第六章 光线的光路计算及像差理论
工程光学第6章光线的光路计算及像差理论
1:概述:2:单色像差:由于光线系统的成像均具有一定的孔径和视场,对不同孔径的入射光线其成 像的位置不同,不同的视场的入射光线其成像的倍率也不同,子午面和弧失 面光束成像的性质也不同。
故单色光成像会产生性质不同的5种像差。
色差:白光进入光学系统后,由于折射率不同而有不同的光程,导致了不同色光成像 的大小和位置也不相同,这种不同色光的成像差异称为色差。
波像差:由于衍射现象的存在,经过光学系统形成的波面已不是球面,实际波与理想波 的偏差称为~~,简称波差。
3:球差:远轴光线的光路计算结果L ’和U ’随入射高度h 1或孔径角U 1的不同而不同。
因此,轴上点发出的同心光束经光学系统后,不再是同心光束,不同入射高度h (U) 的光线交光轴与不同位置,相对近轴像点有不同程度的偏离,这种偏离称为轴向 球差,简称球差。
用'L δ表示。
'''l L L -=δ由于球差的存在,在高斯像面上的像点已不再是一个点,而是圆形的弥撒斑,弥 撒斑的半径用'T δ表示,称作垂轴球差,与轴向球差的关系'tan )''('tan 'U l L U L T -==δδ球差是入射高度h 1或者孔径角U 1的函数,球差随h 1或者U 1变化,可以有h 1或者U 1的幂级数表示,由于球差具有轴对称性,当h 1或者U 1变号时,球差'L δ不变,故不存在奇次幂;当h 1或者U 1为0时,''l L -=0,'L δ=0故无常数项;球差是轴上点像差,与视场无关,故展开式......'422211++=h A h A L δ或者......'422211++=U a U a L δ。
习题6-6:球面反射镜有几个无球差点?2个。
像几何像差:基于几何光波像差:基于波动关学 由于衍射存在,理想球面波成像后其波面已不是单色像色像由于折射率不同而有不同的光学系统的成像中入射光线的孔径,视场不同,子午面和弧度面光束成像的性质不同 球差彗差 像散 场曲 畸变 位置色差 倍率色差。
第6章光线的光路计算及像差理论.
细光束弧矢场曲:前后细光束交点离理想像平面 的距离。
畸变:主光线和理想像面交点与理想点的 垂轴距离;
轴外像差小结
宽 宽与上细上细光 光细下前光下畸光束束光光后束、轴前变束子弧束线光子前外 后:弧午 矢(的线上午后点 光主矢场 场交的下场光也 线光场曲 曲点交光曲线有 交线曲: :偏点线:交球点和的:上前离偏)上点像差(的理垂前下后主离像下的的点,想距轴后光光光主点细距沿沿宽像离距细线线线光)光离轴与轴光面;离光交交(线束垂。距细距束交;束点点(交轴垂离光离(点交离离上点距轴:束—与点理理下离离距宽(—前理离想想细光理)离光子:后想理像 像光线想)束午子:光像想平 平束)像像交轴午弧线点像面 面像平散点外彗矢)平的 的散像面(球差彗像面距 距X点x差差点离 离;的.。); 。 就是弧矢轴外球差。
物空间 n
法线
E
I
折射球面
像空间 n´
入射光线
B
物
-U
I
h
折射光线
U
A
A
光轴 O
C
像
r
B
-L
L´
第四节 轴外像差 预备知识
了解成像光束光线的全貌,需要看光束在两 个平面——子午平面和弧矢平面上的分布情况。 子午平面:由轴外物点和光轴所确定的平面。 弧矢平面:过主光线且与子午平面垂直的平面。
子午光线 弧矢光线
sinU
可以证明,齐明点满足正弦条件。
等晕条件
实际由于球差存在,只能要求近轴轴外点具有和轴 上点相同的成像缺陷。此时称等晕成像,需要满足 的条件就比正弦条件降低了,称等晕条件。
前后光线的交点偏离主光线(垂轴距离):弧矢彗差
轴外点也有球差,宽光束(上下光线)交点(像点) 与细光束(上下光线)像点沿轴距离——子午轴外球差。
工程光学第六章光线的光路计算及像差理论
工程光学第六章光线的光路计算及像差理论光线的光路计算及像差理论是工程光学中非常重要的主题。
在实际的光学工程设计中,准确地计算光线的光路和考虑像差对于正确预测和优化光学系统的性能至关重要。
本文将详细介绍光线的光路计算方法和像差理论。
光线的光路计算是指在给定光学系统的参数和输入光线的条件下,确定光线在系统中的传播路径。
光线的传播路径可以通过几何光学的基本定律来计算,如光线的折射、反射和偏折等。
在确定光线的传播路径时,需要考虑光线的入射角、光线的折射率、光学元件的形状和位置等因素。
光线的光路计算可以采用追迹方法或者矢量法进行,具体方法取决于所研究问题的复杂性和准确性要求。
在光线的光路计算过程中,通常需要考虑光线的反射和折射,这需要利用光学元件的表面曲率和入射光线的入射角来计算。
对于球面曲率的光学元件,可以使用球心距离和球心方向来确定入射光线的出射角度。
对于非球面曲率的光学元件,可以通过数值方法来求解光线的光路。
像差是指光线传播过程中光学系统造成的光线聚焦不完美的现象。
像差的存在会导致图像的模糊、畸变和色差等问题。
像差的产生主要源于光学元件的形状和折射性质的不完美。
像差理论可以通过将光线的传播过程分解为一系列的近似操作来描述和计算。
常见的像差包括球差、色差、像散和畸变等。
球差是指在球面镜或球面透镜上,由于光线入射角的不同,导致光线的聚焦位置不一致的现象。
球差的计算可以通过利用轴上点和非轴上点的光线角度来求解。
色差是指由于光的折射性质的不同,导致不同波长的光聚焦位置不一致的现象。
色差的计算可以通过利用不同波长的光的折射率来求解。
像散是指由于光线的折射作用,导致光线聚焦位置随着入射光线离轴距离的变化而变化的现象。
像散的计算可以通过利用非轴上点的入射角度和位置来求解。
畸变是指由于光学元件形状的不对称性,导致图像的形状和位置发生变化的现象。
畸变的计算可以通过利用非球面曲率的光学元件的光路来求解。
总之,光线的光路计算和像差理论对于工程光学的实际应用具有重要意义。
工程光学第六章像差理论.
几何像差分类
场曲 轴外点细光束 使像变形
畸变
(Deformation of image)
白光像差 位置色差(轴向色差:波长不同会聚点不同) (chromatic aberration) 倍率色差(垂轴色差:波长不同放大率不同)
基于物理光学:波象差(实际波面与理想球面波的偏差)。
第一节 概述
像差校正:
不同孔径的入射光线成像位置不同; 不同视场的入射光线成像倍率不同; 从而产生几何像差. 子午面和弧矢面的成像性质不同:
弧矢面:过主光线和子午面垂直的平面。
1、像差定义 实际光学系统都有一定大小的孔径和视场,远远超
出近轴区所限定的范围,与近轴区成像比较,必然在 成像位置、像的大小方面存在一定的差异。
n
1、轴上点远轴光线光路计算 A U
E
I
n
h
I
U
A
o
C
物点位于无穷远:sin I1 h1 r1 物点位于有限远:
r
L
L
轴上点远轴光线光路计算
AEC中,sin I (L r) sin U
r
在E点由折射定律:sin I n sin I
n UU I I
AEC中, L r(1 sin I )
2.反射面
反射面可以作为折射面的一个特例,只要令:nn
并令反射面以后光路的间隔d为负值即可。
第二节 光线的光路计算
二、轴外点沿主光线的细光束光路计算
此计算是沿主光线进行,主要研究子午面内的子午细光束和 在弧矢面内的弧矢细光束的成像情况.
子午面:物点(或主光线,即通过孔径中心的光线)所在并包 含光轴的平面。对于轴对称系统的轴上物点,它有无限多个子 午面。对于一给定的轴外物点,仅有一个子午面。
工程光学-第6章 光线的光路计算及像差理论
L sin U 1 cos ( I − U ) 2
1 cos ( I ′ − U ′) 2 × sin U ′
′ Uk ′ Lk
可求出通过该孔径光线的实际成像位置和像点弥散情况
第六
像差理论
第六章 光线的光路计算及像差理论
2、轴外点子午面内远轴光路计算 注意:轴外点与轴上点的重要区别 轴外点光束的中心线即主光线不是光学系统的对称轴 经球面折射后,主光线不再是光束的对称轴 光束相对于主光线失去了对称性 因而轴外点子午面内远轴光路计算时 一束光线需取3条光线计算 三条光线:从轴外点发出通过光瞳上、下缘和中心的三条光线 简称:主光线和上下光线
第六章 光线的光路计算及像差理论
转面的过渡公式
′ −1 − Dk −1 ⎫ tk = tk ⎬ ′ sk = sk −1 − Dk −1 ⎭
Dk
Dk
hk − hk +1 ) ( = ′ sin U zk
′ cosUzk dk − xk + xk+1 ) ( =
hk = rk sin(Uzk + Izk )
选择光学材料 nλ = ( nλ1 + nλ 2 ) / 2, vλ = ( nλ − 1) / ( nλ1 − nλ 2 )
第六章 光线的光路计算及像差理论
第二节 光线的光路计算
一、像差计算的特征光线
1、子午面内的光线光路计算 近轴光线和实际光线光路的计算 理想像的位置和大小、实际像的位置和大小的计算 有关的像差计算 2、轴外点沿主光线光束的光线光路计算,求像散和场曲; 3、子午面外的光线光路计算 空间光线的子午像差分量和弧矢像差分量的计算 对光学系统的像质进行全面了解
第六章 光线的光路计算及像差理论
(工程光学教学课件)第6章 光线的光路计算及像差理论
无像质要求系统:
(1)
有像质要求的一般系统:
(1)、(2)
有像质要求的大视场系统: (1)、(2)、(3)
有像质要求的大视场、大孔径系统:(1)、(2)、(3)、(4)
光线光路的计算主要有三类:
✓子午面内的光线光路计算 ✓沿轴外点主光线的细光束像点的计算 ✓子午面外光线或空间光线的计算
子午面内的光线光路计算
L' )tgU L' )tgU
' a
' z
Yb'
( L'b
L' )tgU
' b
B’b B’z
B’a
Y’b
Y’z Y’a
-U’a
P’ -U’z -U’b
O
A’o
--L’a
--L’b
--L’z --L’
3.折射平面和反射平面的光路计算
远轴光按大L公式进行计算:
sin I L r sin U r
补充:五、光学设计的一般过程和内容 (了解)
(1) 成像要求:基本类型,视场,观测方式,景深,渐晕, 分辨率,仪器尺寸,其它要求等;
(2) 建立理想 基本光组数量,焦距,成像光路,物像共轭距、 系统模型:物像四要素,反射棱镜(用平行平板表示)等;
(3) 构造基本 按最低数量配置透镜,初步确定透镜的材料、 光学系统:形状、孔径、曲率半径等参数,配置必要光阑, 确定反射棱镜的形状和大小,其它器件等;
(4) 光线计算 以理想成像为标准,用光线理论进行实际光线 求 像 差:的光路计算,以确定各类像差;
(5) 像质评价:按照系统像质要求,确定主要和次要像差, 并进行像差评价和分析,研究改善方案;
修正设计:通过对系统各类参数的调整和增加透镜,重复 前面(3)、(4)步骤,逐渐校正像差,最终达到 系统的像质要求。
第六章 光学系统的光路计算和像差理论(2013总第10-11讲)
第六章 光线的光路计算及像差理论
本章内容 像差概述-像差的定义和分类 光线的光路计算
轴上点的球差
正弦差和彗差 场曲和像散 畸变 色差
像差特征曲线与分析
波像差
大纲要求:
⑴掌握像差的定义、种类和消像差的基本原则。 ⑵了解单个折射球面的不晕点(齐明点)的概念和性质, 求解方法。 ⑶掌握七种几何像差的定义、影响因素、性质和消像差方
线成像特性的比较,研究不同视场的物点对应不同孔径和不同色光的像差值。
对两边缘谱线F光(λ =486.1nm)和C光(λ =656.3nm)校正色差。
②普通照相系统:对最灵敏谱线F光校正单色像差;对
两边缘谱线D光和G’光(λ =434.1nm)校正色差。
天 文 照 相 系 统 , 常 用 G’ 光 校 正 单 色 像 差 , 对 h 光 (λ=404.7nm)和F光校正色差。 ③近红外光学系统:对C光校正单色像差;对d光 (λ=587.6nm) 和A’光(λ=768.2nm)校正色差。
五. CIE色度学系统表示颜色的方法
第十节 均匀颜色空间及色差公式
一、(x,y,Y)颜色空间是非均匀颜色空间 二、均匀颜色空间及色差公式
(一)CIE1964均匀颜色空间
(二)CIE1976均匀颜色空间 (三)CIE1976均匀颜色空间
(W *U *V *) ( L * u * v*)
( L * a * b*)
cie色度学系统表示颜色的方法专业文档第十节均匀颜色空间及色差公式一xyy颜色空间是非均匀颜色空间二均匀颜色空间及色差公式vuw一cie1964均匀颜色空间二cie1976均匀颜色空间vulbal三cie1976均匀颜色空间专业文档第六章光线的光路计算及像差理论本章内容?像差概述像差的定义和分类?光线的光路计算?轴上点的球差?正弦差和彗差?场曲和像散?畸变?色差?像差特征曲线与分析?波像差专业文档掌握像差的定义种类和消像差的基本原则
第六章 光线的光路计算及像差理论
下光线tgUb ( y h)
y ( L l )tgU
' z '
' z ' b
y ( L l )tgU
' b ' b '
3.折射平面和反射面的光路计算 折射平面远轴光线的光路计算公式: I U
sin I n sin I
'
n
'
U ' I ' L' LtgU tgU '
' 1 ' 2
' k 1
d k 1
校对公式:h lu l 'u ',J n 'u ' y ' nuy
' 求焦距公式:令1 , u1 , f ' h1 / uk l
轴外点近轴光线光路计算 (第二近轴光线光路计 算):求出理想像高。
初始数据:l z , u z y /(l z l1 ) 像高数据:y (l l )u
1
n
作业
1,2,11,12,17
路计算 2.轴外点沿主光线的细光束光路计算 3.子午面的空间光线光路计算
二、子午面内的光线光路计算: 1.近轴光线光路计算:求出理想像的位置
和大小
近轴光线光路计算
(第一近轴光线光路计算):求出理想像的位置
l r i u r n i' i n' u' u i i' i' l ' r (1 ) u'
第六章 光线的光路计算 及像差理论
实际光学系统与理想系统之间存在差异;实际像和 理想像之间的差异称为像差。
光线光路及像差理论
⎧
n2 = n1′ , n3 = n2′ ,LLnk = nk′ −1,
⎪⎪ ⎨ ⎪
u2 = u1′ , u3 = u2′ ,LLuk = uk′ −1, y2 = y1′ , y3 = y2′ ,LL yk = yk′ −1,
⎪⎩l2 = l1′ − d1, l3 = l2′ − d2 LLlk = lk′ −1 − dk−1
§6-1 概述
一、基本概念 实际的光学系统都是以一定的宽度的光束对具有一定大小的物体进行成像,
由于只有近轴区才具有理想光学系统性质,故不能成完善像,就存在一定的像差。 1、像差定义:――实际像与理想像之间的差异。 2、像差的分类 几何像差―――以几何光学为基础,优点:计算简单、意义直观 波像差――实际波面与理想波面之间的光程差异,常用来作为评价光学 系统成像质量,是几何像差的综合体现。尤其对于小像差系 统,波像差更能反映像质。 几何像差: 单色像差――光学系统对单色光成像时所产生的像差。 轴上点像差――它随着孔径增大而发生变化/产 生的像差。球, 轴外像差―――它随着孔径及视场的增大而产生 的像差。彗, 色差―――不同波长成像的位置及大小都有所不同。 色差又分为: 位置色差――体现不同色光的成像位置的差异 倍率色差――体现不同色光的成像大小的差异。 3、像差产生的原因 在第一章我们曾讲过近轴光/实际光的光路计算公式。
与最强谱线、光学系统的透过波段相匹配。
§6-2 光路计算
一、子午面内的光线的计算
子午面―――轴外点与光轴构成的平面。
(一)近轴光计算
1、轴上点近轴光的光路计算
近轴光――指光轴附近的光,也可指用弧度取代正弦的光,它们的结果
相一致。在这里要特别说的是第一近轴光――指孔径角对入瞳边缘光线的取值。
6光线的光路计算及像
球差是入射高度h1或孔径角U1的函数,球差随h1或U1的变化 规律,可以由h1或U1的幂级数表示。由于球差具有轴对称性, 当h1或U1变号时,球差δL′不变,级数展开时不存在h1或U1 奇次项;当h1或U1为零时,像方截距L′ = l ′,即δL′ = 0, 所 以展开式中没有常数项;球差是轴上点像差,与视场无关, 所以展开式中无y或ω项,所以球差可以表示为:
波动光学:波像差; 波动光学:波像差; 研究像差的目的: 研究像差的目的: 根据光学系统的作用和接收器的特性把影响像质的主要像差校正到 某一公差范围内,使接收器不能察觉,即认为像质是满意的。 某一公差范围内,使接收器不能察觉,即认为像质是满意的。
6.1.2 像差计算的谱线选择
单色像差: 对光能接收器最灵敏的谱线校正单色像差; 单色像差: 对光能接收器最灵敏的谱线校正单色像差; 色差: 对光能接收器所能接收的波段范围两边缘附近的谱线校正色差; 色差: 对光能接收器所能接收的波段范围两边缘附近的谱线校正色差; 匹配: 光源、光学系统材料、接收器的光谱特性; 匹配: 光源、光学系统材料、接收器的光谱特性; 目视光学系统(人眼观察用) 目视光学系统(人眼观察用) 单色像差: 光 接近(555) 单色像差:D光(589.3) e光(546.1) →接近 光 色差: 光 色差:F光(486.1) C光(656.3) 光 普通照相系统(照相底片) 单色像差: 光 普通照相系统(照相底片) 单色像差:F光 色差: 光 色差:D光,G’光(434.1) 光 近红外、 近红外、近紫外光学系统 激光系统: 只校准单色像差(用照明光源),不校准色差, ),不校准色差 激光系统: 只校准单色像差(用照明光源),不校准色差,因单色 光照明。 光照明。
6.1.3 像差成因
6第6章 光线的光路计算及像差理论
作业:完成本例题的光路追迹!
计算举例
一望远物镜的焦距f’=100mm,相对口径D/f’=1/5, 视场角2ω=6°,其结构参数如下:
r/mm 62.5 -43.65 -124.35 d/mm 4.0 2.5 nD 1.51633 1.67270 νD 0.00806 0.015636
试求该物镜的第一、二近轴光线成像特征和远轴光线 成像特征,以及主光线细光束成像特征。
轴上点的球差
球差的定义和表示方法
1、球差的定义
轴上点发出的同心光束,经光学系统各个折射面折射 后,不同孔经角U的光线交光轴于不同点上,相对于 理想像点的位置有不同的偏离,这就是球面像差,简 称球差。它由孔径引起。 L' L' l '
L' 0 球差校正不足 或欠校正
L' 0 球差校正过头 或过校正
Lz1 0.8025
用大L公式进行光线追迹: L' z 3.378 U z ' 259'6' '8 实际像高: ys ' (L'z l ' ) tanU '3 5.2351 实际像高与理想像高差:
y' ys ' y' 0.007
解:
沿主光线细光束计算的初始数据: t1 s1 l1 h1 10 mm
用小l公式分别对y1=0.3Y、0.5Y、0.707Y、0.85Y、Y 进行光路追迹确定像方截距和像方孔径角.
2.远轴光线的光路计算
子午面内的远轴光按大L公式进行计算:
Lr sin U r n sin I ' ' sin I n U' U I I' sin I sin I ' L r r sin U '
工程光学第六章像差理论重点讲解
校对公式:
h lu lu nuy nuy J
最后可计算出像点位置和系统各基点位置。
焦点位置及焦距计算:l1 , u1 0
f ' h1 / u'k
2、轴外物点近轴光线光路计算(第二近轴光线)
仍用近轴光线光路计算公式和校对公式,所有量均注以下标z.
已知:物方物位、入瞳位置和物高,即 l, lz , uz 。 求解:像方物位、出瞳位置和像高,即 l, lz , uz 。
i
l
r
r
u(当l1
时, u1
0,i1
h1
/
r1)
i' n i
n'
u' u i i'
l' r(1 i' )
u'
l' n'lr
n'l n(l r)
第二节 光线的光路计算
对于有k个面的折射系统,需利用根据过渡公式:
过渡公式:
lk lk1 dk 1 uk uk 1 nk nk 1
对于小视场的光学系统,例如望远物镜和显微物镜等,只 要求校正与孔径有关的像差,所以只需计算上述第一种光线。 对大孔径、大视场的光学系统,如照相物镜等,要求校正所 有像差,所以需要计算上述三种光线。
第二节 光线的光路计算
由已知条件:
光学系统的结构参数(r,d,n)
物体的位置和大小 入瞳的位置和大小
解决问题:
第一节 概述
像差校正:
在实际光学系统中,各种像差是同时存在的,像差 影响光学系统成像的清晰度、相似性和色彩逼真度等 ,就降低了成像质量。故像差的大小反映了光学系统 质量的优劣。
除了平面镜成像以外,没有像差的光学系统是不 存在的。完全消除像、色差是不可能的,针对光学系 统的不同用途,只要把像、色差降低在某范围内,使 光接收器不能分辨,或者说这种差别只要能骗过光接 收器,就可以认为是理想的。
第六章.像差(工程光学)第二讲
k 1
SIII
(6-52)
(1)由像散分布式可知,对单个折射球面而言,没有正弦差
子午场曲:
xt'
lt'
l
'
t
'
sU
' z
x
l
'
弧矢场曲:
xs'
ls'
l'
s'
cosU
' z
x
l'
(6-44)
4、场曲的性质
★ 细光束的场曲与孔径u(或入射高度h)无关,只是视场ω (y)的函数。
★ 视场为零,则场曲为零。
5、场曲的幂级数表达式
x' t(s)
A1 y 2
A2 y4
A3 y6
(6-45)
SIV J 2 (n'n)/nn'r
J 为拉赫不变量
(6-46) (6-47) (6-48) (6-49)
二、像散
1、场曲与像散的关系
图610(b)
★ 图6-10(b)表示细光束子午场曲和弧矢场 曲的像差曲线。随着视场的增大.场曲和像 散迅速增大。这是因为场曲和像散随视场的 平方倍(初级)和四次方倍(高级)增大。
(6-40)
比较式(6-34)和(6-40),得彗差与正弦差的关系为:
OSC' Ks' / y'
(6-41)
彗差是轴外像差之一,它破坏了轴外视场成像的清晰度。
彗差值随视场的增大而增大,故对大视场的光学系统,必须校 正彗差。若光阑通过单折射面的球心,则不产生彗差。
后面将要论述,有些光学系统,不仅不产生彗差,其轴外点的
只能要求其成像光束结构与轴上点成像光束结构相同,也就是 说,轴上点和近轴点有相同的成像缺陷,称为等晕成像。欲满 足等晕成像的要求,光学系统必须满足等晕条件,即
第六章 光路计算和像差理论
6.2 光路计算
光路计算分类:
轴上点近轴光路计算(物在有限远,无限远): (物体发出,经过入瞳边缘的光线) 可以求得高斯像点、基点位置、焦距等。 近轴光路计算 轴外点近轴光路计算 (物体边缘发出,经过入瞳中心的光线): 1、子午面内光路计算 可以求得出瞳位置、理想像高等。 轴上点,一般取5个孔径: 求得实际像点的位置,对应像差; 实际光路(远轴)计算 轴外点,一般取5个视场,每个视场11个孔径: 求得实际像高,对应像差。 2、沿主光线的细光束光路计算:子午/弧矢场曲、像散 3、子午面外空间光线的光路计算:全面分析系统质量,软件设计
由于轴上点发出的光束是轴对称的,所以子午面内的球差只计算上半 部分即可,计算上部分的孔径光线为:0.3、0.5、0.707、0.85、1.0。 每一条光线对应一个球差值,如果把不同 孔径所对应的球差值全部计算出来,并且 将它们绘制成图,就称此图为球差曲线, 球差曲线非常直观的表达了系统球差的大 小,通过球差曲线可以非常形像地对球差 进行表征。
n n ' n n' t' t r n ' n n ' n s r s'
此时,像散为0
6.3
轴上点的球差
一、 球差定义及表示方法
1、沿轴球差 由实际光线的光路计算公式知,当物距L为定值时,像距L’与入射 高度h及孔径角U有关,随着孔径角的不同,像距L’是变化的,即如 图所示:轴上点A点发出的光束,对于光轴附近的光用近轴光路计算 公式,像点为A’ 0(看作高斯像点),对于实际光线采用实际光计算 公式,成像于A’ 1 (实际像)。
光路的计算
第四节 正弦差和彗差
上光线:轴外点发出通过某孔径带上边缘的光线称 某孔径带的上光线; 下光线:轴外点发出通过某孔径带下边缘的光线称 某孔径带的下光线
前光线:轴外点发出通过某孔径带前边缘的光线称 某孔径带的前光线 后光线:轴外点发出通过某孔径带后边缘的光线称 某孔径带的后光线
第三节 轴上点的球差
二、单个折射球面的球差分布和不晕点 单个折射面球差分布公式: k 1 L s uk sin U k 1 2nk
niL sin U (sin I sin I )(sin I sin U ) s 1 1 1 cos ( I U ) cos ( I U ) cos ( I I ) 2 2 2
一、基本概念
因此,单色光成像会产生性质不同的五种像差, 即球差、彗差(正弦差)、象散、场曲和畸变,统 称为单色像差。 实际上绝大多数的光学系统都是对白光或复色光 成像的,由于同一光学介质对不同的色光有不同的 折射率,因此,白光进入光学系统后,由于折射率 不同而有不同的光程,这样就导致了不同色光成像 的大小和位置也不相同,这种不同色光的成像差异 称为色差。色差有两种,即位置色差和倍率色差。 以上讨论时基于几何光学的,所以上述七种像差 称为几何像差。
第四节 正弦差和彗差
主光线:某视场点发出的通过入瞳中心过入瞳边缘点 的“近轴”光线; 第二近轴光线:轴外某视场点发出的通过入瞳中心 的“近轴”光线
子午平面:包含物点和光轴的平面称子午平面; 弧矢平面:包含主光线并与子午平面垂直的平面 辅轴:轴外点和球心的连线称为该折射球面的辅轴
第三节 轴上点的球差
一、球差的定义及表示方法 由第二章实际光线得光路计算公式知,物距L为定值 时,像距L′是孔径角U的函数。由轴上一点发出光 线,角U 不同,通过光学系统后有不同的像距L′。 即轴上点发出的同心光束经光学系统后,不再是同 心光束,不同入射高度h(U)的光线交于光轴不同位 置,相对于近轴像点(理想像点)有不同程度的偏 离,这种偏离称为轴向球差,简称球差。用 δ L′ 表示: δ L′=L′- l′
第六章_光线的光路计算及像差理
sin I ( L r )
sin U r
★由折射定律
sin I
n sin I n
★ ΔAEC 及ΔA′EC: U I U I ★ ΔA′EC中,由正弦定律
sin I sin U L r r
U U I I
sin I 像距 L r (1 sin U )
第6章
光线的光路计算及像差理论
概述 光线的光路计算 轴上点的球差 正弦差和彗差 场曲和像散 畸变 色差 像差特征曲线与分析 波像差
本章重点
光学系统像差的基本概念
光学系统像差的种类
初级单色像差
在几何光学中,我们知道一个物点经单折射球面后不能够完 善成像,但若把光线限制在近轴范围内,即 : ,cos 1 sin 则可认为物点成理想的像点,但
L’=150.7065mm L’=147.3711mm L’=141.6813mm
n A O
-240mm
E
n’ C
可以发现:同一物点发出的物方倾斜角 不同的光线过光组后并不能交于一点!
球差的定义和表示方法
1、球差的定义
轴上点发出的同心光束,经光学系统各个折射面折射 后,不同孔经角U的光线交光轴于不同点上,相对于 理想像点的位置有不同的偏离,这就是球面像差,简 称球差。它由孔径引起。 L' L' l '
入瞳
对于有k个面的折射系统,根据过渡公式由初始数据可以 确定像方截距和像方孔径角. 用小l公式进行光路追迹确定像方截距和像方孔径角.
近轴光线的光路计算
1、近轴光线 ★ 近轴条件:
sin i tgi i
sin I ( L r ) sin U r
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
U ' 544'37' '7
L' L'l ' 0.004
轴外点主光线初始数据: U z1 3 0.052336
Lz1 0.8025
用大L公式进行光线追迹: L' z 3.378 U z ' 259'6' '8
实际像高: ys ' ( L'z l ' ) tanU '3 5.2351
11
(1) 物体位于无限远(望远镜、照相物镜)
L1 ,U1 0 ,光线离轴高度 h1 ,带光 轴上点初始数据: h1 0.707max 。
轴外点初始数据为
L=−∞
Ua
Uz
La
Lz
入射光瞳 P1 Ub P2 Lb
(2) 物体在有限距离(显微镜、复制镜头)
轴上点初始数据为 L1 ,U1 。
la
lz
入射光瞳 P1 ub P2 lb
' u3 0.100104
第二近轴光线初始数据: u 3 0.052336 z1
l z1 0.8025
' l ' z l '3 3.3813 u' z u3 0.052783 用小l公式进行光线追迹:
理想像高:
O A’o
--L’b --L’z --L’a --L’
14
3.折射平面和反射平面的光路计算
远轴光按大L公式进行计算:
Lr sin U r n sin I ' ' sin I n U' U I I' sin I sin I ' L r r sin U '
'
h sin I 当U 0时, r
试求该物镜的第一、二近轴光线成像特征和远轴光线 成像特征,以及主光线细光束成像特征。
20
解: 第一近轴光线初始数据:
物体在无限远,
l =−∞ 1
l1
u1 0
ua
uz
h1 10mm i1 h1 / r1
用小l公式进行光线追迹: l ' 97.009 3
f ' h1 / u'3 99.896
6
光线的光路计算
7
光线光路的计算主要有三类:
子午面内的光线光路计算 沿轴外点主光线的细光束像点的计算
子午面外光线或空间光线的计算
8
子午面内的光线光路计算
1.近轴光线的光路计算
角u对入瞳边缘取值的计算称为第一近轴光线计算.
轴上点近轴光线的计算公式:
l r u r n ri' ' ' i 'i l ' r n u i
初级单色像差
3
基本概念
实际光学系统只在近轴区域成完善像。
像差是由实际光路和理想光路之间差别而引起的成像缺 陷。
单色像差:光学系统对单色光成像所产生的像差,包括: 球差、慧差、像散、场曲、畸变等五种。 色差:由不同折射率引起的不同波长光线的成像位置和 大小也不同。包括:位置色差和倍率色差。
16
子午面:物点(或主光线,即通过孔径中心的光线)所 在并包含光轴的平面。对于轴对称系统的轴上物点,它 有无限多个子午面。对于一给定的轴外物点,仅有一个 子物面。 弧矢面:包含主光线并且垂直于子午面的平面。
17
Iz
I’z
n ' cos 2 I z' n cos 2 I z n ' cos I z' n cos I z P ' t r t
( Lz L)tgU
13
各光线与高斯面的高度为
' Ya' ( L'a L' )tgU a ' ' ' ' Yz ( Lz L )tgU z Yb' ( L'b L' )tgU b'
B’b
出瞳 B’z B’a Yb’ Yz’
Ya’
-U’a P’ -U’z -U’b
n ' n n ' cos I z' n cos I z ' r S S
18
初始数据:
物体在无限远:
t1 s1
物体在有限远:
t1 S1 ( L1 x1 ) / cos U z1
过渡公式
ti 1 ti' Di
Si 1 Si' Di
d i xi xi 1 Di cos U z' i
SI
光学系统的初级球差分布:
L' (初级)
1 2n u
' k '2 k
S
1
k
I
30
2、球差的校正 单透镜的球差特征
一般意义来说:
单正透镜产生负球差,自身无法单独消球差
单负透镜产生正球差,自身无法单独消球差
31
消球差的基本思路
采用正、负透镜组合进行正负球差补偿,实现消球差
由于球差是入射高度或孔径角的偶数次方函数,因此, 只能针对某一入射高度或孔径角度(带)来消球差。 通常使初级球差与高级球差大小相等,符号相反,在 边缘光带处( h=hm )补偿球差,使球差校正为零。
用小l公式分别对y1=0.3Y、0.5Y、0.707Y、0.85Y、Y 10 进行光路追迹确定像方截距和像方孔径角.
2.远轴光线的光路计算
子午面内的远轴光按大L公式进行计算:
Lr sin U r n sin I ' ' sin I n U' U I I' sin I sin I ' L r r sin U '
第六章 光线的光路计算及像差理论
谢 建 宏
Email: jhxie2010@
南昌大学信息工程学院
主要内容
概述 光线的光路计算 轴上点的球差 正弦差和慧差 场曲和像散 畸变 色差 像差特征曲线与分析 波像差
2
本章重点
光学系统像差的基本概念
光学系统像差的种类
5
像差计算的谱线选择
2、细则:
1. 目视光学系统对e光(λ=546.1nm,绿光)消单色像差,对F 光(λ=486.1nm)和C光(λ=656.3nm)消色差。 2. 普通照相系统对蓝光最灵敏,所以对F光消单色像差,对 D光(λ=589.3nm)和G’光(λ=434.1nm)消色差。 3. 天文照相系统对G’光(λ=434.1nm)消单色像差,对h光 (λ=404.7nm)和F光(λ=486.1nm) 消色差。 。 4. 近红外光学系统对C光消单色像差,对d光(λ=587.6nm)和 A’光(λ=768.2nm) 消色差。 5. 紫外光学系统对i’光(λ=365.0nm)消单色像差,对 λ=257.0nm光和h光(λ=404.7nm) 消色差。 6. 特殊光学系统针对特定波长消单色像差,无需消色差。
12
轴外物点发出的主光线及上、下光线的初始数据为
上光线 tgU a y Lz L La L z Lz Lb Lz
tgU a
y 主光线 tgU z Lz L y 下光线 tgU b Lz L
tgU b
入瞳半径可由下式确定
L' A1h12 A2 h14 A3h16
或
L' a1U12 a2U14 a3U16
二级球差 三级球差
初级球差
‥‥‥
大部分系统的三级以上球差系数为小量:
L A h A h
' 2 1 1
4 2 1
L' a1U12 a2U14
小孔径光学系统主要考虑初级球差 Nhomakorabea
多个折射球面的球差分布系数为:
1
k
S
光学系统的球差分布:
1 L' ' ' 2nk uk sin U k'
S
1
k
29
光学系统的初级球差分布公式
单个折射面的初级球差分布系数可写为:
S I luni (i i' )(i'u)
多个折射球面的初级球差分布系数为:
1
k
讨论像差的目的是为了能动地校正像差,使光学系统在 一定孔径下对给定大小的视场成满意的像。 实际波面与理想球面波的偏差称为波像差。
4
像差计算的谱线选择
1、基本原则:
对光能接收器的最灵敏的谱线校正单色像差;
对接收器所能接收的波段范围两边缘附近的谱线校 正色差; 同时接收器的光谱特性也直接受光源和光学系统的 材料限制,三者合理匹配。
实际像高与理想像高差:
y' ys ' y' 0.007
22
解:
沿主光线细光束计算的初始数据: t1 s1 l1 h1 10mm
U1 0
用细光束光路计算进行光线追迹:
t '3 96.6507
s'3 96.9132
n ' cos 2 I z' n cos 2 I z n ' cos I z' n cos I z P ' t r t
n ' n n ' cos I z' n cos I z ' r S S
23
轴上点的球差
24
球差的定义和表示方法
1、球差的定义