题组层级快练 (30)
2021-2022年高三历史一轮复习题组层级快练32含答案
2021年高三历史一轮复习题组层级快练32含答案一、单项选择题1.(xx·江苏省启东中学模拟题)1894年孙中山创建兴中会时指出:“夫以四百兆苍生之众,效万里土地之饶,固可发奋为雄,无敌于天下。
乃以庸奴误国,涂(荼)毒苍生,一蹶不兴,如斯之极。
方今强邻环列,蚕食鲸吞……。
有心人不禁大声疾呼,亟拯斯民于水火,切扶大厦之将倾。
”对材料的理解不正确的是 ( )A.开发中华资源,抵御列强侵略B.推翻满清贵族统治C.建立资产阶级共和国D.以救国救民为己任答案 C解析从“夫以四百兆苍生之众,效万里土地之饶,固可发奋为雄,无敌于天下”可以得出开发中华资源,抵御列强侵略,故A项排除;从“乃以庸奴误国,涂(荼)毒苍生,一蹶不兴,如斯之极。
方今强邻环列,蚕食鲸吞”可以得出推翻满清贵族统治,故B项排除;从“有心人不禁大声疾呼,亟拯斯民于水火,切扶大厦之将倾”可以得出以救国救民为己任,故D项排除;材料中没有体现建立资产阶级共和国,故C项理解不正确,故答案为C项。
2.(xx·山东省烟台市模拟题)列宁在评价孙中山的纲领时说:“它直接提出群众生活状况及群众斗争问题,热烈地同情被剥削的劳动者,相信他们是正义的和有力量的。
”针对的是孙中山主张的( )A.驱除鞑虏B.恢复中华C.创立民国D.平均地权答案 D解析“驱除鞑虏,恢复中华”解决的是民族独立的问题,“创立民国”解决的政治民主共和的问题,“平均地权”解决的是人民的生活和社会进步的问题,材料体现了孙中山对劳动者的关注和关心,故D项正确,A、B、C三项错误。
3.(xx·湖北省武汉三中模拟题)1912年2月15日孙中山亲自率领“国务卿士,文武将吏”拜谒明孝陵(下图)。
在祭文中,孙中山强调了辛亥首义、清室退位光复中华大业的成就。
并且说:“呜呼休哉!非我太祖在天之灵,何以及此?”这说明( )A.朱元璋的反元事迹激励了革命派B.革命派有狭隘的民族主义观念C.辛亥革命推翻了封建帝制D.三民主义的目标已经实现答案 B解析孙中山在清室退位后,率领文武百官到明孝陵举行隆重祭典,把自己摆在明太祖的事业继承者的地位上,向“我高皇帝在天之灵”报告“光复汉室”的喜讯。
专题一正确使用词语(包括熟语)
题组层级快练(一)专题一正确使用词语(包括熟语)1.依次填入文中横线上的词语,全都恰当的一项是()一株株瘦削的枝条上,绽放着一簇簇耀眼的黄花,梭梭、沙枣、红柳等沙生植物郁郁葱葱,勾画出一条绿色隔离带,阻挡着风沙侵蚀的步伐,孕育着绿色的希望。
谁能想到,38 年前,这里是一片漫天黄沙的。
八步沙,是腾格里沙漠南缘、古浪县北部的一个风沙口。
上世纪六七十年代,这里的沙丘以每年7.5 米的速度向南移动,严重侵害着周边10 多个村庄和2 万多亩良田,给当地3 万多群众的生产生活以及过境公路铁路造成巨大。
面对步步紧逼的沙丘,一些人上新疆、去宁夏、走内蒙,开始逃离家乡。
当风沙袭来时,有人逃离家园,更有人留下来守护家园!为了不断恶化的自然环境。
1981年,作为三北防护林前沿阵地,古浪县着手治理荒漠,对八步沙试行“政府补贴、个人承包,谁治理、谁拥有”政策。
改革开放初期,承包沙漠对于当地人来说是一件“破天荒”的大事,谁能有勇气向茫茫沙漠发起挑战?关键时刻,石满、郭朝明、贺发林、张润元、罗元奎、程海站了出来。
这几位普普通通的西北治沙老人,被当地人亲切地称为“六老汉”。
当黄沙肆虐的时候,六老汉抱着护庄稼、保饭碗的质朴愿望,扛起共产党员应有的担当,不畏恶劣环境,无惧艰苦劳作。
他们的朴素情怀、坚定信念、勇往直前,点亮了治沙A .不毛之地危害遏制谱写B .不毛之地危险遏止撰写C .荒山野岭危害遏止谱写D.荒山野岭危险遏制撰写答案A解析“不毛之地”指不长庄稼的地方,泛指贫瘠、荒凉的土地或地带。
“荒山野岭”指荒凉没有人烟的山岭。
这里说的是八步沙贫瘠、荒凉,而不是说其没有人烟,故选“不毛之地”。
“危害”指使受破坏;损害。
“危险”指有遭到损害或失败的可能;遭到损害或失败的可能性。
这里说的是移动的沙丘给当地3 万多群众的生产生活以及过境公路铁路造成巨大的损害,而不是遭到损害的可能性,故选“危害”。
“遏制”指制止,控制。
“遏止”指阻止。
这里说的是控制不断恶化的自然环境,而不是阻止不断恶化的环境,故选“遏制”。
【高考调研】高考数学一轮复习 题组层级快练30(含解析)
题组层级快练(三十)1.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件答案 A解析 若a +b =0,则a =-b ,所以a ∥b ;若a ∥b ,则a =λb ,a +b =0不一定成立,故前者是后者的充分不必要条件.2.设a 是任一向量,e 是单位向量,且a ∥e ,则下列表示形式中正确的是( ) A .e =a|a |B .a =|a |eC .a =-|a |eD .a =±|a |e答案 D解析 对于A ,当a =0时,a|a |没有意义,错误; 对于B ,C ,D 当a =0时,选项B ,C ,D 都对; 当a ≠0时,由a ∥e 可知,a 与e 同向或反向,选D.3.(2015·北京东城期中)已知ABCD 为平行四边形,若向量AB →=a ,AC →=b ,则向量BD →为( ) A .a -b B .a +b C .b -2a D .-a -b答案 C4.如图所示,在正六边形ABCDEF 中,BA →+CD →+EF →=( )A .0 B.BE → C.AD → D.CF →答案 D解析 由于BA →=DE →,故BA →+CD →+EF →=CD →+DE →+EF →=CF →.5.(2015·广东惠州二中模拟)已知点O ,A ,B 不在同一条直线上,点P 为该平面上一点,且OP →=3OA →-OB→2,则( )A .点P 在线段AB 上B .点P 在线段AB 的反向延长线上C .点P 在线段AB 的延长线上D .点P 不在直线AB 上 答案 B解析 OP →=3OA →-OB →2=32OA →-12OB →=OA →+12(OA →-OB →)=OA →+12BA →,即OP →-OA →=AP →=12BA →,所以点P 在线段AB的反向延长线上,故选B.6.在△ABC 中,点D 在边AB 上,CD 平分∠ACB .若CB →=a ,CA →=b ,|a |=1,|b |=2,则CD →=( ) A.13a +23b B.23a +13b C.35a +45b D.45a +35b 答案 B解析 由内角平分线定理,得|CA ||CB |=|AD ||DB |=2.∴CD →=CA →+AD →=CA →+23AB →=CA →+23(CB →-CA →)=23CB →+13CA →=23a +13b .故B 正确.7.已知向量i 与j 不共线,且AB →=i +m j ,AD →=n i +j ,若A ,B ,D 三点共线,则实数m ,n 应该满足的条件是( )A .m +n =1B .m +n =-1C .mn =1D .mn =-1答案 C解析 由A ,B ,D 共线可设AB →=λAD →,于是有i +m j =λ(n i +j )=λn i +λj .又i ,j 不共线,因此⎩⎪⎨⎪⎧λn =1,λ=m ,即有mn =1.8.O 是平面上一定点,A ,B ,C 是该平面上不共线的三个点,一动点P 满足:OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则直线AP 一定通过△ABC 的( )A .外心B .内心C .重心D .垂心答案 C解析 取BC 中点M . OP →=OA →+λ(AB →+AC →),OP →-OA →=λ(AB →+AC →),AP →=2λAD →.∴A ,P ,D 三点共线,∴AP 一定通过△ABC 的重心,C 正确.9.在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,则四边形ABCD 的形状是( ) A .矩形 B .平行四边形 C .梯形 D .以上都不对答案 C解析 由已知AD →=AB →+BC →+CD →=-8a -2b =2(-4a -b )=2BC →. ∴AD →∥BC →.又AB →与CD →不平行,∴四边形ABCD 是梯形.10.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C )的充要条件是AP →=λ(AB →+AD →),则λ的取值范围是( )A .λ∈(0,1)B .λ∈(-1,0)C .λ∈(0,22) D .λ∈(-22,0) 答案 A解析 如图所示,∵点P 在对角线AC 上(不包括端点A ,C ),∴AP →=λAC →=λ(AB →+AD →).由AP →与AC →同向知,λ>0.又|AP →|<|AC →|, ∴|AP →||AC →|=λ<1,∴λ∈(0,1).反之亦然. 11.设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若A 1A 3→=λA 1A 2→(λ∈R ),A 1A 4→=μA 1A 2→(μ∈R ),且1λ+1μ=2,则称A 3,A 4调和分割A 1,A 2.已知平面上的点C ,D 调和分割点A ,B ,则下列说法正确的是( )A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上 答案 D解析 若A 成立,则λ=12,而1μ=0,不可能;同理B 也不可能;若C 成立,则0<λ<1,且0<μ<1,1λ+1μ>2,与已知矛盾;若C ,D 同时在线段AB 的延长线上时,λ>1,且μ>1,1λ+1μ<2,与已知矛盾,故C ,D 不可能同时在线段AB 的延长线上,故D 正确.12.如图所示,下列结论不正确的是________.①PQ →=32a +32b ;②PT →=-32a -32b ;③PS →=32a -12b ;④PR →=32a +b .答案 ②④解析 由a +b =23PQ →,知PQ →=32a +32b ,①正确;由PT →=32a -32b ,从而②错误;PS →=PT →+b ,故PS →=32a-12b ,③正确;PR →=PT →+2b =32a +12b ,④错误.故正确的为①③. 13.如图所示,已知∠B =30°,∠AOB =90°,点C 在AB 上,OC ⊥AB ,用OA →和OB →来表示向量OC →,则OC →等于________.答案 34OA →+14OB →解析 OC →=OA →+AC →=OA →+14AB →=OA →+14(OB →-OA →)=34OA →+14OB →.14.设a 和b 是两个不共线的向量,若AB →=2a +k b ,CB →=a +b ,CD →=2a -b ,且A ,B ,D 三点共线,则实数k 的值等于________.答案 -4解析 ∵A ,B ,D 三点共线,∴AB →∥BD →.∵AB →=2a +k b ,BD →=BC →+CD →=a -2b ,∴k =-4.故填-4. 15.已知O 为△ABC 内一点,且OA →+OC →+2OB →=0,则△AOC 与△ABC 的面积之比是________. 答案 1∶2解析 如图所示,取AC 中点D .∴OA →+OC →=2OD →. ∴OD →=BO →.∴O 为BD 中点,∴面积比为高之比.16.已知向量a =2e 1-3e 2,b =2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2.问是否存在这样的实数λ,μ,使向量d =λa +μb 与c 共线?答案 当λ=-2μ时共线解析 ∵d =λ(2e 1-3e 2)+μ(2e 1+3e 2) =(2λ+2μ)e 1+(-3λ+3μ)e 2. 要使d 与c 共线,则应有实数k ,使d =k c . 即(2λ+2μ)e 1+(-3λ+3μ)e 2=2k e 1-9k e 2.即⎩⎪⎨⎪⎧2λ+2μ=2k ,-3λ+3μ=-9k ,得λ=-2μ.故存在这样的实数λ,μ,只要λ=-2μ,就能使d 与c 共线. 17.如图所示,已知点G 是△ABO 的重心.(1)求GA →+GB →+GO →;(2)若PQ 过△ABO 的重心G ,且OA →=a ,OB →=b ,OP →=m a ,OQ →=n b ,求证:1m +1n=3.答案 (1)GA →+GB →+GO →=0 (2)略解析 (1)如图所示,延长OG 交AB 于M 点,则M 是AB 的中点. ∴GA →+GB →=2GM →. ∵G 是△ABO 的重心, ∴GO →=-2GM →. ∴GA →+GB →+GO →=0. (2)∵M 是AB 边的中点, ∴OM →=12(OA →+OB →)=12(a +b ).又∵G 是△ABO 的重心,∴OG →=23OM →=13(a +b ).∴PG →=OG →-OP →=13(a +b )-m a =(13-m )a +13b .而PQ →=OQ →-OP →=n b -m a , ∵P ,G ,Q 三点共线,∴有且只有一个实数λ,使得PG →=λPQ →. ∴(13-m )a +13b =λn b -λm a . ∴(13-m +λm )a +(13-λn )b =0. ∵a 与b 不共线,∴⎩⎪⎨⎪⎧13-m +λm =0,13-λn =0.消去λ,得1m +1n=3.。
2025高考数学一轮复习题组层级快练1含答案7777
题组层级快练(一)一、单项选择题1.下列说法正确的是( )A .M ={(2,3)}与N ={(3,2)}表示同一集合B .M ={(x ,y )|x +y =1}与N ={y |x +y =1}表示同一集合C .M ={x ∈N |x (x +2)≤0}有2个子集D .设U =R ,A ={x |lg x <1},则∁U A ={x |lg x ≥1}={x |x ≥10}答案 C2.若A =⎩⎨⎧⎭⎬⎫x |x 2∈Z ,B =⎩⎨⎧⎭⎬⎫y |y +12∈Z ,则A ∪B 等于( ) A .BB .AC .∅D .Z答案 D 解析 A ={x |x =2n ,n ∈Z }为偶数集,B ={y |y =2n -1,n ∈Z }为奇数集,∴A ∪B =Z .3.(2023·全国甲卷,理)设集合A ={x |x =3k +1,k ∈Z },B ={x |x =3k +2,k ∈Z },U 为整数集,∁U (A ∪B )=( )A .{x |x =3k ,k ∈Z }B .{x |x =3k -1,k ∈Z }C .{x |x =3k -2,k ∈Z }D .∅答案 A解析 因为整数集Z ={x |x =3k ,k ∈Z }∪{x |x =3k +1,k ∈Z }∪{x |x =3k +2,k ∈Z },U =Z ,所以∁U (A ∪B )={x |x =3k ,k ∈Z }.故选A.4.已知集合A ={(x ,y )|xy =1},B ={(x ,y )|x ∈Z ,y ∈Z },则A ∩B 有________个真子集.( )A .3B .16C .15D .4 答案 A解析 A ={(x ,y )|xy =1},B ={(x ,y )|x ∈Z ,y ∈Z },则A ∩B ={(1,1),(-1,-1)},真子集个数为22-1=3.故选A.5.(2023·山东济宁检测)设全集U ={-3,-2,-1,0,1,2,3},集合A ={-2,-1,0,1},B ={x |x 2-x -2=0},则下列四个图中的阴影部分所表示的集合为{-2,0,1}的是( )答案 C解析因为A={-2,-1,0,1},B={x|x2-x-2=0}={-1,2},所以A∩B={-1},A∪B={-2,-1,0,1,2}.则A中的阴影部分所表示的集合为{-2,0,1,2};B中的阴影部分所表示的集合为{2};C中的阴影部分所表示的集合为{-2,0,1};D中的阴影部分所表示的集合为{-1}.故选C.6.(2022·石家庄二中模拟)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1] B.(0,1]C.[0,1) D.(-∞,1]答案 A解析集合M={0,1},集合N={x|0<x≤1},M∪N={x|0≤x≤1},所以M∪N=[0,1].7.(2021·全国乙卷)已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.SC.T D.Z答案 C解析当n=2k,k∈Z时,S={s|s=4k+1,k∈Z};当n=2k+1,k∈Z时,S={s|s=4k+3,k∈Z}.所以T S,S∩T=T.故选C.8.(2024·河北辛集中学模拟)已知集合A={1,3,a2-2a},B={3,2a-3},C={x|x<0},若B⊆A且A∩C=∅,则a=()A.1 B.2C.3 D.2或3答案 B解析方法一:由题得2a-3=1或2a-3=a2-2a.若2a-3=1,则a=2,故A={0,1,3},B={1,3},此时满足B⊆A,A∩C=∅.若2a-3=a2-2a,则a=1或a=3,当a=1时,A={-1,1,3},B={-1,3},此时A∩C ={-1},不符合题意;当a=3时,a2-2a=3,不符合题意.故a=2,选B.方法二:因为A∩C=∅,故集合A中的元素均为非负数,从而a2-2a≥0,得a≤0或a≥2,故排除A;由集合中元素的互异性得2a-3≠3,即a≠3,排除C、D.故选B.9.若非空且互不相等的集合M,N,P满足:M∩N=M,N∪P=P,则M∪P=()A.M B.NC.P D.∅答案 C解析∵M∩N=M,∴M⊆N,∵N∪P=P,∴N⊆P,∵M,N,P非空且互不相等,∴M N P,∴M∪P =P.故选C.10.(2018·课标全国Ⅱ,理)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9 B.8C.5 D.4答案 A解析方法一:由x2+y2≤3知,-3≤x≤3,-3≤y≤ 3.又x∈Z,y∈Z,所以x∈{-1,0,1},y∈{-1,0,1},所以A中元素的个数为C31C31=9,故选A.方法二:根据集合A 的元素特征及圆的方程在坐标系中作出图形,如图,易知在圆x 2+y 2=3中有9个整点,即为集合A 的元素个数,故选A.二、多项选择题11.已知集合M ={y |y =x -|x |,x ∈R },N =⎩⎨⎧⎭⎬⎫y |y =⎝⎛⎭⎫13x ,x ∈R ,则下列选项正确的是( ) A .M =NB .N ⊆MC .M ∩N =∅D .M =∁R N答案 CD 解析 由题意得M ={y |y ≤0},N ={y |y >0},∴∁R N ={y |y ≤0},∴M =∁R N ,M ∩N =∅.12.(2024·重庆八中适应性考试)已知全集U 的两个非空真子集A ,B 满足(∁U A )∪B =B ,则下列关系一定正确的是( )A .A ∩B =∅B .A ∩B =BC .A ∪B =UD .(∁U B )∪A =A答案 CD解析 令U ={1,2,3,4},A ={2,3,4},B ={1,2},满足(∁U A )∪B =B ,但A ∩B ≠∅,A ∩B ≠B ,故A 、B 均不正确;由(∁U A )∪B =B ,知∁U A ⊆B ,∴U =[A ∪(∁U A )]⊆(A ∪B ),∴A ∪B =U ,由∁U A ⊆B ,知∁U B ⊆A ,∴(∁U B )∪A =A ,故C 、D 均正确.13.1872年,德国数学家戴德金用有理数的“分割”来定义无理数(史称“戴德金分割”).所谓“戴德金分割”,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足M ∪N =Q ,M ∩N =∅,M 中每一个元素均小于N 中的每一个元素,则称(M ,N )为“戴德金分割”.试判断下列选项中,可能成立的是( )A .M ={x ∈Q |x <0},N ={x ∈Q |x >0}是一个戴德金分割B .M 没有最大元素,N 有一个最小元素C .M 有一个最大元素,N 有一个最小元素D .M 没有最大元素,N 也没有最小元素答案 BD解析 对于A ,因为M ∪N ={x ∈Q |x ≠0}≠Q ,故A 错误;对于B ,设M ={x ∈Q |x <0},N ={x ∈Q |x ≥0},满足“戴德金分割”,故B 正确;对于C ,不能同时满足M ∪N =Q ,M ∩N =∅,故C 错误;对于D ,设M ={x ∈Q |x <2},N ={x ∈Q |x ≥2},满足“戴德金分割”,此时M 没有最大元素,N 也没有最小元素,故D 正确.三、填空题与解答题14.集合A ={0,|x |},B ={1,0,-1},若A ⊆B ,则A ∩B =________,A ∪B =________,∁B A =________. 答案 {0,1} {1,0,-1} {-1}解析因为A⊆B,所以|x|∈B,又|x|≥0,结合集合中元素的互异性,知|x|=1,因此A={0,1},则A∩B={0,1},A∪B={1,0,-1},∁B A={-1}.15.已知集合A={x|log2x<1},B={x|0<x<c},c>0.若A∪B=B,则c的取值范围是________.答案[2,+∞)解析A={x|0<x<2},由数轴分析可得c≥2.16.设集合A={x|x2-3x+2=0},B={x|x2+2(a+1)x+a2-5=0}.(1)若A∩B={2},求a的值;(2)若A∪B=A,求a的取值范围;(3)若U=R,A∩(∁U B)=A,求a的取值范围.答案(1)-1或-3(2)(-∞,-3](3){a|a≠-1±3且a≠-1且a≠-3}解析A={1,2}.(1)由A∩B={2},得2∈B,则4+4a+4+a2-5=0,得a=-1或-3.当a=-1时,B={x|x2-4=0}={2,-2},符合题意;当a=-3时,B={x|x2-4x+4=0}={2},符合题意.综上,a=-1或-3.(2)由A∪B=A,得B⊆A.①若B=∅,则Δ=4(a+1)2-4(a2-5)<0,得a<-3;②若B={1},则1+2a+2+a2-5=0且Δ=0,此时无解;③若B={2},则4+4a+4+a2-5=0且Δ=0,得a=-3;④若B={1,2},则1+2a+2+a2-5=0且4+4a+4+a2-5=0,此时无解.综上,a的取值范围为(-∞,-3].(3)由A∩(∁U B)=A,得A∩B=∅,所以1+2a+2+a2-5≠0且4+4a+4+a2-5≠0,解得a≠-1±3且a≠-1且a≠-3.故a的取值范围为{a|a≠-1±3且a≠-1且a≠-3}.17.(2024·成都七中月考)已知非空集合A,B满足A∪B={1,2,3,4},A∩B=∅,且A的元素个数不是A中的元素,B的元素个数不是B中的元素,则集合A,B的所有可能情况种数为()A.1 B.2C.3 D.4答案 B解析易知A的元素个数不能为2,否则A,B中必然有一个含有元素2,且集合中元素个数为2,不合题意.所以A的元素个数为1或3,所以可能情况有A={3},B={1,2,4}或A={1,2,4},B={3},共2种.故选B. 18.【多选题】设集合X是实数集R的子集,如果x0∈R满足对任意的a>0,都存在x∈X,使得0<|x-x0|<a,则称x0为集合X的聚点.则下列集合中是以0为聚点的集合有()A .{x |x ∈R ,x ≠0}B .{x |x ∈Z ,x ≠0} C.⎩⎨⎧⎭⎬⎫x |x =1n ,n ∈N *D.⎩⎨⎧⎭⎬⎫x |x =n n +1,n ∈N *答案 AC解析 对于A ,对任意的a >0,都存在x =a 2使得0<|x -0|=a 2<a ,故0是集合{x |x ∈R ,x ≠0}的聚点. 对于B ,对于某个实数a >0,比如取a =12,此时对任意的x ∈{x |x ∈Z ,x ≠0},都有|x -0|≥1,也就是说0<|x -0|<12不可能成立,从而0不是集合{x |x ∈Z ,x ≠0}的聚点. 对于C ,对任意的a >0,都存在n >1a ,即1n <a ,0<|x -0|=1n <a ,故0是集合{x |x =1n,n ∈N *}的聚点. 对于D ,n n +1=1-1n +1,故n n +1随着n 的增大而增大,故n n +1的最小值为11+1=12,即x ≥12,故对任意的0<a <12,不存在x ,使得0<|x -0|<a ,故0不是集合⎩⎨⎧⎭⎬⎫x |x =n n +1,n ∈N *的聚点.故选AC.。
专题七 语言表达简明、得体、准确、鲜明、生动
题组层级快练(七)专题七语言表达简明、得体、准确、鲜明、生动1.阅读下面一段文字,完成后面的题目。
大家好!①非常荣幸能够代表毕业生发言。
此时此刻,②我心情非常激动。
高中三年,③我们早已习惯于在学校的生活,早已离不开四季飘香的校园。
④我们将告别大家朝夕相处的同学、学识渊博的老师。
⑤在此,⑥请允许我代表高三的全体同仁,⑦向我们的恩师致以崇高的敬意!今后,⑧我们这些高足,⑨定当以自己的实际行动报答母校……(1)文中画线的句子中有两处表达不简明,应删除个别词语。
表达不简明的句子序号分别是________和________。
(2)文中画线的句子中有两处表达不得体,应替换个别词语。
表达不得体的句子序号分别是________和________。
答案(1)③④(2)⑥⑧解析③“在”多余;④“大家”多余;⑥“同仁”不得体;⑧“高足”不得体。
2.下面是一封校庆邀请函的部分内容,其中有五处不得体,请找出并作修改。
学校诚邀您来看一下校庆典礼,与贵校师生共襄盛典。
您的拨冗惠顾就是对我们的最大支持。
如能参加,务必于5月10日前发回执告知,以便学校做好接待准备。
如不能亲临,可将贺信呈送到校庆办公室。
①将____________改为____________②将____________改为____________③将____________改为____________④将____________改为____________⑤将____________改为____________答案①“来看一下”改为“出席”或“参加”;②“贵校”改为“我校”“全校”或“本校”;③“惠顾”改为“光临”或“莅临”;④“务必”改为“希望”或“请”;⑤“呈送”改为“惠寄”“寄送”或“发送”。
解析这是一封代表学校发出的书面邀请函,所以在遣词造句时不仅需要正确使用书面语体,而且还要恰当地使用敬谦辞。
①“来看一下”属于口语词汇,不符合邀请函的语体风格,可将其改为“出席”或“参加”。
高一高考调研题组层级快练数学答案
高一高考调研题组层级快练数学答案
题组层级快练(一)
1.下列各组集合中表示同一集合的是()A.M=[(3.221:M=((9.3)1
B.y={2,3},A=8,2}
C.-{(x,)Ix+y=1},N=(ylx+y=1}
D.y=[2,3},={(2,3)}
答案B
2.集合=xlx=llf,aey,p=lxlx=d-4al5.aeNj.则下列关系山止确的是()
A.P
B.Py
C.=P
D.MgPH厚
答案A解析P=(xlx=1+(a-2),acN',当a=2时,x=1,而中无元素1.P 比M多一个元素。
3.(2014?四川文)已知集合4=[xl(x+1)(x-2)≤0},集合B为整数集,则AnB=()C.(一2,-1,0,1}D.{-1,0,1,2}
答案D解析由二次函数y=(x+1)(x一2)的图像可以得到不等式(x+1)(x一2)≤0的解集A=[-1,2],属于A的整数只有一1,0,1,2,所以AnB=(-1,0,1,2},故选D.
4.(2015?《高考调研》原创题)已知i为虚数单位,集合P={-1,1},0=(i,i3,若Pno=(zi),则复数2等于()答案C解析因为0={i,i),所以0={i,-1}.又P={-1,1},所以png={-1l,所以2i=一1,所以2=i,故选C.
5.集合A一{0,2,al,B-1,,若AUB={0,1,2,4,16},则a的值为()
答案D解析由UB-{0,1,2,a,},知a-4.
6.设P-{riy=-+1,x=R},Q-{yly=2",x=R},则()A.sQB.QEP C.[aFs 0D.QFciP 答案C解析依题意得集合P={rlr≤1],0=[yly>0],。
高考数学一轮复习全套课时作业6-3等比数列
题组层级快练 6.3等比数列一、单项选择题1.(2021·泰安模拟)若等比数列{a n }的各项均为正数,a 2=3,4a 32=a 1a 7,则a 5等于( ) A.34 B.38 C .12 D .24 2.在等比数列{a n }中,a 2a 6=16,a 4+a 8=8,则a 20a 10等于( )A .1B .-3C .1或-3D .-1或33.(2020·广州模拟)已知等比数列{a n }的前n 项和S n 满足4S 5=3S 4+S 6,且a 2=1,则a 4=( ) A.127 B .27 C.19D .9 4.(2021·益阳市、湘潭市高三调研)已知等比数列{a n }中,a 5=3,a 4a 7=45,则a 7-a 9a 5-a 7的值为( )A .3B .5C .9D .255.(2021·天津市河西区月考)设{a n }是公比为q 的等比数列,则“q>1”是“{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.《张丘建算经》中“今有马行转迟,次日减半,疾七日,行七百里.问日行几何?”意思是:“现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走了700里路,问每天走的里数为多少?”则该匹马第一天走的里数为( )A.128127B.44 800127C.700127D.17532 7.(2021·深圳一模)已知等比数列{a n }的前n 项和S n =a·3n -1+b ,则a b =( )A .-3B .-1C .1D .38.在14与78之间插入n 个数组成等比数列,若各项总和为778,则此数列的项数为( )A .4B .5C .6D .79.(2021·广东惠州一中月考)已知数列{a n }是等比数列,且a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( )A .16(1-4-n ) B .16(1-2-n ) C.323(1-4-n ) D.323(1-2-n ) 10.等比数列{a n }的前n 项和为S n ,若a 1=a 2+2a 3,S 2是S 1与mS 3的等比中项,则m =( ) A .1 B.97 C.67 D.12二、多项选择题11.已知正项等比数列{a n }满足a 4=4,a 2+a 6=10,则公比q =( ) A.12 B. 2 C .2 D.22 12.已知等比数列{a n }中,满足a 1=1,q =2,则( ) A .数列{a 2n }是等比数列B .数列⎩⎨⎧⎭⎬⎫1a n 是递增数列C .数列{log 2a n }是等差数列D .数列{a n }中,S 10,S 20,S 30仍成等比数列 三、填空题与解答题13.已知等比数列{a n }满足a 1=12,a 2a 8=2a 5+3,则a 9=________.14.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.15.在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.16.(2020·课标全国Ⅲ,文)设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8. (1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3,求m.17.(2021·华大新高考联盟质检)设等比数列{a n }的前n 项和为S n ,若a 3a 11=2a 52,且S 4+S 12=λS 8,则λ=________.18.(2021·四川成都一诊)已知数列{a n }满足a 1=-2,a n +1=2a n +4. (1)证明:数列{a n +4}是等比数列; (2)求数列{|a n |}的前n 项和S n .6.3等比数列 参考答案1.答案 D 2.答案 A解析 由a 2a 6=16,得a 42=16⇒a 4=±4.又a 4+a 8=8,可得a 4(1+q 4)=8,∵q 4>0,∴a 4=4.∴q 2=1,a 20a 10=q 10=1. 3.答案 D解析 因为4S 5=3S 4+S 6,所以3S 5-3S 4=S 6-S 5,即3a 5=a 6,故公比q =3.由等比数列的通项公式得a 4=a 2q 4-2=1×32=9.故选D. 4.答案 D解析 设等比数列{a n }的公比为q ,则a 4a 7=a 5q ·a 5q 2=9q =45,所以q =5,所以a 7-a 9a 5-a 7=a 5q 2-a 7q 2a 5-a 7=q 2=25.故选D. 5.答案 D 6.答案 B解析 由题意知每日所走的路程成等比数列{a n },且公比q =12,S 7=700,由等比数列的求和公式得a 1⎝⎛⎭⎫1-1271-12=700,解得a 1=44 800127.故选B.7.答案 A 8.答案 B解析 ∵q ≠1⎝⎛⎭⎫14≠78,∴S n =a 1-a n q 1-q ,∴778=14-78q1-q ,解得q =-12,78=14×⎝⎛⎭⎫-12n +2-1,∴n =3.故该数列共5项. 9.答案 C解析 因为等比数列{a n }中,a 2=2,a 5=14,所以a 5a 2=q 3=18,所以q =12.由等比数列的性质,易知数列{a n a n+1}为等比数列,其首项为a 1a 2=8,公比为q 2=14,所以要求的a 1a 2+a 2a 3+…+a n a n +1为数列{a n a n +1}的前n项和.由等比数列的前n 项和公式得a 1a 2+a 2a 3+…+a n a n +1=8⎝⎛⎭⎫1-14n 1-14=323(1-4-n ).故选C. 10.答案 B解析 设等比数列{a n }的公比为q ,由a 1=a 2+2a 3,得a 1=a 1q +2a 1q 2,解得q =-1或q =12,当q =-1时,S 2=0,这与S 2是S 1与mS 3的等比中项矛盾.当q =12时,S 1=a 1,S 2=32a 1,mS 3=74a 1m ,由S 2是S 1与mS 3的等比中项,得S 22=S 1×mS 3,94a 12=m ×74a 12,所以m =97.故选B.11.答案 BD解析 因为a 4=4,a 2+a 6=10,所以a 4q 2+a 4q 2=10,得2q 4-5q 2+2=0,得q 2=2或q 2=12,又q>0,所以q =2或q =22.故选BD. 12.答案 AC解析 等比数列{a n }中,a 1=1,q =2,所以a n =2n -1,S n =2n -1. 于是a 2n=22n -1,1a n =⎝⎛⎭⎫12n -1,log 2a n =n -1,故数列{a 2n }是等比数列,数列⎩⎨⎧⎭⎬⎫1a n 是递减数列,数列{log 2a n }是等差数列.因为S 10=210-1,S 20=220-1,S 30=230-1,S 20S 10≠S 30S 20,所以S 10,S 20,S 30不成等比数列(应是S 10,S 20-S 10,S 30-S 20成等比数列).故选AC. 13.答案 18解析 方法一:设数列{a n }的公比为q ,由a 2a 8=2a 5+3,得a 12q 8=2a 1q 4+3,又a 1=12,所以q 8-4q 4-12=0,解得q 4=6或q 4=-2(舍去),所以a 9=a 1q 8=12×62=18.方法二:根据等比数列的性质可得a 2a 8=a 52,又a 2a 8=2a 5+3,所以a 52-2a 5-3=0,解得a 5=3或a 5=-1.因为a 1>0,所以a 5=a 1q 4>0,所以a 5=3.因为a 1a 9=a 52,所以a 9=a 52a 1=18.14.答案 -2解析 由S 3+3S 2=0,即a 1+a 2+a 3+3(a 1+a 2)=0,即4a 1+4a 2+a 3=0,即4a 1+4a 1q +a 1q 2=0,即q 2+4q +4=0,所以q =-2. 15.答案 -2 2n -1-12解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q|=2,则|a n |=12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1)=12(2n -1)=2n -1-12.16.答案 (1)a n =3n -1 (2)6解析 (1)设{a n }的公比为q ,则a n =a 1q n -1.由已知得⎩⎪⎨⎪⎧a 1+a 1q =4,a 1q 2-a 1=8,解得a 1=1,q =3,所以{a n }的通项公式为a n =3n -1. (2)由(1)知log 3a n =n -1. 故S n =n (n -1)2. 由S m +S m +1=S m +3得m(m -1)+(m +1)m =(m +3)(m +2),即m 2-5m -6=0. 解得m =-1(舍去)或m =6. 17.答案 83解析 ∵数列{a n }是等比数列,a 3a 11=2a 52,∴a 72=2a 52,∴q 4=2. ∵S 4+S 12=λS 8,∴a 1(1-q 4)1-q +a 1(1-q 12)1-q =λa 1(1-q 8)1-q ,∴1-q 4+1-q 12=λ(1-q 8), 将q 4=2代入计算可得λ=83.18.答案 (1)证明见解析 (2)S n =2n +1-4n +2 解析 (1)证明:∵a 1=-2,∴a 1+4=2. ∵a n +1=2a n +4,∴a n +1+4=2a n +8=2(a n +4), ∴a n +1+4a n +4=2, ∴{a n +4}是以2为首项,2为公比的等比数列. (2)由(1)可知a n +4=2n ,∴a n =2n -4. 当n =1时,a 1=-2<0,∴S 1=|a 1|=2; 当n ≥2时,a n ≥0,∴S n =-a 1+a 2+…+a n =2+(22-4)+…+(2n -4)=2+22+…+2n -4(n -1)=2(1-2n )1-2-4(n -1)=2n +1-4n +2.又当n =1时,上式也满足. ∴S n =2n +1-4n +2.。
高考调研题组层级快练历史2023电子版
高考调研题组层级快练历史2023电子版一、选择题(本大题共25小题,满分50分,每小题2分。
每小题所列的四个选项中,只有一项符合题目要求)1、据考证,周武王灭商后,封舜的后代妫满于陈,妫满死后被谥为陈胡公.其后代便以“陈”为姓氏。
陈姓源流反映了西周时期一项重要的政治制度。
这项制度是A.郡县制B.行省制C.宗法制D.九品中正制2、某历史学习兴趣小组在探讨中国古代小农经济的基本特点时,形成了如下一些观点,你认为错误的是A.以一家一户为单位B.农业和家庭手工业相结合C.经济上自给自足D.生产的产品大部分投放市场3、商鞅变法规定:制止弃农经商,未经允许从商者罚作奴隶。
此规定体现的经济政策是A.海禁政策B.闭关锁国C.重农抑商D.土地国有4、明太祖朱元璋曾在8天内,平均每天批阅奏章两百多件,处理国事四百多件,为减轻负担,他设置了A.御史大夫B.中书省C.殿阁大学士D.军机处5、明确规定中国割让香港岛给英国的不平等条约是A《南京条约》 B.《北京条约》 C.《天津条约》 D.《辛丑条约》6、慈禧太后一直被认为是晚清封建顽固派的最高代表,可她支持洋务运动,这是因为洋务派“中学为体、西学为用”的主张有利于A.废除封建制度B.维护清朝统治C.推行君主立宪D.促进民主共和7、有同学收集了一些研究性学习素材,其中涉及“张謇”“短暂的春天”“国民经济建设运动”“军管理”“《中美友好通商航海条约》”等内容。
他探究的主题应该是A.近代中国民族资本主义的曲折发展B.近代中国经济结构的变动C.近代中国思想解放潮流D.近代中国反侵略、求民主的潮流8、1905年,中国人自己摄制的电影首映成功。
这部影片不论对中国电影史,还是中国京剧史来讲,都是弥足珍贵的资料,它是A.《定军山》B.《歌女红牡丹》C.《渔光曲》D.《风云儿女》9、陈独秀在《敬告青年》一文中写道:国人而欲脱蒙昧时代……当以科学与人权并重。
以此文的发表为开端的运动是A.太平天国运动B.义和团运动C.新文化运动D.维新变法运动10、为集中全力纠正博古等人的“左倾”军事路线错误,会议委托张闻天起草《中央关于反对敌人五次“围剿”的总结的决议》这次会议应该是A.八七会议B.中共三大C.中共七大D.遵义会议11、1958年8月13日,《人民日报》社论写道:“这又一次生动地证明:“人有多大胆,地有多大产”,解放了的人民可以创造出史无前例的奇迹来······”。
高考调研 题组层级快练 地理 选修二
高考调研题组层级快练地理选修二1. 引言地理是高中阶段的一门重要学科,对于学生的综合素质和发展具有重要意义。
高考地理考试中,题组层级的快速训练对于提升学生成绩至关重要。
本文将针对地理选修二这一内容,介绍题组层级的快速训练方法,帮助学生在高考中取得好成绩。
2. 题组层级快练的重要性题组层级是高考地理考试中的一种题型,对于学生的综合运用能力和分析能力有很高的要求。
通过进行题组层级快练,学生可以熟悉题组层级题型的出题规律,提高解题速度和准确率。
此外,题组层级快练也有助于学生对地理知识的整合和巩固。
3. 题组层级快练的方法3.1 制定学习计划要进行题组层级快练,首先需要制定一个科学合理的学习计划。
根据地理选修二的内容,制定每周的学习目标和计划,并合理安排每天的学习时间。
坚持按计划学习,分阶段进行题组层级的快练,循序渐进提高解题能力。
3.2 系统学习题型知识点学习题组层级快练之前,必须要掌握题组层级题型的基本知识点。
通过系统学习教材和参考书,掌握地理选修二的相关知识点和概念。
了解题目要求和解题方法,为进行题组层级快练做好准备。
3.3 多做题目,培养解题思路进行题组层级快练的关键是多做题目,培养解题思路。
选择一些与地理选修二相关的题目进行练习,通过反复做题,加深对知识点的理解和记忆。
同时,在解题过程中要注意总结解题思路和方法,发现规律和技巧,提高解题的速度和准确率。
3.4 进行模拟考试进行题组层级快练的另一个重要环节是进行模拟考试。
选择一些真实高考地理题目,模拟真实考试的环境和时间,进行考前冲刺的训练。
在模拟考试中,能够更好地体验真实考试的紧张感和时间压力,提高应对考试的能力。
4. 学习资源推荐4.1 教材地理选修二的教材是进行题组层级快练的基础资源,学生可以根据教材进行系统的知识学习和复习。
4.2 参考书针对地理选修二的参考书也是一个很好的学习资源,学生可以选择适合自己的参考书进行查漏补缺和提高解题能力。
高考调研高一数学必修一题组层级快练答案
高考调研高一数学必修一题组层级快练答案1、下列表示正确的是()[单选题] *A、0={0}B、0={1}C、{x|x2 =1}={1,-1}(正确答案)D、0∈φ2、36、下列生活实例中, 数学原理解释错误的一项是( ) [单选题] *A. 从一条河向一个村庄引一条最短的水渠, 数学原理: 在同一平面内, 过一点有且只有一条直线垂直于已知直线(正确答案)B. 两个村庄之间修一条最短的公路, 其中的数学原理是:两点之间线段最短C. 把一个木条固定到墙上需要两颗钉子, 其中的数学原理是: 两点确定一条直线D. 从一个货站向一条高速路修一条最短的公路, 数学原理: 连结直线外一点与直线上各点的所有线段中, 垂线段最短.3、16.我国古代著作《九章算术》在世界数学史上首次正式引入负数,若气温升高时,气温变化记作,那么气温下降时,气温变化记作()[单选题] *A.-10℃(正确答案)B.-13℃C.+10℃D.+13℃4、14.在防治新型冠状病毒的例行体温检查中,检查人员将高出37℃的部分记作正数,将低于37℃的部分记作负数,体温正好是37℃时记作“0”。
记录一被测人员在一周内的体温测量结果分别为+1,-3,-5,+1,-6,+2,-4,那么,该被测者这一周中测量体温的平均值是(??)[单选题] *A.1℃B.31℃C.8℃(正确答案)D.69℃5、260°是第()象限角?[单选题] *第一象限第二象限第三象限(正确答案)第四象限6、19、如果点M是第三象限内的整数点,那么点M的坐标是()[单选题] *(-2,-1)(-2,-2)(-3,-1)(正确答案)(-3,-2)7、以A(3,2),B(6,5),C(1,10)为顶点的三角形是()[单选题] *A、锐角三角形B、锐角三角形C、直角三角形(正确答案)D、无法判断8、1、方程x2?-X=0 是(? ? )? ? ? ? ? ? 。
[单选题] *A、一元一次方程B、一元二次方程(正确答案)C、二元一次方程D、二元二次方程9、二次函数y=3x2-4x+5的二次项系数是()。
高考调研数学目录
目录
第九章 解析几何
第1课时 直线方程 题组层级快练(五十九)(word) 第2课时 两直线的位置关系 题组层级快练(六十)(word) 第3课时 圆的方程 题组层级快练(六十一)(word) 第4课时 直线与圆、圆与圆的位置关系 题组层级快练(六十二)(word) 第5课时 椭圆(一) 题组层级快练(六十三)(word) 第6课时 椭圆(二) 题组层级快练(六十四)(word) 第7课时 双曲线(一) 题组层级快练(六十五)(word)
目录
第5课时 三角函数的图像 题组层级快练(二十四)(word) 第6课时 三角函数的性质 题组层级快练(二十五)(word) 专题研究 三角函数的值域与最值 专题层级快练(二十六)(word) 第7课时 正、余弦定理 题组层级快练(二十七)(word) 专题研究 正、余弦定理应用举例 专题层级快练(二十八)(word)
第7页
目录
第五章 平面向量与复数
第1课时 向量的概念及线性运算 题组层级快练(二十九)(word) 第2课时 平面向量基本定理及坐标运算 题组层级快练(三十)(word) 第3课时 平面向量的数量积 题组层级快练(三十一)(word) 专题研究 平面向量的综合应用 专题层级快练(三十二)(word) 第4课时 复数 题组层级快练(三十三)(word)
第10页
目录
第八章 立体几何
第1课时 空间几何体的结构、三视图、直观图 题组层级快练(四十八)(word) 第2课时 空间几何体的表面积、体积 题组层级快练(四十九)(word) 专题研究 球与几何体的切接问题 专题层级快练(五十)(word) 第3课时 空间点、线、面间位置关系 题组层级快练(五十一)(word) 第4课时 直线、平面平行的判定及性质 题组层级快练(五十二)(word) 第5课时 直线、平面垂直的判定及性质 题组层级快练(五十三)(word)
高考调研层级快练语文答案
高考调研层级快练语文答案1、1“欢迎你到我家来拜访!”这句话表达得体。
[判断题] *对错(正确答案)2、1形散神不散是散文的主要特点之一。
形散主要指散文取材广泛自由,表现手法不拘一格;神不散指表达的主题必须明确集中。
[判断题] *对(正确答案)错3、下列词语中,加着重号字的注音不正确的一项是()[单选题] *A、偏僻(piān)杜撰(zhuàn)B、稀罕(gàn)溺爱(ruò)(正确答案)C、辜负(gū)风骚(sāo)D、愚蠢(chǔn)纨绔(kù)4、1祥林嫂是孙犁《荷花淀》中的人物形象。
[判断题] *对(正确答案)错5、1向非专业人士介绍工艺流程时应尽量使用专用术语,以使他们学到更多的专业知识。
[判断题] *对错(正确答案)6、关于《红楼梦》中人物形象的分析,正确的一项是() [单选题] *A.《红楼梦》中,晴雯性格温柔和顺,处事细心周到,人人称赞;袭人性情急躁直率,待人爱憎分明,受人怨谤。
二人性格迥异,却都走向悲剧结局,令人唏嘘。
B.黛玉是诗社中的佼佼者,“温柔敦厚”是姐妹们对其诗风的赞誉。
C.《红楼梦》中写史湘云有金麒麟、薛宝钗有金锁,是为了说明她们有显赫的家世,从而反衬出林黛玉出身的贫寒。
D.《红楼梦》中的刘姥姥来自社会底层,农村生活孕育了她精于世故又朴实善良的复杂性格。
(正确答案)7、“间隔”“亲密无间”的“间”读音都是“jiàn”。
[判断题] *对(正确答案)错8、22.下列词语中加点字的注音,不完全正确的一项是()[单选题] *A.着落(zhuó)粗犷(guǎng)字帖(tiè)屏息敛声(bǐng)B.瞭望(liáo)稽首(qī)侍候(shì)浮光掠影(nüè)(正确答案)C.麾下(huī)睥睨(pì)鲜妍(yán)战战兢兢(jīng)D.一霎(shà)翌日(yì)箴言(zhēn)刨根问底(páo)9、1《芝麻官餐馆》采用了夹叙夹议的方法,再现一位离休县长打破世俗观念开餐馆的同时,又表达了作者有感而发的人生思考,读来令人深深回味。
高考数学一轮复习全套课时作业1-1集合
题组层级快练1.1集合一、单项选择题1.下列各组集合中表示同一集合的是( )A .M ={(3,2)},N ={(2,3)}B .M ={2,3},N ={3,2}C .M ={(x ,y)|x +y =1},N ={y|x +y =1}D .M ={2,3},N ={(2,3)}2.集合M ={x ∈N |x(x +2)≤0}的子集个数为( )A .1B .2C .3D .4 3.已知集合A =⎩⎨⎧⎭⎬⎫x ∈Z |32-x ∈Z,则集合A 中的元素个数为( ) A .2 B .3 C .4 D .54.(2021·长沙市高三统一考试)若集合M ={x ∈R |-3<x<1},N ={x ∈Z |-1≤x ≤2},则M ∩N =( )A .{0}B .{-1,0}C .{-1,0,1}D .{-2,-1,0,1,2}5.(2021·山东新高考模拟)设集合A ={(x ,y)|x +y =2},B ={(x ,y)|y =x 2},则A ∩B =( )A .{(1,1)}B .{(-2,4)}C .{(1,1),(-2,4)}D .∅6.已知集合A ={x|log 2(x -2)>0},B ={y|y =x 2-4x +5,x ∈A},则A ∪B =( )A .[3,+∞)B .[2,+∞)C .(2,+∞)D .(3,+∞)7.已知集合A ={x ∈N |1<x<log 2k},集合A 中至少有3个元素,则( )A .k>8B .k ≥8C .k>16D .k ≥168.(2020·重庆一中月考)已知实数集R ,集合A ={x|log 2x<1},B ={x ∈Z |x 2+4≤5x},则(∁R A)∩B =( )A .[2,4]B .{2,3,4}C .{1,2,3,4}D .[1,4]9.(2021·郑州质检)已知集合A ={x|x>2},B ={x|x<2m ,m ∈R }且A ⊆∁R B ,那么m 的值可以是( )A .1B .2C .3D .410.已知集合A ={y |y =x +1x,x ≠0},集合B ={x|x 2-4≤0},若A ∩B =P ,则集合P 的子集个数为( ) A .2 B .4 C .8 D .16二、多项选择题11.(2021·沧州七校联考)设集合A =⎭⎬⎫⎩⎨⎧<<7221x x ,下列集合中,是A 的子集的是( ) A .{x|-1<x<1} B .{x|1<x<3} C .{x|1<x<2} D .∅12.设集合M ={x|(x -3)(x +2)<0},N ={x|x<3},则( )A .M ∩N =MB .M ∪N =NC .M ∩(∁R N)=∅D .M ∪N =R三、填空题与解答题13.集合A ={0,|x|},B ={1,0,-1},若A ⊆B ,则A ∩B =________,A ∪B =________,∁B A =________.14.(1)设全集U =A ∪B ={x ∈N *|lgx<1},若A ∩(∁U B)={m|m =2n +1,n =0,1,2,3,4},则集合B =________.(2)已知集合A ={x|log 2x<1},B ={x|0<x<c},c>0.若A ∪B =B ,则c 的取值范围是________.15.已知集合A ={x|1<x<3},集合B ={x|2m<x<1-m}.(1)若A ⊆B ,求实数m 的取值范围;(2)若A ∩B =(1,2),求实数m 的取值范围;(3)若A ∩B =∅,求实数m 的取值范围.16.已知集合A ={x|1<x<k},集合B ={y|y =2x -5,x ∈A},若A ∩B ={x|1<x<2},则实数k 的值为( )A .5B .4.5C .2D .3.517.设f(n)=2n +1(n ∈N ),P ={1,2,3,4,5},Q ={3,4,5,6,7},记P ^={n ∈N |f(n)∈P},Q ^={n ∈N |f(n)∈Q},则P ^∩(∁N Q ^)=( )A .{0,3}B .{0}C .{1,2}D .{1,2,6,7}18.(2018·课标全国Ⅱ,理)已知集合A ={(x ,y)|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .41.1集合 参考答案1.答案 B2.答案 B 解析 ∵M ={x ∈N |x(x +2)≤0}={x ∈N |-2≤x ≤0}={0},∴M 的子集个数为21=2.选B.3.答案 C4.答案 B 解析 由题意,得N ={x ∈Z |-1≤x ≤2}={-1,0,1,2},M ={x ∈R |-3<x<1},则M ∩N ={-1,0}.故选B.5.答案 C6.答案 C 解析 ∵log 2(x -2)>0,∴x -2>1,即x>3,∴A =(3,+∞),∴y =x 2-4x +5=(x -2)2+1>2,∴B =(2,+∞),∴A ∪B =(2,+∞).故选C.7.答案 C 解析 因为集合A 中至少有3个元素,所以log 2k>4,所以k>24=16.故选C.8.答案 B 解析 由log 2x<1,解得0<x<2,故A =(0,2),故∁R A =(-∞,0]∪[2,+∞),由x 2+4≤5x ,即x 2-5x +4≤0,解得1≤x ≤4,又x ∈Z ,所以B ={1,2,3,4}.故(∁R A)∩B ={2,3,4}.故选B.9.答案 A 解析 由B ={x|x<2m ,m ∈R },得∁R B ={x|x ≥2m ,m ∈R }.因为A ⊆∁R B ,所以2m ≤2,m ≤1.故选A.10.答案 B11.答案 ACD 解析 依题意得,A ={x|-1<x<log 27},∵2=log 24<log 27<log 28=3,∴选ACD.12.答案 ABC 解析 由题意知,M ={x|-2<x<3},N ={x|x<3},所以M ∩N ={x|-2<x<3}=M ,M ∪N =N ,因为∁R N ={x|x ≥3},所以M ∩(∁R N)=∅.故选ABC.13.答案 {0,1} {1,0,-1} {-1}解析 因为A ⊆B ,所以|x|∈B ,又|x|≥0,结合集合中元素的互异性,知|x|=1,因此A ={0,1},则A ∩B ={0,1},A ∪B ={1,0,-1},∁B A ={-1}.14.(1)答案 {2,4,6,8}解析 U ={1,2,3,4,5,6,7,8,9},A ∩(∁U B)={1,3,5,7,9},∴B ={2,4,6,8}.(2)答案 [2,+∞)解析 A ={x|0<x<2},由数轴分析可得c ≥2.15.答案 (1)(-∞,-2] (2)-1 (3)[0,+∞)解析 (1)由A ⊆B ,得⎩⎪⎨⎪⎧1-m>2m ,2m ≤1,1-m ≥3,得m ≤-2,即实数m 的取值范围为(-∞,-2].(2)由已知,得⎩⎪⎨⎪⎧2m ≤1,1-m =2⇒⎩⎪⎨⎪⎧m ≤12,m =-1,∴m =-1. (3)由A ∩B =∅,得 ①若2m ≥1-m ,即m ≥13时,B =∅,符合题意;②若2m<1-m ,即m<13时,需⎩⎪⎨⎪⎧m<13,1-m ≤1或⎩⎪⎨⎪⎧m<13,2m ≥3,得0≤m<13或∅,即0≤m<13. 综上知m ≥0,即实数m 的取值范围为[0,+∞).16.答案 D解析 B =(-3,2k -5),由A ∩B ={x|1<x<2},知k =2或2k -5=2,因为k =2时,2k -5=-1,A ∩B =∅,不合题意,所以k =3.5.故选D.17.答案 B解析 设P 中元素为t ,由方程2n +1=t ,n ∈N ,解得P ^={0,1,2},Q ^={1,2,3},∴P ^∩(∁N Q ^)={0}.18.答案A解析 方法一:由x 2+y 2≤3知,-3≤x ≤3,-3≤y ≤ 3.又x ∈Z ,y ∈Z ,所以x ∈{-1,0,1},y ∈{-1,0,1},所以A 中元素的个数为C 31C 31=9.故选A.方法二:根据集合A 的元素特征及圆的方程在坐标系中作出图象,如图,易知在圆x 2+y 2=3中有9个整点,即为集合A 的元素个数.故选A.。
高考数学一轮复习全套课时作业3-3-1导数的应用--极值与最值
题组层级快练3.3.1导数的应用--极值与最值一、单项选择题1.(2021·辽宁沈阳一模)设函数f(x)=xe x+1,则()A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=-1为f(x)的极大值点D.x=-1为f(x)的极小值点2.(2021·河北邯郸一中月考)若函数f(x)=ae x-sinx在x=0处有极值,则a的值为() A.-1B.0C.1D.e3.函数f(x)=12x-sinx在0,π2上的最小值和最大值分别是()A.π6-32,0 B.π4-1,0 C.π6-32,π4-1D.-12,124.(2021·杭州学军中学模拟)函数f(x)=xe-x,x∈[0,4]的最小值为()A.0 B.1e C.4e4D.2e25.若函数f(x)=x3-3x+a有3个不同的零点,则实数a的取值范围是()A.(-2,2)B.[-2,2]C.(-∞,-1)D.(1,+∞)6.若函数y=ax3+bx2取得极大值和极小值时的x的值分别为0和13,则()A.a-2b=0B.2a-b=0C.2a+b=0D.a+2b=07.设二次函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象可能是()二、多项选择题8.已知函数f(x)=x3-ax-1,以下结论正确的是()A.当a=0时,函数f(x)的图象的对称中心为(0,-1)B.当a≥3时,函数f(x)在(-1,1)上为单调递减函数C.若函数f(x)在(-1,1)上不单调,则0<a<3D.当a=12时,f(x)在[-4,5]上的最大值为159.(2021·山东临沂期末)已知函数f(x)=x+sinx-xcosx的定义域为[-2π,2π),则()A.f(x)为奇函数B.f(x)在[0,π)上单调递增C.f(x)恰有4个极大值点D.f(x)有且仅有4个极值点三、填空题与解答题10.已知函数f(x)=x3+ax2+bx+a2在x=1处取得极值10,则f(2)的值为________.11.(2021·内蒙古兴安盟模拟)已知f(x)=2x3-6x2+m(m为常数),在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为________.12.(2018·江苏)若函数f(x)=2x3-ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[-1,1]上的最大值与最小值的和为________.13.(2021·广东省高二期末)已知函数f(x)=13x3-4x+3.(1)求函数f(x)的单调区间;(2)求函数f(x)在区间[-3,5]上的最大值与最小值.14.已知函数f(x)=(x2-2x)e x(x∈R,e为自然对数的底数).(1)求函数f(x)的单调区间;(2)求函数f(x)在区间[0,m]上的最大值和最小值.15.(2021·天水一中诊断)若函数f(x)=ax22-(1+2a)·x+2lnx(a>0)a的取值范围是()B.(1,+∞)C.(1,2)D.(2,+∞)16.(2016·北京)设函数f(x)3-3x,x≤a,2x,x>a.(1)若a=0,则f(x)的最大值为________;(2)若f(x)无最大值,则实数a的取值范围是________.17.(2020·衡水中学调研卷)已知函数f(x)=xlnx.(1)求函数f(x)的极值点;(2)设函数g(x)=f(x)-a(x-1),其中a∈R,求函数g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数).3.3.1导数的应用--极值与最值参考答案1.答案D解析由f(x)=xe x +1,可得f ′(x)=(x +1)e x ,令f ′(x)>0可得x>-1,即函数f(x)在(-1,+∞)上单调递增;令f ′(x)<0可得x<-1,即函数f(x)在(-∞,-1)上单调递减,所以x =-1为f(x)的极小值点.故选D.2.答案C解析f ′(x)=ae x -cosx ,若函数f(x)=ae x -sinx 在x =0处有极值,则f ′(0)=a -1=0,解得a =1,经检验a =1符合题意.故选C.3.答案A解析函数f(x)=12x -sinx ,f ′(x)=12-cosx ,令f ′(x)>0,解得π3<x ≤π2,令f ′(x)<0,解得0≤x<π3,所以f(x)在0,π2上单调递增,所以f(x)min ==π6-32,而f(0)=0,=π4-1<0,故f(x)在区间0,π2上的最小值和最大值分别是π6-32,0.故选A.4.答案A解析f ′(x)=1-xe x,当x ∈[0,1)时,f ′(x)>0,f(x)单调递增,当x ∈(1,4]时,f ′(x)<0,f(x)单调递减,因为f(0)=0,f(4)=4e 4>0,所以当x =0时,f(x)有最小值,且最小值为0.故选A.5.答案A解析f ′(x)=3x 2-3,令f ′(x)=0,得x =±1.三次方程f(x)=0有3个根⇔f(x)极大值>0且f(x)极小值<0.∵x =-1为极大值点,x =1为极小值点,(-1)=2+a>0,(1)=a -2<0,∴-2<a<2.故选A.6.答案D解析y ′=3ax 2+2bx ,据题意,0,13是方程3ax 2+2bx =0的两根,∴-2b 3a =13,∴a +2b =0.故选D.7.答案C解析由f(x)在x =-2处取得极小值可知,当x<-2时,f ′(x)<0,则xf ′(x)>0;当-2<x<0时,f ′(x)>0,则xf ′(x)<0;当x >0时,f ′(x)>0,则xf ′(x)>0.故选C.8.答案ABC解析本题考查利用导数研究函数的单调性、极值、最值.y =x 3为R 上的奇函数,其图象的对称中心为原点,当a =0时,根据平移知识,函数f(x)的图象的对称中心为(0,-1),A 正确;由题意知f ′(x)=3x 2-a ,因为当-1<x<1时,3x 2<3,又a ≥3,所以f ′(x)<0在(-1,1)上恒成立,所以函数f(x)在(-1,1)上为单调递减函数,B 正确;f ′(x)=3x 2-a ,当a ≤0时,f ′(x)≥0,f ′(x)不恒等于0,此时f(x)在(-∞,+∞)上单调递增,不符合题意,故a>0.令f ′(x)=0,解得x =±3a3.因为f(x)在(-1,1)上不单调,所以f ′(x)=0在(-1,1)上有解,所以0<3a3<1,解得0<a<3,C 正确;令f ′(x)=3x 2-12=0,得x =±2.根据函数的单调性,f(x)在[-4,5]上的最大值只可能为f(-2)或f(5).因为f(-2)=15,f(5)=64,所以最大值为64,D 错误.故选ABC.9.答案ABD解析A 显然正确;∵f(x)=x +sinx -xcosx ,∴f ′(x)=1+cosx -(cosx -xsinx)=1+xsinx.当x ∈[0,π)时,f ′(x)>0,则f(x)在[0,π)上单调递增.显然f ′(0)≠0,令f ′(x)=0,得sinx =-1x ,分别作出函数y=sinx ,y =-1x的图象如图.由图可知,这两个函数的图象在区间[-2π,2π)上共有4个公共点,且两图象在这些公共点上都不相切,故f(x)在区间[-2π,2π)上有4个极值点,且只有2个极大值点.10.答案18解析f ′(x)=3x 2+2ax +b 1)=10,1)=0,2+a +b +1=10,+b +3=0,=4,=-11=-3,=3.当a =-3,b =3时,f ′(x)=3(x -1)2≥0,f(x)无极值,故舍去.当a =4,b =-11时,令f ′(x)=0,得x 1=1,x 2=-113.当x 变化时,f ′(x),f(x)的变化情况如下表:∴f(x)=x 3+4x 2-11x +16,f(2)=18.11.答案-37解析由已知可得,f ′(x)=6x 2-12x ,由6x 2-12x ≥0得x ≥2或x ≤0,因此当x ∈[2,+∞),(-∞,0]时f(x)单调递增,当x ∈[0,2]时f(x)单调递减,又因为x ∈[-2,2],所以当x ∈[-2,0]时f(x)单调递增,当x ∈[0,2]时f(x)单调递减,所以f(x)max =f(0)=m =3,故有f(x)=2x 3-6x 2+3,所以f(-2)=-37,f(2)=-5.因为f(-2)=-37<f(2)=-5,所以函数f(x)的最小值为f(-2)=-37.12.答案-3解析令f(x)=2x 3-ax 2+1=0⇒a =2x +1x2.令g(x)=2x +1x 2(x>0),g ′(x)=2-2x 3>0⇒x>1⇒g(x)在(0,1)上单调递减,在(1,+∞)上单调递增.∵有唯一零点,∴a =g(1)=2+1=3⇒f(x)=2x 3-3x 2+1.求导可知在[-1,1]上,f(x)min =f(-1)=-4,f(x)max =f(0)=1,∴f(x)min +f(x)max =-3.13.答案(1)函数f(x)的单调递增区间为(-∞,-2),(2,+∞),单调递减区间为(-2,2)(2)函数f(x)在区间[-3,5]上的最大值为743,最小值为-73思路(1)求导后,利用导数的符号可得函数的单调区间;(2)由(1)知,函数f(x)在[-3,-2)上单调递增,在[-2,2]上单调递减,在(2,5]上单调递增,根据单调性可得最大最小值.解析(1)f ′(x)=x 2-4,由f ′(x)>0,得x>2或x<-2;由f ′(x)<0,得-2<x<2,所以函数f(x)的单调递增区间为(-∞,-2),(2,+∞),单调递减区间为(-2,2).(2)由(1)知,函数f(x)在[-3,-2)上单调递增,在(-2,2)上单调递减,在(2,5]上单调递增,因为f(-3)=13×(-3)3-4×(-3)+3=6,f(2)=13×23-4×2+3=-73,f(-2)=13×(-2)3-4×(-2)+3=253,f(5)=13×53-4×5+3=743,所以函数f(x)在区间[-3,5]上的最大值为743,最小值为-73.14.答案略解析(1)f(x)=(x 2-2x)e x ,求导得f ′(x)=e x (x 2-2).因为e x >0,令f ′(x)=e x (x 2-2)>0,即x 2-2>0,解得x<-2或x> 2.令f ′(x)=e x (x 2-2)<0,即x 2-2<0,解得-2<x< 2.所以函数f(x)在(-∞,-2)和(2,+∞)上单调递增,在(-2,2)上单调递减.即函数f(x)的单调递增区间为(-∞,-2),(2,+∞),单调递减区间为(-2,2).(2)①当0<m ≤2时,因为f(x)在(-2,2)上单调递减,所以f(x)在区间[0,m]上的最大值为f(0)=0,f(x)在区间[0,m]上的最小值为f(m)=(m 2-2m)e m .②当2<m ≤2时,因为f(x)在(-2,2)上单调递减,f(x)在(2,+∞)上单调递增,且f(0)=f(2)=0,所以f(x)在[0,m]上的最大值为f(0)=0,f(x)在区间[0,m]上的最小值为f(2)=(2-22)e 2.③当m>2时,因为f(x)在(-2,2)上单调递减,f(x)在(2,+∞)上单调递增,且f(m)>0=f(0),所以f(x)在[0,m]上的最大值为f(m)=(m 2-2m)·e m ,f(x)在区间[0,m]上的最小值为f(2)=(2-22)e 2.15.思路把函数f(x)题,然后再通过分离参数的方法求出参数a 的取值范围.答案C 解析由f(x)=ax 22-(1+2a)x +2lnx(a>0,x >0),得导数f ′(x)=ax -(1+2a)+2x(x >0),∵函数f(x)=ax 22-(1+2a)x +2lnx(a>0)∴方程ax -(1+2a)+2x=0∴a =1x 在区间故a =1x∈(1,2),则a 的取值范围是(1,2).故选C.评说涉及函数的极值问题,往往要使用导数这个解题的工具,在解题时要注意运用等价转化的解题思想.16.答案(1)2(2)(-∞,-1)解析(1)若a =0,则f(x)3-3x ,x ≤0,2x ,x>0,当x>0时,-2x<0;当x ≤0时,f ′(x)=3x 2-3=3(x +1)·(x-1),令f ′(x)>0,得x<-1,令f ′(x)<0,得-1<x ≤0,所以函数f(x)在(-∞,-1)上单调递增,在(-1,0]上单调递减,所以函数f(x)在(-∞,0]上的最大值为f(-1)=2.综上可得,函数f(x)的最大值为2.(2)函数y =x 3-3x 与y =-2x 的大致图象如图所示,由图可知当f(x)无最大值时,a ∈(-∞,-1).17.答案(1)极小值点为x =1e,无极大值点(2)当a ≤1时,g(x)min =0,当1<a<2时,g(x)min =a -e a -1,当a ≥2时,g(x)min =a +e -ae 解析(1)f ′(x)=lnx +1,x>0,由f ′(x)=0,得x =1e .所以f(x)所以x =1e 是函数f(x)的极小值点,极大值点不存在.(2)g(x)=xlnx -a(x -1),则g ′(x)=lnx +1-a ,由g ′(x)=0,得x =e a -1.所以在区间(0,e a -1)上,g(x)单调递减,在区间(e a -1,+∞)上,g(x)单调递增.当e a -1≤1,即a ≤1时,在区间[1,e]上,g(x)单调递增,所以g(x)的最小值为g(1)=0.当1<e a-1<e,即1<a<2时,g(x)的最小值为g(e a-1)=a-e a-1.当e a-1≥e,即a≥2时,在区间[1,e]上,g(x)单调递减,所以g(x)的最小值为g(e)=a+e-ae.综上,当a≤1时,g(x)的最小值为0;当1<a<2时,g(x)的最小值为a-e a-1;当a≥2时,g(x)的最小值为a+e-ae.。
部编版四年级语文下册期末《层次段落》专项精选试卷 附答案
部编版四年级语文下册语文要素分类评价19.层次段落班级姓名得分时间:40分钟满分:100分一、读短文,完成练习。
(50分)茉莉的茎细长而挺拔,碧绿的叶子是椭圆形的,叶脉清晰可见。
远远望去,茉莉就像一位亭亭玉立的少女,楚楚动人。
茉莉一般在夏季开花。
它刚长花苞时,人们只能看见龙爪一样半开半合的萼片,而小小的花蕾常常藏而不露。
萼片长到一定程度,花蕾便露了出来。
这时的花蕾长得很快,不出几天就会慢慢开放。
完全开放的花朵很像荷花,只是很小,花冠比一毛钱硬币还要小。
茉莉的花朵雪白雪白的,花瓣是椭圆形的。
茉莉花的寿命很短,开花一到三天后,花瓣就会慢慢凋谢。
茉莉把自己的芳香和生命无私地献给了人们,人们常常称赞它的心灵像它的花朵一样美丽纯洁。
1.根据短文内容,在括号里填上恰当的词语。
(16分)()的茎()的叶脉()的花瓣()的花朵2.用“∥”为第2段分层,并写出层意。
(18分)第一层:第二层:第三层:3.短文第2段按顺序写了茉莉开花经历的三个阶段:→→。
(16分)二、[东城区]阅读短文,完成练习。
(50分)①我上小学的时候,唱歌有点儿跑调,和同学们在音乐课上一起唱歌的时候,我怕人家听出来,就不出声,只跟着“对口型”。
②我们的音乐老师可真厉害..,据说是刚从音乐学院毕业的大学生。
对于那个年代的一所普通小学来说,她简直就是一位光芒耀眼的大明星。
她的穿着总是干干净净的,眼睛亮亮的,嘴角挂着笑,声音像银铃一样好听。
③那天的音乐课,我照例又开始“对口型”,她轻轻地走到我身边小声问:“为什么你不唱出声呢?”④我有点儿难为情,支支吾吾地说:“我……不会……唱歌。
”她先是睁大了眼睛:“不会唱歌?”然后好像反应过来什么,说:“哦,你的意思是说书上的这些歌你不会。
”她翻了翻音乐课本,好像很随意地把书丢到一边,说:“没关系,那就唱你会的歌。
”⑤“啊?”我愣住了。
她说:“没关系,来,唱吧,我要听到你的声音。
”⑥接下来,她没有继续按课本教,而是让大家自由发挥,想起什么就唱什么:唱一首高兴的歌,一首春天的歌,一首跟朋友有关的歌……她弹着琴伴奏,有的小朋友根本没调子,她也伴奏得很开心。
(新课标)2020高考数学大一轮复习 解析几何题组层级快练-圆的方程及直线与圆的位置关系(文)(含解析)
题组层级快练(五十五)1.如果圆的方程为x 2+y 2+kx +2y +k 2=0,那么当圆面积最大时,圆心坐标为( ) A .(-1,1) B .(1,-1) C .(-1,0) D .(0,-1)答案 D解析 r =12k 2+4-4k 2=124-3k 2,当k =0时,r 最大.2.(2019·贵州贵阳一模)圆C 与x 轴相切于T(1,0),与y 轴正半轴交于A ,B 两点,且|AB|=2,则圆C 的标准方程为( ) A .(x -1)2+(y -2)2=2 B .(x -1)2+(y -2)2=2 C .(x +1)2+(y +2)2=4 D .(x -1)2+(y -2)2=4答案 A解析 由题意得,圆C 的半径为1+1=2,圆心坐标为(1,2),∴圆C 的标准方程为(x -1)2+(y -2)2=2,故选A.3.已知圆C :x 2+y 2+Dx +Ey +F =0,则“E=F =0且D<0”是“圆C 与y 轴相切于原点”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 圆C 与y 轴相切于原点⇔圆C 的圆心在x 轴上(设坐标为(a ,0)),且半径r =|a|.∴当E =F =0且D<0时,圆心为(-D 2,0),半径为|D 2|,圆C 与y 轴相切于原点;圆(x +1)2+y 2=1与y 轴相切于原点,但D =2>0,故选A.4.(2019·重庆一中一模)直线mx -y +2=0与圆x 2+y 2=9的位置关系是( ) A .相交 B .相切 C .相离 D .无法确定答案 A解析 方法一:圆x 2+y 2=9的圆心为(0,0),半径为3,直线mx -y +2=0恒过点A(0,2),而02+22=4<9,所以点A 在圆的内部,所以直线mx -y +2=0与圆x 2+y 2=9相交.故选A. 方法二:求圆心到直线的距离,从而判定.5.(2015·山东)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A .-53或-35B .-32或-23C .-54或-45D .-43或-34答案 D解析 由光的反射原理知,反射光线的反向延长线必过点(2,-3),设反射光线所在直线的斜率为k ,则反射光线所在直线的方程为y +3=k(x -2)即kx -y -2k -3=0,又因为反射光线与圆相切,所以|-3k -2-2k -3|k 2+1=1⇒12k 2+25k +12=0⇒k =-43,或k =-34,故选D 项. 6.已知圆C 关于x 轴对称,经过点(0,1),且被y 轴分成两段弧,弧长之比为2∶1,则圆的方程为( ) A .x 2+(y±33)2=43B .x 2+(y±33)2=13C .(x±33)2+y 2=43D .(x±33)2+y 2=13答案 C解析 方法一:(排除法)由圆心在x 轴上,则排除A ,B ,再由圆过(0,1)点,故圆的半径大于1,排除D ,选C.方法二:(待定系数法)设圆的方程为(x -a)2+y 2=r 2,圆C 与y 轴交于A(0,1),B(0,-1),由弧长之比为2∶1,易知∠OCA=12∠ACB =12×120°=60°,则tan60°=|OA||OC|=1|OC|,所以a =|OC|=33,即圆心坐标为(±33,0),r 2=|AC|2=12+(33)2=43.所以圆的方程为(x±33)2+y 2=43,选C. 7.(2019·保定模拟)过点P(-1,0)作圆C :(x -1)2+(y -2)2=1的两条切线,设两切点分别为A ,B ,则过点A ,B ,C 的圆的方程是( ) A .x 2+(y -1)2=2 B .x 2+(y -1)2=1 C .(x -1)2+y 2=4 D .(x -1)2+y 2=1答案 A解析 P ,A ,B ,C 四点共圆,圆心为PC 的中点(0,1),半径为12|PC|=12(1+1)2+22=2,则过点A ,B ,C 的圆的方程是x 2+(y -1)2=2.8.直线xsinθ+ycosθ=2+sinθ与圆(x -1)2+y 2=4的位置关系是( ) A .相离 B .相切 C .相交 D .以上都有可能答案 B解析 圆心到直线的距离d =|sinθ-2-sinθ|sin 2θ+cos 2θ=2. 所以直线与圆相切.9.(2013·山东,理)过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( ) A .2x +y -3=0 B .2x -y -3=0 C .4x -y -3=0 D .4x +y -3=0答案 A解析 如图,圆心坐标为C(1,0),易知A(1,1).又k AB ·k PC =-1,且k PC =1-03-1=12,∴k AB =-2.故直线AB 的方程为y -1=-2(x -1),即2x +y -3=0,故选A.另解:易知P ,A ,C ,B 四点共圆,其方程为(x -1)(x -3)+(y -0)(y -1)=0,即x 2+y 2-4x -y +3=0.又已知圆为x 2+y 2-2x =0, ∴切点弦方程为2x +y -3=0,选A.10.(2019·湖南师大附中月考)已知圆x 2+(y -1)2=2上任一点P(x ,y),其坐标均使得不等式x +y +m≥0恒成立,则实数m 的取值范围是( ) A .[1,+∞) B .(-∞,1] C .[-3,+∞) D .(-∞,-3]答案 A解析 如图,圆应在直线x +y +m =0的右上方,圆心C(0,1)到l 的距离为|1+m|2,切线l 1应满足|1+m|2=2,∴|1+m|=2,m =1或m =-3(舍去).从而-m≤-1,∴m ≥1.11.(2019·福建福州质检)若直线x -y +2=0与圆C :(x -3)2+(y -3)2=4相交于A ,B 两点,则CA →·CB →的值为( ) A .-1 B .0 C .1 D .6答案 B解析 联立⎩⎪⎨⎪⎧(x -3)2+(y -3)2=4,x -y +2=0,消去y ,得x 2-4x +3=0.解得x 1=1,x 2=3. ∴A(1,3),B(3,5).又C(3,3),∴CA →=(-2,0),CB →=(0,2). ∴CA →·CB →=-2×0+0×2=0.12.由直线y =x +1上的一点向圆(x -3)2+y 2=1引切线,则切线长的最小值为( ) A .1 B .2 2 C.7 D .3答案 C解析 设直线上一点P ,切点为Q ,圆心为M , 则|PQ|即为切线长,MQ 为圆M 的半径,长度为1,|PQ|=|PM|2-|MQ|2=|PM|2-1,要使|PQ|最小,即求|PM|最小,此题转化为求直线y =x +1上的点到圆心M 的最小距离,设圆心到直线y =x +1的距离为d ,则d =|3-0+1|12+(-1)2=22,∴|PM|最小值为22,|PQ|=|PM|2-1=(22)2-1=7,选C.13.以直线3x -4y +12=0夹在两坐标轴间的线段为直径的圆的方程为________.答案 (x +2)2+(y -32)2=254解析 对于直线3x -4y +12=0,当x =0时,y =3;当y =0时,x =-4.即以两点(0,3),(-4,0)为端点的线段为直径,则r =32+422=52,圆心为(-42,32),即(-2,32).∴圆的方程为(x +2)2+(y -32)2=254.14.从原点O 向圆C :x 2+y 2-6x +274=0作两条切线,切点分别为P ,Q ,则圆C 上两切点P ,Q 间的劣弧长为________. 答案 π解析 如图,圆C :(x -3)2+y 2=94,所以圆心C(3,0),半径r =32.在Rt△P OC 中,∠POC =π6.则劣弧PQ 所对圆心角为2π3.弧长为23π×32=π.15.若直线l :4x -3y -12=0与x ,y 轴的交点分别为A ,B ,O 为坐标原点,则△AOB 内切圆的方程为________. 答案 (x -1)2+(y +1)2=1解析 由题意知,A(3,0),B(0,-4),则|AB|=5.∴△AOB 的内切圆半径r =3+4-52=1,内切圆的圆心坐标为(1,-1).∴内切圆的方程为(x -1)2+(y +1)2=1.16.一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为27,求此圆的方程.答案 x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0解析 方法一:∵所求圆的圆心在直线x -3y =0上,且与y 轴相切, ∴设所求圆的圆心为C(3a ,a),半径为r =3|a|.又圆在直线y =x 上截得的弦长为27, 圆心C(3a ,a)到直线y =x 的距离为d =|3a -a|12+12. ∴有d 2+(7)2=r 2.即2a 2+7=9a 2,∴a =±1. 故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9. 方法二:设所求的圆的方程是(x -a)2+(y -b)2=r 2, 则圆心(a ,b)到直线x -y =0的距离为|a -b|2.∴r 2=(|a -b|2)2+(7)2.即2r 2=(a -b)2+14.①由于所求的圆与y 轴相切,∴r 2=a 2.② 又因为所求圆心在直线x -3y =0上, ∴a -3b =0.③ 联立①②③,解得a =3,b =1,r 2=9或a =-3,b =-1,r 2=9. 故所求的圆的方程是(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9. 方法三:设所求的圆的方程是x 2+y 2+Dx +Ey +F =0, 圆心为(-D 2,-E 2),半径为12D 2+E 2-4F.令x =0,得y 2+Ey +F =0.由圆与y 轴相切,得Δ=0,即E 2=4F.④又圆心(-D 2,-E2)到直线x -y =0的距离为|-D 2+E2|2,由已知,得⎝⎛⎭⎪⎪⎫|-D 2+E 2|22+(7)2=r 2,即(D -E)2+56=2(D 2+E 2-4F).⑤ 又圆心(-D 2,-E2)在直线x -3y =0上,∴D -3E =0.⑥ 联立④⑤⑥,解得D =-6,E =-2,F =1或D =6,E =2,F =1.故所求圆的方程是x 2+y 2-6x -2y +1=0 或x 2+y 2+6x +2y +1=0.17.(2019·杭州学军中学月考)已知圆C :x 2+y 2+2x +a =0上存在两点关于直线l :mx +y +1=0对称. (1)求实数m 的值;(2)若直线l 与圆C 交于A ,B 两点,OA →·OB →=-3(O 为坐标原点),求圆C 的方程. 答案 (1)m =1 (2)x 2+y 2+2x -3=0解析 (1)圆C 的方程为(x +1)2+y 2=1-a ,圆心C(-1,0). ∵圆C 上存在两点关于直线l :mx +y +1=0对称, ∴直线l :mx +y +1=0过圆心C. ∴-m +1=0,解得m =1.(2)联立⎩⎪⎨⎪⎧x 2+y 2+2x +a =0,x +y +1=0,消去y ,得2x 2+4x +a +1=0. 设A(x 1,y 1),B(x 2,y 2), Δ=16-8(a +1)>0,∴a<1. 由x 1+x 2=-2,x 1x 2=a +12,得y 1y 2=(-x 1-1)(-x 2-1)=a +12-1. ∴OA →·OB →=x 1x 2+y 1y 2=a +1-1=a =-3. ∴圆C 的方程为x 2+y 2+2x -3=0.。
快速划分段落层次能力训练题(附答案)
快速划分段落层次能力训练[1]1、我看见过波澜壮阔的大海,欣赏过水平如镜的西湖,却从没看见过漓江这样的水。
漓江的水真静啊,静得让你感觉不到它在流动;漓江的水真清啊,清得可以看见江底的沙石;漓江的水真绿啊,绿得仿佛那是一块无瑕的翡翠。
船桨激起的微波扩散出一道道水纹,才让你感觉到船在前进,岸在后移。
本段的结构模式是:()A、总叙——分叙——结叙型B、总叙——分叙型C、分叙——结叙型D、分叙——分叙型2、我攀登过峰峦雄伟的泰山,游览过红叶似火的香山,却从没看见过桂林这一带的山。
桂林的山真奇啊,一座座拔地而起,各不相连,像老人,像巨象,像骆驼,奇峰罗列,形态万千;桂林的山真秀啊,像翠绿的屏障,像新生的竹笋,色彩明丽,倒映水中;桂林的山真险啊,危峰兀立,怪石嶙峋,好像一不小心就会栽倒下来。
本段的结构模式是:()A、总叙——分叙——结叙型B、总叙——分叙型C、分叙——结叙型D、分叙——分叙型3、第二个节目是交换礼品。
每间牢房,每个人都准备了礼物,送给认识的或者不认识的战友,作为联欢的纪念品。
最多的礼物是“贺年片”,那是用小块的草纸做的,上面用红药水画上鲜红的五角星或者镰刀锤子,写上几句互相鼓励的话。
楼七室经过昼夜赶工,刻出了一百多颗红的、黄的、晶亮的五角星,分送给各个牢房的同志。
女室送给各室的是一幅幅绣了字的锦旗,那些彩色的线,是从他们的袜子上拆下来的……本段的结构模式是:()A、总叙——分叙——结叙型B、总叙——分叙型C、分叙——结叙型D、分叙——分叙型4、一个寒冷的冬天,南加州沃尔逊小镇上来了一群逃难的人,他们面呈菜色,疲惫不堪。
善良而朴实的沃尔逊人,家家烧火做饭,款待他们,这些逃难的人,显然很久没有吃到这么好的食物了,他们连一句感谢的话也顾不上说,就狼吞虎咽地吃起来。
本段的结构模式是:()A、总叙——分叙——结叙型B、总叙——分叙型C、分叙——结叙型D、分叙——分叙型5、年轻人留了下来,很快成了杰克逊大叔庄园里的一把好手。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C.x=-1D.x=-2
答案C
解析由题意可设直线方程为y=-(x- ),设A(x1,y1),B(x2,y2),联立方程 消元得4x2-12px+p2=0,∴x1+x2=3p.∴p=2,即抛物线方程为y2=4x,其准线方程为x=-1.
9.已知抛物线C:y2=8x与点M(-2,2),过C的焦点且斜率为k的直线与C交于A,B两点.若 · =0,则k=()
3.已知直线ax+y+1=0经过抛物线y2=4x的焦点,则直线与抛物线相交弦的弦长为
()
A.6B.7
C.8D.9
答案C
解析抛物线y2=4x的焦点F(1,0),点F在直线ax+y+1=0上,∴a+1=0,即a=-1,∴直线方程为x-y-1=0.联立 得x2-6x+1=0.设直线与抛物线交于点A(x1,y1),B(x2,y2),则x1+x2=6,∴|AB|=x1+x2+p=6+2=8.
题组层级快练
1.(2017·辽宁五校期末联考)已知AB是抛物线y2=2x的一条焦点弦,|AB|=4,则AB中点C的横坐标是()
A.2B.
C. D.
答案C
解析设A(x1,y1),B(x2,y2),∵|AB|=4,∴x1+ +x2+ =4,∴x1+x2=3.
∴C点横坐标为 ,故选C.
2.(2014·新课标全国Ⅱ,文)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,则|AB|=()
A.有且仅有一条B.有且仅有两条
C.有无穷条D.不存在
答案B
解析方法一:过抛物线y2=4x的焦点作一条直线与抛物线相交于A,B两点,
若直线AB的斜率不存在,则横坐标之和等于2,不适合.故设直线AB的斜率为k,则直线AB方程为y=k(x-1),代入抛物线y2=4x,得k2x2-2(k2+2)x+k2=0.
4.已知抛物线y2=4x的准线与x轴的交点为A,焦点为F,l是过点A且倾斜角为 的直线,则点F到直线l的距离等于()
A.1B.
C.2D.2
答案B
解析A(-1,0),F(1,0),直线的方程为y= (x+1),点F到直线y= (x+1)的距离d= = .
5.过抛物线y2=4x的焦点作一条直线与抛物线相交于A,B两点,它们的横坐标之和等于5,则这样的直线()
()
A.1B.2
C.3D.4
答案D
解析设A(x1,y1),B(x2,y2),则x1+x2=3,利用抛物线的定义可知,|AF|+|BF|=x1+x2+1=4,由图可知|AF|+|BF|≥|AB|⇒|AB|≤4,当直线AB过焦点F时,|AB|取得最大值4.
8.(2017·郑州第一次质量预测)已知抛物线y2=2px(p>0),过其焦点且斜率为-1的直线交抛物线于A,B两点,若线段AB的中点的横坐标为3,则该抛物线的准线方程为()
将x=ty+m代入y2=4x,得y2-4ty-4m=0,
A. B.6
C.12D.7
答案C
解析先求解直线的方程,再进一步根据抛物线的定义求解弦长.
∵F为抛物线C:y2=3x的焦点,∴F( ,0).
∴AB的方程为y-0=tan30°(x- ),即y= x- .
联立 得 x2- x+ =0.
∴x1+x2=- = ,即xA+xB= .
由于|AB|=xA+xB+p,所以|AB|= + =12.
11.(2017·河南豫东、豫北十所名校)如图所示,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于A,B两点,交其准线于点C,若|BC|= |BF|,且|AF|=4+2 ,则p的值为()
A.1B.2
C. D.3
答案B
解析过B作准线的垂线BB′,则|BB′|=|BF|,由|BC|= |BF|,得直线l的倾斜角为45°.设A(x0,y0),由|AF|=4+2 ,得x0- = |AF|=2+2 .∴(2+2 )+p=4+2 ,∴p=2.
∴(x1+2)(x2+2)+(y1-2)(y2-2)=0,
即x1x2+2(x1+x2)+4+y1y2-2(y1+y2)+4=0.④
由①②③④式,解得k=2.故选D.
10.抛物线y=2x2上两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,若x1x2=- ,则2m的值是()
A.3B.4
C.5D.6
答案A
解析由已知得kAB=-1,且AB的中点C(x0,y0)在直线y=x+m上,设直线AB的方程为y=-x+n,联立 消去y并整理得2x2+x-n=0,
依题意得, ∴n=1.又x1+x2=- ,∴x0=- ,y0=-x0+1= .
∵点C(x0,y0)在直线y=x+m上,∴ =- +m,解得m= ,∴2m=3,故选A.
A. B.
C. D.2
答案D
解析由题意知抛物线C的焦点坐标为(2,0),则直线AB的方程为y=k(x-2),将其代入y2=8x,得k2x2-4(k2+2)x+4k2=0.设A(x1,y1),B(x2,y2),
则x1+x2= ,x1x,y1-2)·(x2+2,y2-2)=0.
∵A,B两点的横坐标之和等于5,∴ =5,k2= ,k=± .
即这样的直线有且仅有两条.
方法二:设A(x1,y1),B(x2,y2),则x1+x2=5.
∴|AB|=x1+x2+p=5+2=7>2p=4.即|AB|>通径.
∴这样的直线有两条,选B.
6.已知抛物线y2=8x的焦点为F,直线y=k(x+2)与抛物线交于A,B两点,则直线FA与直线FB的斜率之和为()
12.(2017·四川成都一中模拟)已知F是抛物线y2=4x的焦点,点A,B在该抛物线上且位于x轴的两侧,OA⊥OB(其中O为坐标原点),则△AOB与△AOF面积之和的最小值是()
A.16B.8
C.8 D.18
答案C
解析设直线AB的方程为x=ty+m,
点A(x1,y1),B(x2,y2),直线AB与x轴的交点为M(m,0),
A.0B.2
C.-4D.4
答案A
解析设A(x1,y1),B(x2,y2),则联立 得k2x2+(4k2-8)x+4k2=0,所以x1x2=4.由kFA+kFB= + = + = = ,将x1x2=4代入,得kFA+kFB=0.
7.(2017·铜川一模)已知抛物线y2=2x的弦AB的中点的横坐标为 ,则|AB|的最大值为