八年级数学三角形内角和PPT优秀课件

合集下载

三角形内角和ppt课件完整版

三角形内角和ppt课件完整版
度或边长。
余弦函数
cosA = b/c,表示邻边与斜边的 比值,同样用于直角三角形中。
正切函数
tanA = a/b,表示对边与邻边的比 值,常用于求解直角三角形的角度。
三角函数在解三角形中应用
已知两边及夹角求第三边
01
利用正弦定理或余弦定理求解。
已知三边求角度
02
利用余弦定理求解角度,再结合三角形内角和为180度求解其他
算错误。
公式选择
根据已知条件选择合适的公式 进行计算,避免使用错误的公
式导致结果不准确。
精度问题
在计算过程中要注意精度问题, 避免因舍入误差导致结果不准
确。
06
总结回顾与拓展延伸
关键知识点总结回顾
三角形的内角和定义 三角形三个内角的度数之和等于180度。
三角形内角和定理的证明 可以通过多种方法证明,如平行线性质、外角性质等。
角度。
已知两角及一边求其他边和角
03
利用正弦定理和三角形内角和求解。
边长比例与角度关系探讨
边长比例对角度的影响
在三角形中,边长比例的变化会影响角度 的大小,如等腰三角形底角相等。
VS
角度对边长比例的影响
角度的变化也会影响三角形的边长比例, 如直角三角形中,30度角所对的直角边等 于斜边的一半。
典型问题解决方法分享
建筑设计
建筑设计中经常涉及到三角形的面积计算,如屋顶、窗户等部分的 设计。
物理问题
在物理问题中,三角形的面积计算也经常出现,如求解力的大小和方 向等。
误区提示和易错点剖析
01
02
03
04
底和高的对应
在计算三角形面积时,一定要 注意底和高的对应关系,避免

三角形的内角和PPT课件

三角形的内角和PPT课件
②一个三角形的三个内角度数是:70°,64°,45°。
(×) ③一个三角形至少有两个角是锐角。( √ )
2020/12/26
④钝角三角形的内角和大于锐角三角形的内 角和。( × ) ⑤红领巾有一个底角是30°,那么它的顶角 是150。( × ) ⑥任何一个等腰三角形一定是锐角三角形。 (×)
2020/12/26
2020/12/26
内角
度数
∠1 ∠2 ∠3 内角和
三角形
锐角三角形
直角三角形
钝角三角形
我的发现:
2020/12/26
2020/12/26
拼一拼
2020/12/26
3 1
1
平角:180o 平角:180o
1
平角:180o
结论:三角形的内角和为180o
1 1
1
折一折
1
2
2
3
3
钝角三角形
1 平角:180° 1
2020/12/26
通过这节课的学习你 有哪些收获?
2020/12/26
60°
1
2 125°
∠2﹦180°- 125° = 55° ∠1﹦180°- 60°-55°=65 °
2020/12/26
你能借助三角形内角和求四边形、五边 形、六边形的内角和吗?
图形
名称 三角形 四边形 五边形 六边形
三角形个 数
内角和
2020/12/26
12
3
4
180° 360 ° 540 ° 720 °


50°
110°
45°
40°


180°- 110°- 45°=25° 180°-( 110°+ 45°)=25°

《三角形的内角和》优质ppt课件

《三角形的内角和》优质ppt课件

角之比为1:2:3,求这个三角形
的最大内角。
02
题目3:判断下列各组角能否
构成一个三角形的内角,并说
明理由。
03
A. 30°, 40°, 110°
04
B. 60°, 60°, 60°
05
C. 20°, 50°, 120°
06
学生自主思考、提问及讨论环节
01
02
03
问题1
三角形的内角和为什么是 180°?
应用举例
例1
计算五边形的内角和。

五边形可以划分为3个三角形,因此五边形的内角和 = 3 × 180° = 540°。
例2
计算正六边形的内角和。

正六边形可以划分为4个三角形,因此正六边形的内角 和 = 4 × 180° = 720°。
例3
已知一个多边形的内角和为1080°,求这个多边形的边 数。
有助于培养逻辑思维和空间想象能力
预习下一讲内容:《全等三角形》
了解全等三角形的定 义和性质
通过实例和练习加深 对全等三角形相关知 识的理解和应用
掌握全等三角形的判 定方法
谢谢您聆听
THANKS
《三角形的内角和》优质ppt 课件
CONTENTS
• 三角形基本概念与性质 • 三角形内角和定理推导 • 三角形内角和定理应用举例 • 拓展:多边形内角和计算方法
探讨 • 练习题与课堂互动环节 • 课程小结与预习提示
01
三角形基本概念与性质
三角形定义及分类
三角形定义
由不在同一直线上的三条线段首 尾顺次连接所组成的封闭图形。
已知三角形一个内角及相邻两边,求另一 个内角的大小。
已知三角形三边长度,利用余弦定理求任 一内角的大小。

《三角形——三角形的内角和》数学教学PPT课件(4篇)

《三角形——三角形的内角和》数学教学PPT课件(4篇)

180°
180°
180°
课堂练习
2.用一张正方形纸折一折,填一填。
内角和(360)°。 内角和(180)°。 内角和(180)°。
课堂练习
3.算出下面三角形中∠3的度数,说说它们各是什么三角形。
(1)∠1=42°,∠2=38°,∠3=( 10)0 ° (2)∠1=90°,∠2=56°,∠3=( 3)4 ° (3)∠1=∠2=63°,∠3=( 54)°
我把这个六边形分成了6个三角形,把6 个三角形的内角加起来再减去中间的一 个周角就是六边形的内角和,180º×6- 360º=720º
这两种方法都是将六边形分成了三角形再计算, 虽然分法不同,但求出的结果是一样的。
新知运用
人民教育出版社 四年级 | 下册
1.判断
(1)三角形的内角和是180°。 ( ) √
(直角)三角形。
课后作业
3.判断题。
(1)一个三角形的一个角是72°,另一个角是28°,求第三个角的列式是:
180°-72°+28°。
(ⅹ )
(2)直角三角形中,一个锐角32°,求另一个锐角的列式是:180°-90°
-32°。
(√ )
(3)一个三角形可能有两个钝角,也可能有两个直角。
(ⅹ )
(4)等腰三角形的一个底角是45°,这个三角形也是直角三角形。(√ )
课后作业
1.计算下面第三个角的度数。
60° 40° 80°
40° 30°
课后作业
2.填一填。
(1)三角形的内角和是( 180)°。 (2)在一个等腰三角形中,一个顶角是50°,那么它的底角是(65°),
如果它的一个底角是50°,那么它的顶角是( 80)°。 (3)一个直角三角形中的一个锐角是52°,另一个锐角是( 38°)。 (4)一个三角形中,∠1=25°,∠2=65°,∠3=( 9)0°度,这是一个

三角形的内角和(PPT课件)2024新版

三角形的内角和(PPT课件)2024新版
忽视三角形形状的多样性,认为只有某些特殊形状的三角 形才具有内角和为180度的性质。实际上,所有三角形的内 角和均为180度,与形状无关。
拓展延伸:多边形内角和探讨
多边形的定义及分类
由三条或三条以上的线段首尾顺 次连接所组成的平面图形叫做多 边形。按照边数可分为三边形、 四边形、五边形等。
多边形内角和的计算 公式
在建筑设计中,需要测量建筑物的各个角度,以确保建筑物的稳定性和
美观性。三角形内角和的原理可以帮助建筑师快速准确地计算角度。
02
屋顶角度设计
屋顶的角度设计对于建筑物的排水、采光和保温等方面都有重要影响。
利用三角形内角和的原理,建筑师可以设计出合理的屋顶角度。
03
楼梯角度计算
在楼梯设计中,需要计算楼梯的倾斜角度,以确保人们上下楼梯时的舒
艺术创作
在艺术创作中,艺术家经常需要运用几何原理来构图和设计。三角形内角和的原理可以帮 助艺术家创造出具有美感和平衡感的作品。
06
总结回顾与拓展延伸
关键知识点总结回顾
三角形的内角和定义
01
三角形的三个内角之和等于180度。
三角形内角和的验证方法
02
通过测量、撕拼、折叠等方法验证三角形的内角和为180度。
可以通过三角形内角和定理和 邻补角的性质来证明三角形外 角和定理。
03
三角形外角性质与计算
三角形外角定义及性质
三角形外角的定义
三角形的一边与另一边的延长线组成的角,叫做三角形的外 角。
三角形外角的性质
三角形的外角等于与它不相邻的两个内角之和。此外,三角 形的一个外角大于任何一个和它不相邻的内角。
方法二:通过撕拼法 证明
从而得到∠A + ∠B + ∠C = 180度。

11.2.1三角形的内角和 公开课ppt课件

11.2.1三角形的内角和 公开课ppt课件
22
我不但三边之和比你长, 你的三边之和。是比我长,
而且三个内角之和也比 但三个内角之和并不比我
你大!

你同意谁的说法呢?为什么?
23
这节课你学到了什么?
P13 练习
24
(两直线平行,内错角相等)
∠B=∠2
(两直线平行,同位角相等)
∵∠1+∠2+∠ACB=180°
A
∴∠A+∠B+∠ACB=180° (等量代换) B
E
1 2
C
D
12
证法三 内错角+同旁内角
过A作AE∥BC,
∴∠B=∠BAE
(两直线平行,内错角相等)
∠EAB+∠BAC+∠C=180°
(两直线平行,同旁内角互补)
E
A
∴∠B+∠C+∠BAC=180°
(等量代换)
B
C
13
三角形内角和定理: 三角形的内角和等于1800. 即在△ABC中, ∠A +∠B +∠C=180 °
14
பைடு நூலகம்
15
例1、 如图:在△ABC中,∠BAC=40°, ∠B=75°,AD是△ABC的角平分线。 求∠ADB的度数?
在△ABD中,
A
∠ADB=180°-∠B-∠BAD,
19
例:
已知△ABC, ∠A +∠B= 90 °,求∠C的度数。
解:∵ ∠A+∠B+ ∠C=180 ° ∴ ∠C=180 °-( ∠A +∠B) =180 °- 90 ° = 90 °
20
例3
我的一个角是多少 度?
1800÷3=60°

《三角形内角和》课件

《三角形内角和》课件

特殊三角形的内角和
直角三角形的内角和
直角三角形具有特殊的角度关 系,让我们一起来解析它们的 内角和。
等腰三角形的内角和
等腰三角形也有其独特的内角 和特点,让我们一起来了解它 们。
等边三角形的内角和
等边三角形是三角形中最特殊 的,让我们一起来揭示它们的 内角和。
三角形内角和的相关练习
1
练习题解析
通过解析一些典型题目,我们将更好地理解三角形内角和的计算方法。
《三角形内角和》PPT课 件
欢迎来到《三角形内角和》PPT课件,让我们一起探索三角形内角和的奇妙 世界!通过本课件,你将了解三角形内角和的定义、性质、推论以及特殊三 角形的内角和。
什么是三角形内角和?
三角形内角和是指三角形内部三个角度之和。我们将探讨内角和的定义以及 计算公式,帮助你理解三角形的内部结构。
2
黄色网格纸练习
让我们亲自动手练习计算三角形内角和,并使用黄色网格纸来辅助计算。
总结
三角形内角和的重要性
掌握三角形内角和的计算方法对于数学学习和实际 问题解决都具有重要意义。自己,你可以进一步巩固对三角形内 角和的理解和掌握。
三角形内角和的性质
1
性质及证明
三角形内角和具有一些特定的性质,并且这些性质可以通过简单的证明得出。
2
应用举例
我们将通过一些实际问题的例子来展示三角形内角和的应用。
三角形内角和的推论
各角度之间的关系
三角形内角和之间存在一些有趣的推论,让我们 一起来探索它们。
应用实例分析
通过实际问题的分析,我们将看到三角形内角和 的推论如何应用。

《三角形的内角和》ppt课件

《三角形的内角和》ppt课件
在数学教育中的价值
三角形内角和定理是初中数学中的重要内容之一,对于培养学生的逻辑思维、推理能力和数学素 养具有重要意义。
02
三角形内角和的基本概念
角度与三角形的关系
三角形是由三条边和三个角组成的几何图形。 角度是描述两条射线之间的夹角大小的量度。 三角形中的角度与边长之间存在一定的关系,如正弦、余弦定理等。
基于三角形内角和定理,可以推 导出许多三角恒等式,这些恒等 式在解决三角函数问题时非常有 用。例如,正弦定理、余弦定理
等。
三角函数的应用
在物理学、工程学、天文学等领 域中,经常需要使用三角函数来 解决实际问题。而三角形内角和 定理是解决这些问题的关键之一。
在实际问题中的应用
建筑设计
在建筑设计中,经常需要使用三 角形内角和定理来计算角度、长 度等参数,以确保建筑物的稳定
性和美观性。
地图绘制
在地图绘制中,三角形内角和定理 被用来确定地图上两点之间的角度, 从而保证地图的准确性和可靠性。
导航定位
在导航定位中,三角形内角和定理 被用来计算航向、俯仰角等参数, 以确保飞机、船舶等交通工具的正 确航行方向。
05
总结与回顾
三角形内角和的总结
三角形内角和的定义
三角形内角和是指三角形三个内角的度数之和。
培养空间思维
学习三角形内角和定理有 助于培养学生的空间思维 能力和几何直觉。
回顾与思考
01
回顾三角形内角和定理的证明过程,加深对定 理的理解。
02
思考三角形内角和定理在现实生活中的应用, 提高解决实际问题的能力。
03
探究其他几何图形的内角和性质,拓展几何知 识面。
THANKS
内角和为180度的结论。

《三角形的内角和》PPT课件 精品

《三角形的内角和》PPT课件 精品
第1课时 三角形的内角和
人教版八年级上册
课前准备
任意三角形纸片、剪刀、量角器、直尺
学习目标
重点 1
经历探究活动的 过程,多角度探 索并证明三角形 内角和定理,体 会证明的必要性;
【推理能力】
难点 2
获取添加辅助线 的思路和方法, 能用平行线的性 质证明三角形内 角和等于180°;
【几何直观、推理能力】
辅助线通常画成虚线.
思路 添加平行线 (转化法) (辅助线)
利用平行线的 性质,转移角
① 依据平角定义,得到180°; ② 两直线平行,同旁内角互补.
知识点二 运用三角形内角和定理
将正确答案填到相应的横线上。
① 在△ABC中,∠A=30°,∠B = 65°,则∠C =___8_5_°__ ② 在△ABC中,∠C= 42°,∠A = ∠B,则∠B = ___6_9_°__ ③ 在△ABC中,∠A=∠B =∠C,则∠A = ___6_0_°__ ④ 在△ABC中,∠C= 36°,∠A:∠B = 1:2,则∠B = ___9_6_°__
隐含条件:三角形三个内角的和等于180°
例1 如图,在△ABC 中, ∠BAC =40°, ∠B =75°,AD 是 △ABC的角平分线.求∠ADB 的度数.
C
解:由∠BAC = 40°, AD是△ ABC
的角平分线,得
D
∠BAD = 1 ∠BAC = 20°.
2
在△ABD中,
A
B
∠ADB =180°-∠B-∠BAD
三角形三个内角的和等于180°.
画图写出
已知:△ABC.
A
已知求证
求证:∠A+∠B+∠C=180°.
证明过程 ?

《三角形的内角和》PPT课件

《三角形的内角和》PPT课件
三角形内角和性质
三角形内角和与角度关系
三角形内角和为180度
在任何三角形中,三个内角的和总是 等于180度。
角度互余关系
在一个三角形中,如果两个角的和小 于90度,则这两个角互为余角。
角度互补关系
在直角三角形中,两个锐角的角度和 为90度,它们互为补角。
三角形内角和与边长关系
边长与角度关系
在三角形中,边长越长, 对应的角度越大;边长越 短,对应的角度越小。
步骤四
将剪下来的三个角拼在 一起,观察是否能拼成
一个平角。
实验结果分析与讨论
结果分析
通过实验操作,我们发现三角形ABC的三个内角拼在一起后,能够形成一个平角,即三角形的内角和为 180度。
讨论
实验结果验证了三角形的内角和定理,即任意三角形的内角和都等于180度。这一结论在数学和几何学中 有着广泛的应用,对于解决与三角形相关的问题具有重要意义。同时,实验结果也说明了实验操作的准确 性和可靠性。
通过不断练习和挑战自我,可 以提高自己的几何思维能力和 解题能力。
THANKS
感谢观看
《三角形的内角 和》PPT课件
目录
• 课程引入 • 三角形内角和定理 • 三角形内角和性质 • 三角形内角和计算 • 实验操作与探究 • 拓展延伸与应用举例
01
课程引入
三角形的定义与分类
三角形的定义
由不在同一直线上的三条线段首尾 顺次相接所组成的图形叫做三角形。
三角形的分类
根据三角形的边长和角度,可以将 三角形分为等边三角形、等腰三角 形、直角三角形等。
三角形内角和概念
三角形内角和的定义
三角形三个内角的度数之和。
三角形内角和的性质
任意三角形的内角和都等于180度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10:直角三角形的两个锐角有什么关系?
推论:
直角三角形的两个锐角互余
总 本 1:三角形内角和是180°。 课 2:直角三角形的两个锐角互余。
结 要 3:添加辅助线。 点 4:三角形按角分类。
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
已 知: ▲ABC。
A
求 证:∠A+ ∠B+∠C=180°o
E
证 明:作BC的延长线CD,在
▲ABC的外部,以 CA为一边,CE为 另一边画 ∠1= ∠A.B
12 CD
∴CE∥BA(内错角相等,两直线平行)
∴∠B=∠2(两直线平行,同位角相等)
又∵∠1+∠2+∠ACB=180 °(平角定义)
∴∠A+∠B+∠ACB=180°.
10:直角三角形的两个锐角有什么关系?
例 题:
A
已知:在▲ABC中,∠C=∠ABC =2∠A,
BD是AC边上 的高,
D
求: ∠DBC的度数。 解:设∠A=X °
B
C
则∠C=∠ABC= 2X°
∴X+2X+2X=180 ° (三角形内角和定理)
解方程 得X=36 °
∴ ∠ C=72 °
在△BDC中,
∵ ∠BDC=90 ° (已知)
E
证 明:作BC的延长线CD,在
▲ABC的外部,以
CA为一边,CE为 另一边画 ∠1= ∠A.
B
12 CD
问题六: 什么叫辅助线?辅助线该怎样画?
答: 为了证明的需要,在原来图形上添 画的线叫做辅助线。在平面几何里, 辅助线通常画成虚线。

问题四: 将你发现的结论写成定理,画出相 应的图形,写好已知、求证。
三角形的内角和
--------初中数学教学课件
课 件 说 明
教学目的:1 :三角形的内角和通过实验、
启发、观察,得出结论和是180度。 2 通过证明三角形内角和,理解 为什么要引出平行线,如何在不 同情况下引出平行线。 3 培养建立运动观点、从多方面 思考问题的能力。 教学重点:三角形的内角和定理及其证明。
4:将你的结论写成定理,画出相应的图形, 写好已知、求证。
5:如何将一个三角形三个角放在同一顶点上, 除了问题一、二的方法外,你还有哪些方法?
6:什么叫辅助线?辅助线该怎样画? 7:完成三角形内角和定理的证明。 8:一个三角形能不能有两个内角是钝角或直 角?三角形按角应该如何分类? 9:画一个直角三角形,指出直角边与斜边, 如果两条直角边相等,这个直角三角形又叫作 什么直角三角形?
8:一个三角形能不能有两个内角是钝角或直 角?三角形按角应该如何分类?
答:一个三角形的三个内角可能都是锐角,也 可能有一个是直角或钝角,但不可能有两个内 角是钝角或直角。
三角形按角分类如下:
直角三角形 三角形
锐角三角形 斜三角形
钝角三角形
9:画一个直角三角形,指出直角边与斜边, 如果两条直角边相等,这个直角三角形又叫作 什么直角三角形?
定理: 三角形的内角和是180°
问题四: 将你发现的结论写成定理,画出相
应的图形,写好已知、求证。
已 知: ▲ABC。
A
求 证:∠A+ ∠B+∠C=180°。
E
证 明:
12
B
CD
问题四: 将你发现的结论写成定理,画出相
应的图形,写好已知、求证。
已 知: ▲ABC。
A
求 证:∠A+ ∠B+∠C=180°o。
∴ ∠ DBC=180 °- 90 °- 70 °(三角形内角 和定理)
∴ ∠ DBC=18°
问题一:将如下图的三角形纸片按虚线折
叠,你有什么发现?
问题二: 任意剪一个三角形纸片,将这个三
角形的三个角剪下来,再将三个角 的纸片摆成一个角,这是什么角?
问题三 : 用量角器量出上题中三个角的度数
后再相加,结果是多少?
教学难点:定理的证明。
教学关键:定理证明中辅助线的添置。
教学方法:问题教学、发现式教学。
课 型:新授课。
问题系列:
1: 将如图的三角形纸片按 虚线折叠,你有什么发现?
2:任意剪一个三角形纸片,将这个三角形的 三个角剪下来,再将三个角的纸片摆成一个 角,这是什么角?
3:用量角器量出上题中三个角的度数后再相加,结 果是多少?
相关文档
最新文档