山东省数学高二上学期文数第二次段考试卷

合集下载

山东省威海市文登一中高二数学上学期第二次段考试卷

山东省威海市文登一中高二数学上学期第二次段考试卷

2015-2016学年山东省威海市文登一中高二(上)第二次段考数学试卷(理科)一.选择题:(每小题5分,共10题)1 .符合下列条件的三角形有且只有一个的是()A.a=1,b=2,c=3 B.a=1,b=,∠A=30°C.a=1,b=2,∠A=100°D.b=c=1,∠B=45°2.在等比数列{a n}中,如果公比q>1,那么等比数列{a n}是()A.递增数列B.递减数列C.常数列D.递增数列或递减数列都有可能3.在△ABC中,若acosA=bcosB,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形4.函数f(x)=(x<0),取得最大值为()A.﹣2﹣2 B.2﹣2C.2﹣2 D.2+25.若{a n}是等差数列,首项a1>0,a4+a5>0,a4•a5<0,则使前n项和S n>0成立的最大自然数n的值为()A.4 B.5 C.7 D.86.如果方程+(m﹣1)x+m2﹣2=0的两个实根一个小于﹣1,另一个大于1,那么实数m 的取值范是()A.(﹣,)B.(﹣2,1)C.(0,1) D.(﹣2,0)7.如图所示的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则实数a+b的值为()1 20.5 1abA.B.C.D.8.对于任意实数a、b、c、d,下列命题:①若a>b,c≠0,则ac>bc;②若a>b,则ac2>bc2;③若ac2>bc2,则a>b;④若a>b,则<中.真命题个数为()A.1个B.2个C.3个D.4个9.已知三角形△ABC的三边长成公差为2的等差数列,且最大角的正弦值为,则这个三角形的周长是()A.18 B.21 C.24 D.1510.张先生从2005年起,每年1月1日到银行新存入a元(一年定期),若年利率为r保持不变,且每年到期存款自动转为新的一年定期,那么到2012年1月1日将所有存款及利息全部取回,他可取回的钱数为(单位为元)()A. B. C.a(1+r)7D.a(1+r)8二.填空题(每小题5分,共5题)11 .不等式≤x的解集是.12.不等式(a﹣2)x2+2(a﹣2)x﹣4<0对一切x∈R恒成立,则实数a的取值范围是.13.数列{a n}的前n项和为S n=n2+n+1,b n=(﹣1)n a n,n∈N*则数列{b n}的前50项的和为.14.等差数列{a n}中,若a4+a6+a8+a10+a12=50,则3a10﹣a14的值为.15.如图,一艘轮船按照北偏西40°的方向以30海里每小时的速度航行,一个灯塔原来在轮船的北偏东20°方向上,经过40分钟后,灯塔在轮船的北偏东65°方向上,则灯塔和轮船原来的距离为.三、解答题(共6小题,满分75分)16.在△ABC中,角A,B,C的对边分别为a,b,c,已知.(Ⅰ)求角B的大小;(Ⅱ)若b=,a+c=4,求△ABC的面积.17.(1)不等式ax2+5x﹣2>0解是,解不等式ax2﹣5x+a2﹣1>0;(2)求不等式|2x﹣1|+|x+2|≥4的解集.18.设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13 (Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.19.若a为实数,解关于x的不等式ax2+(a﹣2)x﹣2<0.20.在△ABC中,角A、B、C所对的边分别是a、b、c,且a2+c2﹣b2=ac.(1)求2sin2+sin2B的值.(2)若b=2,求△ABC面积的最大值.21.数列{a n}是首项a1=4的等比数列,且S3,S2,S4成等差数列,(1)求数列{a n}的通项公式;(2)若b n=log2|a n|,设T n为数列的前n项和,若T n≤λb n+1对一切n∈N*恒成立,求实数λ的最小值.2015-2016学年山东省威海市文登一中高二(上)第二次段考数学试卷(理科)参考答案与试题解析一.选择题:(每小题5分,共10题)1 .符合下列条件的三角形有且只有一个的是()A.a=1,b=2,c=3 B.a=1,b=,∠A=30°C.a=1,b=2,∠A=100°D.b=c=1,∠B=45°【考点】正弦定理的应用.【专题】计算题.【分析】A无解,因为三角形任意两边之和大于第三边,而这里a+b=c.B有2个解,由正弦定理可得 sinB=,故B=45°,或B=135°.C无解,由于a<b,∴A=100°<B,∴A+B>200°,这与三角形的内角和相矛盾.D有唯一解,∵b=c=1,∠B=45°,∴∠C=45°,∴∠A=90°.【解答】解:A无解,因为三角形任意两边之和大于第三边,而这里a+b=c,故这样的三角形不存在.B有2个解,由正弦定理可得,∴sinB=,故B=45°,或 B=135°.C无解,由于a<b,∴A=100°<B,∴A+B>200°,这与三角形的内角和相矛盾.D有唯一解,∵b=c=1,∠B=45°,∴∠C=45°,∴∠A=90°,故有唯一解.故选D.【点评】本题考查正弦定理的应用,三角形的解的个数判断,根据三角函数的值求角.根据三角函数的值求角是解题的难点.2.在等比数列{a n}中,如果公比q>1,那么等比数列{a n}是()A.递增数列B.递减数列C.常数列D.递增数列或递减数列都有可能【考点】等比数列的通项公式.【专题】等差数列与等比数列.【分析】对a1分类讨论即可得出单调性.【解答】解:在等比数列{a n}中,公比q>1,若a1>0,则数列{a n}是单调递增数列;若a1<0,则数列{a n}是单调递增数列.故选:D.【点评】本题考查了等比数列的单调性、分类讨论方法,考查了推理能力与计算能力,属于中档题.3.在△ABC中,若acosA=bcosB,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形【考点】三角形的形状判断.【专题】计算题.【分析】利用正弦定理化简已知的等式,再根据二倍角的正弦函数公式变形后,得到sin2A=sin2B,由A和B都为三角形的内角,可得A=B或A+B=90°,从而得到三角形ABC为等腰三角形或直角三角形.【解答】解:由正弦定理asinA=bsinB化简已知的等式得:sinAcosA=sinBcosB,∴sin2A=sin2B,∴sin2A=sin2B,又A和B都为三角形的内角,∴2A=2B或2A+2B=π,即A=B或A+B=,则△ABC为等腰或直角三角形.故选D【点评】此题考查了三角形形状的判断,涉及的知识有正弦定理,二倍角的正弦函数公式,以及正弦函数的图象与性质,其中正弦定理很好得解决了三角形的边角关系,利用正弦定理化简已知的等式是本题的突破点.4.函数f(x)=(x<0),取得最大值为()A.﹣2﹣2 B.2﹣2C.2﹣2 D.2+2【考点】函数的最值及其几何意义.【专题】不等式的解法及应用.【分析】由于x<0,可由x+≤﹣2,即可得到最大值.【解答】解:函数f(x)=(x<0)=x+﹣2≤﹣2﹣2=﹣(2+2),当且仅当x=,即x=﹣时,f(x)取得最大值﹣(2+2).故选A.【点评】本题考查函数的最值的求法,注意运用基本不等式,同时注意满足的条件:一正二定三等,属于基础题和易错题.5.若{a n}是等差数列,首项a1>0,a4+a5>0,a4•a5<0,则使前n项和S n>0成立的最大自然数n的值为()A.4 B.5 C.7 D.8【考点】等差数列的前n项和.【专题】等差数列与等比数列.【分析】由已知结合等差数列的单调性可得a4+a5>0,a5<0,由求和公式可得S9<0,S8>0,可得结论.【解答】解:∵{a n}是等差数列,首项a1>0,a4+a5>0,a4•a5<0,∴a4,a5必定一正一负,结合等差数列的单调性可得a4>0,a5<0,∴S9===9a5<0,S8==>0,∴使前n项和S n>0成立的最大自然数n的值为8故选D【点评】本题考查等差数列的前n项的最值,理清数列项的正负变化是解决问题的关键,属基础题.6.如果方程+(m﹣1)x+m2﹣2=0的两个实根一个小于﹣1,另一个大于1,那么实数m 的取值范是()A.(﹣,)B.(﹣2,1)C.(0,1) D.(﹣2,0)【考点】一元二次方程的根的分布与系数的关系.【分析】构建函数f(x)=+(m﹣1)x+m2﹣2,根据两个实根一个小于﹣1,另一个大于1,可得f(﹣1)<0,f(1)<0,从而可求实数m的取值范围.【解答】解:由题意,构建函数f(x)=+(m﹣1)x+m2﹣2∵两个实根一个小于﹣1,另一个大于1∴f(﹣1)<0,f(1)<0∴0<m<1故选C.【点评】本题以方程为载体,考查方程根的讨论,关键是构建函数,用函数思想求解.7.如图所示的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则实数a+b的值为()1 20.5 1abA.B.C.D.【考点】等比数列的性质;等差数列的性质.【专题】计算题.【分析】由题意和等差(等比)数列,分别求出第一列数、第二列数和第四行数,即求出a 和b的值,相加即可.【解答】解:由题意知,第一列数为:1,0.5,0.25,0.125;第二列数为:2,1,0.5,0.25;故第四行数为:0.125,0.25,0.375;故可得即a=0.5,b=0.375,则a+b=0.875=.故选C【点评】本题考查等差(等比)数列的通项公式的应用,利用表格给出条件,题目新颖,属基础题.8.对于任意实数a、b、c、d,下列命题:①若a>b,c≠0,则ac>bc;②若a>b,则ac2>bc2;③若ac2>bc2,则a>b;④若a>b,则<中.真命题个数为()A.1个B.2个C.3个D.4个【考点】不等式的基本性质.【专题】不等式的解法及应用.【分析】根据不等式的基本性质,逐一分析四个结论的真假,最后综合讨论结果可得答案.【解答】解:当c<0时,若a>b,则ac<bc,故①错误;当c=0时,若a>b,则ac2=bc2,故②错误;若ac2>bc2,则c2>0,则a>b,故③正确;若a>0>b,则>,故④错误;故真命题个数为1个,故选:A【点评】本题考查的知识点是不等式的基本性质,熟练掌握不等式的基本性质是解答的关键.9.已知三角形△ABC的三边长成公差为2的等差数列,且最大角的正弦值为,则这个三角形的周长是()A.18 B.21 C.24 D.15【考点】数列与三角函数的综合.【专题】综合题.【分析】设三角形的三边分别为a、b、c,且a>b>c>0,设公差为d=2,三个角分别为、A、B、C,则a﹣b=b﹣c=2,a=c+4,b=c+2,因为sinA=,所以A=60°或120°.若A=60°,因为三条边不相等,则必有角大于A,矛盾,故A=120°.由余弦定理能求出三边长,从而得到这个三角形的周长.【解答】解:不妨设三角形的三边分别为a、b、c,且a>b>c>0,设公差为d=2,三个角分别为、A、B、C,则a﹣b=b﹣c=2,a=c+4,b=c+2,∵sinA=,∴A=60°或120°.若A=60°,因为三条边不相等,则必有角大于A,矛盾,故A=120°.cosA====﹣.∴c=3,∴b=c+2=5,a=c+4=7.∴这个三角形的周长=3+5+7=15.故选D.【点评】本题考查三角形的周长的求法,考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.解题是要认真审题,注意余弦定理的合理运用.10.张先生从2005年起,每年1月1日到银行新存入a元(一年定期),若年利率为r保持不变,且每年到期存款自动转为新的一年定期,那么到2012年1月1日将所有存款及利息全部取回,他可取回的钱数为(单位为元)()A. B. C.a(1+r)7D.a(1+r)8【考点】等比数列的前n项和.【专题】等差数列与等比数列.【分析】由题意可得:到2012年1月1日将所有存款及利息全部=a(1+r)+a(1+r)2+…+a (1+r)7,利用等比数列的前n项和公式即可得出.【解答】解:由题意可得:2006年1月1日本息合计为:a(1+r);2007年1月1日本息合计为:a(1+r)+a(1+r)2,…,那么到2012年1月1日将所有存款及利息全部=a(1+r)+a(1+r)2+…+a(1+r)7=a(1+r)=元,故选:A.【点评】本题考查了等比数列的通项公式、前n项和公式,考查了推理能力与计算能力,属于中档题.二.填空题(每小题5分,共5题)11 .不等式≤x的解集是{x|﹣1≤x<0或x≥1}.【考点】其他不等式的解法.【专题】不等式的解法及应用.【分析】本题可以先移项再通分,再分类讨论,转化为整式不等式组,再解整式不等式组,得本题答案.【解答】解:∵≤x,∴,∴.∴.∴或,∴x≥1或﹣1≤x<0.∴不等式≤x的解集是{x|﹣1≤x<0或x≥1}.故答案为:{x|﹣1≤x<0或x≥1}.【点评】本题考查的是分式不等式的解法,可以移项通分后进行分类讨论,也可以移项通分后直接化成整式不等式,本题有一定的难度,属于中档题.12.不等式(a﹣2)x2+2(a﹣2)x﹣4<0对一切x∈R恒成立,则实数a的取值范围是(﹣2,2] .【考点】函数恒成立问题;二次函数的性质.【专题】计算题.【分析】当a﹣2=0,a=2时不等式即为﹣4<0,对一切x∈R恒成立,当a≠2时利用二次函数的性质列出a满足的条件并计算,最后两部分的合并即为所求范围.【解答】解:当a﹣2=0,a=2时不等式即为﹣4<0,对一切x∈R恒成立①当a≠2时,则须即∴﹣2<a<2 ②由①②得实数a的取值范围是(﹣2,2]故答案为:(﹣2,2]【点评】本题考查不等式恒成立的参数取值范围,考查二次函数的性质.注意对二次项系数是否为0进行讨论.13.数列{a n}的前n项和为S n=n2+n+1,b n=(﹣1)n a n,n∈N*则数列{b n}的前50项的和为55 .【考点】数列的求和.【专题】等差数列与等比数列.【分析】利用递推关系可得:.b n=(﹣1)n a n,n∈N*则数列{b n}的前50项的和=3+2[(2﹣3)+(4﹣5)+…+(48﹣49)+50],即可得出.【解答】解:数列{a n}的前n项和为S n=n2+n+1,∴当n=1时,a1=S1=3;当n≥2时,a n=S n﹣S n﹣1=(n2+n+1)﹣[(n﹣1)2+(n﹣1)+1]=2n.∴.b n=(﹣1)n a n,n∈N*则数列{b n}的前50项的和=3+2(2﹣3+ (50)=3+2[(2﹣3)+(4﹣5)+…+(48﹣49)+50]=3+2(﹣24+50)=55.故答案为:55.【点评】本题考查了递推关系的应用、分组求和方法,考查了推理能力与计算能力,属于中档题.14.等差数列{a n}中,若a4+a6+a8+a10+a12=50,则3a10﹣a14的值为20 .【考点】等差数列的通项公式.【专题】等差数列与等比数列.【分析】由等差数列的性质可得:50=a4+a6+a8+a10+a12=5a8,解得a8.3a10﹣a14=a10+(a6+a14)﹣a14=a10+a6=2a8,即可得出.【解答】解:由等差数列的性质可得:50=a4+a6+a8+a10+a12=5a8,解得a8=10.∴3a10﹣a14=a10+(a6+a14)﹣a14=a10+a6=2a8=20.故答案为:20.【点评】本题考查了等差数列的性质,考查了推理能力与计算能力,属于中档题.15.如图,一艘轮船按照北偏西40°的方向以30海里每小时的速度航行,一个灯塔原来在轮船的北偏东20°方向上,经过40分钟后,灯塔在轮船的北偏东65°方向上,则灯塔和轮船原来的距离为10(+1)海里.【考点】解三角形的实际应用.【专题】计算题;解三角形.【分析】首先将实际问题抽象成解三角形问题,再借助于正弦定理求出边长.【解答】解:由题意可知△A1A2M中,A1A2=20,∠A2A1N=60°,∠A1A2M=75°,∴∠M=45°,由正弦定理可得,∴A1M=10(+1),故答案为:10(+1)海里.【点评】本题考查解三角形的实际应用,考查学生的计算能力,比较基础.三、解答题(共6小题,满分75分)16.在△ABC中,角A,B,C的对边分别为a,b,c,已知.(Ⅰ)求角B的大小;(Ⅱ)若b=,a+c=4,求△ABC的面积.【考点】余弦定理;三角函数中的恒等变换应用.【专题】计算题;解三角形.【分析】(Ⅰ)由已知根据三角函数中的恒等变换应用可解得,从而得即可求B的值.(Ⅱ)由余弦定理可得ac=1,代入三角形面积公式即可得解.【解答】解:(Ⅰ)由已知得,即有,…∵sinA≠0,∴,∵cosB≠0,∴…∵B∈(0,π),∴.…(Ⅱ)由b2=a2+c2﹣2accosB=(a+c)2﹣2ac(1+cosB),∴,∴ac=1,…∴.…【点评】本题主要考查了余弦定理、三角形面积公式的应用,三角函数中的恒等变换的应用,属于基础题.17.(1)不等式ax2+5x﹣2>0解是,解不等式ax2﹣5x+a2﹣1>0;(2)求不等式|2x﹣1|+|x+2|≥4的解集.【考点】绝对值不等式的解法;一元二次不等式的解法.【专题】不等式的解法及应用.【分析】(1)由条件利用韦达定理求得a的值,从而求得不等式ax2﹣5x+a2﹣1>0的解集.(2)把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.【解答】解:(1)∵不等式ax2+5x﹣2>0解是,∴ +2=﹣×2=,求得a=﹣2,不等式ax2﹣5x+a2﹣1>0,即﹣2x2﹣5x+3>0,即2x2+5x﹣3<0,求得﹣3<x <,故不等式ax2﹣5x+a2﹣1>0的解集为{x|﹣3<x<}.(2)求不等式|2x﹣1|+|x+2|≥4,等价于①,或②,或.解①求得x<﹣2,解②求得﹣2≤x≤﹣1,解③求得x≥1,综上可得,原不等式的解集为{x|x≤﹣1,或x≥1}.【点评】本题主要考查绝对值不等式的解法,一元二次不等式的解法,韦达定理,体现了分类讨论、等价转化的数学思想,属于中档题.18.设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13 (Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.【考点】等差数列的通项公式;等比数列的通项公式;数列的求和.【专题】等差数列与等比数列.【分析】(Ⅰ)设{a n}的公差为d,{b n}的公比为q,根据等比数列和等差数列的通项公式,联立方程求得d和q,进而可得{a n}、{b n}的通项公式.(Ⅱ)数列的通项公式由等差和等比数列构成,进而可用错位相减法求得前n项和S n.【解答】解:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,则依题意有q>0且解得d=2,q=2.所以a n=1+(n﹣1)d=2n﹣1,b n=q n﹣1=2n﹣1.(Ⅱ),,①S n=,②①﹣②得S n=1+2(++…+)﹣,则===.【点评】本题主要考查等差数列的通项公式和用错位相减法求和.19.若a为实数,解关于x的不等式ax2+(a﹣2)x﹣2<0.【考点】一元二次不等式的解法.【专题】分类讨论;不等式的解法及应用.【分析】讨论a=0和a>0与a<0时,不等式的解集是什么,求出对应的解集即可.【解答】解:当a=0时,不等式化为﹣2x﹣2<0,解得{x|x>﹣1};当a≠0时,不等式化为(x+1)(ax﹣2)<0,若a>0,则不等式化为(x+1)(x﹣)<0,且﹣1<,∴不等式的解集为{x|﹣1<x<};若a<0,则不等式化为(x+1)(x﹣)>0,当=﹣1,即a=﹣2时,不等式化为(x+1)2>0,解得{x|x≠﹣1};当a<﹣2,即>﹣1时,不等式的解集为{x|x>,或x<﹣1};当﹣2<a<0,即<﹣1时,不等式的解集为{x|x<,或x>﹣1}.综上,a=0时,不等式的解集为{x|x>﹣1},a>0时,不等式的解集为{x|﹣1<x<},﹣2<a<0时,不等式的解集为{x|x<,或x>﹣1},a=﹣2时,不等式的解集为{x|x≠﹣1},a<﹣2时,不等式的解集为{x|x>,或x<﹣1}.【点评】本题考查了含有字母系数的不等式的解法与应用问题,也考查了分类讨论思想的应用问题,是中档题目.20.在△ABC中,角A、B、C所对的边分别是a、b、c,且a2+c2﹣b2=ac.(1)求2sin2+sin2B的值.(2)若b=2,求△ABC面积的最大值.【考点】余弦定理;正弦定理.【专题】解三角形.【分析】(1)由余弦定理化简已知可得cosB=,结合范围0<B<π,解得sinB,利用三角函数恒等变换的应用即可得解.(2)由题意可得a2+c2=ac+4,由基本不等式得a2+c2=ac+4≥2ac,解得:ac≤5,即可求得△ABC面积的最大值为2.【解答】解:(1)∵a2+c2﹣b2=ac,又由余弦定理可得:a2+c2﹣b2=2accosB,∴ac=2accosB,解得:cosB=,∵0<B<π,解得:sinB==.∴2sin2+sin2B=1﹣cos(A+C)+sin2B=1+cosB+2sinBcosB=1=.(2)∵b=2,a2+c2﹣b2=ac.∴a2+c2=ac+4.∴a2+c2=ac+4≥2ac,解得:ac≤5,∴S△ABC=acsinB≤=2.故△ABC面积的最大值为2.【点评】本题主要考查了余弦定理,三角函数恒等变换的应用,基本不等式的应用,三角形面积公式的应用,属于基础题.21.数列{a n}是首项a1=4的等比数列,且S3,S2,S4成等差数列,(1)求数列{a n}的通项公式;(2)若b n=log2|a n|,设T n为数列的前n项和,若T n≤λb n+1对一切n∈N*恒成立,求实数λ的最小值.【考点】函数恒成立问题;等比数列的通项公式;等差数列的性质;数列与不等式的综合.【专题】计算题.【分析】(1)根据S3,S2,S4成等差数列建立等式关系,然后可求出公比q,根据等比数列的性质求出通项公式即可;(2)先求出数列b n的通项公式,然后利用裂项求和法求出数列的前n项和T n,将λ分离出来得λ≥,利用基本不等式求出不等式右侧的最大值即可求出所求.【解答】解:(1)∵S3,S2,S4成等差数列∴2S2=S3+S4即2(a1+a2)=2(a1+a2+a3)+a4所以a4=﹣2a3∴q=﹣2a n=a1q n﹣1=(﹣2)n+1(2)b n=log2|a n|=log22n+1=n+1=T n=(﹣)+(﹣)+…+()=﹣λ≥==×。

山东省枣庄市第三中学2022-2023学年高二10月阶段检测数学试题及答案

山东省枣庄市第三中学2022-2023学年高二10月阶段检测数学试题及答案

枣庄三中高二年级10月阶段检测考试数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分,考试用时120分钟。

答卷前,考生务必将自己的姓名、准考证号、考试科目填涂在答题卡和答题纸规定的地方。

第Ⅰ卷(选择题共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设x ,y R ∈,向量(a x = ,1,1),(1b = ,y ,1),(2c = ,4-,2),且a c ⊥ ,//b c,则||(a b += )A .B C .4D .32.若直线30x my ++=与直线460mx y ++=平行,则(m =)A .12B .12-C .12或12-D .不存在3.在正四面体ABC P -中,棱长为2,且E 是棱AB 的中点,则PE BC ⋅的值为()A .-1B .1C .3D .374.直线04cos =++y x α的倾斜角的取值范围()A .[)π,0B .⎪⎭⎫⎝⎛⋃⎥⎦⎤⎢⎣⎡πππ,24,0C .⎪⎭⎫⎢⎣⎡⋃⎥⎦⎤⎢⎣⎡πππ,434,0D .⎥⎦⎤⎢⎣⎡4,0π5.如图所示,在棱长为1的正方体ABCD-A1B 1C 1D 1中,E,F 分别为棱AA 1,BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为()A B .22C .23D .556.已知长方体1111ABCD A B C D -中,1B C ,1C D 与底面ABCD 所成的角分别为60 和45 ,则异面直线1B C 和1C D 所成角的余弦值为A .4B .14C .6D .67.如图,等边三角形ABC 的边长为4,M ,N 分别为AB ,AC 的中点,沿MN 将△AMN 折起,使得平面AMN 与平面MNCB 所成的二面角为30°,则四棱锥A -MNCB 的体积为A .32B .32C .D .38.已知点o2,−3),o −3,−2).若直线G m +−−1=0与线段B 相交,则实数的取值范围是()A .3,44⎡⎤-⎢⎥⎣⎦B .1,5⎛⎫+∞ ⎪⎝⎭C .[)3,4,4⎛⎤-∞-⋃+∞ ⎥⎝⎦D .34,4⎡⎤-⎢⎥⎣⎦二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分)9.有下列四个命题,其中正确的命题有()A .已知A ,B ,C ,D 是空间任意四点,则0AB BC CD DA +++=B .若两个非零向量,AB CD 满足AB CD +=0 ,则AB CDC .分别表示空间向量的有向线段所在的直线是异面直线,则这两个向量可以是共面向量D .对于空间的任意一点O 和不共线的三点A ,B ,C ,若OP xOA yOB zOC =++(x ,y ,z ∈R),则P ,A ,B ,C 四点共面10.已知直线G m ++1=0,1,0,3,1,则下列结论正确的是()A .直线l 恒过定点0,1B .当=0时,直线l 的斜率不存在C .当=1时,直线l 的倾斜角为34D.当=2时,直线l 与直线B 垂直11.如图,PA ⊥平面ABCD ,正方形ABCD 边长为1,E 是CD 的中点,F 是AD 上一点,当BF ⊥PE 时,则()A .AF ∶FD =1∶1B .AF ∶FD =2∶1C .若PA =1,则异面直线PE 与BC 所成角的余弦值为23D .若PA =1,则直线PE 与平面ABCD 所成角为30°12.在棱长为1的正方体中1111ABCD A B C D -中,点P 在线段1AD 上运动,则下列命题正确的是()A .异面直线1C P 和1CB 所成的角为定值B .直线CD 和平面1BPC 平行C .直线CP 和平面11ABCD 所成的角为定值D .三棱锥1D BPC -的体积为定值.第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知(1A ,2,0),(3B ,1,2),(2C ,0,4),则点C 到直线AB 的距离为_____.14.如图,在空间直角坐标系中有直三棱柱ABC ­A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为________.15.若A (a ,0),B (0,b ),C (2-,2-)三点共线,则11a b+=.16.在空间直角坐标系中,定义:平面α的一般方程为)0,,,,(0222≠++∈=+++C B A R D C B A D Cz By Ax ,点),,(000z y x P 到平面α的距离222000CB A DCz By Ax d +++++=,则在底面边长与高都为2的正四棱锥中,底面中心O 到侧面的距离等于________.四、解答题(本大题共6题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)在三角形ABC 中,已知点A (4,0),B (-3,4),C (1,2).(1)求BC 边上中线所在的直线方程;(2)若某一直线过B 点,且y 轴上截距是x 轴上截距的2倍,求该直线的一般式方程.18.(12分)如图,四面体ABCD 中,E ,F 分别为AB ,DC 上的点,且AE =BE ,CF =2DF ,设DA DB DC ===a,(1)以{}a,b,c 为基底表示FE;(2)若∠ADB =∠BDC =∠ADC =60°,且433DA DB DC == =,,,求FE.19.(12分)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,M 是PA 的中点,PD ⊥平面ABCD ,且4PD CD ==,2AD =.(1)求AP 与平面CMB 所成角的正弦.(2)求二面角M CB P --的余弦值.20.(12分)已知两直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4(0<a <2)与两坐标轴的正半轴围成四边形.当a 为何值时,围成的四边形面积取最小值?并求最小值.21.(12分)如图所示,在直三棱柱ABC -A1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,EB 1=1,D ,F ,G 分别为CC 1,B 1C 1,A 1C 1的中点,EF 与B 1D 相交于点H .(1)求证:B 1D ⊥平面ABD .(2)求证:平面EGF ∥平面ABD .(3)求平面EGF 与平面ABD 的距离.22.(12分)如图,已知SA 垂直于梯形ABCD 所在的平面,矩形SADE 的对角线交于点F ,G 为SB 的中点,2ABC BAD π∠=∠=,112SA AB BC AD ====.(1)求证:BD //平面A E G ;(2)求平面SCD 与平面ESD 夹角的余弦值;(3)在线段EG 上是否存在一点H ,使得BH 与平面SCD 所成角的大小为6π?若存在,求出GH 的长;若不存在,说明理由.枣庄三中高二年级10月阶段检测考试数学答案一单选题DBAC DAAC 二、多项选择题9.BD 10.BD 11.AC 12.ABD 三、填空题13.14.5515.12-16.552四、解答题(17.(1)∵B (-3,4),C (1,2),∴线段BC 的中点D 的坐标为(-1,3),…………………………………………………2分又BC 边上的中线经过点A (4,0),∴y =x -4),即3x +5y -12=0,故BC 边上中线所在的直线方程3+5−12=0.…………………………………………5分(2)当直线在x 轴和y 轴上的截距均为0时,可设直线的方程为y =kx ,代入点B (-3,4),则4=-3k ,解得k =−43,所以所求直线的方程为y =−43x ,即4x +3y =0;……………………………………………7分当直线在x 轴和y 轴上的截距均不为0时,可设直线的方程为+2=1,代入点B (-3,4),则−3+42=1,解得m =−1,所以所求直线的方程为2x +y +2=0,………………………………………………………9分综上所述,该直线的一般式方程为4x +3y =0或2x +y +2=0.……………………………10分18.如图所示,连接DE .因为FE ―→=FD ―→+DE ―→,FD ―→=-DF ―→=-13DC ―→,DE ―→=12(DA ―→+DB ―→),所以FE ―→=12a +12b -13c .………………………………………………………6分|FE ―→|2+12b -13c =14a 2+14b 2+19c 2+12a ·b -13a ·c -13b ·c =14+14×+19×+12×××12-13×××12-13×××12=274.所以|FE ―→|=332.………………………………………………12分19.(1)∵ABCD 是矩形,∴AD CD ⊥,又∵PD ⊥平面ABCD ,∴PD AD ⊥,PD CD ⊥,即PD ,AD ,CD 两两垂直,∴以D 为原点,DA ,DC ,DP 分别为x 轴,y 轴,z 轴建立如图空间直角坐标系,…1分由4PD CD ==,2AD =,得()2,0,0A ,()2,4,0B ,()0,4,0C ,()0,0,0D ,()0,0,4P ,()1,0,2M ,则()2,0,4AP =- ,()2,0,0BC =- ,()1,4,2MB =-,.………………………………2分设平面CMB 的一个法向量为()1111,,n x y z = ,则1100BC n MB n ⎧⋅=⎪⎨⋅=⎪⎩,即111120420x x y z -=⎧⎨+-=⎩,令11y =,得10x =,12z =,∴()10,1,2n =.………………………………………………4分∴1114cos ,5AP n AP n AP n ⋅==⋅,故AP 与平面CMB 所成角的正弦值为45..……6分(2)由(1)可得()0,4,4PC =-,.………………………………………………7分设平面PBC 的一个法向量为()2222,,n x y z=,则2200BC n PC n ⎧⋅=⎪⎨⋅=⎪⎩,即22220440x y z -=⎧⎨-=⎩,令21y =,得20x =,21z =,∴()20,1,1n =,……10分∴12cos ,10n n ==,故二面角M CB P --的余弦值为10……………12分20.解:两直线l 1:a (x -2)=2(y -2),l 2:2(x -2)=-a 2·(y -2),都过点(2,2),………2分如图:设两直线l 1,l 2的交点为C ,且它们的斜率分别为k 1和k 2,则k 1=a 2∈(0,1),k 2=-2a2∈∞∵l 1与y 轴的交点A 的坐标为(0,2-a ),l 2与x 轴的交点B 的坐标为(2+a 2,0).…………6分∴S OACB =S △OAC +S △OCB =12(2-a )·2+12·(2+a 2)·2=a 2-a +4+154.……………10分∴当a =12时,四边形OACB 的面积最小,其值为154.……………………………………12分21.如图所示,建立空间直角坐标系,设A 1(a ,0,0),则B 1(0,0,0),F(0,1,0),E(0,0,1),A(a,0,4),B(0,0,4),D(0,2,2),G (2,1,0).(1)B 1D →=(0,2,2),AB →=(-a ,0,0),BD →=(0,2,-2).∴B 1D →·AB →=0+0+0=0,B 1D →·BD →=0+4-4=0.∴B 1D ⊥AB,B 1D ⊥BD.又AB∩BD=B,∴B 1D ⊥平面ABD.………………………………4分(2)∵AB →=(-a ,0,0),BD →=(0,2,-2).GF →=(-2,0,0),EF →=(0,1,-1),∴GF →=12AB →,EF →=12BD →.∴GF ∥AB,EF ∥BD.又GF∩EF=F,AB∩BD=B,∴平面EGF ∥平面ABD.…………………………………8分(3)方法一:由(1)(2)知DH 为平面EFG 与平面ABD 的公垂线段.设B 1H →=λB 1D →=(0,2λ,2λ),则EH →=(0,2λ,2λ-1),EF →=(0,1,-1).∵EH →与EF →共线,∴2λ1=2λ−1−1,即λ=14,∴B H →=(0,12,12),∴HD →=(0,32,32),∴|HD →∴平面EGF 与平面ABD ………………………………12分方法二:由(2)知平面EGF ∥平面ABD,设平面ABD 的法向量为n=(x,y,z),则n ⊥AB →,n ⊥BD →,∴解得x =0,y =z,取z=1,则n=(0,1,1),∵ED →=(0,2,1),∴d=即平面EGF 与平面ABD ………………………………………………12分22.(1)连接FG .在△SBD 中,F 、G 分别为,SD SB 的中点,所以//FG BD .又因为FG ⊂平面A E G ,BD ⊄平面A E G ,所以//BD 平面A E G .……………………4分(2)因为SA ⊥平面ABCD ,,AB AD ⊂平面ABCD ,所以,SA A S B A A D ⊥⊥.又2BAD π∠=,所以AB AD ⊥.以,,AB AD AS为正交基底建立如图所示的空间直角坐标系A xyz -.则()0,0,0A ,()()()()()1,0,0,1,1,0,0,2,020110,0,,1,0,,2,1,,2B G C D S E ⎛⎫ ⎪⎝⎭.()1,1,0CD =-,()1,1,1SC =- .设平面SCD 的一个法向量为(),,m x y z = .则00m CD m SC ⎧⋅=⎨⋅=⎩,即00x y z y z -+=⎧⎨+-=⎩,令1x =,得1,2y z ==.所以平面SCD 的一个法向量为()1,1,2m =.又平面ESD 的一个法向量为()1,0,0AB =.所以cos ,6||||m AB m AB m AB ⋅===⨯ 所以平面SCD 与平面ESD夹角的余弦值为.………………………………………8分(3)假设存在点H ,设11(,2,)22GH GE λλλλ==- ,则1111(,2,)2222BH BG GE λλλλ=+=--+ .由(2)知,平面SCD 的一个法向量为()1,1,2m =.则1sin cos ,62m BH π== ,即2(10)λ-=,所以1λ=.故存在满足题意的点H ,此时||2GH GE == (12)分。

山东省济宁市2024-2025学年高二上学期9月月考数学试题含答案

山东省济宁市2024-2025学年高二上学期9月月考数学试题含答案

济宁市高二年级第一学期九月模块测试数学试题(答案在最后)注意事项:1.答卷前,先将自己的考生号等信息填写在试卷和答题纸上,并在答题纸规定位置贴条形码. 2.本试卷满分150分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第2页,第Ⅱ卷为第3页至第4页.3.选择题的作答:每小题选出答案后,用28铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.4.非选择题的作答:用0.5mm黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.第Ⅰ卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.以下事件是随机事件的是()A.标准大气压下,水加热到100C ,必会沸腾B.走到十字路口,遇到红灯C.长和宽分别为,a b的矩形,其面积为abD.实系数一元一次方程必有一实根【答案】B【解析】【分析】根据随机事件的概念判断即可【详解】解:A.标准大气压下,水加热到100℃必会沸腾,是必然事件;故本选项不符合题意;B.走到十字路口,遇到红灯,是随机事件;故本选项符合题意;C.长和宽分别为,a b的矩形,其面积为ab是必然事件;故本选项不符合题意;D.实系数一元一次方程必有一实根,是必然事件.故本选项不符合题意.故选:B.2.抽查10件产品,设事件A:至少有两件次品,则A的对立事件为A.至多两件次品B.至多一件次品C.至多两件正品D.至少两件正品【答案】B【解析】【详解】试题分析:事件A 不包含没有次品或只有一件次品,即都是正品或一件次品9件正品,所以事件A 的对立事件为至多一件次品.故B 正确.考点:对立事件.3.两名同学分3本不同的书,其中一人没有分到书,另一人分得3本书的概率为()A.12B.14C.13D.16【答案】B 【解析】【分析】列举出所有的可能事件,结合古典概型概率计算公式,计算出所求概率.【详解】两名同学分3本不同的书,记为,,a b c ,基本事件有(0,3),(1a ,2),(1b ,2),(1c ,2),(2,1a ),(2,1b ),(2,1c ),(3,0),共8个,其中一人没有分到书,另一人分到3本书的基本事件有2个,∴一人没有分到书,另一人分得3本书的概率p =28=14.故选:B4.掷一个骰子的试验,事件A 表示“小于5的偶数点出现”,事件B 表示“小于5的点数出现”,则一次试验中事件A B +发生的概率为()A.13B.12C.23D.56【答案】C 【解析】【分析】由互斥事件的概率可知(()(1())P A B P A P B +=+-,从而得解.【详解】由已知得:1()3P A =,2()3P B =,事件B 表示“小于5的点数出现”,则事件B 表示“出现5点或6点”故事件A 与事件B 互斥,122()()(1())(1)333P A B P A P B ∴+=+-=+-=故选:C5.直三棱柱111ABC A B C -中,若1,,CA a CB b CC c ===,则1A B = ()A.a b c+-r r r B.a b c-+r r r C.a b c -++D.a b c-+- 【答案】D 【解析】【分析】由空间向量线性运算法则即可求解.【详解】()11111A A B B a b B A B c CC C CB =+=-+=-+--+.故选:D .6.已知空间向量0a b c ++=,2a = ,3b = ,4c = ,则cos ,a b = ()A.12B.13C.12-D.14【答案】D 【解析】【分析】设,,AB a BC b CA c ===,在ABC V 中由余弦定理求解.【详解】空间向量0a b c ++= ,2a = ,3b = ,4c =,则,,a b c三向量可能构成三角形的三边.如图,设,,AB a BC b CA c === 2a = ,则ABC V 中,||2,||3,||4AB BC CA === 2a =,222||||cos ,cos 2AB BC CA a b ABC AB BC+-∴=-∠=-⨯⨯ 491612234+-=-=⨯⨯.故选:D7.端午节放假,甲回老家过节的概率为13,乙,丙回老家过节的概率分别为11,45.假定三人的行动相互之间没有影响,那么这段时间内至少1人回老家过节的概率为()A.5960 B.35 C.12 D.160【答案】B【解析】【分析】这段时间内至少1人回老家过节的对立事件是这段时间没有人回老家过节,由此能求出这段时间内至少1人回老家过节的概率.【详解】端午节放假,甲回老家过节的概率为13,乙,丙回老家过节的概率分别为11,45.假定三人的行动相互之间没有影响,这段时间内至少1人回老家过节的对立事件是这段时间没有人回老家过节,∴这段时间内至少1人回老家过节的概率为:1113 11113455 p⎛⎫⎛⎫⎛⎫=----=⎪⎪⎪⎝⎭⎝⎭⎝⎭.故选:B.8.在调查运动员是否服用过兴奋剂的时候,给出两个问题作答,无关紧要的问题是:“你的身份证号码的尾数是奇数吗?”敏感的问题是:“你服用过兴奋剂吗?”然后要求被调查的运动员掷一枚硬币,如果出现正面,就回答第一个问题,否则回答第二个问题.由于回答哪一个问题只有被测试者自己知道,所以应答者一般乐意如实地回答问题.如我们把这种方法用于300个被调查的运动员,得到80个“是”的回答,则这群人中服用过兴奋剂的百分率大约为()A.4.33%B.3.33%C.3.44%D.4.44%【答案】B【解析】【分析】推理出回答第一个问题的150人中大约有一半人,即75人回答了“是”,故回答服用过兴奋剂的人有5人,从而得到答案.【详解】因为抛硬币出现正面朝上的概率为12,大约有150人回答第一个问题,又身份证号码的尾数是奇数或偶数是等可能的,在回答第一个问题的150人中大约有一半人,即75人回答了“是”,共有80个“是”的回答,故回答服用过兴奋剂的人有5人,因此我们估计这群人中,服用过兴奋剂的百分率大约为5150≈3.33%.故选:B二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,选对但不全的得部分分,有选错的得0分.9.在平行六面体ABCD A B C D -''''中,若AB 所在直线的方向向量为(2,1,3)-,则C D ''所在直线的方向向量可能为()A.(2,1,3)B.(2,1,3)--C.(4,2,6)-D.(4,2,6)-【答案】BC 【解析】【分析】由已知可得//AB C D '',所以它们的方向向量共线,利用向量共线的坐标关系,即可判断各个选项.【详解】由已知可得//AB C D '',故它们的方向向量共线,对于B 选项,(2,1,3)(2,1,3)--=--,满足题意;对于C 选项,(4,2,6)2(2,1,3)-=-,满足题意;由于A 、D 选项不满足题意.故选:BC.10.下列各组事件中,是互斥事件的是()A.一个射手进行一次射击,命中环数大于8与命中环数小于6B.统计一个班的数学成绩,平均分不低于90分与平均分不高于90分C.播种100粒菜籽,发芽90粒与发芽80粒D.检验某种产品,合格率高于70%与合格率低于70%【答案】ACD 【解析】【分析】根据互斥事件的定义,两个事件不会同时发生,命中环数大于8与命中环数小于6,发芽90粒与发芽80粒,合格率高于0070与合格率为0070均为互斥事件,而平均分数不低于90分与平均分数不高于90分,当平均分为90分时可同时发生,即得解.【详解】根据互斥事件的定义,两个事件不会同时发生,对于A ,一个射手进行一次射击,命中环数大于8与命中环数小于6,为互斥事件;对于B ,统计一个班级数学期中考试成绩,平均分数不低于90分与平均分数不高于90分当平均分为90分时可同时发生,不为互斥事件;对于C ,播种菜籽100粒,发芽90粒与发芽80粒,为互斥事件;对于D ,检查某种产品,合格率高于0070与合格率为0070,为互斥事件;故选:ACD.11.已知点P 为三棱锥O ABC -的底面ABC 所在平面内的一点,且12OP OA mOB nOC =+-(m ,n R ∈),则m ,n 的值可能为()A.1m =,12n =- B.12m =,1n = C.12m =-,1n =- D.32m =,1n =【答案】CD 【解析】【分析】根据平面向量基本定理,结合空间向量加法的几何意义进行求解即可.【详解】因为点P 为三棱锥O ABC -的底面ABC 所在平面内的一点,所以由平面向量基本定理可知:()()AP y AC z AB AO OP y AO OC z AO OB =+⇒+=+++ ,化简得:(1)OP y z OA yOC zOB =--++,显然有11y z y z --++=,而12OP OA mOB nOC =+- ,所以有11122m n m n +-=⇒-=,当1m =,12n =-时,32m n -=,所以选项A 不可能;当12m =,1n =时,12m n -=-,所以选项B 不可能;当12m =-,1n =-时,12m n -=,所以选项C 可能;当32m =,1n =时,12m n -=,所以选项D 可能,故选:CD第Ⅱ卷(非选择题)三.填空题:本题共3小题,每小题5分,共15分.12.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.【答案】34【解析】【详解】从长度分别为2,3,4,5的四条线段中任意取出三条这一事件共有4种,而不能构成三角形的情形为2,3,5.所以这三条线段为边可以构成三角形的概率是P =34.13.已知事件A ,B ,C 两两互斥,且()0.3P A =,()0.6P B =,()0.2P C =,则()P A B C ⋃⋃=______.【答案】0.9##910【解析】【分析】由互斥事件与对立事件的相关公式求解【详解】由题意得()1()0.4P B P B =-=,则()()()()0.9P A P P A B C B P C ⋃⋃=++=.故答案为:0.914.在长方体1111ABCD A B C D -中,122AB AA AD ===,以D 为原点,DA ,DC ,1DD方向分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,则1AC =______,若点P 为线段AB 的中点,则P 到平面11A BC 距离为______.【答案】①.(1,2,2)-②.6【解析】【分析】第一空,根据向量的坐标运算可得答案;第二空,求出平面11A BC 的法向量,利用向量法求点到平面的距离即可得解.【详解】如图,建立空间直角坐标系,因为122AB AA AD ===,则(1,0,0)A ,1(0,2,2)C ,1(1,0,2)A ,(1,2,0)B ,(1,1,0)P ,所以1(1,2,2)AC =- ,11(1,2,0)A C =- ,1(0,2,2)A B =- ,(0,1,0)PB =,设平面11A BC 的法向量为(,,)n x y z = ,则11100A B n A C n ⎧⋅=⎪⎨⋅=⎪⎩,即22020y z x y -=⎧⎨-+=⎩,令1y =,则2,1x z ==,故(2,1,1)n =,则P 到平面11A BC距离为66n PB d n⋅== .故答案为:(1,2,2)-;66.四.解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(1)已知2,3a b == ,且a b ⊥ 求2a b a b +⋅()(-)(2)已知a b a b +=- ,求a b⋅ 【答案】(1)1-(2)0【解析】【分析】(1)由已知,利用向量数量积运算,结合向量垂直的向量表示即可求解;(2)由a b a b +=-,两边平方,展开运算即可.【详解】(1)因为2,3a b == ,且a b ⊥ ,所以22222222031a b a b a a b b +⋅+⋅-=⨯+-=- ()(-)=.(2)因为a b a b +=- ,则22a b a b +=- ,所以222222a a b b a a b b +⋅+=-⋅+ ,化简得22a b a b ⋅=-⋅ ,所以0a b ⋅=.16.已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i )试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.【答案】(1)3,2,2(2)(i)见解析(ii)5 21【解析】【详解】分析:(Ⅰ)结合人数的比值可知应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i)由题意列出所有可能的结果即可,共有21种.(ii)由题意结合(i)中的结果和古典概型计算公式可得事件M发生的概率为P(M)=5 21.详解:(Ⅰ)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i)从抽出的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.(ii)由(Ⅰ),不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共5种.所以,事件M发生的概率为P(M)=5 21.点睛:本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识.考查运用概率知识解决简单实际问题的能力.17.甲、乙二人进行一次围棋比赛,采用5局3胜制,约定先胜3局者获得这次比赛的胜利,同时比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(1)求再赛2局结束这次比赛的概率;(2)求甲获得这次比赛胜利的概率.【答案】(1)0.52(2)0.648【解析】【分析】(1)再赛2局结束这次比赛分“第三、四局甲胜”与“第三、四局乙胜”两类情况,根据根据互斥事件的概率和及独立事件同时发生的概率求解可得;(2)由题意,甲获得这次比赛胜利只需后续比赛中甲先胜两局即可,根据互斥事件的概率和及独立事件同时发生的概率求解即可.【小问1详解】用i A 表示事件“第i 局甲胜”,j B 表示事件“第j 局乙胜”(,3,4,5i j =),设“再赛2局结束这次比赛”为事件A ,则3434A A A B B =+,由于各局比赛结果相互独立,且事件34A A 与事件34B B 互斥.所以()()()()()()()()343434343434P A P A A B B P A A P B B P A P A P B P B =+=+=+0.60.60.40.40.52=⨯+⨯=.故再赛2局结束这次比赛的概率为0.52.【小问2详解】记“甲获得这次比赛胜利”为事件B ,因前两局中,甲、乙各胜一局,故甲成为胜方当且仅当在后面的比赛中,甲先胜2局,从而34345345B A A B A A A B A =++,由于各局比赛结果相互独立,且事件34A A ,345B A A ,345A B A 两两互斥,所以()0.60.60.40.60.60.60.40.60.648P B =⨯+⨯⨯+⨯⨯=.故甲获得这次比赛胜利的概率为0.648.18.如图所示,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,ABAF =1,M 是线段EF 的中点.求证:(1)AM ∥平面BDE ;(2)AM ⊥平面BDF.【答案】(1)见解析(2)见解析【解析】【详解】(1)建立如图所示的空间直角坐标系,设AC∩BD =N ,连结NE.则N 22,,022⎛⎫ ⎪ ⎪⎝⎭,E(0,0,1),220),M 22,,122⎛⎫ ⎪ ⎪⎝⎭.∴NE =22,,122⎛⎫-- ⎪ ⎪⎝⎭,AM =22,,122⎛⎫-- ⎪ ⎪⎝⎭.∴NE =AM 且NE 与AM 不共线.∴NE ∥AM.∵NE ⊂平面BDE ,AM ⊄平面BDE ,∴AM ∥平面BDE.(2)由(1)知AM =22,,122⎛⎫-- ⎪ ⎪⎝⎭,∵2,0,0),22,1),∴DF =(02,1),∴AM ·DF=0,∴AM ⊥DF.同理AM ⊥BF.又DF∩BF =F ,∴AM ⊥平面BDF.19.在长方体1111ABCD A B C D -中,11AA AD ==,E 为线段CD 中点.(1)求直线1B E 与直线1AD 所成的角的余弦值;(2)在棱1AA 上是否存在一点P ,使得//DP 平面1B AE ?若存在,求AP 的长;若不存在,说明理由.【答案】(1)0(2)存在,12AP =【解析】【分析】(1)建立空间直角坐标系,设AB a =,写出点的坐标,求出110B E AD ⋅= ,得到异面直线夹角余弦值为0;(2)设()00,0,P z ,求出平面1B AE 的一个法向量1,,2a n a ⎛⎫=-- ⎪⎝⎭,根据0DP n ⋅= 得到方程,求出12z =,故存在点P ,使得//DP 平面1B AE ,此时12AP =.【小问1详解】以A 为坐标原点,1,,AB AD AA 所在直线分别为,,x y z轴,建立空间直角坐标系,设AB a =,则()()()11,0,1,,1,0,0,0,0,0,1,12a B a E A D ⎛⎫ ⎪⎝⎭,故()()()()11,1,0,0,1,1,1,0,1,10,0,00,1,122a a B E a AD ⎛⎫⎛⎫=-=--=-= ⎪ ⎪⎝⎭⎝⎭ ,则()11,1,10,1,11102a B E AD ⎛⎫⋅=--⋅=-= ⎪⎝⎭,故直线1B E 与直线1AD 所成的角的余弦值为0;【小问2详解】存在满足要求的点P ,理由如下:设棱1AA 上存在点()00,0,P z ,使得//DP 平面1B AE ,0,1,0,则()00,1,DP z =- ,设平面1B AE 的一个法向量为(),,n x y z =,则()()()1,,,0,10,,,1,0022n AB x y z a ax z a a n AE x y z x y ⎧⋅=⋅=+=⎪⎨⎛⎫⋅=⋅=+= ⎪⎪⎝⎭⎩,取1x =得,2a y z a =-=-,故1,,2a n a ⎛⎫=-- ⎪⎝⎭,要使//DP 平面1B AE ,则n DP ⊥,即()00,1,1,,02a DP n z a ⎛⎫⋅=-⋅--= ⎪⎝⎭ ,所以002a az -=,解得012z =,故存在点P ,使得//DP 平面1B AE ,此时12AP =.。

山东省2022-2021年高二上学期第二次阶段考试数学(理)试题

山东省2022-2021年高二上学期第二次阶段考试数学(理)试题

高二上学期第二次阶段考试数学(理)试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则()A. B. C. D.【答案】A【解析】由题意可得,所以,故选A.2. 设数列满足,且,则()A. B. C. D.【答案】D所以,故选D.3. 已知命题,则是()A. B.C. D.【答案】C【解析】由题意可知,全称命题的否定是特称命题,所以命题“”的否定为“”,故选C.4. 在中,角的对边分别是,若,则()A. 或B.C. 或D.【答案】D【解析】由正弦定理,得,解得,又,所以,故选D.5. 已知椭圆经过点,则上一点到两焦点的距离之和为()A. 2B.C. 4D.【答案】D【解析】因为椭圆经过点,代入可得,即椭圆的方程为,则,所以根据椭圆的定义可得椭圆上的点到两焦点的距离之和为,故选D.6. 已知变量满足约束条件则的最小值为()A. B. 1 C. D.【答案】C【解析】画出不等式组表示的区域如图,结合图形可知当动直线经过点时,动直线在轴上的截距最小,则,应选答案C。

点睛:本题旨在考查线性规划等有关知识的综合运用,解答这类问题的常规思路是将不等式组表示的区域在平面直角坐标系中直观地表示出来,再运用数形结合的思想,借助图形的直观求出目标函数的最值,从而使得问题获解。

7. 在中,角的对边分别为,,则的周长为()A. B. C. D.【答案】C【解析】∵sinA:sinB=1:,∴由正弦定理可得:b=又∵c=2cosC=,∴由余弦定理可得:cosC整理解得:a=,可求b==3,∴△ABC的周长=a+b+c==2+3.故答案选:C.8. 在平面直角坐标系中,动点与两点的连线的斜率之积为,则点的轨迹方程为()A. B.C. D.【答案】A【解析】因为动点与两点的连线的斜率之积为,所以,化为,故选A.9. 已知均为正实数,且,则的最小值为()A. 3B. 9C. 12D. 18【答案】B【解析】由题意得,当且仅当,即时等号成,故选B.10. 已知等差数列的前项和为,,则“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】设等差数列的公差为,则,得,由,解得,所以“”是“”的充分不必要条件,故选A.点睛:本题主要考查了充分不必要条件的判定问题,其中解答中涉及到等差数列的通项公式,等差数列的前项和公式,以及充分不必要条件的判定等知识点的运用试题比较基础,属于基础题,解答中根据等差数列的和作出准确运算是解答的关键.11. 已知是椭圆的左焦点,为上—点,,则的最大值为()A. B. 9 C. D. 10【答案】C【解析】设椭圆的右焦点为,根据椭圆的定义可知,所以,当且仅当三点共线时,取得等号,所以的最大值为,故选C.点睛:本题主要考查了椭圆的标准方程及其简单的几何性质的应用,其中解答中涉及到椭圆的标准方程,椭圆的定义和最值问题的求解,试题有一定的难度,属于中档试题,解答中根据椭圆的定义合理进行转化是解答的关键.12. 如图,海中有一小岛,一小船从地出发由西向东航行,望见小岛在北偏东,航行8 海里到达处,望见小岛在北偏东.若此小船不改变航行的方向继续前行海里,则离小岛的距离为()A. 海里B. 海里C. 海里D. 海里【答案】C【解析】在△ABC中,AB=8,∠BAC=30°,∠ABC=105°,∴∠ACB=45°,由正弦定理得:解得AC=4+4,设小船继续航行2(﹣1)海里到达D处,则AD=2+6,在△ACD中,由余弦定理得:CD2=(4+4)2+(2+6)2﹣2(4+4)(2+6)× =16+8,∴CD=2(+1).故答案选C.点睛:这个题目考查了三角函数正余弦定理的应用,在几何与实际应用题目中的运用。

山东省高二上学期数学阶段性检测试卷

山东省高二上学期数学阶段性检测试卷

山东省高二上学期数学阶段性检测试卷姓名:________ 班级:________ 成绩:________一、填空题 (共14题;共17分)1. (1分) (2019高二上·张家口月考) 命题“若,则”的逆否命题是________.2. (1分) (2019高一上·泉港月考) 已知 ,则“ 成立”是“ 成立”的________条件.(请在“充分不必要.必要不充分.充分必要”中选择一个合适的填空).3. (1分)给出下列三个结论:①小王任意买1张电影票,座号是3的倍数的可能性比座号是5的倍数的可能性大;②高一(1)班有女生22人,男生23人,从中任找1人,则找出的女生可能性大于找出男生的可能性;③掷1枚质地均匀的硬币,正面朝上的可能性与反面朝上的可能性相同.其中正确结论的序号为________.4. (2分) (2016高二上·河北期中) 若数据组k1 , k2 ,…,k8的平均数为3,方差为3,则2(k1+3),2(k2+3),…,2(k8+3)的平均数为________,方差为________.5. (1分) (2019高一下·西城期末) 某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.6. (1分) (2016高一下·太康开学考) 如图所示,程序框图(算法流程图)的输出值x=________.7. (3分) (2020高一下·河西期中) 某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图,如图,估计这次测试中数学成绩的平均分约为________、众数约为________、中位数约为________.(结果不能整除的精确到0.1)8. (1分) (2019高三上·安徽月考) 若直线既是曲线的切线,又是曲线的切线,则 ________.9. (1分) (2017高二上·靖江期中) 双曲线与双曲线的离心率分别为e1和e2 ,则 =________.10. (1分) (2015高二下·永昌期中) 已知函数y=﹣x3+3x2+m的极大值为10,则m=________.11. (1分)若圆(x﹣1)2+(y﹣2)2=1关于直线y=x+b对称,则实数b=________12. (1分)(2012·江苏理) 已知正数a,b,c满足:5c﹣3a≤b≤4c﹣a,clnb≥a+clnc,则的取值范围是________.13. (1分)经过点M(3,5)的所有直线中距离原点最远的直线方程为________.14. (1分) (2017高二上·扬州月考) 点关于平面的对称点为________.二、解答题 (共6题;共65分)15. (15分) (2018高二上·齐齐哈尔月考) 汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.轿车A轿车B轿车C舒适型100150z标准型300450600(1)求z的值;(2)用分层抽样的方法在类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从类舒适型轿车中抽取8辆,经检测它们的得分如下:. 把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过的概率.16. (10分) (2016高二上·潮阳期中) O为原点的直角坐标系中,点A(4,﹣3)为△OAB的直角顶点,已知AB=2OA,且点B的纵坐标大于0(1)求的坐标;(2)求圆C1:x2﹣6x+y2+2y=0关于直线OB对称的圆C2的方程;在直线OB上是否存在点P,过点P的任意一条直线如果和圆C1圆C2都相交,则该直线被两圆截得的线段长相等,如果存在求出点P的坐标,如果不存在,请说明理由.17. (10分) (2019高二上·张家口月考) 已知双曲线,是上的任意一点.(1)求证:点到双曲线的两条渐近线的距离的乘积是一个常数.(2)若点的坐标为,求的最小值.18. (10分) (2018高二下·保山期末) 已知函数 .(1)若函数在上单调递增的,求实数的取值范围;(2)当时,求函数在上的最大值和最小值.19. (10分) (2017高二下·呼伦贝尔开学考) 如图,已知椭圆的离心率为,F1、F2为其左、右焦点,过F1的直线l交椭圆于A、B两点,△F1AF2的周长为.(1)求椭圆的标准方程;(2)求△AOB面积的最大值(O为坐标原点).20. (10分) (2018高三上·北京月考) 已知函数.(1)求函数的极值;(2)对任意,不等式恒成立,求实数k的取值范围.参考答案一、填空题 (共14题;共17分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:二、解答题 (共6题;共65分)答案:15-1、答案:15-2、答案:15-3、考点:解析:答案:16-1、答案:16-2、考点:解析:答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:。

山东省济宁市第一中学2024-2025学年高二上学期10月阶段性测试数学试题

山东省济宁市第一中学2024-2025学年高二上学期10月阶段性测试数学试题

山东省济宁市第一中学2024-2025学年高二上学期10月阶段性测试数学试题一、单选题1.已知()0,1,1A -,()1,1,4B ,平面α的法向量为()2,,6t ,若//AB α,则t =( ) A .10-B .3C .4D .52.如图,G 是ABC V 的重心,,,OA a OB b OC c ===r r r u u u r u u u r u u u r ,则OG =u u u r( )A .122333a b c ++r r r B .221333a b c ++r r rC .222333a b c ++r r r D .111333a b c ++r r r3.已知向量()2,1,2a =-r ,()4,2,b x =-r ,//a b r r,则a b +=r r ( )A .3B .9C .27D .814.已知事件A ,B 是互斥事件,()16P A =,()23P B =,则()P A B =U ( )A .118B .49C .12D .235.已知点D 在ABC V 确定的平面内,O 是平面ABC 外任意一点,若正实数,x y 满足2OD xOA yOB OC =+-u u u r u u u r u u u r u u u r ,则2x yxy+的最小值为( ) A .52B .92C .2D .46.已知()2,1,3a =-r ,()1,4,2b =--r ,()7,5,c λ=r ,若a r ,b r ,c r三向量不能构成空间向量的一组基底,则实数λ的值为( ) A .0B .5C .9D .6577.已知正三棱柱111ABC A B C -的侧面积是底面积的E 为四边形11ABB A 的中心,点F 为棱1CC 的中点,则异面直线BF 与CE 所成角的余弦值为( )A B C D 8.依次抛掷两枚质地均匀的骰子,记骰子向上的点数.用x 表示第一次抛掷骰子的点数,用y 表示第二次抛掷骰子的点数,用(),x y 表示一次试验的结果.记“7x y +=”为事件A ,“()*21N xy k k =-∈”为事件B ,“3x ≤”为事件C ,则( )A .A 与B 相互独立 B .A 与B 对立C .A 与C 相互独立D .B 与C 相互独立二、多选题9.下述关于频率与概率的说法中,错误的是( )A .设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品B .利用随机事件发生的频率估计随机事件的概率,即使随机试验的次数超过10000,所估计出的概率也不一定很准确.C .随机事件发生的频率就是这个随机事件发生的概率D .做7次抛硬币的试验,结果3次出现正面,因此,抛一枚硬币出现正面的概率是3710.设空间两个单位向量()(),,0,0,,OA m n OB n p ==u u u r u u u r 与向量()1,1,1OC =u u u r 的夹角都等于π4,则c o s A O B ∠=( )A BC D 11.(多选)如图,在边长为1的正方体1111ABCD A B C D -中,点E 为线段1DD 的中点,点F 为线段1BB 的中点,则( )A .点1A 到直线1B E B .直线1FC 到直线AE C .点1A 到平面1AB E 的距离为13D .直线1FC 到平面1ABE 的距离为13三、填空题12.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A ,则事件A 出现的频率为.13.如图,平面ABFE 与平面CDEF 夹角为60o ,四边形ABFE ,CDEF 都是边长为2的正方形,则B ,D 两点间的距离是.14.如图所示,在正方体ABCD A B C D -''''中,AB =3,M 是侧面BCC B ''内的动点,满足AM BD '⊥,若AM 与平面BCC B ''所成的角θ,则tan θ的最大值为.四、解答题15.已知空间中三点()()()2,0,2,1,1,2,3,0,4A B C ----,设,a AB b AC ==u u ur u u u r r r(1)已知()a kb b +⊥r r r ,求k 的值;(2)若6c =r ,且c BC λ=u u u r r ,求c r 的坐标.16.如图,正四面体ABCD (所有棱长均相等)的棱长为1,E ,F ,G ,H 分别是正四面体ABCD 中各棱的中点,设AB a u u u r r=,AC b =u u u r r ,AD c =u u u r r .(1)用,,a b c r r r 表示EF u u u r,并求EF 的长;(2)求EF u u u r 与GH u u u r夹角的大小.17.已知甲、乙两袋中各装有4个质地和大小完全相同的小球,甲袋中有红球2个、白球1个、蓝球1个,乙袋中有红球1个、白球1个、蓝球2个. (1)从两袋中随机各取一球,求取到的两球颜色相同的概率;(2)从甲袋中随机取两球,从乙袋中随机取一球,求取到至少一个红球的概率.18.在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,PC PD ⊥,PC PD =,O 为CD 的中点,二面角A -CD -P 为直二面角.(1)求证:PB PD ⊥;(2)求直线PC 与平面P AB 所成角的正弦值; (3)求平面POB 与平面P AB 夹角的余弦值.19.甲和乙进行多轮答题比赛,每轮由甲和乙各回答一个问题,已知甲每轮答对的概率为34,乙每轮答对的概率为23.在每轮比赛中,甲和乙答对与否互不影响,各轮结果也互不影响.(1)求两人在两轮比赛中都答对的概率; (2)求两人在两轮比赛中至少答对3道题的概率;(3)求两人在三轮比赛中,甲和乙各自答对题目的个数相等且至少为2的概率.。

山东省济南市高二上学期期中考试数学(文)试题6

山东省济南市高二上学期期中考试数学(文)试题6

高二上学期期中考试文科数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,考试时间120分钟,满分150分,考试结束后,将本试卷和答题卡一并交回.注意事项:1答题前,考生务必用05毫米黑色签字笔将自己的姓名、座号、考生号和科类写在答题卡和试卷规定的位置上.2第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3第Ⅱ卷必须用05毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带不按以上要求作答的答案无效.4填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第I卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分每小题给出的四个选项中只有一项是符合题目要求的.(1)椭圆x2+4y2=1的离心率为(A)(B)(C)(D)(2)在△ABC中,“”是“”的(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分又不必要条件(3)若不等式对于一切成立,则a的最小值是(A)0 (B)-2 (C)(D)-3(4)已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,且椭圆G 上一点到其两个焦点的距离之和为12,则椭圆G的方程为().(A)4x2+9y2=1 (B)9x2+4y2=1 (C)36x2+9y2=1 (D)9x2+36y2=1(5)过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有().(A)1条(B)2条(C)3条(D)4条(6)在等比数列中,若,则(A)9 (B)1 (C)2 (D)3(7)已知,给出下列四个结论:①②③其中正确结论的序号是(A)①②③(B)①②(C)②③(D)③(8)已知满足约束条件,则的最大值为(A)6 (B)8 (C)10 (D)12(9)下列各式中最小值为2的是(A)(B)(C)(D)(10)设等差数列的前项和为,且满足,,对任意正整数,都有,则的值为(A)1006 (B)1007 (C)1008 (D)1009(11)过双曲线(,)的右焦点作圆的切线(切点为),交轴于点.若为线段的中点,则双曲线的离心率为(A)(B)(C)2 (D)(12)在△ABC中,点分别为边和的中点,点P是线段上任意一点(不含端点),且△ABC的面积为1,若△PAB,△PCA,△PBC的面积分别为,记,则的最小值为(A)26 (B)32 (C)36 (D)48第II卷(共90分)二、填空题:本大题共4个小题,每小题5分,共20分.(13)等差数列中,为其前项和,若则=_______.(14)椭圆的弦被点(4,2)平分,则此弦所在的直线方程是_______.(15)不等式的解集为_______.(16)下列有关命题的说法正确的是_______.①命题“若,则”的否命题为:“若,则”.②“”是“”的充分不必要条件.③命题“使得”的否定是:“均有”.④命题“若,则”的逆否命题为真命题三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:60分.(17)(本小题满分12分)已知数列的前项和为,且是与2的等差中项,(I)求的值;(Ⅱ)求数列的通项公式.(18)(本小题满分12分)已知,命题“函数在上单调递减”,命题“关于的不等式对一切的恒成立”,若为假命题,为真命题,求实数的取值范围.(19)(本小题满分12分)解关于x的不等式().(20)(本小题满分12分)某单位建造一间地面面积为12 m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过5 m.房屋正面的造价为400元/m2,房屋侧面的造价为150元/m2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低?(21)(本小题满分12分)已知椭圆的离心率为,且过点.(I)求椭圆的标准方程;(Ⅱ)若直线与椭圆相交于两点,满足:,试判断的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.(22)[选修4—5:不等式选讲]设函数,其中.(I)当时,求不等式的解集;(Ⅱ)若不等式的解集为,求的值.(23)[选修4—5:不等式选讲]已知均为正数,证明:,并确定为何值时,等号成立.高二数学期中参考答案(文科)选择题:(1)A(2)A(3)C(4)C(5)C (6)D(7)B(8)D(9)B(10)D (11)A(12)C填空题:(13) 28 (14) x+2y-8=0 (15)(16)②④解答题:(17)① ........2分由①得:........4分........6分(2)解:②②-①得........9分数列以2为首项,以2为公比的等比数列即 ........12分(18)解:为真:;........2分;为真:,得,又,........5分因为为假命题,为真命题,所以命题一真一假........7分(1)当真假........9分(2)当假真无解综上,的取值范围是........12分(19)解:原不等式可化为ax2+(a-2)x-2≥0⇒(ax-2)(x+1)≥0.因为a <0时,原不等式化为a 2(x +1)≤0. ........2分①当a 2>-1,即a <-2时,原不等式等价于-1≤x ≤a 2;........5分 ②当a 2=-1,即a =-2时,原不等式等价于x =-1;........8分 ③当a 2<-1,即-2<a <0时,原不等式等价于a 2≤x ≤-1. ........11分 综上所述:当a <-2时,原不等式的解集为a 2; 当a =-2时,原不等式的解集为{-1};当-2<a <0时,原不等式的解集为,-12;.........12分 (20)解:由题意可得,造价y =3(2x ×150+x 12×400)+5 800 =900x 16+5 800(0<x ≤5),则y =900x 16+5 800≥900×2x 16+5 800=13 000(元), 当且仅当x =x 16,即x =4时取等号.故当侧面的长度为4米时,总造价最低.........12分(21)解:(I) 解:由题意知,∴,即 又........2分∴, 椭圆的方程为 ........ 4分(II) 设,即....... 5分由得,,......... 7分代入即得: ,, ........ 9分........11分把代入上式得........ 12分(22)解:(Ⅰ )当a =1时,f (x )≥3x +2可化为|x -1|≥2.由此可得x ≥3或x ≤-1.........3分故不等式f (x )≥3x +2的解集为{x |x ≥3或x ≤-1}.........5分 (Ⅱ )由f (x )≤0得,|x -a |+3x ≤0.此不等式化为不等式组x -a +3x ≤0x ≥a ,或a -x +3x ≤0,x ≤a ,即4a或.a........8分因为a >0,所以不等式组的解集为2a.由题设可得-2a=-1,故a =2. ........10分(23)证明 法一 因为a ,b ,c 均为正数,由基本不等式得,a 2+b 2+c 2≥3(abc )32,①a 1+b 1+c 1≥3(abc )-31,所以c 12≥9(abc )-32,② 故a 2+b 2+c 2+c 12≥3(abc )32+9(abc )-32.又3(abc)32+9(abc)-32≥2=6,③所以原不等式成立.当且仅当a=b=c时,①式和②式等号成立.当且仅当3(abc)32=9(abc)-32时,③式等号成立.故当且仅当a=b=c=341时,原不等式等号成立.........10分法二因为a,b,c均为正数,由基本不等式得a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac.所以a2+b2+c2≥ab+bc+ac.①同理a21+b21+c21≥ab1+bc1+ac1,②故a2+b2+c2+c12≥ab+bc+ac+ab3+bc3+ac3≥6.③所以原不等式成立.当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立.故当且仅当a=b=c=341时,原不等式等号成立.........10分.。

山东省数学高二上学期文数第二次月考试卷

山东省数学高二上学期文数第二次月考试卷

山东省数学高二上学期文数第二次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2017·成都模拟) 命题“若a>b,则a+c>b+c”的否命题是()A . 若a≤b,则a+c≤b+cB . 若a+c≤b+c,则a≤bC . 若a+c>b+c,则a>bD . 若a>b,则a+c≤b+c2. (2分)下列命题中为真命题的是()A . 命题“若,则”的逆命题B . 命题“若,则或”的否命题C . 命题“若,则”D . 命题“若,则函数没有零点”的逆否命题3. (2分) (2017高二上·佳木斯期末) 命题“若,则”的否命题是().A . 若,则B . 若,则C . 若,则D . 若,则4. (2分)已知,则为函数的零点的充要条件是()A . ,B . ,C . ,D . ,5. (2分)(2019·河南模拟) 双曲线:的渐近线为的边所在的直线,为坐标原点,且与轴平行,,则双曲线的离心率为()A .B .C .D . 或6. (2分)(2018·佛山模拟) 若抛物线的焦点在直线上,则等于()A . 4B . 0C . -4D . -67. (2分)已知、是椭圆的两个焦点,经过点的直线交椭圆于点、,若,则等于()A . 11B . 10C . 9D . 168. (2分)设双曲线的虚轴长为2,焦距为,则双曲线的渐近线方程为()A .B .C .D .9. (2分)已知q是等比数列的公比,则“q<1”是“数列是递减数列”的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件10. (2分)“”是“方程表示的曲线为抛物线”的()条件A . 充分不必要B . 必要不充分C . 充要D . 既不充分也不必要11. (2分)已知抛物线与双曲线有相同的焦点F,点是两曲线的交点,且轴,则的值为()A .B .C .D .12. (2分) (2019高二下·丽水期末) 圆与圆的位置关系是()A . 相交B . 内切C . 外切D . 相离二、填空题 (共4题;共4分)13. (1分)已知点A(﹣,),在抛物线C:y2=2px(p>0)的准线上,点M,N在抛物线C上,且位于x 轴的两侧,O是坐标原点,若=3,则点A到动直线MN的最大距离为________14. (1分)用符号“ ”或“ ”表示命题:实数的平方大于或等于为________.15. (1分) (2016高二上·绵阳期中) 以坐标轴为对称轴的等轴双曲线过点(2,),则该双曲线的方程是________.16. (1分) (2016高一上·普宁期中) 关于函数f(x)=lg (x≠0,x∈R)有下列命题:①函数y=f(x)的图象关于y轴对称;②在区间(﹣∞,0)上,函数y=f(x)是减函数;③函数f(x)的最小值为lg2;④在区间(1,+∞)上,函数f(x)是增函数.其中正确命题序号为________.三、解答题 (共6题;共55分)17. (10分) (2019高二上·岳阳月考) 已知集合,集合,.(1)若“ ”是真命题,求实数取值范围;(2)若“ ”是“ ”的必要不充分条件,求实数的取值范围.18. (10分) (2019高二下·南充月考) 求符合下列条件的曲线的标准方程。

山东省高二上学期数学第二次考试试卷

山东省高二上学期数学第二次考试试卷

山东省高二上学期数学第二次考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2016高二上·湖州期中) 圆(x+1)2+(y﹣2)2=4的圆心坐标与半径分别是()A . (﹣1,2),2B . (1,2),2C . (﹣1,2),4D . (1,﹣2),42. (2分)对抛物线y2=4x,下列描述正确的是()A . 开口向上,焦点为(0,1)B . 开口向上,焦点为C . 开口向右,焦点为(1,0)D . 开口向右,焦点为3. (2分)已知椭圆和双曲线,有相同的焦点,则椭圆与双曲线的离心率的平方和为()A .B .C . 2D . 34. (2分) (2018高一上·湘东月考) 圆,圆,M , N 分别是圆,上的动点,P为x轴上的动点,则的最小值()A .B .C .D .5. (2分) (2020高二上·宁波期末) 设椭圆()的一个焦点点为椭圆内一点,若椭圆上存在一点,使得,则椭圆的离心率的取值范围是()A .B .C .D .6. (2分) (2018高三上·河北月考) 已知双曲线与抛物线的交点为点A,B,且直线AB过双曲线与抛物线的公共焦点F,则双曲线的实轴长为()A .B .C .D .7. (2分) (2019高一下·石河子月考) 若直线过点(1,2),(4,2+ ),则此直线的倾斜角是()A . 30°B . 45°C . 60°D . 90°8. (2分)(2019·赤峰模拟) 已知是双曲线的左、右焦点,若点关于双曲线渐近线的对称点满足(为坐标原点),则双曲线的渐近线方程为()A .B .C .D .二、多选题 (共3题;共9分)9. (3分) (2020高三上·汕头月考) 椭圆的焦距为,则的值为()A . 9B . 23C .D .10. (3分) (2019高二上·章丘月考) 已知分别是双曲线的左右焦点,点是双曲线上异于双曲线顶点的一点,且向量,则下列结论正确的是()A . 双曲线的渐近线方程为B . 以为直径的圆的方程为C . 到双曲线的一条渐近线的距离为1D . 的面积为111. (3分) (2019高二上·葫芦岛月考) 在同一直角坐标系中,直线与圆的位置不可能是()A .B .C .D .三、填空题 (共3题;共3分)12. (1分) (2020高二下·虹口期末) 在平面直角坐标系中,,,若,则P点的轨迹方程为________.13. (1分)(2017高一下·定州期末) 若点P在圆上,点Q在圆上,则|PQ|的最小值是________.14. (1分) (2016高二下·芒市期中) 斜率为1的直线l与椭圆 +y2=1相交于A,B两点,则|AB|得最大值为________.四、双空题 (共1题;共1分)15. (1分) (2018高二上·南阳月考) 在直角坐标系中,已知直线与椭圆:相切,且椭圆的右焦点关于直线的对称点在椭圆上,则△ 的面积为________.五、解答题 (共6题;共65分)16. (10分)(2017·西宁模拟) (a>b>0)如图,已知椭圆C:的左、右焦点分别为F1、F2 ,离心率为,点A是椭圆上任一点,△AF1F2的周长为.(Ⅰ)求椭圆C的方程;(Ⅱ)过点Q(﹣4,0)任作一动直线l交椭圆C于M,N两点,记,若在线段MN上取一点R,使得,则当直线l转动时,点R在某一定直线上运动,求该定直线的方程.17. (15分)(2020·温岭模拟) 点是抛物线内一点,F是抛物线C的焦点,Q是抛物线C上任意一点,且已知的最小值为2.(1)求抛物线的方程;(2)抛物线C上一点处的切线与斜率为常数的动直线相交于P,且直线l与抛物线C相交于M、N两点.问是否有常数使?18. (10分)已知椭圆C1 ,抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上各取两个点,其坐标分别是(3,一2 ),(一2,0),(4,一4),().(Ⅰ)求C1 , C2的标准方程;(Ⅱ)是否存在直线L满足条件:①过C2的焦点F;②与C1交与不同的两点M,N且满足?若存在,求出直线方程;若不存在,说明理由.19. (10分)已知椭圆(a>b>0),右焦点,点在椭圆上;(1)求椭圆C的标准方程;(2)是否存在过原点的直线l与椭圆C交于A、B两点,且∠AFB=90°?若存在,请求出所有符合要求的直线;若不存在,请说明理由.20. (10分) (2016高一下·漳州期末) 设平面直角坐标系xOy中,曲线G:y= + x﹣a2(x∈R),a 为常数.(1)若a≠0,曲线G的图象与两坐标轴有三个交点,求经过这三个交点的圆C的一般方程;(2)在(1)的条件下,求圆心C所在曲线的轨迹方程;(3)若a=0,已知点M(0,3),在y轴上存在定点N(异于点M)满足:对于圆C上任一点P,都有为一常数,试求所有满足条件的点N的坐标及该常数.21. (10分)(2020·汕头模拟) 已知椭圆C的中心在坐标原点O,其右焦点为F(1,0),以坐标原点O为圆心,椭圆短半轴长为半径的圆与直线x﹣y 0的相切.(1)求椭圆C的方程;(2)经过点F的直线l1 , l2分别交椭圆C于A、B及C、D四点,且l1⊥l2 ,探究:是否存在常数λ,使恒成立.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、多选题 (共3题;共9分)9-1、10-1、11-1、三、填空题 (共3题;共3分)12-1、13-1、14-1、四、双空题 (共1题;共1分) 15-1、五、解答题 (共6题;共65分)16-1、17-1、17-2、19-1、19-2、20-1、20-2、20-3、21-1、21-2、。

山东省高二上学期数学第二次阶段性考试试卷

山东省高二上学期数学第二次阶段性考试试卷

山东省高二上学期数学第二次阶段性考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2016高一上·包头期中) 已知U={1,2,3,4},A={1,3,4},B={2,3,4},那么∁U(A∪B)=()A . {1,2}B . {1,2,3,4}C . ∅D . {∅}2. (2分) (2019高二上·岳阳月考) 命题:,的否定形式为()A . ,B . ,C . ,D . ,3. (2分) (2017高一下·沈阳期末) 在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h~120km/h,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有()A . 30辆B . 300辆C . 170辆D . 1700辆4. (2分) (2019高一上·鄞州期中) 以下四组数中大小比较正确的是()A .B .C .D .5. (2分)函数的定义域为()A .B .C .D .6. (2分)数列的前n项的和为()A .B .C .D .7. (2分) (2018高一上·北京期末) 设向量,则的夹角等于()A .B .C .D .8. (2分)已知实数满足,则目标函数的最大值为()A . -3B .C . 5D . 69. (2分)如图,BC、DE是半径为1的圆O的两条直径,=2,则FE的值是()A . -B . -C . -D . -10. (2分) (2019高二上·余姚期中) 已知抛物线:的焦点为,准线为,是上一点,是直线与的一个交点,若,则 =()A .B .C . 3D . 211. (2分) (2020高一下·大庆期中) 古希腊数学家阿基米德是世界上公认的三位最伟大的数学家之一,其墓碑上刻着他认为最满意的一个数学发现,如图,一个“圆柱容球”的几何图形,即圆柱容器里放了一个球,该球顶天立地,四周碰边,在该图中,球的体积是圆柱体积的,并且球的表面积也是圆柱表面积的,若圆柱的表面积是现在向圆柱和球的缝隙里注水,则最多可以注入的水的体积为()A .B .C .D .12. (2分) (2020高三上·天津月考) 已知函数f(x)=2sin(ωx+ )(ω>0)的图象在区间[0,1]上恰有3个最高点,则ω的取值范围为()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2018高二下·绵阳期中) 函数的最小值是________.14. (1分)甲、乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,且a,b∈{1,2,3,4,5,6}.若|a-b|≤1,则称甲、乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为________.15. (1分)已知双曲线的左、右焦点分别为F1、F2 ,点P在双曲线上,且PF2⊥x轴,则F2到直线PF1的距离为________16. (1分)(2017·大连模拟) 已知△ABC的三个内角A,B,C的对边依次为a,b,c,外接圆半径为1,且满足,则△ABC面积的最大值为________.三、解答题 (共6题;共55分)17. (10分) (2020高二上·泉州月考) 已知的内角,,所对边分别为,,,, .(1)求的值;(2)从① ,② 两个条件中选一个作为已知条件,求的值.18. (5分) (2019高一下·吉林期中) 已知等差数列的公差,且是与的等比中项.(1)求的通项公式;(2)求的前项和的最大值及对应的的值.19. (10分) (2018高二下·黑龙江月考) 在如图所示的几何体中,四边形是等腰梯形,,,平面,, .(1)求证:平面;(2)求与平面所成角的正弦值.20. (10分)已知抛物线C:x2=2py(p>0)的焦点为F,直线2x﹣y+2=0交抛物线C于A,B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q.(1)若直线AB过焦点F,求|AF|•|BF|的值;(2)是否存在实数p,使得以线段AB为直径的圆过Q点?若存在,求出p的值;若不存在,说明理由.21. (10分) (2019高二下·上海期末) 已知以椭圆的焦点和短轴端点为顶点的四边形恰好是面积为4的正方形.(1)求椭圆E的方程:(2)若是椭圆E上的动点,求的取值范围;(3)直线:与椭圆E交于异于椭圆顶点的A,B两点,O为坐标原点,直线与椭圆的另一个交点为点,直线和直线的斜率之积为1,直线与x轴交于点M.若直线 , 的斜率分别为 , 试判断 ,是否为定值,若是,求出该定值;若不是,说明理由.22. (10分) (2020高二下·重庆期末) “微粒贷”是腾讯旗下2015年9月开发上市的微众银行网货产品.腾讯公司为了了解“微粒贷”上市以来在C市的使用情况,统计了C市2015年至2019年使用了“微粒货”贷款的累计人数,统计数据如表所示:年份20152016201720182019年份代号x12345累计人数y(万2.93.3 3.64.4 4.8人)参考公式: ,参考数据:(1)已知变量x,y具有线性相关关系,求累计人数y(万人)关于年份代号x的线性回归方程;并预测2020年使用“微粒贷“贷款的累计人数;(2)“微粒贷”用户拥有的贷款额度是根据用户的账户信用资质判定的,额度范围在500元至30万元不等,腾讯公司在统计使用人数的同时,对他们所拥有的贷款额度也作了相应的统计.我们把拥有货款额度在500元至5万元(不包括5万元)的人群称为“低额度贷款人群”,简称“A类人群”;把拥有贷款额度在5万元及以上的人群称为“高额度贷款人群”,简称“B类人群”.根据统计结果,随机抽取6人,其中A类人群4人,B类人群2人.现从这6人中任取3人,记随机变量ξ为A类人群的人数,求ξ的分布列及其期望.参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共4题;共4分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共6题;共55分)答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、考点:解析:。

山东省2021版数学高二上学期文数期中考试试卷(II)卷(精编)

山东省2021版数学高二上学期文数期中考试试卷(II)卷(精编)

山东省2021版数学高二上学期文数期中考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2012·辽宁理) 数列的一个通项公式是()A .B .C .D .2. (2分)设等比数列的公比q=2,前n项和为,则的值是()A .B . 4C .D .3. (2分) (2019高三上·大庆期中) 已知a,b,m∈R ,则下列说法正确的是()A . 若,则B . 若,则C . 若,则D . 若,则4. (2分) (2017高二上·集宁月考) 下面四个条件中,使成立的充分不必要的条件是()A .B .C .D .5. (2分)(2019·黄山模拟) 设a>0且a≠1,则“b>a>1”是“logab>1”的()A . 必要不充分条件B . 充分不必要条件C . 充要条件D . 既不充分也不必要条件6. (2分)在△ABC中,∠A=60°,AC=2, BC=3,则角B等于()A . 30°B . 45°C . 90°D . 135°7. (2分)(2017·龙岩模拟) 设不等式组,表示的平面区域为M,若直线y=kx﹣2上存在M内的点,则实数k的取值范围是()A . [1,3]B . (﹣∞,1]∪[3,+∞)C . [2,5]D . (﹣∞,2]∪[5,+∞)8. (2分)以A(4,3,1),B(7,1,2),C(5,2,3)三点为顶点的三角形的形状是()A . 等边三角形B . 等腰三角形C . 直角三角形D . 等腰直角三角形9. (2分) (2016高一上·上海期中) 已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的()A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件10. (2分)(2020·莆田模拟) 已知,则这三个数由小到大的顺序为()A .B .C .D .11. (2分) (2018高二上·石嘴山月考) 若是的必要不充分条件,则实数m的取值范围是()A . [﹣3,3]B .C .D .12. (2分) (2019高一下·宾县期中) 若函数在处取最小值,则等于()A . 3B .C .D . 4二、填空题 (共4题;共4分)13. (1分) (2018高一上·上海期中) 命题“在整数集中,若都是偶数,则是偶数”的否命题是:________14. (1分) (2020高二上·台州开学考) 已知等差数列的前3项依次是-1,a-1,1,则 a=________;通项公式 an=________.15. (1分) (2018高三上·河北月考) 已知函数下列四个命题:①f(f(1))>f(3);② x0∈(1,+∞),f'(x0)=-1/3;③f(x)的极大值点为x=1;④ x1,x2∈(0,+∞),|f(x1)-f(x2)|≤1其中正确的有________(写出所有正确命题的序号)16. (1分)如图,线段AB,CD分别表示甲、乙两楼,AB⊥BD,CD⊥BD,从甲楼顶部A处测得乙楼顶部C处的仰角为=30°,测得乙楼底部D的俯角=60°,已知甲楼的高AB=24米,则乙楼的高 ________米.三、解答题 (共6题;共40分)17. (5分) (2015高二上·安徽期末) 已知命题:“∀x∈{x|﹣1≤x≤1},都有不等式x2﹣x﹣m<0成立”是真命题.(1)求实数m的取值集合B;(2)设不等式(x﹣3a)(x﹣a﹣2)<0的解集为A,若x∈A是x∈B的充分不必要条件,求实数a的取值范围.18. (5分)(2016·安徽) 数列{xn}满足x1=0,xn+1=﹣x2n+xn+c(n∈N*).(Ⅰ)证明:{xn}是递减数列的充分必要条件是c<0;(Ⅱ)求c的取值范围,使{xn}是递增数列.19. (5分)已知不等式ax2+ax+(a﹣1)≤0.(1)当a= ,求不等式的解集;(2)不等式的解集是不为空集,则a的取值范围.20. (5分) (2019高二上·湘潭月考) 某新成立的汽车租赁公司今年年初用102万元购进一批新汽车,在使用期间每年有20万元的收入,并立即投入运营,计划第一年维修、保养费用1万元,从第二年开始,每年所需维修、保养费用比上一年增加1万元,该批汽车使用后同时该批汽车第年底可以以万元的价格出售.(1)求该公司到第年底所得总利润(万元)关于(年)的函数解析式,并求其最大值;(2)为使经济效益最大化,即年平均利润最大,该公司应在第几年底出售这批汽车?说明理由.21. (10分) (2019高三上·成都月考) 的内角,,所对的边长分别为,,,且 .(1)求角的大小;(2)若角 ,点为边上靠近点的一个四等分点,且,求的面积 .22. (10分) (2018高二上·临夏期中) 在等比数列中(1)已知,,求;(2)已知,,求参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共40分) 17-1、17-2、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、第11 页共11 页。

山东省高二上学期数学第二次考试试卷

山东省高二上学期数学第二次考试试卷

山东省高二上学期数学第二次考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2020高二上·重庆月考) 已知圆的标准方程为,则它的圆心坐标是()A .B .C .D .2. (2分) (2016高二下·高密期末) 已知P为抛物线上一个动点,为圆上一个动点,那么点P到点的距离与点P到轴距离之和最小值是()A .B .C .D .3. (2分)已知椭圆的左、右两焦点分别为F1 F2 ,点A在椭圆上,,,则椭圆的离心率e等于()A .B .C .D .4. (2分) (2016高二上·鞍山期中) 圆C:x2+y2﹣6x+8y+24=0关于直线 l:x﹣3y﹣5=0对称的圆的方程是()A . (x+1)2+(y+2)2=1B . (x﹣1)2+(y﹣2)2=1C . (x﹣1)2+(y+2)2=1D . (x+1)2+(y﹣2)2=15. (2分)(2019·浙江) 椭圆 =1的焦点坐标是()A . (0,3),(0,-3)B . (3,0),(-3,0)C . (0, ),(0,- )D . ( ,0),(- ,0)6. (2分) (2015高二下·上饶期中) 已知P是抛物线y2=8x上的一个动点,Q是圆(x﹣3)2+(y﹣1)2=1上的一个动点,N(2,0)是一个定点,则|PQ|+|PN|的最小值为()A . 3B . 4C . 5D . +17. (2分) (2020高一下·宁波期中) 已知点A(1,3),B(-2,-1),若直线l:y=k(x-2)+1与线段AB有公共点,则k的取值范围是()A .B .C . 或D .8. (2分) (2017高二上·右玉期末) 点P是双曲线(a>0,b>0)左支上的一点,其右焦点为F(c,0),若M为线段FP的中点,且M到坐标原点的距离为,则双曲线的离心率e范围是()A . (1,8]B .C .D . (2,3]二、多选题 (共3题;共9分)9. (3分) (2020高三上·汕头月考) 椭圆的焦距为,则的值为()A . 9B . 23C .D .10. (3分) (2019高二上·章丘月考) 已知分别是双曲线的左右焦点,点是双曲线上异于双曲线顶点的一点,且向量,则下列结论正确的是()A . 双曲线的渐近线方程为B . 以为直径的圆的方程为C . 到双曲线的一条渐近线的距离为1D . 的面积为111. (3分) (2019高二上·葫芦岛月考) 在同一直角坐标系中,直线与圆的位置不可能是()A .B .C .D .三、填空题 (共3题;共3分)12. (1分) (2020高二下·绍兴月考) 设M为双曲线C:-=1(a>0,b>0)右支上一点,A,F分别为双曲线的左顶点和右焦点,且△MAF为等边三角形,则双曲线的离心率为________.13. (1分) (2019高二上·瓦房店月考) 圆x2+y2=50与圆x2+y2-12x-6y+40=0的公共弦长为________14. (1分) (2016高二下·大丰期中) 如图,已知椭圆C的方程为:(a>b>0),B是它的下顶点,F是其右焦点,BF的延长线与椭圆及其右准线分别交于P、Q两点,若点P恰好是BQ的中点,则此椭圆的离心率是________.四、双空题 (共1题;共1分)15. (1分) (2020高二上·来宾期末) 为椭圆()的右焦点,已知过椭圆长轴上一点(不含端点)任意作一条直线,交椭圆于,两点,且的周长的最大值为,则该椭圆的离心率为________.五、解答题 (共6题;共65分)16. (10分) (2016高二上·绥化期中) 设F1 , F2分别是椭圆 =1的左、右焦点.(1)若M是该椭圆上的一点,且∠F1MF2=120°,求△F1MF2的面积;(2)若P是该椭圆上的一个动点,求的最大值和最小值.17. (15分)(2018·天津) 设椭圆 (a>b>0)的左焦点为F ,上顶点为B.已知椭圆的离心率为,点A的坐标为,且 .(Ⅰ)求椭圆的方程;(Ⅱ)设直线l:与椭圆在第一象限的交点为P ,且l与直线AB交于点Q.若(O为原点),求k的值.18. (10分) (2017高二上·邢台期末) 已知过点A(﹣4,0)的动直线l与抛物线C:x2=2py(p>0)相交于B、C两点.(1)当l的斜率是时,,求抛物线C的方程;(2)设BC的中垂线在y轴上的截距为b,求b的取值范围.19. (10分)(2017·新课标Ⅰ卷理) [选修4-4 ,坐标系与参数方程]在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数).(10分)(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.20. (10分) (2018高二上·重庆期中) 已知圆C经过,,圆心C在直线上,过点,且斜率为k的直线l交圆C于M、N两点.(1)求圆C的方程;(2)若O为坐标原点,且,求直线l的方程.21. (10分)(2020·南昌模拟) P是圆上的动点,P点在x轴上的射影是D,点M满足.(1)求动点M的轨迹C的方程,并说明轨迹是什么图形;(2)过点的直线l与动点M的轨迹C交于不同的两点A,B,求以OA,OB为邻边的平行四边形OAEB 的顶点E的轨迹方程.参考答案一、单选题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、多选题 (共3题;共9分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:三、填空题 (共3题;共3分)答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:四、双空题 (共1题;共1分)答案:15-1、考点:解析:五、解答题 (共6题;共65分)答案:16-1、答案:16-2、考点:解析:答案:17-1、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省数学高二上学期文数第二次段考试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共24分)
1. (2分) (2017高一下·磁县期末) 已知集合A={x|log2x<1},B={y|y=2x ,x≥0},则A∩B=()
A . ∅
B . {x|1<x<2}
C . {x|1≤x<2}
D . {x|1<x≤2}
2. (2分)(2018·鞍山模拟) 已知函数,则函数的大致图象是()
A .
B .
C .
D .
3. (2分) (2020高二上·西湖期末) 经过点,斜率为2的直线方程是()
A .
B .
C .
D .
4. (2分) (2018高二上·浙江期中) 已知圆:的圆心坐标是,则半径为()
A . 2
B . 3
C . 4
D . 5
5. (2分)在平面直角坐标系中,若P(x,y)满足,则x+2y的最大值是()
A . 2
B . 8
C . 14
D . 16
6. (2分) (2018高二上·宾阳月考) 如图2所示,程序框图的输出结果是()
A . 3
B . 4
C . 5
D . 8
7. (2分) (2018高一上·温州期中) 已知函数(其中 )的图象如右图所示,则函数的图象是()
A .
B .
C .
D .
8. (2分)(2018·中原模拟) 已知函数,的图象在区间
上有且只有9个交点,记为,则()
A .
B . 8
C .
D .
9. (2分)已知直线a和两个平面,给出下列两个命题:
命题p:若a∥,a⊥,则⊥;
命题q:若a∥, a∥,则∥。

那么下列判断正确的是()
A . p为假
B . 为假
C . p∧q为真
D . p∨q为真
10. (2分) (2020高二上·南昌月考) 两圆交于点和,两圆的圆心都在直线
上,则()
A . 1
B . 2
C . 3
D . 4
11. (2分)用一个平面截半径为25cm的球,截面面积是225πcm2 ,则球心到截面的距离是()
A . 5cm
B . 10cm
C . 15cm
D . 20cm
12. (2分)椭圆上有n个不同的点:P1 ,P2 ,…,Pn, 椭圆的右焦点为F,数列{|PnF|}是公差大于的等差数列, 则n的最大值是()
A . 198
B . 199
C . 200
D . 201
二、填空题 (共4题;共6分)
13. (1分)已知{an}为等差数列,a3+a8=22,a6=8,则a5=________.
14. (2分) (2019高二上·南湖期中) 直线l1 , l2的斜率k1 , k2是关于k的方程2k2-4k+m=0的两根,若l1⊥l2 ,则m=________.若l1∥l2 ,则m=________.
15. (1分) (2020高一上·保山月考) 若某空间几何体的三视图如图所示,则该几何体的体积是________.
16. (2分) (2019高二上·慈溪期中) 在平面直角坐标系xOy中,直线l:mx-y-2m-1=0(m∈R)过定点________,以点(1,0)为圆心且与l相切的所有圆中,半径最大的圆的标准方程为________.
三、解答题 (共6题;共65分)
17. (10分) (2020高一下·隆化期中) 在中,角A,B,C所对的边分别是a,b,c,已知
.
(1)求的值;
(2)若,,,D为垂足,求的长.
18. (10分) (2017高一下·石家庄期末) 已知等差数列{an}满足a3=3,前6项和为21.
(1)求数列{an}的通项公式;
(2)若bn=3 ,求数列{bn}的前n项和Tn .
19. (10分) (2018高二上·万州月考) 如图,在三棱锥中,平面,,
为侧棱上一点,它的正(主)视图和侧(左)视图如图所示.
(1)证明:平面;
(2)在的平分线上确定一点,使得平面,并求此时的长.
20. (15分)产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:
x24568
y3040605070(1)画出散点图.
(2)求回归方程.
(3)试预测广告费支出为10百万元时,销售额多大?
21. (10分) (2020高二上·江阴期中) 如图,过底面是矩形的四棱锥F-ABCD的顶点F作,使AB =2EF,若平面平面,点G在CD上且满足DG=GC.求证:
(1)平面;
(2)平面平面 .
22. (10分) (2018高二上·浙江月考) (6’+9’)已知双曲线,为上的任意点。

(1)求证:点到双曲线的两条渐近线的距离的乘积是一个常数;
(2)设点的坐标为,求的最小值.
参考答案一、单选题 (共12题;共24分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、考点:
解析:
答案:7-1、考点:
解析:
答案:8-1、考点:
解析:
答案:9-1、考点:
解析:
答案:10-1、考点:
解析:
答案:11-1、考点:
解析:
答案:12-1、考点:
解析:
二、填空题 (共4题;共6分)答案:13-1、
考点:
解析:
答案:14-1、
考点:
解析:
答案:15-1、
考点:
解析:
答案:16-1、
考点:
解析:
三、解答题 (共6题;共65分)答案:17-1、
答案:17-2、
考点:
解析:
答案:18-1、
答案:18-2、考点:
解析:
答案:19-1、
答案:19-2、考点:
解析:
答案:20-1、答案:20-2、
答案:20-3、考点:
解析:
答案:21-1、答案:21-2、
考点:
解析:
答案:22-1、答案:22-2、
考点:
解析:。

相关文档
最新文档