:∵20183m﹣2n=20183m÷20182n=(2018m)3÷(2018n)2∴20183m﹣2n=(2018m)3÷(2018n)2∵2018m=5,2018n=4,∴20183m﹣2n=(2018m)3÷(2018n)2,=53÷42,=.【方法总结】本题考查同底数幂的除法、幂的乘方的性质,解答本题的关键是将20183m﹣2n转化成同底数幂的除法,即转化成20183m÷20182n的形式,再利用幂的乘方法则,将20183m,20182n 分别用(2018m)3、(2018n)2代换,即20183m÷20182n转化成为(2018m)3÷(2018n)2,然后将2018m=5,2018n=4代入(2018m)3÷(2018n)2即可求解.【随堂练习】1.若2x=20,2y=5,则2x﹣y的值为____【答案】4【解析】解:因为2x=20,2y=5,所以2x﹣y=2x÷2y=20÷5=.综合运用1.已知m a+b•m a﹣b=m12,则a的值为_________.【答案】6.【解析】解:∵m a+b•m a﹣b=m12,∴m a+b+a-b=m12,∴a+b+a-b=12即2a=12.解得:a=6.2.若102•10n﹣1=106,则n的值为_________.【答案】5.【解析】解:∵102•10n﹣1=106,∴102+n﹣1=106,∴2+n﹣1=6,解得n=5,故答案为:5.3.已知2a=5,2b=3,求2a+b+3的值.【答案】略.【解析】解:2a+b+3=2a×2b×23∵2a=5,2b=3,∴2a+b+3=2a×2b×23=5×3×8=120.4.已知2x+3y﹣2=0,求9x•27y的值.【答案】略.【解析】解:∵9x•27y=(32)x•(33)y=32x•33y=32x+3y∴9x•27y=32x+3y∵2x+3y﹣2=0,∴2x+3y=2,∴9x•27y=32x+3y=32=9.5.根据已知求值:(1)已知a m=2,a n=5,求a3m+2n的值;(2)已知3×9m×27m=321,求m的值.【答案】略.【解析】解:(1)∵a3m+2n=a3m•a2n=(a m)3•(a n)2 ∴a3m+2n =(a m)3•(a n)2;∵a m=2,a n=5,∴a3m+2n =(a m)3•(a n)2=23×52=200;(2)∵3×9m×27m=31×(32)m×(33)m=31×32m×33m=31+5m,∴3×9m×27m=31+5m,∵3×9m×27m=321,∴31+5m=321,∴1+5m=21,解得m=4.6.用简便方法计算下列各题(1)()2015×(﹣1.25)2016.(2)(3)12×()11×(﹣2)3.【答案】略.【解析】解:(1)===[]2015×(﹣)=﹣1×(﹣)=;(2)原式=×()11×()11×(﹣8)=(﹣)×()11×()11=﹣25×=﹣25.7.计算(1)(m﹣n)2•(n﹣m)3•(n﹣m)4(2)(b2n)3(b3)4n÷(b5)n+1(3)(a2)3﹣a3•a3+(2a3)2;【解析】解:(1)(m﹣n)2•(n﹣m)3•(n﹣m)4 =(n﹣m)2+3+4,=(n﹣m)9;(2)(b2n)3(b3)4n÷(b5)n+1=b2n×3•b3×4n÷b5×(n+1)=b6n•b12n÷b5n+5=b6n+12n÷b5n+5=b6n+12n﹣(5n+5)=b6n+12n﹣5n-5=b13n﹣5;(3)(a2)3﹣a3•a3+(2a3)2 =a2×3﹣a3+3+22•(a3)2=a2×3﹣a3+3+22•a3×2=a6﹣a6+4a6=4a6;。
14.1.1同底数幂的乘法-课件-人教版数学八年级上册
![14.1.1同底数幂的乘法-课件-人教版数学八年级上册](https://img.taocdn.com/s3/m/976517713868011ca300a6c30c2259010202f3c6.png)
.
6.已知32m=5,32n=10,则9m﹣n+1的值
【分析】先逆用幂的乘方法则,把32m、32n转化为9m、9n的形式,再逆用同底 数幂的乘除法法则,把9m﹣n+1转化为同底数幂的乘除法的形式后代入求值.
【解答】解:∵32m=(32)m=9m=5,32n=(32)n=9n=10, ∴9m﹣n+1=9m÷9n×9 =5÷10×9 =
∴102+n﹣1=106,
∴2+n﹣1=6,
解得n=5,
故答案为:5.
【点评】本题主要考查了同底数幂的乘法法则,同底数幂相乘,底数不
变,指数相加.
2.已知272=a6=9b,则a2+ab的值为 .
【分析】直接利用幂的乘方运算法则将已知变形得出a,b,进而得出答案. 【解答】解:∵272=a6=9b, ∴36=a6=9b=32b, ∴a=±3,b=3, 当a=3,b=3时, ∴a2+ab=9+9=18, 当a=﹣3,b=3时, ∴a2+ab=9﹣9=0, 故a2+ab的值为0或18. 故答案为:0或18. 【点评】此题主要考查了有理数的乘方,正确得出a,b的值是解题关键.
人教版八年级上册第十四章
同底数幂的乘法
教学设计一:
故事引入:大家都知道“手拉面”吧,厨师把和好的面切成相等的 段,然后用手拉,第一次拉成1米,再折回成2根,每根米长;第 二次将这2根都拉成1米,折回成4根,每根仍是米;第三次将这4 根拉成1米,折回成米长的8根,总长是4米。这样一直拉下去, 拉到一定的细度,一般要拉十几次。假如要拉14次,那么第14次 拉完时,拉面的总长度是多少呢?我们来算一算。第1次 1根 1米, 第2次 2根 2米,第3次 4根 4米, ···,第15次 =8192根 8192米, 也就是拉到第14次的时候,所有面条的总长度达8千多米。这拉 面可真长啊!差不多是珠穆朗玛峰的海拔高度了。
北师大版数学七年级下册.1同底数幂的除法及零次幂和负整数指数幂课件
![北师大版数学七年级下册.1同底数幂的除法及零次幂和负整数指数幂课件](https://img.taocdn.com/s3/m/d5ea7c3a1fd9ad51f01dc281e53a580217fc5069.png)
0.50 = 1 (-1)0 = 1
( 1 )- 6 = 64 2
( 3 )- 3 = 6 4
4
27
10-5 = 1
100000
已知3m=2, 9n=10, 求33m-2n 的值.
解: 33m-2n =33m÷32n =(3m)3÷(32)n =(3m)3÷9n =23÷10 =8÷10 =0.8.
错误,应等于b6-3 = b3
正确
(4)(-bc )4÷ (-bc ) 2 = -b 2 c 2
错误,应等于(-bc )4-2= (-bc ) 2 = b 2 c 2
计算:
1
3 12 34
;
2-2315 -2312;
解:原式=38;
解:原式=﹣231155
312 212
=﹣ 8 ; 27
计算(结果用整数或分数表示):
(1)am-n的值; (2)a3m-3n的值.
解:(1)am-n=am÷an=8÷5 = 1.6;
(2)a3m-3n= a3m ÷ a3n
= (am)3 ÷(an)3
=83 ÷53
=512 ÷125
=
51 12
2 5
.
同底数幂的除法可以逆用:am-n=am÷an
新知探究2
做一做:
3
3
2
2
1
1
猜一猜: 0
本课小结
1.同底数幂的除法法则:
同底数幂相除, 底数不变,指数相减.
am an
= am-n
(a≠0, m、n为任意整数)
2.任何不等于零的数的零次幂都等于1.
a0=( 1a0)
3.负整数指数幂:
a-n
=
1 an
幂的运算ppt课件
![幂的运算ppt课件](https://img.taocdn.com/s3/m/4d60b42900f69e3143323968011ca300a6c3f691.png)
am·an·ap等于什么?
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
判断下列计算是否正确,并说明理由:
(1)aa2a3; (2)aa2 a3 .
(3)a3a3a9; (4)a3a3a6.
n个
n个
= anbn ∴(ab)n = a nbn (n为正整数)
积的乘方,等于各因数乘方的积.
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
例计算:
解(1)(2b)3
=23b3 =8b3
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
智力冲浪
已知:2m =3,2n =4, 求2mn的值.
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
(3)(ab)4=______(a_b_)__• _(a_b_)__• _(a_b_)__• _(a_b_)___ =______(_a_a_a_a_)_•_(_b_b_b_b_)________ = a (4)b( 4)
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
上图是洋葱的根尖细胞,细胞每分裂一次,1个细 胞变成2个细胞.洋葱根尖细胞分裂的一个周期大 约是12时,210个洋葱根类细胞经过分裂后,变成 220个细胞大约需要多少时间? 所需时间为:(220÷210) ×12
第1讲 幂的运算-七年级下册数学同步精品讲义
![第1讲 幂的运算-七年级下册数学同步精品讲义](https://img.taocdn.com/s3/m/68dce1012bf90242a8956bec0975f46527d3a7ae.png)
第1讲 幂的运算1. 掌握正整数幂的运算性质(同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法);2. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算.知识点01同底数幂的乘法+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式. (2)三个或三个以上同底数幂相乘时,也具有这一性质, 即mnpm n pa a a a++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即m nm n a a a +=⋅(,m n 都是正整数).【知识拓展1】计算:(1)234444⨯⨯; (2)3452622a a a a a a ⋅+⋅-⋅;(3)11211()()()()()nn m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.【即学即练1】计算:(1)5323(3)(3)⋅-⋅-; (2)221()()ppp x x x +⋅-⋅-(p 为正整数);知识精讲目标导航(3)232(2)(2)n⨯-⋅-(n 为正整数).【即学即练2】计算:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- .【知识拓展2】已知2220x +=,求2x 的值.知识点02幂的乘方()=m nmna a(其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n pmnpa a (0≠a ,,,m n p 均为正整数)(2)逆用公式: ()()nmmnm n a aa ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.【知识拓展1】计算:(1)2()m a ; (2)34[()]m -; (3)32()m a-.【即学即练1】计算:(1)23[()]a b --; (2)32235()()2y y y y +-;(3)22412()()m m x x -+⋅; (4)3234()()x x ⋅.【知识拓展2】已知25mx =,求6155m x -的值.【即学即练1】已知2a x =,3b x =.求32a bx +的值.【即学即练2】已知84=m ,85=n ,求328+m n的值.【即学即练3】已知435,25ab m n ==,请用含m 、n 的代数式表示43625a b +.【即学即练4】已知2139324n n ++=,求n 的值;【即学即练5】已知322,3m m a b ==,则()()()36322mm m ma b a b b +-⋅= .知识点03积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅nnnnabc a b c (n 为正整数).(2)逆用公式:()nn na b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭【知识拓展1】指出下列各题计算是否正确,指出错误并说明原因:(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-.【即学即练1】计算:(1)24(2)xy - (2)24333[()]a a b -⋅-【即学即练2】下列等式正确的个数是( ). ①()3236926x yx y -=- ②()326m m a a -= ③()36933a a =④()()57355107103510⨯⨯⨯=⨯ ⑤()()1001001010.520.522-⨯=-⨯⨯A. 1个B. 2个C. 3个D. 4个【知识拓展2】计算:1718191(3)(2)6⎛⎫-⨯-⨯- ⎪⎝⎭.知识点04 同底数幂的除法同底数幂的除法法则同底数幂相除,底数不变,指数相减,即mnm na a a-÷=(a ≠0,m n 、都是正整数,并且m n >)要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一性质. (4)底数可以是一个数,也可以是单项式或多项式. 零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式.【知识拓展1】计算:(1)83x x ÷; (2)3()a a -÷; (3)52(2)(2)xy xy ÷; (4)531133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.【即学即练1】计算下列各题:(1)5()()x y x y -÷- (2)125(52)(25)a b b a -÷-(3)6462(310)(310)⨯÷⨯ (4)3324[(2)][(2)]x y y x -÷-【知识拓展2】已知32m =,34n =,求129m n+-的值.【即学即练1】已知2552m m⨯=⨯,求m 的值.1.已知(-x )a +2⋅ x 2a ⋅ (-x )3= x 32 , a 是正整数,求a 的值.2.已知n 为正整数,化简: (-x 2 )n+ (-x n )2.3.已知: 3x +1 ⋅ 2x - 3x ⋅ 2x +1 = 216 ,试求 x 的值.能力拓展4.已知35m =,45381m n -=,求201620151n n ⎛⎫-⋅ ⎪⎝⎭的值.5.如果整数x y z 、、满足151627168910xy z⎛⎫⎛⎫⎛⎫⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求2x y z y +-的值.6.已知()231x x +-=,求整数x .题组A 基础过关练一、单选题1.(2022·全国·七年级)化简1x y +-()的结果是( )A .11x y --+B .1xy C .11x y+D .1x y+ 2.(2022·全国·七年级)计算52x x ÷结果正确的是( ). A .3B .3xC .10xD .25x3.(2021·甘肃白银·七年级期末)花粉的质量很小,一粒某种植物花粉的质量约为0.000036mg ,那么0.000036mg 用科学记数法表示为( ) A .53.610mg -⨯ B .63.610mg -⨯C .73.610mg -⨯D .83.610mg -⨯二、填空题4.(2022·黑龙江杜尔伯特·七年级期末)若am =10,an =6,则am +n =_____.分层提分5.(2022·全国·七年级)计算34x x x ⋅+的结果等于________. 6.(2022·黑龙江杜尔伯特·七年级期末)22013•(12)2012=_____. 7.(2021·上海虹口·七年级期末)计算:23(3)a =_______.8.(2022·全国·七年级)若0(3)1x -=,则x 的取值范围是________. 9.(2022·全国·七年级)计算:0113()22-⨯+-=______.三、解答题10.(2022·全国·七年级)计算:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- .11.(2018·全国·七年级课时练习)1千克镭完全蜕变后,放出的热量相当于3.75×105千克煤放出的热量,据估计地壳里含1×1010千克镭,试问这些镭完全蜕变后放出的热量相当于多少千克煤放出的热量?12.(2020·浙江杭州·模拟预测)计算题(结果用幂的形式表示):(1)2322⨯ (2)()32x (3)()()322533-⋅13.(2021·上海普陀·七年级期末)计算:2110213(2020)34π---⎛⎫⎛⎫⨯+-÷ ⎪ ⎪⎝⎭⎝⎭.题组B 能力提升练1.(2022·全国·七年级)计算:(1)234444⨯⨯; (2)3452622a a a a a a ⋅+⋅-⋅;(3)11211()()()()()n n m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.2.(2021·上海市民办新竹园中学七年级期中)计算:121432413()()()922x z y z y x------÷-⋅-3.(2022·全国·七年级)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作23,读作“2的3次商”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)4,读作“﹣3的4次商”,一般地,把n aa a a a÷÷÷÷个(a ≠0)记作an ,读作“a 的n 次商”.【初步探究】(1)直接写出计算结果:23= ,(﹣3)4= ; (2)关于除方,下列说法错误的是 ;A .任何非零数的2次商都等于1;B .对于任何正整数n ,(﹣1)n =﹣1;C .34=43;D .负数的奇数次商结果是负数,负数的偶数次商结果是正数.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?例如:2411112222222222⎛⎫=÷÷÷=⨯⨯⨯= ⎪⎝⎭.(3)试一试:仿照上面的算式,将下列运算结果直接写成乘方(幂)的形式.(﹣3)4= ;517⎛⎫⎪⎝⎭= .(4)想一想:将一个非零有理数a 的n 次方商an 写成幂的形式等于 . (5)算一算:2453111152344⎛⎫⎛⎫⎛⎫÷-⨯-+-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= .4.(2021·江苏·苏州市工业园区第一中学七年级阶段练习)已知10×102=1000=103, 102×102=10000=104, 102×103=100000=105.(1)猜想106×104= ,10m ×10n = .(m ,n 均为正整数) (2)运用上述猜想计算下列式子:①(1.5×104)×(1.2×105); ②(﹣6.4×103)×(2×106).5.(2022·全国·七年级)阅读,学习和解题. (1)阅读和学习下面的材料:学习以上解题思路和方法,然后完成下题: 比较34040,43030,52020的大小. (2)阅读和学习下面的材料:学习以上解题思路和方法,然后完成下题:已知am =2,an =3,求a 2m +3n 的值.(3)计算:(-16)505×(-0.5)2021.题组C 培优拔尖练一、单选题1.(2021·江苏·宜兴市实验中学七年级期中)计算100501111122222⋅⋅⋅-⋅⋅⋅个个其结果用幂的形式可表示为( ) A .25033333⋅⋅⋅个 B .26033333⋅⋅⋅个 C .27033333⋅⋅⋅个 D .28033333⋅⋅⋅个2.(2022·全国·七年级)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S ,用含S 的式子表示这组数据的和是( ) A .2S 2﹣SB .2S 2+SC .2S 2﹣2SD .2S 2﹣2S ﹣2二、填空题3.(2019·浙江·温州市第二十三中学七年级期中)已知整数a b c d 、、、满足a b c d <<<且234510000a b c d =,则432a b c d +++的值为_____.4.(2021·北京八十中七年级期中)已知一列数:-2,4,-8,16,-32,64,-128,……,将这列数按如右图所示的规律排成一个数阵,其中,4在第一个拐弯处,-8在第二个拐弯处,-32在第三个拐弯处,-128在第四个拐弯处,……,则第六个拐弯处的数是________,第一百个拐弯处的数是___________.三、解答题5.(2019·甘肃·甘州中学七年级阶段练习)已知(﹣13xyz )2M =13x 2n+2y n+3z 4÷5x 2n ﹣1y n+1z ,自然数x ,z 满足123x z -⋅=72,且x =z ,求M 的值.6.(2021·全国·七年级专题练习)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J .Napier ,1550年-1617年),纳皮尔发明对数是在指数概念建立之前,直到18世纪瑞士数学家欧拉(Euler ,1707年-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若(0,1)x a N a a =≠>,则x 叫做以a 为底N 的对数,记作log a x N =.比如指数式4216=可以转化为24log 16=,对数式52log 25=可以转化为2525=.我们根据对数的定义可得到对数的一个性质:a log(?)log M N M =+log (0,a 1,0,N 0)a N a M ≠>>>.理由如下:设a log M m =,a log N n =,所以m M a =,n N a =,所以m n m n MN a a a +==,由对数的定义得a log ()m n M N +=+,又因为a log log a m n M N +=+,所以log ()log log a a a MN M N =+.解决以下问题: (1)将指数35125=转化为对数式: .(2)仿照上面的材料,试证明:log log -log (0,1,0,0)a a a M M N a a M N N=≠>>> (3)拓展运用:计算333log 2log 18-log 4+= .7.(2019·江苏·汇文实验初中七年级阶段练习)(1)填空:21﹣20=______=2(_____)22﹣21=_____=2(______)23﹣22=______=2(______)…(2)探索(1)中式子的规律,试写出第n 个等式,并说明第n 个等式成立; (3)计算20+21+22+ (22019)8.(2021·全国·七年级专题练习)观察下面三行单项式:x ,22x ,34x ,48x ,516x ,632x ,⋯;①2x -,24x ,38x -,416x ,532x -,664x ,⋯;②22x ,33x -,45x ,59x -,617x ,733x -,⋯;③根据你发现的规律,解答下列问题:(1)第①行的第8个单项式为_______;(2)第②行的第9个单项式为_______;第③行的第10个单项式为_______; (3)取每行的第9个单项式,令这三个单项式的和为A .当12x =时,求15124A ⎛⎫+ ⎪⎝⎭的值.9.(2021·全国·七年级课时练习)探究:22﹣21=2×21﹣1×21=2( )23﹣22= =2( ),24﹣23= =2( ),……(1)请仔细观察,写出第4个等式;(2)请你找规律,写出第n 个等式;(3)计算:21+22+23+…+22019﹣22020.10.(2021·江苏连云港·七年级期中)阅读下列材料:小明为了计算22020202112222+++⋅⋅⋅++的值,采用以下方法:设22020202112222S +++⋅⋅⋅++=①则22021202222222S =++⋅⋅⋅++②②-①得,2022221S S S -==-.请仿照小明的方法解决以下问题:(1)220222++⋅⋅⋅+=______;(2)求2501111222+++⋅⋅⋅++=______; (3)求()()()2100222-+-+⋅⋅⋅+-的和;(请写出计算过程)(4)求2323n a a a na +++⋅⋅⋅+的和(其中0a ≠且1a ≠).(请写出计算过程)。
七年级下册数学幂的运算
![七年级下册数学幂的运算](https://img.taocdn.com/s3/m/fd91217454270722192e453610661ed9ad5155a6.png)
七年级下册数学幂的运算一、幂的运算知识点。
1. 同底数幂的乘法。
- 法则:同底数幂相乘,底数不变,指数相加。
即a^m· a^n = a^m + n(a≠0,m、n为整数)。
- 例如:2^3×2^4 = 2^3 + 4=2^7 = 128。
- 推导:a^m表示m个a相乘,a^n表示n个a相乘,那么a^m· a^n就是(m + n)个a相乘,所以结果为a^m + n。
2. 幂的乘方。
- 法则:幂的乘方,底数不变,指数相乘。
即(a^m)^n=a^mn(a≠0,m、n为整数)。
- 例如:(3^2)^3 = 3^2×3=3^6 = 729。
- 推导:(a^m)^n表示n个a^m相乘,a^m中有m个a相乘,那么n个a^m相乘就有mn个a相乘,所以结果为a^mn。
3. 积的乘方。
- 法则:积的乘方等于乘方的积。
即(ab)^n=a^n b^n(a≠0,b≠0,n为整数)。
- 例如:(2×3)^2 = 2^2×3^2=4×9 = 36。
- 推导:(ab)^n=⏟(ab)×(ab)×·s×(ab)_n个(ab)=⏟(a× a×·s× a)_n个a×⏟(b× b×·s×b)_n个b=a^n b^n。
4. 同底数幂的除法。
- 法则:同底数幂相除,底数不变,指数相减。
即a^m÷ a^n = a^m - n(a≠0,m、n为整数且m>n)。
- 例如:5^5÷5^3 = 5^5 - 3=5^2 = 25。
- 特殊情况:当m = n时,a^m÷ a^n=a^m - n=a^0,规定a^0 = 1(a≠0);当m < n时,a^m÷ a^n=(1)/(a^n - m)。
二、典型例题。
12.1幂的运算(1)精品PPT课件
![12.1幂的运算(1)精品PPT课件](https://img.taocdn.com/s3/m/3b33f83819e8b8f67d1cb98d.png)
12.1 幂的运算(1)
引言
别把劳动认为只是耕耘物质收获的原野, 它是能同时开拓我们心灵原野的尊贵锄头。无 论如何,我们可以借劳动加强我们的心身,锄 尽蔓延在我们心田的各种邪恶野草。然后,把 幸福和喜悦的种子撒在此地,四季茂盛,以至 开花。
例题
例5 (1)已知a2=3,求①(a3)2 ②a8 解:① (a3)2=a6=(a2)3=33=27 ② a8=a2·(a2)3=3×(3)3=81
(2) 已知3m+2n=5,求8m·4n 的值. 解:8m·4n=(23)m·(22) =23m·22n
n
=23m+2n =25=32
演练
1. ①{[(-a)3]2}5 ②- (-m3)2·[(-m)2]3·[(-m)3] 2n+1 ③[(-a-b)3]2 [-(a+b)2]3 ④(-3)2n+1+3·(-3)2n
感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
演讲人:XXXXXX 时 间:XX年XX月XX日
思考
做一做:先说出下列各式的意义,再计算下列各式:
(23)2=_2_3__·_2_3______=_2_6____;
(32)3=__3_2 _·_3_2_·_3_2___=_3_6____;
(a3)4=____________=_a_12____. 上面各a式3·括a3·号a3中·a都3 是幂的形式,然后乘方,
2. 若(x2)n=x8,则n=___
演练
3.若[(x3)m]2=x12,则m=___. 4.若xm·x2m=2,求x9m的值. 5.若a2n=3,求(a3n)4的值.
幂的运算-ppt课件
![幂的运算-ppt课件](https://img.taocdn.com/s3/m/bd6742d3cd22bcd126fff705cc17552707225eb8.png)
(2)系数应连同它的符号一起乘方,尤其是当系数是-1时,不
可忽略.
感悟新知
知3-练
例 5 计算:
(1)(x·y3)2; (2)(-3×102)3;
(3) -
2;
(4)(-a2b3)3.
解题秘方:运用积的乘方、幂的乘方的运算法则
进行计算.
感悟新知
知3-练
最后结果要符合科
学记数法的要求
(2)(-3×102)3=(-3)3×(102)3=-27×106=-2.7×107;
解:(1)(x·y3)2=x2·(y3)2=x2y6;
(3) -
12
a ;
2=
-
· () 2 =
2
2
=
·(a6)2 =
系数乘方时,要带前面的符号,特
a4n-a6n用a2n表示,再把a2n=3 整体代入求值.
解:a4n-a6n=(a2n)2-(a2n)3=32-33=9-27=-18.
感悟新知
知2-练
4-1.已知10m=3,10n=2,求下列各式的值:
(1)103m;
解:103m=(10m)3=33=27;
(2)102n;
102n=(10n)2=22=4;
感悟新知
知3-练
6-1. [中考·淄博] 计算(-2a3b)2-3a6b2的结果是( C )
A.-7a6b2
B. -5a6b2
C. a6b2
D. 7a6b2
感悟新知
知3-练
6-2. 计算:
(1)(-2anb3n)2+(a2b6)n;
幂的运算(第1课时)(沪科版)
![幂的运算(第1课时)(沪科版)](https://img.taocdn.com/s3/m/2a13abf56e1aff00bed5b9f3f90f76c661374c7e.png)
注意 公式中的底数和指数可以是一个数、字母 或一个式子.
4.创新应用. (1)已知an-3·a2n+1=a10,求n的值;
公式运用:am·an=am+n 解:n-3+2n+1=10,
n=4; (2)已知xa=2,xb=3,求xa+b的值.
公式逆用:am+n=am·an 解:xa+b=xa·xb=2×3=6.
练一练
判断对错:
(1)(am )n amn
(2)a 2 • a5 a10
(3)(a 2 )10 a 20
(4)[( 3)2 ]3 ( 3)6
4
4
(5)(b n1 ) 2 b 2n2
(6)[( x y)2 ]5 (x y)10
(× ) (× ) (√ ) ( ×) (√ ) (√ )
(2)(b5)5 =b5×5=b25;
(3)(an)3=an×3=a3n;
(4)-(x2)m=-x2×m=-x2m;
(5)(y2)3 ·y=y2×3·y=y6·y=y7;
(6)2(a2)6–(a3)4=2a2×6 -a3×4 =2a12-a12 =a12.
注意:一定不要将幂的乘方与同底数幂的乘法混淆.
练一练
判断(正确的打“√”,错误的打“×”)
(1)x4·x6=x24 ( × )
(2) x·x3=x3 ( × )
(3) x4+x4=x8 ( × )
(4) x2·x2=2x4 ( × )
(5)(-x)2 ·(-x)3 = (-x)5 ( √ ) (6)a2·a3- a3·a2 = 0 ( √ )
当堂练习
1.下面的计算对不对?如果不对,应当怎样改正.
(1)b3·b3=2b3 ×
北师大七年级下第1讲:幂的运算
![北师大七年级下第1讲:幂的运算](https://img.taocdn.com/s3/m/3af31c7bbe23482fb4da4c48.png)
第一讲:幂的运算1、掌握正整数幂的乘法运算性质(同底数幂的乘法、幂的乘方、积的乘方,幂的除法);2、能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算.同底数幂的乘法性质(其中都是正整数).即同底数幂相乘,底数不变,指数相加.注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.【例1】计算:(1)()()()a a a -⋅-⋅-34(2)()5322m m m +-⋅-(3)()()6235332x x x x x x ⋅-+-⋅+⋅ (4);(5) .+⋅=m n m n a a a ,mn 35(2)(2)(2)b b b +⋅+⋅+23(2)(2)x y y x -⋅-幂的乘方法则(其中都是正整数).即幂的乘方,底数不变,指数相乘.【例1】计算:(1); (2);(3); (4).【例2】已知282+=y x ,939-=x y ,求x+2y 的值.【例3】已知,则= .积的乘方法则(其中是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.()=m n mn a a ,mn 23[()]a b --32235()()2y y y y +-22412()()m m x x -+⋅3234()()x x ⋅322,3mm ab ==()()()36322mm m m a b a b b +-⋅()=⋅n n n ab a bn【例1】计算:(1) (2) 【例2】下列等式正确的个数是( ). ① ② ③④ ⑤A. 1个B. 2个C. 3个D. 4个 【例3】已知22=mx ,求()()22332n m x x -的值.同底数幂的除法法则同底数幂相除,底数不变,指数相减,即mnm na a a-÷=(a ≠0,m n 、都是正整数,并且m n >)【例1】计算:(1)83x x ÷ (2)3()a a -÷ (3)52(2)(2)xy xy ÷ (4)531133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.【例2】计算下列各题:(1)5()()x y x y -÷- (2)125(52)(25)a b b a -÷-(3)6462(310)(310)⨯÷⨯ (4)3324[(2)][(2)]x y y x -÷-24(2)xy -24333[()]a a b -⋅-()3236926x yx y -=-()326m m a a -=()36933a a =()()57355107103510⨯⨯⨯=⨯()()1001001010.520.522-⨯=-⨯⨯【例3】已知32m =,34n =,求129m n+-的值.【变式】已知以m a =2,n a =4,k a =32.则32m n ka+-的值为 .零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0) 负整数指数幂任何不等于零的数的n -(n 为正整数)次幂,等于这个数的n 次幂的倒数,即1nn a a-=(a ≠0,n 是正整数).【例1】计算:(1)223-⎛⎫- ⎪⎝⎭; (2)23131()()a b a b ab ---÷.【例2】计算:4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭.【例3】 已知1327m=,1162n⎛⎫= ⎪⎝⎭,则nm 的值=________.负整数指数幂任何不等于零的数的n -(n 为正整数)次幂,等于这个数的n 次幂的倒数,即1nna a -=(a ≠0,n 是正整数).【例1】用科学记数法:3×410-= .(写成小数形式)【例2】把0.00000002写成如(2)的科学记数法10na ⨯的形式是: .一、选择题 1、的结果是( ).A.0B.C.D.2、将201)3(,)2(,)61(---这三个数按从小到大的顺序排列为()A .21)3()61()2(-<<-- B .201)3()2()61(-<-<-C .102)61()2()3(-<-<-D .120)61()3()2(-<-<-3、下列计算中,错误的个数是( ). ① ② ③④ ⑤A. 2个B. 3个C. 4个D. 5个 4、下列计算中正确的是( ). A.212a a xx x ++÷=B.()()6322xy xy x y ÷=C.()12529x x x x ÷÷=D.()42332n nn n x xx x +÷=()()2552aa -+-72a -102a 102a -()23636xx =()2551010525a b a b -=-3328()327x x -=-()42367381x yx y =235x x x ⋅=二.填空题1、化简:(1)=_______;(2)=_______.2、若,则=______.3、()()532aa -÷-=__________,201079273÷÷=__________,02139⎛⎫+= ⎪⎝⎭______.4、一种细菌的半径为0.0004m ,用科学记数法表示为______m .5、已知a=255,b=344,c=433,d=522,则这四个数从大到小排列顺序是 . 三.解答题1、若,求的值.2、先化简,后求值:()()23424211212a b a b ab----⎛⎫--÷ ⎪⎝⎭,其中23a b ==-,.33331)31(b a ab +-()()322223aa a +⋅2,3nna b ==6n2530x y +-=432xy⋅一.选择题 1、的值是( ).A. B.C.D.2、下列计算正确的是( ).A.B. C.D.3、下列计算中正确的是( ). A.212a a xx x ++÷=B.()()6322xy xy x y ÷=C.()12529x x x x ÷÷=D.()42332n nn n x xx x +÷= 4、近似数0.33万表示为( ) A .3.3×210- B .3.3000×310C .3.3×310D .0.33×4105、若成立,则( ).A. =6,=12B. =3,=12C. =3,=5D. =6,=5二.填空题 1、若,则=_______.2、若,则=______;若,则=______.3、______; ______; =______.4、=-+-01)π()21(______,()011 3.142--++=______.5、()3223a b-=______,()22a b---=______.6、若n 是正整数,且,则=__________.三.解答题2nn a a +⋅3n a+()2n n a+22n a+8a ()33xy xy =()222455xyx y -=-()22439xx -=-()323628xyx y -=-()391528m n a ba b =m n m n m n m n ()319xaa a ⋅=x 38ma a a ⋅=m 31381x +=x ()322⎡⎤-=⎣⎦()33n ⎡⎤-=⎣⎦()523-210na =3222()8()n n a a --1、(1)若,求的值. (2)若,求、的值.2、已知2x =3,2y=5.求: (1)2x y+的值; (2)yx -2的值; (3)212x y +-的值.3335n n x x x +⋅=n ()3915n m a b b a b ⋅⋅=m n。
幂函数ppt课件
![幂函数ppt课件](https://img.taocdn.com/s3/m/ff647c816e1aff00bed5b9f3f90f76c661374c81.png)
5
(5) = 2 ;
(6) = 2 3 ;
3;
【答案】 (1),(4)
辨析2.(1) 在函数 =
1
2
、0
, = 2 2 , = 2 + , = 1 中,幂函数的个数为(
、1
、2
、3
(2) 若函数 是幂函数,且满足 4 = 3 2 ,则
【答案】
1
(1),(2)
3
)
1
2
的值等于___________.
新知探究
问题1:结合前面学习函数的经验,应该如何研究 = , =
2,
=
3,
=
−1
这五个幂函数?
提示:先求函数的定义域
画出函数图象
研究函数的 单调性、最值、值域、奇偶性、对称性等.
新知探究
名称
图象
y
=
定义域
值域
奇偶性
单调性
> 0, = 在第一象限内单调递增;
< 0, = 在第一象限内单调递减。
问题4:2.3−0.2 和2.2−0.2 可以看作哪一个函数的两个函数值?二者的大小关系如何?
= −02 在 0, + ∞ 上单调递减,所以2.3−0.2 < 2.2−0.2
练习巩固
练习3:比较下列各组数中两个数的大小.
1
1
(2)4
=
1
16
.
(2)由f(2a + 1) = f(a),可得(2a + 1)−4 = a−4 .
2 + 1 = ±
1
即 2 + 1 ≠ 0 ,解得 = −1或 = −
3
沪科版七年级数学下册第8章.1同底数幂的乘法课件
![沪科版七年级数学下册第8章.1同底数幂的乘法课件](https://img.taocdn.com/s3/m/1ded3a41a200a6c30c22590102020740be1ecdb3.png)
c ·c3 = c4
m + m3 = m + m3
思考题
1.计算:
(1) x n · xn+1
解: x n · xn+1 = #43;y)3·(x+y)4
am
· an = am+n
公式中的a可 代表一个数、 字母、式子等.
解: (x+y)3 · (x+y)4 = (x+y)3+4 =(x+y)7
2.填空: (1) 8 = 2x,则 x = 3 ;
23 (2) 8× 4 = 2x,则 x = 5 ;
23× 22= 25 (3) 3×27×9 = 3x,则 x = 6 .
3×33 × 32 = 36
课堂小结
am ·an = am+n (当m、n都是正整数)
同底数幂相乘: 底数 不变,指数 相加 .
5个a
a
思考: 请同学们视察下面各题左右两边,底数、指数有 什么关系?
103 ×104 = 10( 7 ) = 10( 3+4 );
22 ×23 = 2( 5 ) = 2( 3+2 ); a2× a3 = a( 5 ) = a( 3+2) .
猜想: am ·an= ? (当m、n都是正整数) 分组讨论,并尝试证明你的猜想是否正确.
同底数幂相乘: 底数不变 ,指数相加 .
运算情势 (同底、乘法)
运算方法(底不变、指加法)
幂的底数必须相同, 相乘时指数才能相加.
如 43×45=43+5 =48
想一想:当三个或三个以上同底数幂相乘时,是否 也具有这一性质呢? 怎样用公式表示?
如 am·an·ap = am+n+p(m、n、p都是正整数)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如 43×45= 43+5 =48
想一想如:a当m三·a个n·或a三p 个=a以m上+n同+p底(数m幂、相n乘、时p都,是是否正也整数)
具有这一性质呢? 怎样用公式表示?
尝试练习
➢am ·an = am+n
(当m、n都是正整数)
am·an·ap = am+n+p (m、n、p都是正整数)
1.计算: (1)107 ×104 ; (2)x2 ·x5 .
真不错,你的猜想是正确的!
➢同底数幂的乘法性质:
请我你们尝可试以用直文接字利概 括用这它个进结行论计。算.
a ·a = a m n
m+n (当m、n都是正整数)
同 底 数 幂 相 乘 , 底数不变,指数 相加。
运算形式 (同底、乘法) 运算方法(底不变、指加法)
幂的底数必须相同, 相乘时指数才能相加.
•
9、有时候读书是一种巧妙地避开思考 的方法 。2021/2/282021/2/28Sunday, February 28, 2021
•
10、阅读一切好书如同和过去最杰出 的人谈 话。2021/2/282021/2/282021/2/282/28/2021 5:19:21 PM
•
11、越是没有本领的就越加自命不凡 。2021/2/282021/2/282021/2/28Feb-2128-Feb-21
同底数幂的乘法
➢思考:
➢ an 表示的意义是什么?其中a、n、an分
别叫做什么?
an
底数
指数
幂
an = a × a × a ×… a n个a
➢问题:
25表示什么? 10×10×10×10×10 可以写成什么形式?
25 = 2×2×2×2×2 . (乘方的意义)
10×10×10×10×10 = 105 . (乘方的意义)
你真行!
太棒了!
➢思考题
1.计算: (1) x n ·xn+1 ;
解: x n ·xn+1 = xn+(n+1) = x2n+1
(2) (x+y)3 ·(x+y)4 .
am · an = am+n
公式中的a可代表 一个数、字母、式 子等.
解: (x+y)3 ·(x+y)4 = (x+y)3+4 =(x+y)7
解:(1)107 ×104 =107 + 4= 1011
(2)x2 ·x5 = x2 + 5 = x7 2.计算:(1)23×24×25 (2)y ·y2 ·y3
解:(1)23×24×25=23+4+5=212
(2)y ·y2 ·y3 = y1+2+3=y6
➢ 练习一
1. 计算:(抢答)
(1) 105×106 (1011 )
➢思考:
103与102 的积
❖ 式子103×102的意义是什么?
底数相同
❖ 这个式子中的两个因式有何特点?
请同学们先根据自己的理解,解答下列各题.
103 ×102 = (10×10×10)×(10×10) = 10( 5 ) ;
23 ×22 =(2×2×2)×(2×2)=2×2×2×2×2= 2( 5 ) ;
➢练习二
下面的计算对不对?如果不对,怎样改正?
(1)b5 ·b5= 2b5 (× ) (2)b5 + b5 = b10 (×)
b5 ·b5= b10
b5 + b5 = 2b5
(3)x5 ·x5 = x25 (× ) (4)y5 ·y5 = 2y10 (× )
x5 ·x5 = x10
y5 ·y5 =y10
(5)c ·c3 = c3 (×) (6)m + m3 = m4 (× )
c ·c3 = c4
m + m3 = m + m3
了不起!
➢变式训练
填空: 真棒!
真不错!
(1)x5 ·(x3 )= x 8 (2)a ·( a5 )= a6
(3)x ·x3(x3 )= x7 (4)xm ·(x2m )=x3m
•
17、一个人即使已登上顶峰,也仍要 自强不 息。2021/2/282021/2/282021/2/282021/2/28
谢谢观赏
You made my day!
我们,还在路上……
•
12、越是无能的人,越喜欢挑剔别人 的错儿 。2021/2/282021/2/282021/2/28Sunday, February 28, 2021
•
13、知人者智,自知者明。胜人者有 力,自 胜者强 。2021/2/282021/2/282021/2/282021/2/282/28/2021
•
a3×a2 =(a a a)(a a)= a a a a a = a( 5 ) .
3个a 2个a
5个a
➢思考:
请同学们观察下面各题左右两边,底数、指数有 什么关系?
103 ×102 = 10( 5 ) = 10( 3+2 );
23 ×22 =பைடு நூலகம்2( 5 ) = 2( 3+2 );
a3× a2 = a( 5) = a( 3+2) 。
猜想: am ·an=
? (当m、n都是正整数)
分组讨论,并尝试证明你的猜想是否正确.
猜想: am ·an= am+n (当m、n都是正整数)
am ·an =(aa…a)(aa…a)(乘方的意义)
m个a
n个a
= aa…a (乘法结合律)
(m+n)个a
=am+n (乘方的意义)
即
am ·an = am+n (当m、n都是正整数)
2.填空: (1) 8 = 2x,则 x = 3 ;
23 (2) 8× 4 = 2x,则 x = 5 ;
23× 22= 25 (3) 3×27×9 = 3x,则 x = 6 .
3×33 × 32 = 36
计 算:(结果写成幂的形式)
① (-- 2)4×(-- 2)5 = (-- 2)9 ②( ) 3 ×( ) 2 = ( ) 5 ③ (a+b)2 · (a+b)5 = (a+b)7
• 根据乘方的意义及同底数幂的乘法填空: (1) (23 )2 = 23 × 23 =2( ) (2) (am )n = a( ) (m、n为正整数)
小结
知识
我学到 了什么?
方法
同底数幂相乘, 底数不变,指数相加. am ·an = am+n (m、n正整
数)
“特殊→一般→特 殊”
例子 公式 应用
(2) a7 ·a3
( a10 )
(3) x5 ·x5 ( x10 )
(4) b5 ·b ( b6 )
Good!
2. 计算: (1)x10 ·x (3) x5 ·x ·x3
(2)10×102×104 (4)y4·y3·y2·y
解: (1)x10 ·x = x10+1= x11 (2)10×102×104 =101+2+4 =107 (3)x5 ·x ·x3 = x5+1+3 = x9 (4)y4 ·y3 ·y2 ·y= y4+3+2+1= y10
14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021年2月28日星期 日2021/2/282021/2/282021/2/28
•
15、最具挑战性的挑战莫过于提升自 我。。2021年2月2021/2/282021/2/282021/2/282/28/2021
•
16、业余生活要有意义,不要越轨。2021/2/282021/2/28Februar y 28, 2021