结构动力学习题解答(一二章)

合集下载

结构动力学题解(1)

结构动力学题解(1)

题图
23 l 3 = 1536 EI
则系统的自振频率
ω=
1 1536 EI = mδ 23ml 3 1 1536 EI = 2 ω 1536 EI − 23ml 3ω 2 1− ω2 1536 EI 23l 3 ⋅ ⋅F 1536 EI − 23ml 3ω 2 1536 EI
2 2 1 l12 l2 l12 k1 + l2 k2 = 1 / m + 3 2 3EI (l + l ) (l + l ) k k mδ 1 2 1 2 1 2
(e) 解,考虑质体水平单位位移时的系统劲度。
k1 = k3 = k2 =
12 EI 2 h3
3EI 2 h3
令 δ t 为两支座弹簧无限刚度时单位力作用下质体的垂直位移
1 1 l1l2 2 l1l2 l12 l22 δt = × (l1 + l2 ) × × = 3 EI (l1 + l2 )2 3 (l1 + l2 )2 2 3EI (l1 + l2 )
总变形: δ = δ t + δ M 其自振频率: ω =
F (t ) = F sin ω t
y0 =
l3 3EI 3EI ml 3
题图
系统自振频率 ω =
动力系数 µ =
1 3EI = 2 ω 3EI − ml 3ω 2 1− ω2 3EI l3 Fl 3 ⋅ ⋅ F = 3EI − ml 3ω 2 3EI 3EI − ml 3ω 2
&& , Fi1 = Fi 2 = mY
两柱的侧移劲度相等为: k =
3i 3EI = 3 (单位位移下的水平剪力) l2 l

结构动力学习题解析

结构动力学习题解析

结构动力学习题2.1 建立题2.1图所示的三个弹簧-质点体系的运动方程(要求从刚度的基本定义出发确定体系的等效刚度)。

题2.1图2.2 建立题2.2图所示梁框架结构的运动方程(集中质量位于梁中,框架分布质量和阻尼忽略不计)。

题2.2图2.3 试建立题2.3图所示体系的运动方程,给出体系的广义质量M、广义刚度K、广义阻尼C和广义荷载P(t),其中位移坐标u(t)定义为无重刚杆左端点的竖向位移。

题2.3图2.4 一总质量为m1、长为L的均匀刚性直杆在重力作用下摆动。

一集中质量m2沿杆轴滑动并由一刚度为K2的无质量弹簧与摆轴相连,见题 2.4图。

设体系无摩擦,并考虑大摆角,用图中的广义坐标q1和q2建立体系的运动方程。

弹簧k2的自由长度为b。

题2.4图2.5 如题2.5图所示一质量为m1的质量块可水平运动,其右端与刚度为k的弹簧相连,左端与阻尼系数为c的阻尼器相连。

摆锤m2以长为L的无重刚杆与滑块以铰相连,摆锤只能在图示铅垂面内摆动。

建立以广义坐标u和θ表示的体系运动方程(坐标原点取静平衡位置)。

题2.5图2.6如题2.6图所示一质量为m1的质量块可水平运动,其上部与一无重刚杆相连,无重刚杆与刚度为k2的弹簧及阻尼系数为c2的阻尼器相连,m1右端与刚度为k1的弹簧相连,左端与阻尼系数为c1的阻尼器相连。

摆锤m2以长为L的无重刚杆与滑块以铰相连,摆锤只能在图示铅垂面内摆动。

建立以广义坐标u和θ表示的体系运动方程(坐标原点取静平衡位置,假定系统作微幅振动,sinθ=tanθ=θ)。

计算结果要求以刚度矩阵,质量矩阵,阻尼矩阵的形式给出。

3.1单自由度建筑物的重量为900kN,在位移为3.1cm时(t=0)突然释放,使建筑产生自由振动。

如果往复振动的最大位移为2.2cm(t =0.64s),试求:(1)建筑物的刚度k;(2)阻尼比ξ;(3)阻尼系数c。

3.2 单自由度体系的质量、刚度为m=875t,k=3500kN/m,且不考虑阻尼。

结构动力学习题解答一二章

结构动力学习题解答一二章
(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
2、 动量距定理法
适用范围:绕定轴转动的单自由度系统的振动。
解题步骤:(1) 对系统进行受力分析与动量距分析;
(2) 利用动量距定理J ,得到系统的运动微分方程;
(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
3、 拉格朗日方程法:
;
1、7求图1-36所示齿轮系统的固有频率。已知齿轮A的质量为mA,半径为rA,齿轮B的质量为mB,半径为rB,杆AC的扭转刚度为KA,,杆BD的扭转刚度为KB,
解:由齿轮转速之间的关系 得角速度 ;转角 ;
系统的动能为:
CA
;B D
图1-36
系统的势能为:
;
系统的机械能为
;
由 得系统运动微分方程
;
适用范围:所有的单自由度系统的振动。
解题步骤:(1)设系统的广义坐标为 ,写出系统对于坐标 的动能T与势能U的表达式;进一步写求出拉格朗日函数的表达式:L=T-U;
(2)由格朗日方程 =0,得到系统的运动微分方程;
(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
4、 能量守恒定理法
1、2叙述用衰减法求单自由度系统阻尼比的方法与步骤。
用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法与共振法。
方法一:衰减曲线法。
求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期与相邻波峰与波谷的幅值 、 。
(2)由对数衰减率定义 , 进一步推导有
,
因为 较小,所以有

方法二:共振法求单自由度系统的阻尼比。
;L/2L/2
则固有频率为:
图1-33(b)

结构动力学问答题答案-武汉理工-研究生

结构动力学问答题答案-武汉理工-研究生

结构动力学问答题答案-武汉理工-研究生结构动力学问答题答案-武汉理工-研究生《结构动力学》思考题第1章1、对于任一振动系统,可划分为由激励、系统和响应三部分组成。

试结合生活或工程分别举例说明:何为响应求解、环境识别和系统识别?响应求解:结构系统和荷载已知,求响应。

又称响应预估问题,是工程正问题的一种,通常在工程中是指结构系统已知,具体指结构的形状构件及离散元件等,环境识别:主要是荷载的识别,结构和响应已知,求荷载。

属于工程反问题的一种。

在工程中,如已知桥梁的结构和响应,根据这些来反推出桥梁所受到的荷载。

系统识别:荷载和响应已知,求结构的参数或数学模型。

又称为参数识别,是工程反问题的一种,在土木工程领域,房屋、桥梁和大坝等工程结构被视为“系统”,而“识别”意味着由振动实验数据求得结构的动力特性(如频率、阻尼比和振型)。

如模态分析和模态试验技术等基本成型并得到广泛应用。

2、如何从物理意义上理解线性振动系统解的可叠加性。

求补充3、正确理解等效刚度的概念,并求解单自由度系统的固有频率。

复杂系统中存在多个弹性元件时,用等效弹性元件来代替原来所有的弹性元件,等效原则是等效元件刚度等于组合元件刚度,则等效元件的刚度称为等效刚度。

4、正确理解固有频率f 和圆频率ω的物理意义。

固有频率f :物体做自由振动时,振动的频率与初始条件无关,而仅与系统的本身的参数有关(如质量、形状、材质等),它是自由振动周期的倒数,表示单位时间内振动的次数。

圆频率ω:ω=2π/T=2πf 。

即为单位时间内位移矢量在复平面内转动的弧度,又叫做角频率。

它只与系统本身的参数m ,k 有关,而与初始条件无关5、正确理解过阻尼、临界阻尼、欠阻尼的概念。

一个系统受初扰动后不再受外界激励,因为受到阻力造成能量损失而位移峰值渐减的振动称为阻尼振动。

系统的状态按照阻尼比ζ来划分。

把ζ=0的情况称为无阻尼,即周期运动;把0<ζ<1的情况称为欠阻尼,即系统所受的阻尼力较小,振幅在逐渐减小,最后才达到平衡位置;把ζ>1的情况称为过阻尼,如果阻尼再增大,系统需要较长的时间才能达到平衡;把ζ=1的情况称为临界阻尼,即阻尼的大小刚好使系统作非"周期"运动。

[美]R.克里夫《结构动力学》补充详解及习题解

[美]R.克里夫《结构动力学》补充详解及习题解

前言结构动力学是比较难学的一门课程,但是你一旦学会并且融会贯通,你就会为成为结构院士、大师和总工垫定坚实的基础。

结构动力学学习的难点主要有以下两个方面。

1 概念难理解,主要表现在两个方面,一是表达清楚难,如果你对概念理解的很透彻,那么你写的书对概念的表述也会言简意赅,切中要害(克里夫的书就是这个特点),有的书会对一个概念用了很多文字进行解释,但是还是没有说清楚,也有的书受水平限制,本身表述就不清楚。

二是理解难,有点只可意会不可言传的味道,老师讲的头头是道,自己听得云山雾绕。

2 公式推导过程难,一是力学知识点密集,推导过程需要力学概念清析,并且需要每一步的力学公式熟悉;二是需要一定的数学基础,而且有的是在本科阶段并没有学习的数学知识。

克里夫《结构动力学》被称为经典的结构动力学教材,但是也很难看懂。

之所以被称为经典,主要就是对力学的概念表达的语言准确,概念清楚。

为什么难懂呢?是因为公式的推导过程比较简单,省略过多。

本来公式的推导过程既需要力学概念清楚也需要数学公式熟悉,但是一般人不是力学概念不清楚,就是数学公式不熟悉,更有两者都不熟悉者。

所以在学习过程中感觉很难,本学习详解是在该书概念清楚的基础上,对力学公式推导过程进行详细推导,并且有的加以解释,帮助你在学习过程中加深理解和记忆。

达到融会贯通,为你成为结构院士、大师和总工垫定坚实的基础。

以下黑体字是注释,其它为原书文字。

[美] R∙克里夫《结构动力学》辅导学习详解第1章结构动力学概述… …第Ⅰ篇单自由度体系第2章基本动力体系的组成… …§2-5 无阻尼自由振动分析如上一节所述,有阻尼的弹簧-质量体系的运动方程可表示为mv̈(t)+cv̇(t)+kν(t)=p(t)(2-19)其中ν(t)是相对于静力平衡位置的动力反应;p(t)是作用于体系的等效荷载,它可以是直接作用的或是支撑运动的结构。

为了获得方程(2-19)的解,首先考虑方程右边等于零的齐次方程,即mv̈(t)+cv̇(t)+kν(t)=0(2-20)mv(t)+kν(t)=0(2-20a)此处公式应该为mv(t)+kν(t)=0,因为该节是无阻尼自由振,而且(2-20)的解,式(2-21)也是公式mv(t)+kν(t)=0的解在作用力等于零时产生的运动称为自由振动,现在要研究的即为体系的自由振动反应。

结构动力学1~15

结构动力学1~15

《结构动力学》习题答案1~151. 1简述求多自由度体系时程反应的振型叠加法的主要步骤 答1)建立多自由度体系的运动方程)()()()(t p t kv t v c t vm =++ 2)进行振型和频率分析对无阻尼自由振动,这个矩阵方程能归结为特征问题)(ˆ2t p vm k =-ω 由此确定振型矩阵φ和频率向量ω 3)求广义质量和荷载依次取每一个振型向量n φ,计算每一个振型的广义质量和广义荷载n T n nm Mφφ= )()(t p t p Tn n φ=4)求非耦合运动方程用每个振型的广义质量、广义力、振型频率n ω和给定的振型阻尼比n ξ就能写出每一个振型的运动方程2)(2)(ωωξ++t Y t Y n n n n nn nMt P t Y )()(=5)求对荷载的振型反应根据荷载类型,用适当的方法解这些单自由度方程,每一个振型的一般动力反应表达式用Duhamel 积分给出ττωτωξτωd t t P M t Y Dn n n tn nn n )(sin )](exp[)(1)(0---=⎰写出标准积分形式τττd t h P t Y n tn n )()()(0-=⎰式中)](exp[)(sin 1)(τωξτωωτ---=-t t M t h n n Dn nn n 10<<n ξ6)振型自由振动每一个振型有阻尼自由振动反应的通式为)exp[]sin )0()0(cos )0([)(t t Y Y t Y t Y n n Dn Dnnn n n Dn n n ωξωωωξω-++=7)求在几何坐标中的位移反应通过正规坐标变换求几何坐标表示的位移式)()()()(2211t Y t Y t Y t V n n φφφ+++=显然,它反映了各个振型贡献的叠加。

因此命名为振型叠加法。

8)弹性力反应抵抗结构变形的弹性力)()()(t Y k t kv t f s φ==当频率、振型从柔度形式的特征方程中求出时,可以采用另一种弹性力的表达式。

结构动力学习题解答(一二章)

结构动力学习题解答(一二章)

第一章 单自由度系统1。

1 总结求单自由度系统固有频率的方法和步骤。

单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。

1、 牛顿第二定律法适用范围:所有的单自由度系统的振动。

解题步骤:(1) 对系统进行受力分析,得到系统所受的合力;(2) 利用牛顿第二定律∑=F x m,得到系统的运动微分方程;(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率.2、 动量距定理法适用范围:绕定轴转动的单自由度系统的振动。

解题步骤:(1) 对系统进行受力分析和动量距分析;(2) 利用动量距定理J ∑=M θ,得到系统的运动微分方程;(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。

3、 拉格朗日方程法:适用范围:所有的单自由度系统的振动.解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T —U ; (2)由格朗日方程θθ∂∂-∂∂∂LL dt )( =0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。

4、 能量守恒定理法适用范围:所有无阻尼的单自由度保守系统的振动。

解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即0)(=+dtU T d ,进一步得到系统的运动微分方程;(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。

1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤.用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。

方法一:衰减曲线法.求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值i A 、1+i A .(2)由对数衰减率定义 )ln(1+=i iA A δ, 进一步推导有 212ζπζδ-=,因为ζ较小, 所以有πδζ2=。

结构动力学习题答案

结构动力学习题答案

结构动力学习题答案结构动力学学习题答案结构动力学是土木工程中的一个重要分支,它研究结构在受到外部荷载作用下的响应和变形规律。

在学习结构动力学的过程中,我们经常会遇到一些复杂的问题和难题。

下面我将为大家提供一些常见结构动力学学习题的答案,希望能够帮助大家更好地理解和掌握这门学科。

1. 什么是结构的固有频率?结构的固有频率是指结构在没有外部激励作用下,自由振动时的频率。

它是结构的固有特性之一,与结构的质量、刚度和几何形状有关。

固有频率越高,结构的振动越快。

2. 如何计算结构的固有频率?计算结构的固有频率需要先求解结构的固有振型和固有频率。

常用的方法有模态分析法和有限元法。

模态分析法是通过求解结构的特征方程得到结构的固有频率和振型;有限元法则是将结构离散化为有限个单元,通过求解单元的振动特征得到整体结构的固有频率和振型。

3. 结构的固有频率对结构有何影响?结构的固有频率与结构的动态特性密切相关。

当外部激励频率接近结构的固有频率时,会引起共振现象,使结构的振幅急剧增大,从而可能导致结构的破坏。

因此,在结构设计和抗震设计中,需要合理选择结构的固有频率,以避免共振现象的发生。

4. 什么是结构的阻尼?结构的阻尼是指结构在振动过程中能量损耗的程度。

阻尼可以分为线性阻尼和非线性阻尼。

线性阻尼是指结构的阻尼与结构的振幅成正比,非线性阻尼则是指结构的阻尼与结构的振幅不成正比。

5. 如何考虑结构的阻尼?在结构动力学分析中,通常会考虑结构的阻尼对结构响应的影响。

常用的阻尼模型有粘滞阻尼模型和柱塞阻尼模型。

粘滞阻尼模型是指结构的阻尼与结构的速度成正比;柱塞阻尼模型是指结构的阻尼与结构的速度平方成正比。

根据结构的实际情况和要求,可以选择适当的阻尼模型进行分析。

6. 结构的地震反应分析中常用的方法有哪些?在结构的地震反应分析中,常用的方法有等效静力法、响应谱法和时程分析法。

等效静力法是一种简化的方法,将地震作用等效为静力作用进行计算;响应谱法是一种基于地震响应谱的方法,通过将地震作用转化为结构的响应谱进行计算;时程分析法是一种基于地震时程的方法,通过模拟地震过程对结构进行动力响应分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,
其中: ; (1)
(2)
从实验所得的幅频曲线和相频曲线图上查的相关差数,由上述(1),(2)式求得阻尼比 。
方法二:功率法:
(1)单自由度系统在 作用下的振动过程中,在一个周期内,
弹性力作功为 、
阻尼力做功为 、
激振力做作功为 ;
(2)由机械能守恒定理得,弹性力、阻尼力和激振力在一个周期内所作功为零,
;图2-12
(3)系统的Lagrange函数
(4)系统的运动微分方程
由Lagrange方程 可得

(6)系统的特征方程设系统的运动微分方程的解为
代入系统的运动微分方程得系统的特征方程

(7)系统的频率方程系统的特征方程有非零解得充分必要条件是其系数行列式为零

解得
系统的固有频率

(7)系统的固有振型 将系统的固有频率代入系统的特征方程中的任何一个可得
因此系统的固有频率为:

1.8已知图1-37所示振动系统中,匀质杆长为L,质量为m,两弹簧刚度皆为K,阻尼系数为C,求当初始条件 时
(1) 的稳态解;C f(t)
(2) 的解;L/2 L/2
解:利用动量矩定理建立系统运动微分方程
;K K
而 ; 图1-37
得 ;
化简得
(1)
(1)求 的稳态解;
将 代入方程(1)得
解:(1)建立汽车上下振动的数学模型;由题意可以列出其运动方程:
Y1
其中: 表示路面波动情况; 1表示汽车上下波动位移。K/2 C K/2
将其整理为:
(1) Y(t)
将 代入得
图1-39
(2)汽车振动的稳态解:
设稳态响应为:
代入系统运动微分方程(1)可解得:


1.11.若电磁激振力可写为 ,求将其作用在参数为m、k、c的弹簧振子上的稳态响应。
系统的固有振型
(8)系统的主振动
2.3一均质细杆在其端点由两个线性弹簧支撑(图2-13),杆的质量为m,两弹簧的刚度分 别为2K和K。
(1)写出用杆端铅直位移u1和u2表示的运动方程;u1 C m u2
(2)写出它的两个固有频率;
(3)画出它的两个固有振型;
解:(1)均质杆的运动微分方程2K K
以均质杆的静平衡位置为坐标原点,均质杆的质心

将其代入方程(6)可以求得:
最后得
1.9图1-38所示盒内有一弹簧振子,其质量为m,阻尼为C,刚度为K,处于静止状态,方盒距地面高度为H,求方盒自由落下与地面粘住后弹簧振子的振动历程及振动频率。
解:因为在自由落体过程中弹簧无变形,所以振子与盒子之间无相对位移。在粘地瞬间,
由机械能守恒定理 的振子的初速度 ;
(6)等效粘性阻尼:取 ,令
可得:
第二章两个自由度系统
2.1求如图2-11所示系统的固有频率和固有振型,并画出振型。
解:(1)系统的振动微分方程
; X1X2
;m m
即 ;
; (1) 图 2-11
(2)系统的特征方程 根据微分方程理论,设方程组(1)的解为:
; (2)
将表达式(2)代入方程组(1)得:
底版与地面粘住后,弹簧振子的振动是对于初速度
的主动隔振
系统的运动微分方程为:
;K/2cK/2

或 H
系统的运动方程是对于初始条件的响应:



1.10汽车以速度V在水平路面行使。其单自由度模型如图。设m、k、c已知。路面波动情况可以用正弦函数y=hsin(at)表示。求:(1)建立汽车上下振动的数学模型;(2)汽车振动的稳态解。
解:首先将此激振力按照傅里叶级数展开:
其中: ;
因为 是偶函数,所以 。
于是


式中


1.12.若流体的阻尼力可写为 ,求其等效粘性阻尼。
解:(1)流体的阻尼力为 ;
(2)设位移为 ,而 ;
(3)流体的阻尼力的元功为 ;
(4)流体的阻尼力在一个振动周期之内所消耗的能量为:
(5)粘性阻尼力在一个振动周期之内所消耗的能量为:
解:(1)系统自由度、广义坐标:
图2-19所示的系统自由度N=2,选Y、 为
广义坐标。R V
(2)系统运动微分方程
适用范围:所有的单自由度系统的振动。
解题步骤:(1)设系统的广义坐标为 ,写出系统对于坐标 的动能T和势能U的表达式;进一步写求出拉格朗日函数的表达式:L=T-U;
(2)由格朗日方程 =0,得到系统的运动微分方程;
(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
4、 能量守恒定理法
C的位移为 L
均质杆绕质心C的转角为 图2-13
均质杆的运动微分方程 即
即 即 (1)
(2)系统的特征方程
设运动微分方程(1)的解为 、 ,代入方程(1)

(4)系统的频率方程 系统的特征方程有非零解得充分必要条件是其系数行列式为零

解得
系统的两个固有频率

(5)系统的固有振型 将系统的固有频率代入系统的特征方程中的任何一个可得
;L/2L/2
则固有频率为:
图1-33(b)
(3)系统的等效刚度为
m
k1 k1
则系统的固有频率为 图1-33(c)
(4)
由动量距定理 得:
( )=
得: ,
则 。
图1-33(d)
1.5 求下图所示系统的固有频率。图中匀质轮A半径R,重物B的重量为P/2,弹簧刚度为k.
解:以 为广义坐标,则
系统的动能为
即: + + ;
于是 -
进一步得: ;
(3)当 时, ,
则 ,
得 , 。
1.4求图1-35中标出参数的系统的固有频率。
(1)此系统相当于两个弹簧串联,弹簧刚度为k1、简支梁
刚度为 ; 等效刚度为k;有 ; L/2L/2
则固有频率为: ; 图1-33(a)
(2)此系统相当于两个弹簧串联, 等效刚度为:
(1)通过实验,绘出系统的幅频曲线,如下图:
单自由度系统的幅频曲线
(2)分析以上幅频曲线图,得到:

于是

进一步

最后

1.3叙述用正选弦激励求单自由度系统阻尼比的方法和步骤。
用正选弦激励求单自由度系统阻尼比的方法有两个:幅频(相频)曲线法和功率法。
方法一:幅频(相频)曲线法
当单自由度系统在正弦激励 作用下其稳态响应为:
图1-34
系的势能能为:

拉格朗日函数为
L=T-U;
由拉格朗日方程 得
则,
=
所以:系统的固有频率为
1.6求图1-35所示系统的固有频率。图中磙子半径为R,质量为M,作纯滚动。弹簧刚度为K。
解:磙子作平面运动, K
其动能T=T平动+T转动。x
图1-35

而势能

系统机械能
;
由 得系统运动微分方程

得系统的固有频率
第一章单自由度系统
1.1总结求单自由度系统固有频率的方法和步骤。
单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。
1、 牛顿第二定律法
适用范围:所有的单自由度系统的振动。
解题步骤:(1) 对系统进行受力分析,得到系统所受的合力;
(2) 利用牛顿第二定律 ,得到系统的运动微分方程;

(1-5)
求解方程组(1-5)得:
(1-6)
所以在公式 中有
(1-7)
2.8在如图2-18所示的系统中,一水平力Fsin(ωt)作用于质量块M上,求使M不动的条件。
解:(1)系统有两个自由度,选广义坐标为x,φ
(2)系统的动能
X
(3)系统的势能KMK
(4)Lagrange函数 L
图2-18m
(5)对Lagrange函数求导
(3)
因为 不可能总为零,所以只有前面的系数为零:


; (4)
(3)系统的频率方程 若系统振动,则方程有非零解,那么方程组的系数行列式等于零,即:

展开得
; (5)
系统的固有频率为:
; (6)
(4)系统的固有振型 将 , 代入系统的特征方程(4)式中的任一式,得系统的固有振型,即各阶振幅比为: (7)
1.2叙述用衰减法求单自由度系统阻尼比的方法和步骤。
用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。
方法一:衰减曲线法。
求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值 、 。
(2)由对数衰减率定义 , 进一步推导有

因为 较小, 所以有

方法二:共振法求单自由度系统的阻尼比。
系统的两阶固有振型
(8)系统的两阶主振动
2.4确定图2-14所示系统的固有频率和固有振型,并画出固有振型。
解:(1)系统运动微分方程
即u1 u2
2k
(1)
(2)系统特征方程 图2-14
设运动微分方程(1)的解为
和 ,
代入方程(1)

(3)系统频率方程
系统的特征方程有非零解得充分必要条件是其系数行列式为零

解得
;
(4)系统的固有振型 将系统的固有频率代入系统的特征方程中的任何一个可得
系统的两阶固有振型
+1 +1 +1
-1/2
2.5图2-15所示的均质细杆悬挂成一摆,杆的质量为m,长为L,悬线长为L/2,求该系统的固有频率和固有振型。
相关文档
最新文档