数学模型第二章习题答案

数学模型第二章习题答案
数学模型第二章习题答案

15.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ ,用量纲分析方法确定风车获得的功率P 与v 、S 、ρ的关系.

解: 设P 、v 、S 、ρ的关系为0),,,(=ρs v P f , 其量纲表达式为: [P]=32-T ML , [v ]=1-LT ,[s ]=2L ,[ρ]=3-ML ,这里T M L ,,是基本量纲.

量纲矩阵为:

A=)

???????

???---ρ()()

()()()()(001310013212s v P T M L

齐次线性方程组为:

??

?

??=--=+=-++0

30

32221414321y y y y y y y y 它的基本解为)1,1,3,1(-=y

由量纲i P 定理得 1131ρπs v P -=, 1

13ρλs v P =∴ , 其中λ是无量纲常数. 16.雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系

数,用量纲分析方法给出速度v 的表达式.

解:设v ,ρ,μ,g 的关系为(f v ,ρ,μ,g )=0.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0

[μ]=MLT -2

(LT -1L -1

)-1L -2

=MLL -2T -2

T=L -1

MT -1

,[g ]=LM 0T -2

,其中L ,M ,T 是基本量纲.

量纲矩阵为

A=)

()()()()()()

(210101101131g v T M L μρ??????????----- 齐次线性方程组Ay=0 ,即

???

??==+=+0

2y -y - y -0

y y 0y y -3y -y 431

324321 的基本解为y=(-3 ,-1 ,1 ,1)

由量纲i P 定理 得 g v μρπ1

3

--=. 3

ρ

μλg

v =∴,其中λ是无量纲常数.

16*.雨滴的速度v 与空气密度ρ、粘滞系数μ、特征尺寸γ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.

解:设v ,ρ,μ,γ,g 的关系为0),,,,(=g v f μργ.其量纲表达式为

[v ]=LM 0T -1

,[ρ]=L -3

MT 0

,[μ]=MLT -2

(LT -1L -1

)-1L -2

=MLL -2T -2

T=L -1

MT -1

,[γ]=LM 0T 0 ,[g ]=LM 0T -2

其中L ,M ,T 是基本量纲. 量纲矩阵为

A=)

()()()()

()()()(210010

11001

1311g v T M L μργ??????????-----

齐次线性方程组Ay=0 即

??

?

?

?=---=+=+--+020035414354321y y y y y y y y y y 的基本解为

??

???

---=--=)

21,1,1,23,0()21,0,0,21,1(21

y y

得到两个相互独立的无量纲量

???==-----2

/112/32

2

/12/11g g v μργπγπ 即 1212/12/31,--==

πμργπγg g v . 由0),(21=Φππ , 得 )(1

2

1-=π?π ∴ )(12/12/3-=μργ?γυg g , 其中?是未定函数.

20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期. 解:设阻尼摆周期t ,摆长l , 质量m ,重力加速度g ,阻力系数k 的关系为

0),,,,(=k g m l t f

其量纲表达式为:

1

12120000000)(]][[][,][,][,][,][-----======LT MLT v f k T LM g MT L m T LM l T M L t

10-=MT L , 其中L ,M ,T 是基本量纲.

量纲矩阵为

A=)

()()()()()()()(120011010001

010k g m l t T M L ??????????-- 齐次线性方程组

???

?

?=--=+=+0

200541

5342y y y y y y y 的基本解为

??

???

--=-=)

1,21

,1,21,0()0,21,0,21,1(21

Y Y 得到两个相互独立的无量纲量

∴g l t =

1π, )(21π?π=, 2/12

/12mg kl =π ∴)(2

/12/1mg kl g l t ?=

,其中?是未定函数 . 考虑物理模拟的比例模型,设g 和k 不变,记模型和原型摆的周期、摆长、质量分别为

t ,'

t ;l ,'

l ;m ,'

m . 又)(2

/12/1g m l k g l t '''=

'? 当无量纲量

l l m

m '='时, 就有 l

l l g g l t

t '

=

?'='

. (三)2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速

率为常数r ,r k >.在每个生产周期T内,开始的一段时间()00T t <<一边生产一边销售,后来的一段时间)(0T t T <<只销售不生产,画出贮存量)(t g 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周

???==---2

2

/112/11

2/12/1ππk g m l g tl

期,讨论r k >>和r k ≈的情况.

解:由题意可得贮存量)(t g 的图形如下:

贮存费为 ∑?=→??-==?

i T

i i t T

T r k c dt t g c t g c 1

02

20

22

))()(lim

ξ

又 )()(00T T r T r k -=- ∴ T k r T =

0 , ∴ 贮存费变为 k

T

T r k r c 2)(2?-=

于是不允许缺货的情况下,生产销售的总费用(单位时间内)为

k

T

r k r c T c kT T r k r c T c T C 2)(2)()(21221-+=-+=

k r k r c T

c dT dC 2)(221-+-=. 0=dT dC

, 得)

(221r k r c k c T -=

* 易得函数处在*

T T C )(取得最小值,即最优周期为: )

(221r k r c k

c T -=

*

r

c c ,T

r k 21

2≈

>>*

时当 . 相当于不考虑生产的情况. ∞→≈*

,T

r k 时当 . 此时产量与销量相抵消,无法形成贮存量.

3.在3.3节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.

解:考虑灭火速度λ与火势b 有关,可知火势b 越大,灭火速度λ将减小,我们作如下假设: 1

)(+=

b k

b λ, 分母∞→→+λ时是防止中的011

b b 而加的.

总费用函数()x c b kx b x t c b kx b t c t c x C 3122121211)

1()(2)1(2+--++--++=β

ββββββ

最优解为 []

k b k

c b b b c kb

c x β

β)1(2)1()1(22

322

1

+++++=

1.对于5.1节传染病的SIR 模型,证明: (1)若处最大先增加,在则σ

σ

1

)(,1

0=

s t i s ,然后减少并趋于零;)(t s 单调减少

至.∞s

(2).)()(,1

0∞s t s t i s 单调减少至单调减少并趋于零,则若σ

解:传染病的SIR 模型(14)可写成

?????-=-=i s dt

ds s i dt di

λσμ)

1(

.)(lim 0.(t) .)( .0,t 存在而单调减少知由∞∞→=∴≥-=s t s s t s dt

ds

i s dt ds λ

.)(∞s t s 单调减少至故

(1).s s(t) .s(t) .1

00≤∴单调减少由若σ

s

;)(,0 .01,1

0单调增加时当

t i dt

di

s s s ∴

-σσ

.)(,0 .01,1单调减少时当t i dt

di

s s ∴-σσ

.0)(lim .0)18(t ==∞

→∞t i i 即式知又由书上

.)( .0,

1

m i t i dt

di

s 达到最大值时当∴==

σ

(2)().0 0.1-s

,1,10 dt

di

t s s σσσ从而则若 ()().0.0lim ==∴∞∞

→i t i t i t 即单调减少且

4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=b

a

初始兵力00y x 与相同.

(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.

(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.

解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:

()()()???

????==-=-=000,01 ,y

y x x bx dt

dy

ay dt dx

现求(1)的解: (1)的系数矩阵为?

?

?

?

??--=00b a A ab ab b a

A E ±=∴=-==

-1,22 .0λλλ

λλ ???

?

??????

??-1212,21,对应的特征向量分别为λλ ()()()t

ab t ab e

C e C t y t x -

???

? ??+???

?

??-=???? ??∴1212121的通解为.

再由初始条件,得

()()2 220000 t

ab t

ab e y x e

y x t x -??

? ??++??

? ??-=

又由().1ay

bx dx dy =可得

其解为 ()3 ,2

02022 bx ay k k bx ay -==-而

(1) ()().2

3

1000202011y a b y a bx ay a

k t y t x =-=-==

=时,当

即乙方取胜时的剩余兵力数为

.2

3

0y 又令().0222,01

1

00001=-??

?

??++??

?

??-=t ab t ab e y x e y x t x )得由(

注意到0

00020022,1

x y y x e

y x t ab -+=

=得. .43

ln ,312

1

b

t e

t ab =

∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则

()()???

????==-=+-=000,)0(4 y

y x x bx dt

dy

r ay dt dx

().,4rdy aydy bxdx bx

r

ay dy dx -=-+-=即得

由 相轨线为,222k bx ry ay =-- .222

2

20.020k a r bx a r y a bx ry ay k =--??

? ??---=或 此相轨线比书图11中的轨线上移了

.a r 乙方取胜的条件为.,022202

0a r x a b a r y k +??? ?

?

- 亦即 (七)1.在6.1节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic 规律,而单位时间捕捞量为常数h .

(1)分别就4/rN h >,4/rN h <,4/rN h =这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.

(2)如何获得最大持续产量,其结果与6.1节的产量模型有何不同.

解:设时刻t 的渔场中鱼的数量为()t x ,则由题设条件知:()t x 变化规律的数学模型为

h N

x

rx dt t dx --=)1()(

记h N

x

rx x F --

=)1()( (1).讨论渔场鱼量的平衡点及其稳定性: 由()0=x F ,得0)1(=--

h N

x

rx . 即

()102

=+-h rx x N

r )4(42N

h

r r N rh r -=-

=? , (1)的解为:2

412,1N rN

h

N x -

±=

①当4/rN h >,0

0N x =

. N

rx

r N rx N x r x F 2)1()('-

=--

=,0)(0'=x F 不能断定其稳定性. 但0x x ? 及0x x 均有04)1()( rN

N x rx x F --= ,即0 dt

dx .∴0x 不稳定;

③当4/rN h <,0>?时,得到两个平衡点:

2411N rN

h

N x --=

, 2

412N rN

h N x -

+=

易知:21N x <

, 2

2N x > ,0)(1'

>x F ,0)(2'

(2)最大持续产量的数学模型为

?

?

?

=0)(..max x F t s h 即 )1(max N

x

rx h -

=, 易得 2*0N x = 此时 4rN h =, 但2

*

0N x =这个平衡点不稳定.这是与6.1节的产量模型不同之处.

要获得最大持续产量,应使渔场鱼量2

N

x >

,且尽量接近2N ,但不能等于2N .

2.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:()x

N

rx t x ln

'

=.其中r 和N 的意义与Logistic 模型相同.

设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为Ex h =.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量m h 及获得最大产量的捕捞强度m E 和渔场鱼量水平*

0x .

解:()t x 变化规律的数学模型为

()Ex x

N

rx dt t dx -=ln 记 Ex x

N

rx x F -=ln

)( ① 令()0=x F ,得0ln =-Ex x

N

rx ∴r E

Ne x -=0,01=x .

∴平衡点为1,0x x . 又 ()E r x

N

r x F --=ln

',()()∞=<-=1'0',0x F r x F . ∴ 平衡点o x 是稳定的,而平衡点1x 不稳定.

②最大持续产量的数学模型为:

??

?

?

?≠=-=.0,0ln ..max x Ex x N rx t s Ex h 由前面的结果可得 r

E ENe

h -=

r E

r E

e r EN Ne dE dh ---=,令.0=dE

dh

得最大产量的捕捞强度r E m =.从而得到最大持续产量e rN h m /=,此时渔场鱼量水平

e

N

x =

*

0. Ex

()x f

3.设某渔场鱼量)(t x (时刻t 渔场中鱼的数量)的自然增长规律为:)1()(N

x

rx dt t dx -= 其中r 为固有增长率,`N 为环境容许的最大鱼量. 而单位时间捕捞量为常数h .

10.求渔场鱼量的平衡点,并讨论其稳定性;

20.试确定捕捞强度m E ,使渔场单位时间内具有最大持续产量m Q ,求此时渔场鱼量水平*

0x . 解:10.)(t x 变化规律的数学模型为

h N

x

rx dt t dx --=)1()( 记h N x rx x f --=)1()(,令 0)1(=--h N x rx ,即 02

=+-h rx x N

r ----(1)

)4(42N

h

r r N rh r -=-

=? , (1)的解为:2

412,1N rN

h

N x -

±=

① 当0 ?时,(1)无实根,此时无平衡点; ② 当0=?时,(1)有两个相等的实根,平衡点为2

0N

x =

. N

rx r N rx N x r x f 2)1()('-

=--

= ,0)(0'

=x f 不能断定其稳定性. 但0x x ? 及0x x 均有04)1()( rN N x rx x f --= ,即0 dt dx

∴0x 不稳定;

③ 当0 ?时,得到两个平衡点:

2411rN

h

N N x --=

, 2

412rN

h N N x -

+=

易知 21N x

, 2

2N x ∴0)('1 x f , 0)('2 x f ∴平衡点1x 不稳定 ,平衡点2x 稳定.

20

.最大持续产量的数学模型为: ?

??=0)(..max x f t s h

即 )1(max N x rx h -=, 易得 2*0N x = 此时 4rN h =,但2

*

0N x =这个平衡点不稳定. 要获得最大持续产量,应使渔场鱼量2N x ,且尽量接近2N ,但不能等于2

N

.

第九章(2008年12月18日)

1.在1.9节传送带效率模型中,设工人数n 固定不变.若想提高传送带效率D,一种简单的方法是增加一个周期内通过工作台的钩子数m ,比如增加一倍,其它条件不变.另一种方法是在原来放置一只钩子的地方放置两只钩子,其它条件不变,于是每个工人在任何时刻可以同时触到两只钩子,只要其中一只是空的,他就可以挂上产品,这种办法用的钩子数量与第一种办法一样.试推导这种情况下传送带效率的公式,从数量关系上说明这种办法比第一种办法好.

解:两种情况的钩子数均为m 2.第一种办法是m 2个位置,单钩放置m 2个钩子;第二种办法是m 个位置,成对放置m 2个钩子.

① 由1.9节的传送带效率公式,第一种办法的效率公式为

?

???

??????? ??-

-=n

m n m D 21112 当

m

n

2较小,1 n 时,有 ()m n m n n m n m D 41

181211122

--=??

??????? ??-+--≈

E D -=1 , m

n

E 4≈

② 下面推导第二种办法的传送带效率公式:

对于m 个位置,每个位置放置的两只钩子称为一个钩对,考虑一个周期内通过的m 个钩对.

任一只钩对被一名工人接触到的概率是

m

1

; 任一只钩对不被一名工人接触到的概率是m

1

1-;

记m

q m p 1

1,1-==.由工人生产的独立性及事件的互不相容性.得,任一钩对为空

的概率为n

q ,其空钩的数为m 2;任一钩对上只挂上1件产品的概率为1

-n npq ,其空钩数

为m .所以一个周期内通过的m 2个钩子中,空钩的平均数为 ()

11

22--+=?+?n n n n

npq q m npq

m q m

于是带走产品的平均数是 (

)1

22-+-n n npq

q m m , 未带走产品的平均数是 (

)()1

22-+--n n npq

q m m n )

∴此时传送带效率公式为

()?

?????????? ??--??? ??

--=+-=

--1

111112222'n n n n m m n m n m n npq q m m D ③ 近似效率公式:

由于 ()()()3

21621121111m n n n m n n m n m n

----+-≈??

? ??

- ()()2

1

1

2211111m n n m n m n --+

--

≈?

?

? ??

-- ∴ ()()2

6211'm n n D ---

当1 n 时,并令'1'D E -=,则 2

2

6'm n E ≈

④ 两种办法的比较:

由上知:m

n

E 4≈,2

26'm n E ≈ ∴ m n E E 32/'=

,当n m 时,132 m

n

, ∴ E E '. 所以第二种办法比第一种办法好.

2.一报童每天从邮局订购一种报纸,沿街叫卖.已知每100份报纸报童全部卖出可获利7元.如果当天卖不掉,第二天削价可以全部卖出,但报童每100份报纸要赔4元.报童每天售出的报纸数r 是一随机变量,其概率分布如下表:

试问报童每天订购多少份报纸最佳(订购量必须是100的倍数)? 解:设每天订购n 百份纸,则收益函数为

?

?

?≤--+=n r n n

r r n r r f 7))(4(7)( 收益的期望值为G(n) =

∑=-n r r P n r 0

)()411(+∑∞

+=1

)(7n r r P n

现分别求出 n =5,4,3,2,1,0时的收益期望值.

G(0)=0;G(1)=4-×0.05+7×0.1+7×(0.25+0.35+0.15+0.1)=6.45; G(2)= (05.08?-25.0141.03?+?+))1.015.035.0(14++?+8.11=; G(3)=(05.012?-35.02125.0101.01?+?+?-))1.015.0(21+?+4.14= G(4)=(05

.016?-15.02835.01725.061.05?+?+?+?-)1.028?+15.13=

G(5)=05.020?-1.03515.02435.01325.021.09?+?+?+?+?- 25.10= 当报童每天订300份时,收益的期望值最大.

5.某工厂生产甲、乙两种产品,生产每件产品需要原材料、能源消耗、劳动力及所获利润如下表所示:

现有库存原材料1400千克;能源消耗总额不超过2400百元;全厂劳动力满员为2000人.试安排生产任务(生产甲、乙产品各多少件),使利润最大,并求出最大利润.

解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S.则此问题的数学模型为

Z

y x y x y x y x y x t s y x S ∈≥≥≤+≤+≤++=,,0,020********

61400

32..54max

模型的求解:

用图解法.可行域为:由直线

,0200024:24006:140032:3:21===+=+=+y x y x l y x l y x l 及

组成的凸五边形区域.

直线C y x l =+54:在此凸五边形区域内平行移动. 易知:当l 过31l l 与的交点时,S 取最大值. 由?

?

?=+=+2000241400

32y x y x 解得:200,400==y x

260020054004max =?+?=S (千元).

故安排生产甲产品400件、乙产品200件,可使利润最大,其最大利润为2600千元. 7.深水中的波速v 与波长λ、水深d 、水的密度ρ和重力加速度g 有关,试用量纲分析方法给出波速v 的表达式.

解:设v ,λ,d ,ρ,g 的关系为),,,,(g d v f ρλ=0.其量纲表达式为[v ]=LM 0T -1

,[λ]=LM 0T 0

[d ]=LM 0T 0

,[

ρ]=L -3MT 0, [g ]=LM 0T -2,其中L ,M ,T 是基本量纲.

---------4分

量纲矩阵为

A=)

()()()()()()()(200010

100013111g d v T M L ρλ???????

???---

齐次线性方程组Ay=0 ,即

???

?

?===+-++02y - y -0 y 03y y 51

454321y y y 的基本解为1=),2

1

,0,0,21,1(--

2=)0,0,1,1,0(- 由量纲i P 定理 得 ?????==---2

1

12

1

21

πλπλd g v

∴g v λ=

1π, )(21π?π=, λπd =2

)(λ

?λd g v =∴,其中?是未定函数 .

数学模型第二章习题答案要点

第二章(2)(2008年10月9日) 15.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ ,用量纲分析方法确定风车获得的功率P 与v 、S 、ρ的关系. 解: 设P 、v 、S 、ρ的关系为0),,,(=ρs v P f , 其量纲表达式为: [P]=3 2 -T ML , [v ]=1 -LT ,[s ]=2L ,[ρ]=3 -ML ,这里T M L ,,是基本量纲. 量纲矩阵为: A=) ??????????---ρ()() ()()()()(001310013212s v P T M L 齐次线性方程组为: ?? ? ??=--=+=-++0 30 32221414321y y y y y y y y 它的基本解为)1,1,3,1(-=y 由量纲i P 定理得 1131ρπs v P -=, 113ρλs v P =∴ , 其中λ是无量纲常数. 16.雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系 数,用量纲分析方法给出速度v 的表达式. 解:设v ,ρ,μ,g 的关系为(f v ,ρ,μ,g )=0.其量纲表达式为[v ]=LM 0T -1 ,[ρ]=L -3 MT 0 , [μ]=MLT -2 (LT -1L -1 )-1L -2 =MLL -2T -2 T=L -1 MT -1 ,[g ]=LM 0T -2 ,其中L ,M ,T 是基本量纲. 量纲矩阵为 A=) ()()()()()() (210101101131g v T M L μρ??????????----- 齐次线性方程组Ay=0 ,即 ??? ??==+=+0 2y -y - y -0 y y 0y y -3y -y 431 324321 的基本解为y=(-3 ,-1 ,1 ,1)

自动控制系统的数学模型

第二章自动控制系统的数学模型 教学目的: (1)建立动态模拟的概念,能编写系统的微分方程。 (2)掌握传递函数的概念及求法。 (3)通过本课学习掌握电路或系统动态结构图的求法,并能应用各环节的传递函数,求系统的动态结构图。 (4)通过本课学习掌握电路或自动控制系统动态结构图的求法,并对系统结构图进行变换。 (5)掌握信号流图的概念,会用梅逊公式求系统闭环传递函数。 (6)通过本次课学习,使学生加深对以前所学的知识的理解,培养学生分析问题的能力 教学要求: (1)正确理解数学模型的特点; (2)了解动态微分方程建立的一般步骤和方法; (3)牢固掌握传递函数的定义和性质,掌握典型环节及传递函数; (4)掌握系统结构图的建立、等效变换及其系统开环、闭环传递函数的求取,并对重要的传递函数如:控制输入下的闭环传递函数、扰动输入 下的闭环传递函数、误差传递函数,能够熟练的掌握; (5)掌握运用梅逊公式求闭环传递函数的方法; (6)掌握结构图和信号流图的定义和组成方法,熟练掌握等效变换代数法则,简化图形结构,掌握从其它不同形式的数学模型求取系统传递函 数的方法。 教学重点: 有源网络和无源网络微分方程的编写;有源网络和无源网络求传递函数;传递函数的概念及求法;由各环节的传递函数,求系统的动态结构图;由各环节的传递函数对系统的动态结构图进行变换;梅逊增益公式的应用。 教学难点:举典型例题说明微分方程建立的方法;求高阶系统响应;求复杂系统的动态结构图;对复杂系统的动态结构图进行变换;求第K条前向通道特记式 的余子式 。 k 教学方法:讲授 本章学时:10学时 主要内容: 2.0 引言 2.1 动态微分方程的建立 2.2 线性系统的传递函数 2.3 典型环节及其传递函数 2.4系统的结构图 2.5 信号流图及梅逊公式

第二章 系统的数学模型

第二章 系统的数学模型 2.3图中三图分别表示三个机械系统。求出他们各自的微分方程,图中xi 表示输入位移,xo 表示输出位移,假设输出端无负载效应。 解:(1)、对图(a )所示系统,有牛顿定律有 c 1(x i-x 0)-c 2x 0=m x 0 即 m x 0+(c 1-c 2) x 0= c 1x i (2)、对图(b )所示系统,引入一中间变量x ,并有牛顿定律有 (x i -x)k 1=c(x -x 0) c(x -x 0)=k 2x 0 消除中间变量有 c(k 1+k 2)x 0+k 1k 2x 0=ck 1x i (3)、对图(c )所示系统,有牛顿定律有 c(x i-x 0)+ k 1 (x i -x)= k 2x 0 即 c x 0+(k 1+k 2)x 0=c x i+ k 1x i 2.4 求出图(2.4)所示电网络图的微分方程。

解:(1)对图(a )所示系统,设i x 为流过1R 的电流,i 为总电流,则有 ?+ =i d t C i R u o 2 21 11i R u u o i =- dt i i C u u o i ?-= -)(11 1 消除中间变量,并化简有 i i i o o o u R C u C C R R u R C u R C u C C R R u R C 1 22 11 221122 112211 )(1)1(++ +=++ ++ (2)对图(b )所示系统,设i 为电流,则有 dt i C i R u u o i ?+ +=1 11 i R dt i C u o 2 2 1+= ? 消除中间变量,并化简有 i i o o u C u R u C C u R R 2 22 1 211)11()(+=+ ++ 2.5 求图2.5所示机械系统的微分方程。图中M 为输入转矩,C m 为圆周阻尼,J 为转动惯量。 解:设系统输入为M (即M (t )),输出为θ(即θ(t )),分别对圆盘和质块进行动力学分析,列写动力学方程如下:

第二章 控制系统的数学模型

+ 第二章控制系统的数学模型 一.是非题 1.惯性环节的输出量不能立即跟随输入量变化,存在时间上的延迟,这是由于环节的惯性造成的。(√) 2.比例环节又称放大环节,其输出量与输入量之间的关系为一种固定的比例关系。(√) 3.积分环节的输出量与输入量的积分成正比。(√) 4.如果把在无穷远处和在零处的的极点考虑在内,而且还考虑到各个极点和零点的重复数,传递函数G (s )的零点总数与其极点数不等 (×) 二. 选择题 1.比例环节的传递函数为 (A ) A .K B 。K s C 。 τs D 。以上都不是 2.下面是t 的拉普拉斯变换的是 (B ) A . 1 S B 。 21S C 。2S D 。S 3.两个环节的传递函数分别为()1G s 和()2G s 则这两个环节相串联则总的传递函数是 (C ) A .()()12G s G s + B 。()12()G s G s - C .()()12G s G s D 。 () () 12G s G s

4.两个环节的传递函数分别为()1G s 和()2G s 则这两个环节相并联则总的传递函数是 (A ) A .()()12G s G s + B 。()12()G s G s - C .()()12G s G s D 。() () 12G s G s 三. 填空题 1.典型环节由比例环节,惯性环节, 积分环节,微分环节,振荡环节,纯滞后环节 2.振荡环节的传递函数为22 21k s s τζτ++ 3.21 2 t 的拉普拉斯变换为 3 1 s 4.建立数学模型有两种基本方法:机理分析法和实验辨识法 四.计算题 §2-1 数学模型 1、 线性元部件、系统微分方程的建立 (1)L-R-C 网络 C r u R i dt di L u +?+? = c i C u =? c c c u u C R u C L +'??+''??=

第二章 动态数学模型

第二章控制系统的数学模型 控制系统的数学模型 本章主要内容: 引言 微分方程模型 传递函数模型 脉冲响应模型 方框图模型 信号流图模型 频域特性模型 数学模型的实验测定方法(辨识) 2.0 引言 主要解决的问题: 什么是数学模型 为什么要建立系统的数学模型 对系统数学模型的基本要求 2.0.1 什么是数学模型 控制系统的数学模型是描述系统内部各物理量(或变量)之间关系的数学表达式或图形表达式或数字表达式。 亦:描述能系统性能的数学表达式(或数字、图像表达式) 控制系统的数学模型按系统运动特性分为:静态模型

动态模型 静态模型:在稳态时(系统达到一平衡状态)描述系统各变量间关系的数学模型。 动态模型:在动态过程中描述系统各变量间关系的数学模型。 关系:静态模型是t时系统的动态模型。 控制系统的数学模型可以有多种形式,建立系统数学模型的方法可以不同,不同的模型形式适用于不同的分析方法。 2.0.2 为什么要建立控制系统的数学模型 控制系统的数学模型是由具体的物理问题、工程问题从定性的认识上升到定量的精确认识的关键!(这一点非常重要,数学的意义就在于此) 一方面,数学自身的理论是严密精确和较完善的,在工程问题的分析和设计中总是希望借助于这些成熟的理论。事实上凡是与数学关系密切的学科发展也是快的,因为它有严谨和完整的理论支持;另一方面,数学本身也只有给它提供实际应用的场合,它才具有生命力。“1”本身是没有意义的,只有给它赋予了单位(物理单位)才有意义。 建立系统数学模型的方法很多,主要有两类: 机理建模白箱实验建模(数据建模)黑箱或灰箱 系统辨识 2.0.3 对系统数学模型的基本要求 亦:什么样的数学表达式能用于一个工程系统的描述。 理论上,没有一个数学表达式能够准确(绝对准确)地描述一个系统,因为,理论上任何一个系统都是非线性的、时变的和分布参数的,都存在随机因素,系统越复杂,情况也越复杂。 而实际工程中,为了简化问题,常常对一些对系统运动过程影响不大的因素忽略,抓住主要问题进行建模,进行定量分析,也就是说建立系统的数学模型应该在模型的准确度和复杂度上进行折中的考虑。因此在具体的系统建模时往往考虑以下因素:

电力系统各元件的参数和数学模型

电力系统各元件的参数和数学模型

————————————————————————————————作者:————————————————————————————————日期:

2电力系统元件的运行特性和数学模型 2-1隐极式发电机的运行限额和数学模型 1. 发电机的运行额限 发电机的运行总受一定条件,如绕组温升、励磁绕组温升、原动机功率等的约 束。这些约束条件决定了发电机组发出的有功、无功功率有一定的限额。 (1) 定子绕组温升约束。定子绕组温升取决于定子绕组电流,也就是取决于发电机 的视在功率。当发电机在额定电压下运行时,这一约束条件就体现为其运行点 不得越出以O 为圆心,以BO 为半径所作的圆弧S 。 (2) 励磁绕组温升约束。励磁绕组温升取决于励磁绕组电流,也就是取决于发电机 的空载电势。这一约束条件体现为发电机的空载电势不得大于其额定值E Qn ,也 就是其运行点不得越出以O ’为圆心、O ’B 为半径所作的圆弧F 。 (3) 原动机功率约束。原动机的额定功率往往就等于它所配套的发电机的额定有功 功率。因此,这一约束条件就体现为经B 点所作与横轴平行的直线的直线 BC 。 (4) 其它约束。其它约束出现在发电机以超前功率因数运行的场合。它们有定子端 部温升、并列运行稳定性等的约束。其中,定子端部温升的约束往往最为苛刻, 从而这一约束条件通常都需要通过试验确定,并在发电机的运行规范中给出, 图2-5中虚线T 只是一种示意,它通常在发电机运行规范书中规定。 归纳以上分析可见,隐极式发电机的运行极限就体现为图2-5中曲线OA 、AB 、BC 和虚线T 所包围的面积。 发电机的电抗和等值电路: 2-2变压器的参数和数学模型 一、 双绕组变压器的参数和数学模型 变压器做短路实验和空载实验测得短路损耗、短路电压、空载损耗、空载电流可以用来求变压器参数。 F P O C Q B S A O 图2-5运行极

第2章 控制系统的数学模型习题答案

第2章 自动控制系统的数学模型 2.1 学习要点 1 控制系统数学模型的概念、描述形式与相互转换; 2 物理系统数学模型的编写方法和步骤; 3 非线性系统线性化的意义、适用性和具体方法; 4 系统方框图等效变换原则与应用; 5 信号流图等效变换与梅逊增益公式应。 2.2 思考与习题祥解 题2.1思考与总结下述问题。 (1)我们学习的动态物理系统的数学模型有哪些形式? (2)非线性系统线性化的意义、适用性和具体方法。 (3)传递函数的意义、作用和性质;与微分方程模型相比,这种模型有何优点? 答:(1)自动控制系统的数学模型指的是描述系统运动特性的数学描述。 我们学习的动态物理系统的数学模型有微分方程、传递函数和频率特性等表达式描述形式,还有方框图和信号流图等图形化描述形式。 (2)实际系统中变量之间的关系都或多或少地具有某种非线性特性。由于求解非线性微分方程比较困难,因此提出了线性化问题。如果控制系统的工作状态是在工作点的一个小偏差范围内变化,就可以用一条过工作点的切线代替工作曲线在这个小偏差范围内的变化关系,这样,就把非线性特性线性化了。应用线性化的数学模型就可以简化系统分析和设计的过程,虽然这是一种近似的处理方法,但却很有实际意义。 只要这样做所造成的误差在允许范围内,不会对控制系统的分析和设计造成本质影响,就可以进行非线性系统线性化。 具体方法是:对任意函数,在某一点(工作点)处对函数进行泰勒级数展开,忽略二阶以上高次项,就可以得到线性化的函数关系。 (3)系统输入和输出在零初始条件下拉氏变换的比)(s G 称为系统的传递函数。传递函数表示了系统输入输出之间的关系,是控制系统的一种数学模型,可以直接从微分方程导出。 传递函数只与系统结构与参数有关,与外部输入无关,传递函数反映了系统的结构特征和参数特性。由于传递函数是以复数s 为变量,避免了许多求解微分方程的麻烦。因此,经典控制论中更常用传递函数这种数学模型形式对控制系统进行分析和设计。 题2.2 试建立题2.2图所示各系统的微分方程。其中外力)(t F ,位移)(t x 和电压)(t u r 为输入量;位移)(t y 和电压)(t u c 为输出量;k (弹性系数),f (阻尼系数),R (电阻),C (电容)和m (质量)均为常数。

异步电动机动态数学模型的建模与仿真

概述 (1) 1课程设计任务与要求 (2) 2异步电动机动态数学模型 (3) 2.1三相异步电动机的多变量非线性数学模型 (4) 2.2 坐标变换 (6) 2.2.1坐标变换的基本思路 (6) 2.2.2三相-两相变换(3/2变换) (6) 2.2.3 静止两相-旋转正交变换(2s/2r变换) (8) 2.3状态方程 (9) 3模型实现 (11) 3.1AC Motor模块 (11) 3.2坐标变换模块 (12) 3.3仿真原理图 (15) 4仿真结果及分析 (17) 5结论 (20) 参考文献 (21)

异步电动机又称感应电动机,是由气隙旋转磁场与转子绕组感应电流相互作用产生电磁转矩,从而实现机电能量转换为机械能量的一种交流电机。异步电动机按照转子结构分为两种形式:有鼠笼式、绕线式异步电动机。 异步电动机的转子绕组不需与其他电源相连,其定子电流直接取自交流电力系统;与其他电机相比,异步电动机的结构简单,制造、使用、维护方便,运行可靠性高。但它的转速与其旋转磁场的同步转速有固定的转差率,因而调速性能较差,在要求有较宽广的平滑调速范围的使用场合(如传动轧机、卷扬机、大型机床等),不如直流电动机经济、方便。因此,在需要高动态性能的调速系统或伺服系统,异步电动机就不能完全适应了。要实现高动态性能的系统,必须首先认真研究异步电机的动态数学模型。 系统建模与仿真一直是各领域研究、分析和设计各种复杂系统的有力工具。建模可以超越理想的去模拟复杂的现实物理系统;而仿真则可以对照比较各种控制策略和方案,优化并确定系统参数。长期以来,仿真领域的研究重点是放在仿真模型建立这一环节上,即在系统模型建立以后,设计一种算法,以使系统模型为计算机所接受,然后再将其编制成计算机程序,并在计算机上运行。显然,为达到理想的目的,在这一过程中编制与修改仿真程序十分耗费时间和精力,这也大大阻碍了仿真技术的发展和应用。 近年来逐渐被大家认识的Matlab软件则很好的解决了系统建模和仿真的问题。异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。本次设计就是借助于Matlab软件的Simulink组件来建立异步电动机的动态数学模型,再按照定子磁链定向的方法来仿真分析异步电动机的运行特性。

第二章 数学模型作业与习题解答

第二章 数学模型作业与习题解答 2-1 试建立图2-55所示各系统的动态方程,并说明这些动态方程之间有什么特点。图中电压1u 和位移1x 为输入量,电压2u 和位移2x 为输出量;k 、1k 和2k 为弹性系数;f 为阻尼器的阻尼系数。 解: 1212 2 211u idt u u i u C C u u iR i R ?=+?=+????=?=??? 2211 u u u RC + = 21()1()1U s s RCs U s RCs s RC == ++

221fx kx fx += 21()()1f s X s fs k f X s fs k s k ==++ 1111 ()()()1c R Cs U s I s U s R Cs ? =?++ 22()()U s R I s = 22111221()(1) ()U s R R Cs U s R R R R Cs +=++ 12212212121()R R u R R Cu R R Cu R u ++=+ 1222111211 R R u u u u R R R C ++ =+

22 2211 1121212121() (1) 1() 1 1U s R R R R Cs R U s R R R R Cs R R Cs R Cs R R Cs +=== ++? + ++ + 21222111fx k x k x k x fx ++=+ 112121112 12 1()()1k f s k k k x s fs k f x s fs k k s k k ??+ ? ++??= ++++= 22211212 1()1 1( )()1 R U s R Cs Cs U s R R Cs R R Cs + +== ++++

完整版数学模型第二章习题答案.doc

15. 速度为 v 的风吹在迎风面积为 s 的风车上,空气密度是 ,用量纲分析方法确定风车 获得的功率 P 与 v 、S 、 的关系 . 解: 设 P 、 v 、 S 、 的关系为 f ( P, v, s, ) 0 , 其量纲表达式为 : [P]= ML 2T 3 , [ v ]= LT 1 ,[ s ]= L 2 ,[ ]= ML 3 , 这里 L, M ,T 是基本量纲 . 量纲矩阵为: 2 1 2 3 ( L) A= 1 0 0 1 ( M ) 3 1 (T ) ( P) (v) (s) ( 齐次线性方程组为: 2 y 1 y 2 2y 3 3y 4 y 1 y 4 0 3y 1 y 2 它的基本解为 y ( 1,3 ,1,1) 由量纲 P i 定理得 P 1v 3 s 1 1 , P v 3s 1 1 , 其中 是无量纲常数 . 16.雨滴的速度 v 与空气密度 、粘滞系数 和重力加速度 g 有关,其中粘滞系数的定义 是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比, 比例系数为粘滞系 数,用量纲分析方法给出速度 v 的表达式 . 解:设 v , , , g 的关系为 f ( v , , , g ) =0. 其量纲表达式为 [ v ]=LM 0T -1 ,[ ]=L -3 MT 0, -2 -1 L -1 -1 -2 -2 -2 -1 -1 0 -2 , 其中 L ,M , T 是基本量纲 . [ ]=MLT ( LT ) L =MLL T T=L MT , [ g ]=LM T 量纲矩阵为 1 3 1 1 ( L) A= 0 1 1 0 ( M ) 1 0 1 2 (T ) (v) ( ) ( ) ( g) 齐次线性方程组 Ay=0 ,即 y 1 - 3y 2 - y 3 y 4 0 y 2 y 3 - y 1 - y 3 - 2y 4 的基本解为 y=(-3 ,-1 ,1 ,1) 由量纲 P i 定理 得 v 3 1 g . v 3 g ,其中 是无量纲常数 .

第二章用拉格朗日方程建立系统数学模型

第二章 用拉格朗日方程建立系统的数学模型 §2.1概述 拉格朗日方程——属于能量法,推导中使用标量,直接对整个系统建模 特点:列式简洁、考虑全面、建模容易、过程规范 适合于线性系统也适合于非线性系统,适合于保守系统,也适合于非保守系统。 §2.2拉格朗日方程 1. 哈密尔顿原理 系统总动能 ),,,,,,,(321321N n q q q q q q q q T T = (2-1) 系统总势能 ),,,,(321t q q q q U U N = (2-2) 非保守力的虚功 N N nc q Q q Q q Q W δδδδ ++=2211 (2-3) 哈密尔顿原理的数学描述: 0)(2 1 21 =+-??t t nc t t dt W dt U T δδ (2-4) 2. 拉格朗日方程: 拉格朗日方程的表达式: ),3,2,1()(N i Q q U q T q T dt d i i i i ==??+??-?? (2-5) (推导:) 将系统总动能、总势能和非保守力的虚功的表达式代入哈密尔顿原理式中(变分驻值原理),有 0)( 22112211221122112 1 =+++??-??-??-??++??+??+??+??+??? dt q Q q Q q Q q q T q q U q q U q q T q q T q q T q q T q q T q q T N N N N N N N N t t δδδδδδδδδδδδ (2-6) 利用分步积分

dt q q T dt d q q T dt q q T i t t i t t i i i t t i δδδ?? ??-??=??21212 1 )(][ (2-7) 并注意到端点不变分(端点变分为零) 0)()(21==t q t q i i δδ (2-8) 故 dt q q T dt d dt q q T i i t t i t t i δδ)(212 1 ??-=???? (2-9) 从而有 0)])([2 1 1 =+??-??+??- ?∑=dt q Q q U q T q T dt d i i i t t i i N i δ ( (2-10) 由变分学原理的基本引理: (设 n 维向量函数M(t),在区间],[0f t t 内处处连续,在],[0f t t 内具有二阶连续导 数,在f t t ,0处为零,并对任意选取的n 维向量函数)(t η,有 ? =f t t T dt t M t 0 0)()(η 则在整个区间],[0f t t 内,有 0)(≡t M ) 我们可以得到: 0)(=+??-??+??- i i i i Q q U q T q T dt d (2-11) 即 i i i i Q q U q T q T dt d =??+??-??)( (2-12) 对非保守系统,阻尼力是一种典型的非保守力,如果采用线性粘性阻尼模型, 则阻尼力与广义速度}{q 成正比,在这种情况下,可引入瑞利耗散(耗能)函数D , }]{[}{2 1q C q D T ≡ (2-13) 阻尼力产生的广义非保守力为:

第二章。数学模型的分类

学习目标 (1)了解数学建模的方法和步骤以及数学模型的分类。 (2)具备数学建模常用思维方法及能力。 根据研究目的,对研究的过程和现象(称为现实原型或原型)的主要特征、主要关系采用形式化的数学语言,概括地、近似地表达出来的一种结构。所谓“数学化”,指的就是构造数学模型通过研究事物的数学模型来认识事物的方法,称为数学模型方法,简称为MM方法。 数学模型是数学抽象的概括的产物,其原型可以是具体对象及其性质、关系,也可以是数学对象及其性质、关系。数学建模有广义和狭义两种解释。广义的说,数学概念,如数、几何、向量、方程都可称为数学模型;狭义的说,只有反映特定问题和特定的具体事物系统的数学关系结构方式。数学模型大致可以分为两类:(1)描述客体必然现象的确定性模型,其数学工具一般是微分方程、积分方程和差分方程等;(2)描述客体或然现象的随机性模型。其数学模型方法是科学研究与创新的重要方法之一。在体育实践中常常提到优秀运动员的数学模型。如经调查统计现代的世界级短跑运动健将模型为身高1.80m左右、体重70kg左右,100m成绩10s左右或更好等。 用字母、数字和其它数学符号构成的等式或不等式,或用图表、图像、框图、数理逻辑等来描述系统的特征及其内在联系或与外界联系的模型,它是真实系统的一种抽象。数学模型是研究和掌握系统运动规律的有利工具,它是分析、设计、预报或预测、控制实际系统的基础。 知识链接 一、数学模型的分类 数学模型的种类很多,而且有多种不同的分类方法。例如: (1)按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、扩展模型等。 (2)安研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、 经济模型、社会模型等。 (3)按是否考虑随机因素分:确定性模型、随机性模型。 (4)按是否考虑模型的变化分:静态模型、动态模型。 (5)按应用离散方法或连续方法分:离散模型、连续模型。 (6)按人们对事物发展过程的了解程度分:黑箱模型、灰箱模型、白箱模型。 白箱模型指那些内部规律比较清楚的模型。如力学、热学、电学以及相关的 工程技术问题。 灰箱模型指那些内部规律尚不十分清楚,在建立和改善模型方面都还不同程 度上都还有许多工作要做的问题。如气象学、生态学、经济学等领域的模型。 黑箱模型指一些内部规律还很少为人们所知的现象。如生命科学、社会科学 等方面的问题。但由于因素众多、关系复杂、也可以简化为灰箱模型来研究。 二、数学建模的一般方法 建立数学模型的方法没有一定的模式,但一个理想的模型应该反映系统的全部 重要特征,模型应具有可靠和实用性。 建模的一般方法 1.机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反应内部机

数学建模第二章

第二章初等数学方法建模 数学建模的核心是力求对实际应用问题的解决,而不在于所采用方法的深奥程度。事实上,在对一个问题能够做到完好解决的前提下,朴素性简洁性恰好是构成一个完美的数学模型或数学建模过程的一个重要侧面。本章介绍的几个例子即能够用相对初等的方法得以很好地解决,这里强调选用怎样的工具通常是由问题本身内在决定的,切忌为了炫耀方法而使问题的解决变的烦琐——这正如在良医的眼里,各种药材的价值在其用并在行医中总能做到对症,而不在其名贵程度。 §2.1 公平的席位分配 问题:首先看一个小例子,讨论一个学校中学生代表席位在不同院系之间的公平分配问题。问题产生的原因在于人数是一个整型量,因此在通常情况下不能严格保证各个院系(团体)最终分得的代表席位数与其人数取相同的比例。也即说对一个席位分配方案不能要求其在任何情况下均能作到绝对公平,但却可要求其分配结果的整体不公平程度尽可能降低。 在下表中反映的是当总席位数分别为、时,参照惯例在人数分别为 的三个不同系的分配结果。“惯例”在这里是指首先计算各系按照比 例所应该分得的席位,然后取其整数部分作为各系第一阶段分到的席位,而在第二阶段将剩余的席位按照各系比例分配数的小数部分的大小取较大的几个系, 丙系分到的席位数反降为3席。这一“矛盾性结果”同样不符合我们对一个好的席位分配算法的预期:假定各系人数已确定,考虑总席位数增加时,一个席位分配算法的结果至少须保证对每一系所最终分得的席位数不减。要解决这个问题必须舍弃所谓惯例,找到衡量公平分配席位的指标,并由此建立新的分配方法。 一、A、B两方席位的公平分配: 双方人数分别记为,占有席位记为,分别代表的人数应为。

电力系统各元件的参数和数学模型

2电力系统元件的运行特性和数 学模型 2-1隐极式发电机的运行限额和数学模型 1. 发电机的运行额限 发电机的运行总受一定条件,如绕组温升、励磁绕组温升、原动机功率等的约束。这些约束条件决定了发电机组发出的有功、无功功率有一定的限额。 (1) 定子绕组温升约束。定子绕组温升取决于定子绕组电流,也就是取决于发电机 的视在功率。当发电机在额定电压下运行时,这一约束条件就体现为其运行点不得越出以O 为圆心,以BO 为半径所作的圆弧S 。 (2) 励磁绕组温升约束。励磁绕组温升取决于励磁绕组电流,也就是取决于发电机 的空载电势。这一约束条件体现为发电机的空载电势不得大于其额定值E Qn ,也就是其运行点不得越出以O’为圆心、O’B 为半径所作的圆弧F 。 (3) 原动机功率约束。原动机的额定功率往往就等于它所配套的发电机的额定有功 功率。因此,这一约束条件就体现为经B 点所作与横轴平行的直线的直线 BC 。 (4) 其它约束。其它约束出现在发电机以超前功率因数运行的场合。它们有定子端 部温升、并列运行稳定性等的约束。其中,定子端部温升的约束往往最为苛刻,从而这一约束条件通常都需要通过试验确定,并在发电机的运行规范中给出,图2-5中虚线T 只是一种示意,它通常在发电机运行规范书中规定。 归纳以上分析可见,隐极式发电机的运行极限就体现为图2-5中曲线OA 、AB 、BC 和虚线T 所包围的面积。 发电机的电抗和等值电路: 2-2变压器的参数和数学模型 一、 双绕组变压器的参数和数学模型 变压器做短路实验和空载实验测得短路损耗、短路电压、空载损耗、空载电流可以用来求变压器参数。 F P O’ C Q B S A O 图2-5运行极限图

相关文档
最新文档