12.3 △<0的实系数一元二次方程的根

合集下载

一元二次方程求根公式推导过程是什么

一元二次方程求根公式推导过程是什么

一元二次方程求根公式推导过程是什么想要了解一元二次方程的小伙伴赶紧来看看吧!下面由小编为你精心准备了“一元二次方程求根公式推导过程是什么”,本文仅供参考,持续关注本站将可以持续获取更多的知识点!一元二次方程求根公式推导过程是什么一元二次方程的根公式是由配方法推导来的,那么由ax^2+bx+c (一元二次方程的基本形式)推导根公式的详细过程如下:1、ax^2+bx+c=0(a≠0,^2表示平方),等式两边都除以a,得x^2+bx/a+c/a=0;2、移项得x^2+bx/a=-c/a,方程两边都加上一次项系数b/a的一半的平方,即方程两边都加上b^2/4a^2;3、配方得x^2+bx/a+b^2/4a^2=b^2/4a^2-c/a,即(x+b/2a)^2=(b^2-4ac)/4a;4、开根后得x+b/2a=±[√(b^2-4ac)]/2a(√表示根号),最终可得x=[-b±√(b^2-4ac)]/2a。

一元二次方程怎么解?第一种:直接开平方法——这种方法要求等式的左边为一个完全平方式,右边为一个非负的常数,即形如X2=a(a≥0)或者(mX2+n)=a(a≥0),这种形式的方程可直接通过开方后经过简单计算即可得到结果。

第二种:配方法——配方法一共有6个步骤。

第一步,将二次项系数化为1,即化为X²+bX+c=0的形式;第二步,将常数项移到方程右边;第三步,方程两边都加上一次项系数一半的平方;第四步,等式左边写成完全平方形式,右边合并同类项;第五步,等式两边同时开方;第六步,确定方程的解。

第三种:公式法——使用公式法时首先需要将等式化为标准形式,即为aX²+bX+c=0的形式。

方程的解可直接套用公式得出X=[-b±(b²-4ac)^1/2]/2a,将标准形式中的a、b、c代入即可。

第四种:因式分解法——因式分解法一共有四步。

第一步,将方程右边化为0;第二步,将方程左边进行同类项合并;第三步,将方程左边写成两个一次式的乘积;第四步,通过一次方程写出方程的两个解。

一元二次方程中根的判别式以及根与系数关系的应用

一元二次方程中根的判别式以及根与系数关系的应用

一元二次方程中根的判别式以及根与系数关系的应用【主体知识归纳】1.一元二次方程的根的判别式:b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式.通常用符号“Δ”来表示.2.对于一元二次方程ax2+bx+c=0(a≠0),当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根.反过来也成立.3.如果关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根是x1,x2,那么x1+x2=-ab,x1x2=ac4. 如果关于x的一元二次方程x2+px+q=0(a≠0)的两个根是x1,x2,那么x1+x2=-p,x1x2=q【基础知识讲解】1.根的判别式以及根与系数的关系都体现了根与系数之间的联系2.根的判别式是指Δ=b2-4ac,而不是指Δ=acb42 .3.根的判别式与根与系数的关系都是在一元二次方程一般形式下得出的,因此,必须把所给的方程化为一般形式再判别根的情况.要注意方程中各项系数的符号.4.如果说一元二次方程有实根,那么应当包括有两个不相等的实数根和有两个相等的实数根两种情况,此时b2-4ac≥0,不要丢掉等号.5. 利用一元二次方程的根与系数的关系的前提是:(1)二次项系数a≠0,即保证是一元二次方程;(2)由于我们目前只研究实数根的问题,故还要考虑实数根存在的前提,即:b2-4ac≥06.判别式有以下应用:(1)不解方程,判定一元二次方程根的情况;(2)根据一元二次方程根的情况,确定方程中未知系数的取值范围;(3)应用判别式进行有关的证明.根与系数的关系有以下应用:(1)已知一根,求另一根及求知系数;(2)不解方程,求与方程两根有关的代数式的值;(3)已知两数,求以这两数为跟的方程;已知两数的和与积,求这两个数(4)确定方程中字母系数的取值范围(5)确定根的符号。

【例题罗列】根的判别式类型1:不解方程,判别下列方程的根的情况:(1)3x2-2x-1=0;(2)y2=2y-4;(3)(2k2+1)x2-2kx+1=0;(4)9x2-(p+7)x+p-3=0.(系数中有字母的情况)解:(1)∵Δ=(-2)2-4×3×(-1)=4+12>0,∴原方程有两个不相等的实数根.(2)原方程就是y2-2y+4=0.∵Δ=(-2)2-4×1×4=4-16<0,∴原方程无实数根.(3)∵2k2+1≠0,∴原方程为一元二次方程.又∵Δ=(-2k)2-4(2k2+1)×1=-4k2-4<0,∴原方程无实数根.(4)Δ=[-(p+7)]2-4×9×(p-3)=(p-11)2+36,∵不论p取何实数,(p-11)2均为非负数,∴(p-11)2+36>0,即Δ>0,∴原方程有两个不相等的实数根.升级:如果关于x的方程x2+2x=m+9没有实数根,试判断关于y的方程y2+my-2m+5=0的根的情况.这是一类需要自己找出隐含条件的题解:∵x2+2x-m-9=0没有实数根,∴Δ1=22-4(-m-9)=4m+40<0,即m<-10.又y 2+my -2m +5=0的判断式Δ2.Δ2=m 2-4(-2m +5)=m 2+8m -20 当m <-10时,m 2+8m -20>0,即Δ2>0.∴方程y 2+my -2m +5=0有两个不相等的实数根. 类型2:1.已知关于x 的一元二次方程(k -1)x 2+2kx +k +3=0.k 取什么值时, (1)方程有两个不相等的实数根? (2)方程有两个相等的实数根? (3)方程没有实数根?解:Δ=(2k )2-4(k -1)(k +3)=-8k +12.(1)当-8k +12>0,且k -1≠0,即k <23且k ≠1时,方程有两个不相等的实数根;(2)当-8k +12=0,且k -1≠0,即k =23时,方程有两个相等的实数根;(3)当-8k +12<0,且k -1≠0,即k >23时,方程没有实数根.说明:当已知方程为一元二次方程时,要特别注意隐含的条件:二次项系数不等于零.2.已知a 、b 、c 是△ABC 的三边,且方程a(1+x 2)+2bx-c(1-x 2)=0有两个相等的实数根,则此三角形为( )A 、等腰三角形B 、等边三角形C 、直角三角形D 、斜三角形 看到有两个相同的实数根立即判断 应用根的判别式解:原方程可化为(a+c )x 2+2bx +a-c =0,Δ=(2b)2-4(a +c )(a -c )=0得到a 2=b 2+c 2,因此此三角形为直角三角形。

一元二次方程根与系数的关系

一元二次方程根与系数的关系

一元二次方程根与系数的关系设ax 2+bx+c=0 (a ≠0)的两根为x 1,x 2,则x 1+x 2=-,x 1.x 2=.证明:ax 2+bx+c=0 (a ≠0)的两根为x 1,x 2,一元二次方程根与系数的关系的应用: (一)已知方程,利用根与系数1、不解方程,整体代换求含x 1,x 2的代数式的值例1:设方程x 2+3x+1=0的两根为x 1,x 2,求下列各式的值:(1)x 12+x 22(2)11x +21x (3)(x 1-3)(x 2-3)(4)(x 1-x 2)2(5)|x 1-x 2|2、已知含x 1,x 2的代数式的值,求方程中待定字母系数的值例2:(1)已知方程x 2+kx+k=0有两个实数根,且两根的平方和为3,求k 的值。

解:依题意:△≥0,x 12+x 22=3x 12+x 22=(x 1+x 2)2-2x 1.x 2-k 2-2k=3k 2+2k-3=0(k-1)(k+3)=0 k 1=1 k 2=-3△= k2-4k ,当k 1=1时,△<0,应舍去,当k 2=-3时,△>0,所以k=-3当k=-3时,两根的平方和为3。

归纳小结:△≥0是实系数一元二次方程根与系数关系的前提。

(2)若方程2x 2-mx-4=0的两个实数根x 1,x 2满足11x +21x =2,求m 的值。

(3)已知方程x 2-4x+6k=0有两个实数根的平方差为8,求k 的值。

3、一元二次方程的特殊根及根的分布 (1)一元二次方程的特殊根 ①若方程两根相等,则△=0; ②若方程两根互为倒数,则x 1.x 2=1且△>0;③若方程两根互为相反数,则x 1+x 2=0,即b=0且△>0;④若方程两根绝对值相等,则△=0或b=0且△>0; ⑤若方程有一根为0,则c=0; ⑥若方程有一根为1,则a+b+c=0; ⑦若方程有一根为-1,则a-b+c=0;练习题:(1)已知关于x 的一元二次方程x 2+(m 2-9)x+m-1=0,当两根互为相反数时,m= ,若方程两根互为倒数,m= 。

九年级数学上册《一元二次方程的根的判别式》教案人教新课标版

九年级数学上册《一元二次方程的根的判别式》教案人教新课标版

九年级数学上册《一元二次方程的根的判别式》教案人教新课标版一、教学目的1.使学生理解并掌握一元二次方程的根的判别式.2.使学生掌握不解方程,运用判别式判断一元二次方程根的情况.二、教学重点、难点重点:一元二次方程根的判别式的应用.难点:一元二次方程根的判别式的推导.三、教学过程复习提问1.一元二次方程的一般形式及其根的判别式是什么?2.用公式法求出下列方程的解:(1)3x2+x-10=0;(2)x2-8x+16=0;(3)2x2-6x+5=0.引入新课通过上述一组题,让学生回答出:一元二次方程的根的情况有三种,即有两个不相等的实数根;两个相等的实数根;没有实数根.接下来向学生提出问题:是什么条件决定着一元二次方程的根的情况?这条件与方程的根之间又有什么关系呢?能否不解方程就可以明确方程的根的情况?这正是我们本课要探讨的课题.(板书本课标题)新课先讨论上述三个小题中b2-4ac的情况与其根的联系.再做如下推导:对任意一元二次方程ax2+bx+c=0(a≠0),可将其变形为∵a≠0,∴4a2>0.由此可知b2-4ac的值的“三岐性”,即正、零、负直接影响着方程的根的情况.(1)当b2-4ac>0时,方程右边是一个正数.(2)当b2-4ac=0时,方程右边是0.通过以上讨论,总结出:一元二次方程ax2+bx+c=0的根的情况可由b2-4ac来判定.故称b2-4ac是一元二次方程ax2+bx+c=0的根的判别式,通常用“△”来表示.综上所述,一元二次方程ax2+bx+c=0(a≠0)当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根.反过来也成立.注:“△”读作“delta”.例不解方程,判别下列方程根的情况:(1)2x2+3x-4=0;(2)16y2+9=24y;(3)5(x2+1)-7x=0.分析:要想确定上述方程的根的情况,只需算出“△”,确定它的符号情况即可.练习:P26 1 2 3小结应用判别式解题应注意以下几点:1.应先把已知方程化为一元二次方程的一般形式,为应用判别式创造条件.2.不必解方程,只须先求出△,确定其符号即可,具体数值不一定要计算出来.3.其逆命题也是成立的.作业:习题12.3 A组 1--4第9课一元二次方程的根的判别式(二)一、教学目的通过对含有字母系数方程的根的讨论,培养学生运用一元二次方程根的判别式的论证能力和逻辑思维能力.培养学生思考问题的灵活性和严密性.二、教学重点、难点重点:巩固掌握根的判别式的应用能力.难点:利用根的判别式进行有关证明.三、教学过程复习提问1.写出一元二次方程ax2+bx+c=0的根的判别式.2.方程ax2+bx+c=0(a≠0)的根有哪几种情况?如何判断?引入新课教材中“想一想”提出了如下问题:已知关于x的方程2x2-(4k+1)x+2k2-1=0,其中△=[-(4k+1)]2-4×2×(2k2-1)=16k2+8k+1-16k2+8=8k+9.想一想,当k取什么值时,(1)方程有两个不相等的实数根;(2)方程有两个相等的实数根;(3)方程没有实数根.新课上述问题,实际上是这样一道题目.例1当k取什么值时,关于x的方程2x2-(4k+1)x+2k2-1=0(1)有两个不相等的实数根;(2)有两个相等实数根;(3)方程没有实数根.讲解例1例2求证关于x的方程(k2+1)x2-2kx+(k2+4)=0没有实数根.分析:要证明上述方程没有实数根,只须证明其根的判别式△<0即可.例3证明关于x的方程(x-1)(x-2)=m2有两个不相等的实数根.讲解例3例4已知a,b,c是△ABC的三边的长,求证方程a2x2-(a2+b2-c2)x+b2=0没有实数根.讲解例4练习:1.若m≠n,求证关于x的方程2x2+2(m+n)x+m2+n2=0无实数根.2.求证:关于x的方程x2+(2m+1)x-m2+m=0有两个不相等的实数根.小结解决判定一元二次方程ax2+bx+c=0的方程根的情况应依照下列步骤进行:1.计算△;2.用配方法将△恒等变形(或变成易于观察其符号的情况);3.判断△的符号,得出结论.作业:习题12.3 B组第10课一元二次方程的根与系数的关系(一)一、教学目的1.使学生掌握一元二次方程根与系数的关系(即韦达定理),并学会初步运用.2.培养学生分析、观察以及利用求根公式进行推理论证的能力.二、教学重点、难点重点:韦达定理的推导和初步运用.难点:定理的应用.三、教学过程复习提问1.一元二次方程ax2+bx+c=0的求根公式应如何表述?2.上述方程两根之和等于什么?两根之积呢?新课一元二次方程ax2+bx+c=0(a≠0)的两根为由此得出,一元二次方程的根与系数之间存在如下关系:(又称“韦达定理”)如果ax2+bx+c=0(a≠0)的两个根是x1,x2,那么我们再来看二次项系数为1的一元二次方程x2+px+q=0的根与系数的关系.得出:如果方程x2+px+q=0的两根是x1,x2,那么x1+x2=-p,x1x2=q.由 x1+x2=-p,x1x2=q可知p=-(x1+x2),q=x1·x2,∴方程x2+px+q=0,即 x2-(x1+x2)x+x1·x2=0.这就是说,以两个数x1,x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1·x2=0.例1已知方程5x2+kx-6=0的一个根是2,求它的另一根及k的值.讲解例1练习 P32 1 2小结1.本节课主要学习了一元二次方程根与系数关系定理,应在应用过程中熟记定理.2.要掌握定理的两个应用:一是不解方程直接求方程的两根之和与两根之积;二是已知方程一根求另一根及系数中字母的值.作业:习题12.4 A组 1第11课一元二次方程的根与系数的关系(二)一、教学目的1.复习巩固一元二次方程根与系数关系的定理.2.学习定理的又一应用,即“已知方程,求方程两根的代数式的值”.3.通过应用定理,培养学生分析问题和综合运用所学知识解决问题的能力.二、教学重点、难点重点:已知方程求关于根的代数式的值.难点:用两根之和与两根之积表示含有两根的各种代数式.三、教学过程复习提问1.一元二次方程根与系数关系的定理是什么?2.下列各方程两根之和与两根之积各是什么?(1)x2-3x-18=0;(2)x2+5x+4=5;(3)3x2+7x+2=0;(4)2x2+3x=0.引入新课考虑下列两个问题;1.方程5x2+kx-6=0两根互为相反数,k为何值?2.方程2x2+7x+k=0的两根中有一个根为0,k为何值?我们可以从这两题中看出,根与系数之间的运算是十分巧妙的.本课我们将深入探讨这一问题.新课例2利用根与系数的关系,求一元二次方程2x2+3x-1=0两根的(1)平方和;(2)倒数和.在讲本题时,要突出讲使用韦达定理,寻求x2+px+q=0中的p,q的值.例4已知两个数的和等于8,积等于9,求这两个数.这是一道“根与系数的关系定理”的应用题,要注意讲此类题的解题步骤:(1)运用定理构造方程; (2)解方程求两根; (3)得出所欲求的两个数.练习:P32 3、4、5小结本课学习了利用根与系数关系解决三类问题的方法:(1)已知方程求两根的各种代数式的值;(2)已知两根的代数式的值,构造新方程;(3)已知两根的和与积,构造方程,解方程,求出与根对应的数.作业:习题12.4 A组 2、3、4第12课二次三项式的因式分解(公式法)(一)一、教学目的1.使学生理解二次三项式的意义及解方程和因式分解的关系.2.使学生掌握用求根法在实数范围内将二次三项式分解国式.二、教学重点、难点重点:用求根法分解二次三项式.难点:方程的同解变形与多项式的恒等变形的区别.三、教学过程复习提问解方程:1.x2-x-6=0; 2.3x2-11x+10=0; 3.4x2+8x-1=0.引入新课在解上述方程时,第1,2题均可用十字相乘法分解因式,迅速求解.而第3题则只有采用其他方法.此题给我们启示,用十字相乘法分解二次三项式,有时是无法做到的.是否存在新的方法能分解二次三项式呢?第3个方程的求解给我们以启发.新课二次三项式ax2+bx+c(a≠0),我们已经可以用十字相乘法分解一些简单形式.下面我们介绍利用一元二次方程的求根公式将之分解的方法.易知,解一元二次方程2x2-6x+4=0时,可将左边分解因式,即2(x-1)(x-2)=0,求得其两根x1=1,x2=2.反之,我们也可利用一元二次方程的两个根来分解二次三项式.即,令二次三项式为0,解此一元二次方程,求出其根,从而分解二次三项式.具体方法如下:如果一元二次方程ax2+bx+c=0(a≠0)的两个根是=a[x2-(x1+x2)x+x1x2]=a(x-x1)(x-x2).从而得出如下结论.在分解二次三项式ax2+bx+c的因式时,可先用公式求出方程ax2+bx+c=0的两根x1,x2,然后写成ax2+bx+c=a(x-x1)(x-x2).例如,方程2x2-6x+4=0的两根是x1=1,x2=2.则可将二次三项式分解因式,得2x2-6x+4=2(x-1)(x-2).例1把4x2-5分解因式.讲解例1练习:P37 1小结:用公式法解决二次三项式的因式分解问题时,其步骤为:1.令二次三项式ax2+bx+c=0;2.解方程(用求根公式等方法),得方程两根x1,x2;3.代入a(x-x1)(x-x2).作业:习题12.5 A组 1第13课二次三项式的因式分解(公式法)(二)一、教学目的使学生进一步巩固和熟练掌握公式法将二次三项式因式分解的方法.二、教学重点、难点重点:用求根公式法分解二次三项式.难点:二元二次三项式的因式分解.三、教学过程复习提问求根法分解二次三项式的因式的步骤有哪些?引入新课上节课我们证明了:ax2+bx+c=a(x-x1)(x-x2),其中x1,x2分别等于什么?应用这一结论,今天我们深入的探讨一些问题.新课例2把4x2+8x-1分解因式.此题注意将二次项系数4分解乘入两因式的必要性,即化简结论.例3 把2x2-8xy+5y2分解因式.注意视之为关于x的方程,视y为常数的重要性.练习 P37 2小结二次三项式ax2+bx+c(a≠0)分解因式的方法有三种,即1.利用完全平方公式;2.十字相乘法:即x2+(a+b)x+ab=(x+a)(x+b);acx2+(ad+bc)x+bd=(ax+b)(cx+d).3.求根法:ax2+bx+c=a(x-x1)(x-x2),(1)当b2-4ac≥0时,可在实数范围内分解;(2)当b2-4ac<0时,在实数范围内不能分解.作业:习题12.5 A组 2第14课一元二次方程的应用(一)一、教学目的1.使学生会列出一元二次方程解应用题.2.使学生通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力.二、教学重点、难点重点:由应用问题的条件列方程的方法.难点:设“元”的灵活性和解的讨论.三、教学过程复习提问1.一元二次方程有哪些解法?(要求学生答出:开方法、配方法、公式法、因式分解法.) 2.回忆一元二次方程解的情况.(要求学生按△>0,△=0,△<0三种情况回答问题.) 3.我们已经学过的列方程解应用题时,有哪些基本步骤?(要求学生回答:①审题;②设未知数;③根据等量关系列方程(组);④解方程(组);⑤检验并写出答案.) 引入新课我们已经涉及了一个与一元二次方程有联系的应用.此类问题还有吗?回答是肯定的:还有很多!本课我们将深入研究有关一元二次方程的应用题.新课本章开始时,教材P3中我们提出了如下问题:用一块长80cm,宽60cm的薄钢片,在四个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖长方形盒子.试问:应如何求出截去的小正方形的边长?解:设小正方形边长为xcm,则盒子底面的长、宽分别为(80-2x)cm及(60-2x)cm,依题意,可得(80-2x)(60-2x)=1500,即 x2-70x+825=0.当时,我们不会解此方程.现在,可用求根公式解此方程了.∴x1=55,x2=15.当x=55时,80-2x=-30,60-2x=-50;当x=15时,80-2x=50,60-2X=30.由于长、宽不能取负值,故只能取x=15,即小正方形的边长为15cm.我们再回忆本章第1节中的一个应用题:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm,这块铁片应怎样剪?分析:要解决此问题,需求出铁片的长和宽,由于长比宽多5cm,可设宽为未知数来列方程.解:设这块铁片宽xcm,则长是(x+5)cm.依题意,得x(x+5)=150,即x2+5x-150=0.∴x1=10,x2=-15(舍去).∴x=10,x+5=15.答:应将之剪成长15cm,宽10cm的形状.练习 P41 1 2小结利用一元二次方程解应用题的主要步骤仍是:①审题;②设未知数;③列方程;④解方程;⑤依题意检验所得的根;⑥得出结论并作答.作业:习题12.6 A组 1、2、3第15课一元二次方程的应用(二)一、教学目的使学生掌握有关面积和体积方面以及“药液问题”的一元二次方程应用题的解法.提高学生化实际问题为数学问题的能力.二、教学重点、难点重点:用图示法分析题意列方程.难点:方程的布列.三、教学过程复习提问本小节第一课我们介绍了什么问题?引入新课今天我们进一步研究有关面积和体积方面以及“药液问题”的一元二次方程的应用题及其解法.新课例1 如图1,有一块长25cm,宽15cm的长方形铁皮.如果在铁皮的四个角上截去四个相同的小正方形,然后把四边折起来,做成一个底面积为231cm2的无盖长方体盒子,求截去的小正方形的边长应是多少?分析:如图1,考虑设截去的小正方形边长为xcm,则底面的长为(25-2x)cm,宽为(15-2x)cm,由此,知由长×宽=矩形面积,可列出方程.解:设小正方形的边长为xcm,依题意,得(25-2x)(15-2x)=231,即x2-20x+36=0,解得x1=2,x2=18(舍去).答:截去的小正方形的边长为2cm.例2一个容器盛满药液20升,第一次倒出若干升,用水加满;第二次倒出同样的升数,这时容器里剩下药液5升,问每次倒出药液多少升?∴x=10.答:第一、二次倒出药液分别为10升,5升.练习 P41 3、4小结1.注意充分利用图示列方程解有关面积和体积的应用题.2.要注意关于“药液问题”应用题,列方程要以“剩下药液”为依据列式.作业:习题12.6 4、5、6、7第16课一元二次方程的应用(三)一、教学目的使学生掌握列一元二次方程解关于增长率的应用题的方法.并进一步培养学生分析问题和解决问题的能力.二、教学重点、难点重点:弄清有关增长率的数量关系.难点:利用数量关系列方程的方法.三、教学过程复习提问1.问题:(1)某厂生产某种产品,产品总数为1600个,合格品数为1563个,合格率是多少?(2)某种田农户用800千克稻谷碾出600千克大米,问出米率是多少?(3)某商店二月份的营业额为3.5万元,三月份的营业额为5万元,三月份与二月份相比,营业额的增长率是多少?新课例1 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增产的百分率是多少?分析:用译式法讨论列式一月份产量为5000吨,若月增长率为x,则二月份比一月份增产5000x吨.二月份产量为(5000+5000x)=5000(1+x)吨;三月份比二月份增产5000(1+x)x吨,三月份产量为5000(1+x)+5000(1+x)x=5000(1+x)2吨.再根据题意,即可列出方程.解:设平均每月增长的百分率为x,根据题意,得5000(1+x)2=7200,即(1+x)2=1.44,∴1+x=±1.2,x1=0.2,x2=-2.2(不合题意,舍去).答:平均每月增长率为20%.例2 某印刷厂一月份印刷了科技书籍50万册,第一季度共印182万册,问二、三月份平均每月的增长率是多少?解:设每月增长率为x,依题意得50+50(1+x)+50(1+x)2=182,答:二、三月份平均月增长率为20%.练习:P41 5小结依题意,依增长情况列方程是此类题目解题的关键.作业:习题12.6 A组 8第17课可化为一元二次方程的分式方程教学目的1.使学生掌握可化为一元二次方程的分式方程的解法,会用去分母或换元法求方程的解.2.使学生了解解分式方程产生增根的原因,掌握验根的方法.3.结合教学对学生进行化归转化思想的培养.教学重点将分式方程转化为一元二次方程.教学难点分式方程验根的必要性的认识.教学过程一、复习1.我们学过分式方程,同学们还记得怎样解分式方程吗?2.请同学们解下列方程:3.请同学们结合上面两个题,回答下列问题:(1)什么是分式方程?解分式方程的一般方法与步骤是什么?(2)在解分式方程过程中,容易犯的错误是什么?应当怎样避免?(3)解分式方程为什么必须验根,应当怎样验根?指出:分母里含有未知数的方程叫做分式方程.解分式方程的一般思路是化分式方程为整式方程,解分式方程的一般步骤是:(1)把方程中各分式的分母因式分解,确定各分式的最简公分母.(2)用最简公分母去乘方程两边,约去分母,使分式方程化为整式方程.(3)解这个整式方程,得到此整式方程的根.(4)检验.解分式方程容易犯的错误有:(1)去分母时,原方程的整式部分漏乘.(2)约去分母后,分子是多项式时,要注意添括号.根据方程同解原理:方程两边都乘以不等于零的同一个数,所得方程与原方程同解.而我们在解分式方程时,方程两边同时乘以最简公分母,它是一个整式,当此整式为零时,就破坏了方程的同解原理,因此最后整式方程的根就不一定是原方程的根,所以解分式方程必须验根.验根的一般方法是:把最后整式方程的根代入最简公分母,看结果是否为零,使最简公分母为零的根为原方程的增根,必须舍去,否则是原方程的根.二、新课讲解例1讲解例2三、练习 P49 1、2四、小结1.分式方程的定义.2.分式方程的一般解法及解方程步骤.3.用换元法解分式方程时,方程具备的特点,验根的方法.五、作业习题12.7 A组 1、2、3、4第18课可化为一元二次方程的分式方程的应用教学目的1.使学生掌握可化为一元二次方程的分式方程的解法,会用去分母或换元法求方程的解.2.会列出可化为一元二次方程的分式方程,解应用题.3.在教学中培养学生分析问题与解决问题的能力.教学重点:列方程.教学过程一、复习1.什么叫分式方程?解分式方程的一般方法是什么?在不同的解法过程中应分别注意什么?二、新课今天我们学习利用分式方程解应用题.例1甲乙二人同时从张庄出发,步行15千米来到李庄.甲比乙每小时多走1千米,结果比乙早到半小时,二人每小时各走几千米?讲解例1例2某农场开挖一条长960m的渠道,开工后每天比原计划多挖20m,结果提前4天完成任务,原计划每天挖多少?讲解例2三、练习1.从甲站到乙站有150千米,一列快车和一列慢车同时从甲站开出,1小时后,快车在慢车前12千米;快车到达乙站此慢车早25分,快车和慢车每小时各走几千米?2.某工厂贮存350吨煤,由于改进炉灶和烧煤技术,每天能节约2吨煤,使贮存煤比原计划多用20天,贮存的煤原计划用多少天?每天烧少吨?3.甲、乙两队学生绿化校园.如果两队合作,6天可以完成.如果单独工作,甲队比乙队少用5天,两队单独工作各需多少天完成?四、小结1.列方程解应用题的一般步骤.2.列分式方程解应用题验根的两个目的.五、作业习题12.7A组 4、5第19课由一个二元一次方程和一个二元二次方程组成的方程组(一)一、教学目的1.使学生了解二元二次方程、二元二次方程组的概念.2.使学生熟练掌握用代入法解由一个二元一次方程和一个二元二次方程所组成的方程组.二、教学重点、难点重点:用代入法解二元二次方程组.难点:二元一次方程代入二元二次方程的技巧.三、教学过程复习提问1.我们学过哪些方程及其解法?2.二元一次方程组有哪些解法,其解法步骤是什么?引入新课我们已经知道,方程就是含有未知数的等式.方程x2+2xy+y2+x+y+6=0 (*)是一个含有两个未知数,并且含有未知数的项的最高次数是2的方程.这样的方程我们怎样称呼它呢?新课形如方程(*)和下述方程(1)x2+3y2+4x+3y+6=0;(2)xy+3y+7=0;(3)x2+3xy+5=0;(4)x2+y2+4=0,等.含有两个未知数,并且含有未知数的项的最高次数是2的整式方程叫做二元二次方程.其中(*)中,x2,2xy,y2叫做这个方程的二次项,4x,3y叫做一次项,6叫做常数项.我们看下面的两个方程组:第一个方程组是由一个二元二次方程和一个二元一次方程组成的;第二个方程组是由两个二元二次方程组成的.像这样的方程组叫做二元二次方程组.本课主要研究由一个二元一次方程和一个二元二次方程组成的方程组的解法.一个二元一次方程和一个二元二次方程组成的方程组一般都可以用代入法来解.注意以下三点:(2)为什么将x1,x2代入③;(3)作此类题要按格式写规范.练习 P57 1、2、小结解由一个二元一次方程和一个二元二次方程构成的二元二次方程组,其解法步骤是:①将一次方程代入二次方程,将之化为一元方程,解一元方程,求出一个未知数的值;②将求出的一个未知数的值代入一次方程,求出另一个未知数的值;③写出方程组的解.作业:P12.8A组 1、2第19课由一个二元一次方程和一个二元二次方程组成的方程组(二)一、教学目的1.使学生深入理解二元二次方程、二元二次方程组的概念.2.使学生熟练掌握用构造方程法和因式分解化为同解方程组来解方程组的方法.二、教学重点、难点重点:用构造法解方程组.难点:化为同解方程组来解由一个二元一次方程和一个二元二次方程组成的方程组的方法.三、教学过程复习提问1.什么样的方程叫做二元二次方程?什么叫做二元二次方程组?2.我们学了由一个二元一次方程和一个二元二次方程组成的方程组的什么解法?其具体步骤是什么?引入新课这类二元二次方程组还有其他解法吗?我们继续进行研究.新课解法1:由①,得x=7-y.③把③代入②,整理,得y2-7y+12=0.解得 y1=3,y2=4.把y1=3代入③,得x1=4;把y2=4代入③,得x2=3.解法2:观察方程组,其特征不难使人联想到一元二次方程根与系数的关系,即视x,y 是方程at2+bt+c=0的两根,从而通过解方程即可求出x,y了.视方程组的x,y是一元二次方程z2-7z+12=0的两个根,解这个方程,得z1=3,或z2=4.练习 P57 3小结1.构造一元二次方程解方程组,要注意求出的方程组的解有两组.2.用化为同解方程组解方程组的方法,关键在对二元二次方程分解因式.作业:习题12.8 A组 3第20课由一个二元二次方程和一个可以分解为两个二元一次方程的方程组成的方程组一、教学目的1.使学生学会用分解降次的方法解二元二次方程组.2.通过观察方程组中方程的特点,思考分析解法,培养学生的观察分析问题的能力.二、教学重点、难点重点:用分解降次的方法解二元二次方程组.难点:正确地通过分解将一个二元二次方程转化为两个二元一次方程.三、教学过程复习提问1.二元二次方程组有哪几种类型?引入新课前面我们已经学了应用代入法、构造一元二次方程法、分解成同解方程组法等方法,解由一个二元一次方程与一个二元二次方程组成的方程组的解法.下面我们研究一些特殊的由两个二元二次方程组成的方程组的解法.新课将②分解为(x-2y)(x-3y)=0,使得 x-2y=0或x-3y=0,用代入法可得原方程组的解这种分解降次,化为学生熟知的有关方程组的方法,是一种重要解题思想方法.在教学中要讲清楚这种数学思想方法.练习P60 1、2小结1.一些特殊的二元二次方程组可用分解降次法解之,关键是将其中一个方程分解因式.2.解题时要注意观察,选择分解对象.作业:习题12.9 A组 1、2、3。

《一元二次方程根与系数的关系》教案

《一元二次方程根与系数的关系》教案

《一元二次方程根与系数的关系》教案教学目标:1、发现、了解一元二次方程的根与系数的关系,培养学生善于独立思考、合作交流的学习习惯。

2、探索、运用一元二次方程的根与系数关系,由一元二次方程的一个根求出另一个根及未知系数,提升学生的合作意识和团队精神。

3、在不解一元二次方程的情况下,会求直接(或变形后)含有两根积的代数式的值,并从中体会整体代换的数学思想,促进学生数学思维的养成。

教学重点:一元二次方程的根与系数的关系及简单应用。

教学难点:一元二次方程的根与系数的关系的推导。

数学思考与问题解决:通过创设一定的问题情境,注重由学生自己发现、探索,让学生参与“韦达定理”的发现、不完全归纳验证以及演绎证明等整个数学思维过程。

一、自学互研 探索发现(每小题10分,共30分)(自主完成,组长检查)【师生活动】:教师引导,巡视,随时发现问题、了解学生导学案完成情况并点拨;评价、鼓励、调动学生参与的主动性和积极性。

学生独立完成导学案,观察、对比、发现问题,逐步由易到难,探索出一元二次方程的根与系数的关系;小组长检查小组成员完成情况;分小组汇报自学成果。

【设计意图】:本环节为“一元二次方程的根与系数的关系”的发现过程,即感性认识过程。

通过几个具体的方程,经过观察、比较、分析、归纳,感性地得出一元二次方程的根与系数的关系的一般规律。

培养学生发现问题、探求规律的学习习惯和注重自主加合作的学习方式。

【学案内容】:1、方程:X 2+3X –4=0(1)二次项系数是_____ ,一次项系数是______,常数项是______.(2)解得方程的根X 1=______ ,X 2=______ .(3)则X 1+X 2=_______, 方程中()二次项系数一次项系数=- (4) X 1·X 2=_______, 方程中 ()二次项系数常数项=2、方程3 X 2+X-2=0(1)二次项系数是_____,一次项系数是______ ,常数项是______。

一元二次方程的定义和根

一元二次方程的定义和根

一元二次方程的定义和根一、一元二次方程的定义和根1、一元二次方程等号两边都是整式,只含有一个未知数(一元)。

并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

2、一元二次方程的一般形式一元二次方程的一般形式是$ax^2$+$bx$+$c$=0($a$≠0)。

其中$ax^2$是二次项,$a$是二次项系数;$bx$是一次项,$b$是一次项系数;$c$是常数项。

对于方程$ax^2$+$bx$+$c$=0,只有当$a$≠0时才是一元二次方程。

反过来,如果说$ax^2$+$bx$+$c$=0是一元二次方程,则必须含着$a$≠0这个条件。

3、一元二次方程的根使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根。

利用方程的根求待定系数时,只需将方程的根代入原方程,再解关于待定系数的方程。

4、解一元二次方程(1)直接开平方法我们知道如果$x^2$=25,则$x$=$土\sqrt{25}$,即$x$=±5,像这种利用平方根的定义通过直接开平方求一元二次方程的解的方法叫做直接开平方法。

一般地,对于方程$x^2$=$p$,① 当$p$>0时,方程有两个不等的实数根$x_1$=$\sqrt{p}$ ,$x_2$=$-\sqrt{p}$。

② 当$p$=0时,方程有两个相等的实数根$x_1$=$x_2$=0。

③ 当$p$<0时,因为对任意实数$x$ ,都有$x^2\geqslant$0,所以方程无实数根。

(2)配方法通过配成完全平方的形式来解一元二次方程的方法,叫做配方法。

用配方法解方程是以配方为手段,以直接开平方法为基础的一种解一元二次方程的方法。

用配方法解一元二次方程的一般步骤:① 化二次项系数为1。

② 移项:使方程左边为二次项和一次项,右边为常数项。

③ 配方:方程两边都加上一次项系数一半的平方,原方程变为$(x+n)^2$=$p$的形式。

④ 直接开平方:如果右边是非负数,就可用直接开平方法求出方程的解。

一元二次方程根的判别式、根与系数关系

一元二次方程根的判别式、根与系数关系

四、不解方程,求与根有关的代数式的值 例2 若a、b为互不相等的实数,且a 2-3a+1=0,b 2-3b+1=0 求a 2-ab+b 2的值 分析:要求一个含字母a、b的代数式的值,常规的解法就是 先求出a、b的值,然后代入求解.本题若按这个思路计算将 会涉及到解一元二次方程及二次根式的运算,运算量非常 大.但如果考虑a、b的关系,把a、b看作某个一元二次方程 的两个根,利用根与系数的关系得到a、b的关系式,再利用 a、b的关系式整体代入,问题将会变得简便. 解:根据题意知a、b是方程x 2-3x+1=0的两个根由根 与系数关系得a+b=3,ab=1. 点评:本题的解题关键是把a、b看作一元二次方程x 2-3x+1=0的 两根,利用根与系数关系得a+b=3,ab=1,再通过运用整体代换 的思想代入运算,问题可求.利用根与系数的关系求与根有关的代数 式的值,
例3:当m为何值时,方程(m-1)x² +2mx+m+3=0 ①﹑无实根 ②﹑有实根 ③﹑只有一个实根 ④﹑有两个实根 ⑤﹑有两个不等实根 ⑥﹑有两个相等实根
分析
(1)﹑只需△<0 (2)、分情况讨论 ① m-1=0 (3)﹑当m-1=0时 (4)、 △≥0 且 m-1≠0 (5)、△>0 且 m-1≠0 (6)、 △=0 且 m-1≠0 ② △≥0 且m-1≠0
;企业老板电话名单 企业老板电话名单 ; 2019.1 ;
们大意了,可恶,俺们被戮申殿算计了.”阔怜元老低沉の声音嘶吼.如果无暇善尊一直留在城市之内,那么就算戮申殿攻打无暇城,可要破开无暇城の防御也需要事间.再不济,无暇城の守护大阵也能顶一点事间.就算可能仍然等不到玄月商楼の救援,但也起码会比现在强.在城市之外, 戮申殿直接就能够对无暇善尊动手.“阔怜元老,现在俺们该怎么办?无暇善尊此事

一元二次方程中根的判别式以及根与系数关系的应用

一元二次方程中根的判别式以及根与系数关系的应用

b 2 2 Δ一元二次方程中根的判别式以及根与系数关系的应用【学习目标】1.掌握一元二次方程根的判别式的应用.2.掌握一元二次方程的根与系数的关系.【主体知识归纳】1.一元二次方程的根的判别式:-4ac 叫做一元二次方程ax +bx +c =0(a ≠0)的根的判别式.通常用符号“”来表示.2.对于一元二次方程 ax 2+bx +c =0(a ≠0),当Δ >0 时,方程有两个不相等的实数根;当Δ =0 时,方程有两个相等的实数根;当Δ <0 时,方程没有实数根.反过来也成立.3.如果关于 x 的一元二次方程 ax 2+bx +c =0(a ≠0)的两个根是 x ,x ,12那么 x +x =-1 2 ba,x x =1 2 ca4. 如果关于 x 的一元二次方程 x 2+px +q =0(a ≠0)的两个根是 x ,x ,12那么 x +x =-p ,x x =q12 1 2【基础知识讲解】1.根的判别式以及根与系数的关系都体现了根与系数之间的联系2.根的判别式是指Δ =b 2-4ac ,而不是指Δ = b 2 4ac .3.根的判别式与根与系数的关系都是在一元二次方程一般形式下得出的,因此,必须把所给的方程化为一般形式再判别根的情况.要注意方程中各项系数的符号.4.如果说一元二次方程有实根,那么应当包括有两个不相等的实数根和有两个相等的实数根两种情况,此时 b 2-4ac ≥0,不要丢掉等号.5. 利用一元二次方程的根与系数的关系的前提是:(1)二次项系数 a≠0,即保证是一元二次方程;(2)由于我们目前只研究实数根的问题,故还要考虑实数根存在的前提,即:b 2-4ac ≥06.判别式有以下应用:(1)不解方程,判定一元二次方程根的情况;(2)根据一元二次方程根的情况,确定方程中未知系数的取值范围;(3)应用判别式进行有关的证明.根与系数的关系有以下应用:(1)已知一根,求另一根及求知系数;(2)不解方程,求与方程两根有关的代数式的值;(3)已知两数,求以这两数为跟的方程;已知两数的和与积,求这两个数(4)确定方程中字母系数的取值范围(5)确定根的符号。

一元二次方程的根的判别式-教案(二)

一元二次方程的根的判别式-教案(二)

一元二次方程的根的判别式一、素质教育目标(一)知识教学点:1.熟练运用判别式判别一元二次方程根的情况.2.学会运用判别式求符合题意的字母的取值范围和进行有关的证明.(二)能力训练点:1.培养学生思维的严密性,逻辑性和灵活性.2.培养学生的推理论证能力.(三)德育渗透点:通过例题教学,渗透分类的思想.二、教学重点、难点、疑点及解决方法1.教学重点:运用判别式求出符合题意的字母的取值范围.2.教学难点:教科书上的黑体字“一元二次方程ax2+bx+c=0(a≠0),当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根”可看作一个定理,书上的“反过来也成立”,实际上是指它的逆命题也成立.对此的正确理解是本节课的难点.可以把这个逆命题作为逆定理.三、教学步骤(一)明确目标上节课学习了一元二次方程根的判别式,得出结论:“一元二次方程ax2+bx+c=0(a≠0),当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根.”这个结论可以看作是一个定理.在这个判别方法中,包含了所有各种情况,所以反过来也成立,也就是说上述结论的逆命题是成立的,可作为定理用.本节课的目标就是利用其逆定理,求符合题意的字母的取值范围,以及进行有关的证明.(二)整体感知本节课是上节课的延续和深化,主要是在“明确目标”中所提的逆定理的应用.通过本节课的内容的学习,更加深刻体会到“定理”与“逆定理”的灵活应用.不但不求根就可以知道根的情况,而且知道根的情况,还可以确定待定的未知数系数的取值,本节课内容对学生严密的逻辑思维及思维全面性进行恰如其分的训练.(三)重点、难点的学习及目标完成过程1.复习提问(1)一元二次方程的一般形式?说出二次项系数,一次项系数及常数项.(2)一元二次方程的根的判别式是什么?用它怎样判别根的情况?2.将复习提问中的问题(2)的正确答案板书,反之,即此命题的逆命题也成立,即“一元二次方程ax2+bx+c=0,如果方程有两个不相等的实数根,则△>0;如果方程有两个相等的实数根,则△=0;如果方程没有实数根,则△<0.”即根据方程的根的情况,可以决定△值的符号,‘△’的符号,可以确定待定的字母的取值范围.请看下面的例题:例1 已知关于x的方程2x2-(4k+1)x+2k2-1=0,k取什么值时(1)方程有两个不相等的实数根;(2)方程有两个相等的实数根;(1)方程无实数根.解:∵ a=2, b=-4k-1,c=2k2-1,∴ b2-4ac=(-4k-1)2-4×2×(2k2-1)=8k+9.方程有两个不相等的实数根.方程有两个相等的实数根.方程无实数根.本题应先算出“△”的值,再进行判别.注意书写步骤的简练清楚.练习1.已知关于x的方程x2+(2t+1)x+(t-2)2=0.t取什么值时,(1)方程有两个不相等的实数根?(2)方程有两个相等的实数根?(3)方程没有实数根?学生模仿例题步骤板书、笔答、体会.教师评价,纠正不精练的步骤.假设二项系数不是2,也不是1,而是k,还需考虑什么呢?如何作答?练习2.已知:关于x的一元二次方程:kx2+2(k+1)x+k=0有两个实数根,求k的取值范围.和学生一起审题(1)“关于x的一元二次方程”应考虑到k≠0.(2)“方程有两个实数根”应是有两个相等的实数根或有两个不相等的实数根,可得到△≥0.由k≠0且△≥0确定k的取值范围.解:∵△=[2(k+1)]2-4k2=8k+4.原方程有两个实数根.学生板书、笔答,教师点拨、评价.例求证:方程(m2+1)x2-2mx+(m2+4)=0没有实数根.分析:将△算出,论证△<0即可得证.证明:△=(-2m)2-4(m2+1)(m2+4)=4m2-4m4-20m2-16=-4(m4+4m2+4)=-4(m2+2)2.∵不论m为任何实数,(m2+2)2>0.∴ -4(m2+2)2<0,即△<0.∴(m2+1)x2-2mx+(m2-4)=0,没有实根.本题结论论证的依据是“当△<0,方程无实数根”,在论证△<0时,先将△恒等变形,得到判断.一般情况都是配方后变形为:a2,a2+2,(a2+2)2,-a2,-(a2+2)2,-(a+2)2,……从而得到判断.本题是一道代数证明题,和几何类似,一定要做到步步有据,推理严谨.此种题型的步骤可归纳如下:(1)计算△;(2)用配方法将△恒等变形;(3)判断△的符号;(4)结论.练习:证明(x-1)(x-2)=k2有两个不相等的实数根.提示:将括号打开,整理成一般形式.学生板书、笔答、评价、教师点拨.(四)总结、扩展1.本节课的主要内容是教科书上黑体字的应用,求符合题意的字母的取值范围以及进行有关的证明.须注意以下几点:(1)要用b2-4ac,要特别注意二次项系数不为零这一条件.(2)认真审题,严格区分条件和结论,譬如是已知△>0,还是要证明△>0.(3)要证明△≥0或△<0,需将△恒等变形为a2+2,-(a+2)2……从而得到判断.2.提高分析问题、解决问题的能力,提高推理严密性和思维全面性的能力.四、布置作业1.教材P.29中B1,2,3.2.当方程x2+2(a+1)x+a2+4a-5=0有实数根时,求a的正整数解.(2、3学有余力的学生做.)五、板书设计12.3 一元二次方程根的判别式(二)一、判别式的意义:……三、例1……四、例2……△=b2-4ac …………二、方程ax2+bx+c=0(a≠0)(1)当△>0,……练习1……练习2……(2)当△=0,……(3)当△<0,……反之也成立.六、作业参考答案方程没有实数根.B3.证明:∵△=(2k+1)2-4(k-1)=4k2+5当k无论取何实数,4k2≥0,则4k2+5>0∴△>0∴方程x2+(2k+1)x+k-1=0有两个不相等的实数根.2.解:∵方程有实根,∴△=[2(a+1)]-4(a2+4a-5)≥0即:a≤3,a的正整数解为1,2,3∴当a=1,2,3时,方程x2+2(a+1)x+a2+4a-5=0有实根.3.分析:“方程”是一元一次方程,还是一元二次方程,需分情况讨论:(2)当2m-1≠0时,∵无论m取何实数8(m-1)2≥0,即△≥0.∴方程有实数根。

一元二次方程的根与系数的关系与解决实际问题(解析版)

一元二次方程的根与系数的关系与解决实际问题(解析版)

第3天一元二次方程的根与系数的关系与解决实际问题【知识回顾】1.根的判别式利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:△当△>0时,方程有两个不相等的两个实数根;△当△=0时,方程有两个相等的两个实数根;△当△<0时,方程无实数根.上面的结论反过来也成立.2.根与系数的关系(1)若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.(2)若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,12bx xa+=-,12cx xa⋅=.(3)常用根与系数的关系解决以下问题:△不解方程,判断两个数是不是一元二次方程的两个根.△已知方程及方程的一个根,求另1一个根及未知数.△不解方程求关于根的式子的值,如求,x12+x22等等.△判断两根的符号.△求作新方程.△由给出的两根满足的条件,确定字母的取值.这类问题比较综合,解题时除了利用根与系数的关系,同时还要考虑a≠0,△≥0这两个前提条件.3.由实际问题抽象出一元二次方程在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.一.选择题(共10小题)1.(2020·云南一模)若α、β是一元二次方程x2+2x﹣6=0的两根,则11+αβ的值是()A.13-B.13C.﹣3D.3【答案】B【解析】△α、β是一元二次方程x2+2x﹣6=0的两根,△α+β=﹣2,αβ=﹣6,则11+-21 +===-63αβαβαβ,故选B.2.(2020·四川省射洪县射洪中学外国语实验学校期中)下列一元二次方程两实数根和为-42的是()A.2240x x--=B.2440x x-+= C.24100x x++=D.2450x x-=+【答案】D【解析】A中1222 1x x -+=-=,故错误;B中12-44 1x x+=-=,故错误;C中24164024<0b ac∆=-=-=-,故错误;D中124-4 1x x+=-=,故准确;故答案选D.3.(2020·四川省射洪县射洪中学外国语实验学校月考)方程22310m m-+=和方程224m m-=-所有实数根之和为()A.72B.32C.32-D.92【答案】B【解析】34△方程22310m m -+=根的判别式2=(-3)42110∆-⨯⨯=>△方程22310m m -+=有两个实数根△两根之和为32△方程224m m -=-的根的判别式2=(-2)414-120∆-⨯⨯=<△方程224m m -=-无实数根△方程22310m m -+=和方程224m m -=-所有实数根之和为32故选:B 4.(2020·渠县第四中学期中)已知x 1,x 2是一元二次方程x 2-2x -1=0的两根,则x 1+x 2-x 1·x 2的值是( )A .1B .3C .-1D .-3 【答案】B【解析】由题意知:122x x +=,12-1x x ⋅=,△原式=2-(-1)=3故选B .5.(2020·江苏如东二模)若x 1,x 2是方程x 2﹣3x ﹣2=0的两个根,则x 1+x 2﹣x 1•x 2的值是( ) A .﹣5B .﹣1C .5D .15【答案】C【解析】根据题意得x 1+x 2=3,x 1x 2=﹣2,所以x 1+x 2﹣x 1•x 2=3﹣(﹣2)=5.故选:C .6.(2020·内蒙古海勃湾期末)一元二次方程2310x x -+=的两个根为12,x x ,则2121232x x x x ++-的值是( )A .10B .9C .8D .7【答案】D【解析】 1x 为一元二次方程2310x x -+=的根,21131x x ∴=-,2121232x x x x ∴++-=()12121212313233x x x x x x x x -++-=++-.根据题意得123x x +=,121=x x ,212123233137x x x x ∴++-=⨯+-=.故选:D .7.(2020·银川市第十五中学一模)已知关于x 的方程x 2-4x +c +1=0有两个相等的实数根,则常数c的值为( )A.-1B.3C.1D.0【答案】B【解析】△方程x2−4x+c+1=0有两个相等的实数根,△△=(−4)2−4(c+1)=12−4c=0,解得:c=3.故答案选B.8.(2019·广东郁南月考)某中学要组织一次篮球比赛,赛制为单循环形式(毎两队之间都赛一场),计划安排21场比赛,求参加的球队支数,如果设参加的球队支数为x,则可列方程为()A.12x(x+1)=21B.x(x+1)=21C.12x(x﹣1)=21D.x(x﹣1)=21【答案】C【解析】解:设邀请x个队,每个队都要赛(x-1)场,但两队之间只有一场比赛,由题意得:12x(x-1)=21,故选:C.9.(2020·深圳市宝安区北亭实验学校)若一个三角形的两边长分别为2和6,第三边是方程x2-10x+21=0的一根,则这个三角形的周长为( )67A .7B .3或7C .15D .11或15【答案】C【解析】x 2−10x+21=0,(x−3)(x−7)=0,则x−3=0,x−7=0,解得:x=3或7, 当x=3时,2+3=5<6,不能组成三角形,故x=3不合题意舍去,当x=7时,2+6=8>7,可以组成三角形,则三角形的周长为2+6+7=15,故答案选C.10.(2020·湖南隆回一模)扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .()()3302020304x x --=⨯⨯B .()()130********x x --=⨯⨯8C .130********x x +⨯=⨯⨯ D .()()33022020304x x --=⨯⨯ 【答案】D【解析】 设花带的宽度为xm ,则可列方程为330220203(4())0x x --=⨯⨯, 故选D .二.填空题(共5小题) 11.(2020·江苏高淳期末)一元二次方程x 2+mx+2m=0的两个实根分别为x 1,x 2,若x 1+x 2=1,则x 1x 2=______.【答案】-2.【解析】根据题意得x 1+x 2=-m=1,x 1x 2=2m ,所以m=-1,所以x 1x 2=-2.12.(2020·温州市第二十三中学)已知关于x 的方程260x x a ++=有一个根是-2,则方程的另一个根是___________.【答案】-4【解析】因为已知关于x 的方程260x x a ++=有一个根是-2,9 所以由12b x x a+=-得2226,4x x -+=-∴=-. 故答案为-4. 13.(2020·四川省射洪县射洪中学外国语实验学校期中)若,a b 是方程2220060x x +-=的两根,则23a a b ++= .【答案】2004.【解析】2220060x x +-=的两根△a+b=-2,222006a a +=,△223=2+a =2006-2=2004++++a a b a a b故答案为:200414.(2020·四川省射洪县射洪中学外国语实验学校期中)如果关于x 的一元二次方程()20ax b ab =>的两个根分别是11x m =+与224x m =-,那么b a的值为__________. 【答案】4【解析】方程化为一般式为:ax 2-b=0x 1+x 2=m+1+2m -4=0 △x 1·x 2=(m+1)(2m -4)=-b a △10解方程△,得m=1把m=1代入△,得b a=-2×(-2)=4. 故答案为:4.15.(2019·上海交大附中)设方程( 1) (11)(11)(21)x x x x ++++++(1)(21)0x x ++=的两根为12,x x ,则()()1211x x ++=______. 【答案】2003【解析】(1)(11)(11)(21)1)(20(1)x x x x x x ++++++++=, 221211x x x ∴++++23223122210x x x ++++=, 23662630x x ∴++=.△3a =,66b =,263c =,224664326343563156b ac ∆=-=-⨯⨯=-=12000>, 1212263223x x b a a x c x =-=∴+=-=,. ()()()1212122631112213x x x x x x ++=+++=-+=2003. 故答案为:2003. 三.解析题(共5小题)1116.(2019·广东郁南月考)关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2. (1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值.【答案】(1)12k ≤;(2)3k = 【解析】(1)△Δ=4(k -1)2-4k 2≥0,△-8k +4≥0,△k ≤12; (2)△x 1+x 2=2(k -1),x 1x 2=k 2,△2(k -1)=1-k 2,△k 1=1,k 2=-3.△k ≤12,△k =-3. 17.(2020·甘肃省庆阳市第五中学期末)已知关于x 的一元二次方程()222120x k x k k -+++=有两个实数根12,x x .(1)求实数k 的取值范围.(2)是否存在实数k ,使得()22121216x x x x +-=成立?若存在,请求出k 的值;若不存在,请说明理由.【答案】(1)14k ≤;(2)存在这样的实数k ,k 的值为3-. 【解析】(1)由题意得:方程的根的判别式[]22(21)4(2)0k k k ∆=-+-+≥,12 解得14k ≤; (2)由一元二次方程根与系数的关系得:2121221,2x x k x x k k +=+=+,则()()2222121211221223x x x x x x x x x x +-=++-, ()212123x x x x =+-, ()()222132k k k =+-+, 221k k =-+,当()22121216x x x x +-=时,22116k k -+=, 即22150k k --=,因式分解得:(3)(5)0k k +-=,解得3k =-或154k =>(不符题意,舍去), 故存在这样的实数k ,k 的值为3-.18.(2020·四川南充月考)关于x 的方程2220x mx m m -+-=有两个不相等的实数根12,x x .(1)求m 的取值范围.(2)若221212x x +=,求211214x x x x +-的值.13【答案】(1)0m >;(3)0【解析】(1)△1a =,2b m =-,2c m m =-,△()()2224241b ac m m m =-=--⨯⨯- 40m =>△0m >;(2)由根与系数的关系,得:212122x x m x x m m +==-,,△221212x x +=,△()21212212x x x x +-=,△()224212m m m --=, △2+60m m -=,解得2m =或3m =-(舍去),△原方程为2420x x -+=,△212112420x x x x =-+=,,△211214220x x x x +-=-+=.19.(2020·湖南茶陵期末)已知关于x 的一元二次方程240x x m -+=.14(1)若方程有实数根,求实数m 的取值范围;(2)若方程的两个实根为12,x x ,且满足12326x x +=,求实数m 的值.【答案】(1)4m ≤;(2)12=-m .【解析】(1)△原方程有实数根,△方程的根的判别式1640m ∆=-≥,解得4m ≤;(2)由一元二次方程的根与系数的关系得:12441x x -+=-=, 又121211322()246x x x x x x +=++=⨯+=,12x ∴=-,将12x =-代入原方程得:2(2)4(2)0m --⨯-+=,解得12=-m .20.(2020·渠县第四中学期中)某商场试销一件成本为60元的服装,规定试销期间销售单价不低于成本单价,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y =kx +b ,且x =65时,y =55;x =75时,y =45.(1)求y 与x 的函数关系式;(2)若该商场想获得利润500元,求销售单价.【答案】(1)y =-x +120(60≤x≤120);(2)销售单价为70元或110元.【解析】解:(1)根据题意,得6555 7545k bk b+=⎧⎨+=⎩解得1120 kb=-⎧⎨=⎩△一次函数关系式为y=-x+120(60≤x≤120).(2)(-x+120)(x-60)=500,整理得x2-180x+7700=0.解得x1=70,x2=110,答:当销售单价为70元或110元时,该商场获得500元利润.15。

2022人教版数学《一元二次方程根的判别式 参考教案2》配套教案(精选)

2022人教版数学《一元二次方程根的判别式 参考教案2》配套教案(精选)

一、教学内容分析“一元二次方程的根的判别式”从定理的推导到应用都比较简单,教材中都没有很明显的涉及,但是在中考中年年都要用到,在整个中学数学中占有重要的地位。

既可以根据它来判断一元二次方程的根的情况,又可以为今后研究不等式,二次三项式,二次函数,二次曲线等奠定基础,并且用它可以解决许多其它综合性问题。

通过这一节的学习,培养学生的探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力,并向学生渗透分类的数学思想,渗透数学的简洁美。

教学重点:根的判别式定理及逆定理的正确理解和运用 教学难点:根的判别式定理及逆定理的运用。

教学关键:对根的判别式定理及其逆定理使用条件的透彻理解。

二、学情分析学生已经学过一元二次方程的四种解法,并对24b ac -的作用已经有所了解,在此基础上来进一步研究24b ac -作用,它是前面知识的深化与总结。

从思想方法上来说,学生对分类讨论、归纳总结的数学思想已经有所接触。

所以可以通过让学生动手、动脑来培养学生探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力。

三、教学目标依据教学大纲和对教材的分析,以及结合学生已有的知识基础,本节课的教学目标是: 知识和技能:1、感悟一元二次方程的根的判别式的产生的过程;2、能运用根的判别式,判别方程根的情况和进行有关的推理论证;3、会运用根的判别式求一元二次方程中字母系数的取值范围; 过程和方法:1、培养学生的探索、创新精神;2、培养学生的逻辑思维能力以及推理论证能力。

情感态度价值观:1、向学生渗透分类的数学思想和数学的简洁美;2、加深师生间的交流,增进师生的情感;3、培养学生的协作精神。

四、教学策略:本着“以学生发展为本”的教育理念,同时也为了使学生都能积极地参与到课堂教学中,发挥学生的主观能动性,本节课主要采用了引导发现、讲练结合的教学方法,按照“实践——认识——实践”的认知规律设计,以增加学生参与教学过程的机会和体验获取知识过程的时间,从而有效地调动了学生学习数学的积极性。

一元二次方程实根的分布

一元二次方程实根的分布

一元二次方程实根的分布一元二次方程实根的分布是二次方程中的重要内容,在各类竞赛和中考中经常出现。

这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于一元二次方程根的判别式和根与系数关系(韦达定理)的运用。

本文将在前面方法的基础上,结合二次函数图象的性质,分两种情况系统地介绍一元二次方程实根分布的情况及其运用。

一.一元二次方程实根的基本分布——零分布一元二次方程实根的零分布,指的是方程的根相对于零的关系。

比如二次方程有一正根,有一负根,其实就是指这个二次方程一个根比零大,一个根比零小,或者说,这两个根分布在零的两侧。

对于这类问题,用一元二次方程根的判别式和根与系数关系(韦达定理)即可判别。

一元二次方程02=++c bx ax (0≠a )的两个实数根为1x 、2x ,则1x 、2x 均为正⇔△≥0,1x +2x >0,1x 2x >0; 1x 、2x 均为负⇔△≥0,1x +2x <0,1x 2x >0;1x 、2x 一正一负⇔1x 2x <0。

例1.关于x 的一元二次方程28(1)70x m x m +++-=有两个负数根,求实数m 取值范围。

解:设两个实数根为1x 、2x ,依题意有1212000x x x x ∆⎧⎪+< ⎨⎪> ⎩≥ ①②③由①得:2(1)32(7)0m m +--≥,2(15)0m -≥,恒成立。

由②得:18m +-<0,解之,m >1-。

由③得:78m ->0,解之,m >7。

综上,m 的取值范围是m >7。

例2.若n >0,关于x 的方程21(2)04x m n x mn --+=有两个相等的正实数根,求mn 的值。

解:设两个实数根为1x 、2x ,依题意有1212000x x x x ∆= ⎧⎪+⎨⎪> ⎩①> ②③由①得:2(2)0m n mn --=,()(4)0m n m n --=,∴m n =或4m n =。

若m n =,则1x +2x 22m n n n n =-=-=-<0,不符合②,舍去。

一元二次方程根与系数的关系

一元二次方程根与系数的关系

一元二次方程综合 12.4 一元二次方程的根与系数的关系中考考点 1.理解一元二次方程的根与系数的关系(韦达定理)。

2.会运用根与系数的关系,由已知的一元二次方程的一个根求出另一个根与未知系数。

3.会求一元二次方程两个根的倒数和与平方和。

考点讲解 1.若一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则x1+x2=-,x1?x2=。

2.以x1,x2为根的一元二次方程是(x-x1)(x-x2)=0,展开代入两根和与两根积,仍得到方程ax2+bx+c=0(a≠0)。

3.对二次项系数为1的方程x2+px+q=0的两根为x1,x2时,那么x1+x2=-p,x1?x2=q。

反之,以x1,x2为根的一元二次方程是:(x-x1)(x-x2)=0,展开代入两根和与两根积,仍得到方程:x2+px+q=0。

4.一元二次方程的根与系数关系的应用主要有以下几方面:(1)已知一元二次方程的一个根,求另一个根,可用两根和或两根积的关系求另一个根。

(2)已知含有字母系数的一元二次方程的一个根,求另一个根及字母系数的值。

可用根与系数关系式,一个关系式求得另一个根,再用另一个关系式求得字母系数的值。

(3)已知一元二次方程,不解方程,可求与所给方程两根和、两根积的某些代数式的值。

如,方程2x2-3x+1=0的两根为x1,x2,不解方程,求x12+x22的值。

[∵x1+x2=,x1?x2=,∴x12+x22=(x1+x2)2-2x1x2=()2-2×=] (4)验根、求根、确定根的符号。

(5)已知两根,求作一元二次方程(注意最后结果要化为整系数方程)。

(6)已知两数和与积,求这两个数。

(7)解特殊的方程或方程组。

考题评析 1.(北京市东城区)如果一元二次方程x2+3x-2=0的两个根为x1,x2,那么x1+x2与x1?x2的值分别为()(A)3,2 (B)-3,-2 (C)3,-2 (D)-3,2 考点:一元二次方程的根与系数关系。

一元二次方程的根与系数的关系教案

一元二次方程的根与系数的关系教案

21.2.4一元二次方程的根与系数的关系一、内容和内容解析 1.内容一元二次方程根与系数的关系2.内容解析一元二次方程根与系数的关系是一元二次方程中一种重要的关系,利用这一关系可以解决很多问题,同时在高中数学的学习中有着更加广泛的应用。

实际上,一元n次方程的根与系数之间也存在着确定的数量关系。

一元二次方程02=++c bx ax 的求根公式x =,反映了方程的根是由系数c b a ,, 所决定的,从一方面反映了根与系数之间的联系;而本节课中的ab x x -=+21, ac x x =21是从另一方面更简洁的反映了一元二次方程的根与系数之间的关系,即通常所说的一元二次方程的根与系数之间的关系.本节课从思考一元二次方程的根与方程中的系数之间的关系开始,由特殊到一般,先让学生思考二次项系数为1的情形,然后再思考并证明一般形式时根与系数 的关系。

本节课为选学内容,所以在利用根系关系解决问题时需酌情控制难度。

基于以上分析,确定本节课的教学重点是:一元二次方程的根与系数的关系的探索及简单应用。

二、目标和目标解析1.目标(1)知识与技能:了解一元二次方程的根与系数之间的关系,能进行简单应用。

(2)过程与方法: 在一元二次方程的根与系数的关系的探究过程中,感受由特殊到一般地认知规律。

(3)情感态度与价值观:感受数学的严谨性和数学结论的确定性,提高运算能力,获得成功的体验,建立自信心。

2.目标解析达成目标(1)的标志是:学生知道一元二次方程的根与系数的关系,并利用根与系数关系求出两根之和,两根之积。

达成目标(2)的标志是:学生能够借助问题的引导,发现、归纳并证明一元二次方程的根与系数的关系。

达成目标(3)的标志是:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。

在观察、归纳、类比、计算与交流活动中,感受数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。

三.教学问题诊断分析一元二次方程的根与系数的关系是在学生已经学习了一元二次方程解法基础上,对一元二次方程的根与系数之间的关系进行再探究。

一元二次方程根的判别式、根与系数关系

一元二次方程根的判别式、根与系数关系

例3:当m为何值时,方程(m-1)x² +2mx+m+3=0 ①﹑无实根 ②﹑有实根 ③﹑只有一个实根 ④﹑有两个实根 ⑤﹑有两个不等实根 ⑥﹑有两个相等实根
分析
(1)﹑只需△<0 (2)、分情况讨论 ① m-1=0 (3)﹑当m-1=0时 (4)、 △≥0 且 m-1≠0 (5)、△>0 且 m-1≠0 (6)、 △=0 且 m-1≠0 ② △≥0 且m-1≠0
五、利用给出条件,确定一个一元二次方程中某个字母系数的值 例3 已知关于x的方程x 2+px+q=0的两实数根和的平方比两实数根之积 大7,而两实数根差的平方比两实数根之积的3倍小5,求p、q值. 分析:本题要求已知一元二次方程x 2+px+q=0中的字母系数p、q的值,只要 利用题目的条件,把p、q的关系式列出,再通过变形得到关于p、q的方程组, 解此方程组即可求出p、q. 解:设方程的两实数根分别为x 1、x 2则由根与系数的关系,得 X 1+x 2=-p,x 1· x 2=q, ……① 又由题意得(x 1+x 2) 2=x 1· x 2+7 ……② (x 1-x 2) 2=3 x 1· x 2-5 ……③ ∵(x 1-x 2) 2=(x 1+x 2) 2-4 x 1· x2 代入③得(x 1+x 2) 2=7x 1· x 2-5 ……④ 将①式分别代入②、④中,得 p 2=q+7 p=3 p=-3 p 2=7q-5 即: q=2 q=2Leabharlann 一元二次方程的根与系数关系
一元二次方程的根与系数关系(或称韦达定理)是初中数学内容中一个很重要的 知识点,在中考中占有重要的地位,纵观近年全国各地的中考试题,这个知 识点的考查可以解决以下几个问题: 一元二次方程的根与系数的关系 如果一元二次方程ax 2+bx+c=0(a≠0)的两个实数根是x 1,x 2,那么

一元二次方程实数根的分布

一元二次方程实数根的分布

第一课时:一元二次方程实数根的分布教学目标:使学生掌握一元二次方程实根分布问题的处理,加强求解一元二次不等式及不等式组,初步训练学生的数形结合能力。

教学重点:利用二次函数的图象,把一元二次方程根的分布−−→−转化图形问题−−→−转化代数表达式(不等式组)−−→−计算参数取值范围。

教学难点:图形问题转化成代数表达式(不等式组)并求解。

一、问题的提出若方程0)5()2(2=++++m x m x 的两根均为正数,求实数m 的取值范围.变式1:两根一正一负时情况怎样?变式2:两实根均大于5时情况又怎样?变式3:一根大于2,另一根小于-1时情况又怎样?问题:能否从二次函数图形角度去观察理解?若能试比较两种方法的优劣.方程)0(02≠=++a c bx ax 的实根,如若从二次函数图形角度去观察理解,其实质就是对应的二次函数2()0(0)f x ax bx c a =++=≠ 的抛物线与x 轴交点的横坐标.一元二次方程实根分布,实质上就是方程的根与某些确定的常数大小关系比较.二、一元二次方程实根分布仿上完成下表一元二次方程)0(02≠=++a c bx ax 实根分布图解三、练习1.m 为何实数时,方程02)1(2=+++m x m x 的两根都在-1与1之间.2、若方程0)3()1(2=-++-a x a x 的两根中,一根小于0,另一根大于2,求a 的取值范围.四、小结基本类型与相应方法:设 )0()(2≠++=a c bx ax x f ,则方程0)(=x f 的实根分布的基本类型及相应方法如下表:五作业:1.关于x 的一元二次方程222320ax x a ---=的一根大于1,另一根小于1.则a 的值是 ( )(A )0a >或4a <- (B )4a <- (C )0a > (D )40a -<<2.方程227(13)20(x k x k k k -++--=为常数)有两实根,αβ,且01α<<,12β<<,那么k 的取值范围是 ( )(A )34k << (B )21k -<<- (C )21a -<<-或34k << (D )无解3.设m 是整数,且方程2320x mx +-=的两根都大于95-而小于37,则m = .4.若关于x 的方程22(1)210m x mx -+-=的所有根都是比1小的正实数,则实数m 的取值范围是m =5. 方程2(21)(6)0x m x m +-+-=的一根不大于-1,另一根不小于1.试求:(1)参数m 的取值范围;(2)方程两根的平方和的最大值和最小值. 第二课时 一元二次方程实数根分布的应用一复习二、例子例1 已知实数a 、b 、c 满足22211a b c a b c a b c ⎧>>⎪++=⎨⎪++=⎩,求a b +的取值范围.解 由已知得1a b c +=-且222222()()(1)(1)22a b a b c c ab c c +-+---===-.所以,a b 是一元二次方程22(1)()0x c x c c --+-=的两根. 由a b c>>问题可转化为方程22(1)()0x c x c c --+-=的二根都大于c .令()f x =22(1)()x c x c c --+-,有2212()0(1)4()0c cf c c c c -⎧>⎪⎪>⎨⎪∆=--->⎪⎩ 即22123203210c c c c c c ->⎧⎪->⎨⎪--<⎩, 求得103c -<<,因此4(1,)3a b +∈.例2已知点(0,4)A 、(4,0)B .若抛物线21y x mx m =-++与线段AB (不包括端点A 及B )有两个不同的交点,则m 的取值范围是 . (1997年上海市高中数学竞赛)解: 显然直线AB 的方程为1(04)44x y x +=<<即4y x =-,代入抛物线方程并整理得2(1)(3)0x m x m +-+-=.设2()(1)(3)f x x m x m =+-+-,问题转化函数()y f x =的图象和x 轴在0到4之间有两个不同的交点,即方程2(1)(3)0x m x m +-+-=在(0,4)上有两个不相等的实根. 所以2(1)4(3)0(0)30(4)164(1)30104.2m m f m f m m m ⎧∆=--->⎪=->⎪⎪⎨=--+->⎪-⎪<<⎪⎩ 解得m 的取值范围是1733m <<. 例3关于x 的实系数二次方程20x ax b ++=的两个实数根为,αβ,证明:①如果||2,||2αβ<<,那么2||4a b <+且||4b <;②如果 2||4a b <+且||4b <,那么||2,||2αβ<<.(1993年全国高考题)证明 ①设2()f x x ax b =++,由已知,函数()y f x =的图象与x 轴在2-到2之间有两个不同的交点. 所以240,(1)22,(2)2(2)420,(3)(2)420.(4)a b a f a b f a b ⎧∆=->⎪⎪-<-<⎪⎨⎪-=-+>⎪=++>⎪⎩由(3)、(4)得(4)24b a b -+<<+,所以2||4a b <+.由(2),得||4a <,结合(1)得2416b a <<,所以4b <. 将(3)+(4)得4b >-,因此44b -<<,即||4b <.②由于2||4a b <+且||4b <,可得4,2||448b a <<+=,所以||4a <,222a -<-<. 即函数()f x 的图象的对称轴2a x =-位于两条直线2x =-,2x =之间.因为(2)(2)(42)(42)2(4)0f f a b a b b -+=+++-+=+>,22(2)(2)(42)(42)(4)40f f a b a b b a -⋅=++-+=+-> .所以(2)0,(2)0f f ->>. 因此函数()f x 的图象与x 轴的交点位于-2和2之间,即||2,||2αβ<<.作业1.已知抛物线2(4)2(6),y x m x m m =++-+为实数.m 为何值时,抛物线与x 轴的两个交点都位于点(1,0)的右侧?2.已知,,a b c 都是正整数,且抛物线2()f x ax bx c =++与x 轴有两个不同的交点A 、B. 若A 、B 到原点的距离都小于1,求a b c ++的最小值.第三课时 应用提高例1若方程k x x =-232在[]1,1-上有实根,求实数k 的取值范围. 解法一:方程k x x =-232在[]1,1-上有实根,即方程0232=--k x x 在[]1,1-上有实根,设k x x x f --=23)(2,则根据函数)(x f y =的图象与x 轴的交点的横坐标等价于方程0)(=x f 的根. (1)两个实根都在[]1,1-上,如图:可得⎪⎪⎩⎪⎪⎨⎧≤-≤-≥≥-≥∆1210)1(0)1(0a b f f ,解得2169-≤≤-k ; (2)只有一个实根在[]1,1-上,如图:可得0)1()1(≤⋅-f f ,解得 2521≤≤-k ,综合(1)与(2)可得 实数k 的取值范围为⎥⎦⎤⎢⎣⎡-25,169 解法二:方程k x x =-232在[]1,1-上有实根,即存在[]1,1-∈x ,使得等式x x k 232-=成立,要求k 的取值范围,也即要求函数[]1,1,232-∈-=x x x k 的值域. 设[]1,1,1694323)(22-∈-⎪⎭⎫ ⎝⎛-=-==x x x x x f k 又因,则)1(169-≤≤-f k , 可得25169≤≤-k . 解法三:令,232x x y -=则k y =,则方程k x x =-232在[]1,1-上有实根,等价于方程组⎪⎩⎪⎨⎧=-=k y x x y 232在[]1,1-上有实数解,也即等价于抛物线,232x x y -=与直线k y =在[]1,1-上有公共点,如图所示直观可得:25169≤≤-k .解法四:根据解法三的转化思想,也可将原方 程k x x =-232化成k x x +=232,然后令 k x y x y +==23,2,从而将原问题等价转化为 抛物线2x y =与直线k x y +=23在[]1,1-点时,“数形结合法”下去求参数k 的取值范围.根据图形直观可得:当直线k x y +=23过点)1,1(-, 截距k 最大;当直线k x y +=23与抛物线k x y +=23相切时,截距k 最小. 且169,25-==最小最大k k .故参数的取值范围为25169≤≤-k . 2已知实数a 、b 、c 满足021a b c m m m++=++,其中m 为正数.对于2()f x ax bx c =++. (1)若0a ≠,求证:()01m af m <+; (2) 若0a ≠,证明方程()0f x =在(0,1)内有实根.证明 (1)由021a b c m m m ++=++,求得()21am bm c m m =-+++,所以 222222211()[()()][()][]11112(1)2m m m m m af a a b c a a m m m m m m m m m=++=-=-+++++++ 又由22(1)20m m m +>+>,因此22110(1)2m m m -<++,故()01m af m <+. (2)要证明方程()0f x =在(0,1)内有实根,只须证明(0)(1)0f f ⋅< 或 (0)0,(1)0,0,0 1.2af af b a >⎧⎪>⎪⎪∆≥⎨⎪⎪<-<⎪⎩但两者都不易证明. 由01(0)1m m m <<>+,结合第(1)题()01m af m <+,对a 进行讨论: 当0a >时,有()01m f m <+. 只要证明(0)f c =和(1)f a b c =++中有一个大于零即可. 若0c >,则(0)0f >成立,问题得证;若0c ≤,由021a b c m m m ++=++求得(1)(1)2a m c m b m m++=--+,所以 (1)(1)(1)22a m c m a c f a b c a c m m m m ++=++=--+=-++. 由0,0,0a m c >>≤,知(1)0f >,命题得证. 故当0a >时,方程()0f x =在(0,1)内有实根. 同理可证,当0a <时,方程()0f x =在(0,1)内也有根.。

复数集内实系数一元二次方程的根的问题

复数集内实系数一元二次方程的根的问题

1、在复数范围内求解方程(求根公式或因பைடு நூலகம்分解)
2、有关结论
(1)实系数一元二次方程在复数范围内定有两个根


•• 0,方程有两个不相等的实数根x1、2 0,方程有两个相等的实数根x1、2


b
b2a 2a

2a
(2)0,0方时程,有虚一数对根共成轭对虚且根x共1、2 轭 2ba
2、实系数一元二次方程根与系数的关系
3、在复数范围内分解因式
例2、已知3i 2是关于x的方程2 x 2 px q 0
的一个根,求实数p, q的值.
解:x1 2 3i是方程的一个虚根
方程2x2 px q 0的另一虚根是x2 2 3i


x1 x1
x2 x2
p 4 2
q 13 2
在实数集内,若实系数一元二次方程ax2 bx c 0
有根x1、x2 ,则ax2 bx c可因式分解为a(x x1)(x x2 )
在复数集内,若实系数一元二次方程ax2 bx c 0
有根x1,x2 ,则ax2 bx c可因式分解为a(x x1)(x x2 )
p8 q 26
韦达定理依然成立
四、课堂练习
ex1、在复数集中解方程:
(1) x 2 2 0
(2) x 2 x 1 0
(3) x 2 2ix 2 0
ex 2、 在 复 数 集 中 分 解 因 式:
(1) x 2 6 ( x 6i)( x 6i)
(2) x 4 16 (x 2i)( x 2i)( x 2)( x 2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(三)抽象总结:
由上面的分析,我们发现:当△<0 时,实系数一元二次方程 ax2+bx+c=0(a≠0)在复数集内有虚根,并且它的虚根共扼成对 出现. 当△<0 时,实系数一元二次方程 ax2+bx+c=0(a≠0)有一对共扼
z
_ b 4ac b 2 i b 4ac b 2 i z 2a 2a ,
(z b 2 4ac b 2 ) . 2a 4a 2
(6)
利用复数相等的定义容易看出,满足(6)式的复数 z 只有两个. 因此,当△<0 时,实系数一元二次方程 ax2+bx+c=0 有且只有一
南京市劳动局职业技术培训处编印

对共扼虚根,它们由(4)式给出. 三、例题精讲
2 例 1:解方程 x x 2 0.
z b 4ac b 2 i 2a
_
虚根
(3)
是一元二次方程 ax2+bx+c=0 的一个根. 猜想的结论是靠不住的,需要证明. 我们把(3)式代入方程来验证:
a[ z 2 b b b z ( )2 ( )2 ] c a 2a 2a
az2+bz+c=
a( z
பைடு நூலகம்
= =
b 2 4ac b 2 ) 2a 4a
10’
南京市劳动局职业技术培训处编印

z


第 5 页
_ b 4ac b 2 i b 4ac b 2 i z 2a 2a ,
3.实系数一元二次方程的根与系数的关系在判别式时仍然成立,
_ b zz , a 即: _ c zz . a
六、布置作业: P295 A 组 1、2
z
_
1 3i . 2
_ _
z z 1; z z 1.
四、课堂练习 P295 A 组 1、 (1) (2) (3) (4)
20’
五、本课小结: 1、当判别式△<0 时,实系数一元二次方程 ax2+bx+c=0(a≠0) 在复数集内有虚根,并且它的虚根共扼成对出现. 2、当判别式△<0 时,实系数一元二次方程 ax2+bx+c=0(a≠0) 有且只有一对共扼虚根
南京市劳动局职业技术培训处编印
名 PPT

数量


数量

《教材》

一、情境设计


第 1 页
在初中时,我们学习过一元二次方程的解法. 大家来做下面几道题: 1. 在实数集内解下列方程: (1) x 2 -x-2=0 (3) x 2 -x-1=0 (2) x 2 -2x+1=0 (4) x 2 +x+2=0
az bz c 0,
即:
_
___ 2
___
_
a z b z c 0.
__ 2
_
(2)
因此, z 也是 a x 2 +bx+c=0 的一个根.问题 1 得到解决. 那么(问题 2) z与 z 是什么形式呢? 我们知道,当△≥0 时,一元二次方程 a x 2 +bx+c=0 的两个实数根 分别式△≥0 时的求根公式受到启发,我们猜想:当△<0 时,
10′
2.一元二次方程 a x 2 +bx+c=0(a≠0,△≥0)的根为 ________________________. 3. 一元二次方程 ax2+bx+c=0(a≠0)的根的情况为: 当_________时,有两个不等的实根. 当_________时,有两个相等的实根. 当_________时,没有实根.
二、新课讲授
30’
(一)提出问题: 做完上面的题,大家想一想: 1.当△<0 时,实系数一元二次方程 a x 2 +bx+c=0(a≠0)在复数 集内有没有根? 2.如果有,它的复数根应当有怎样的形式? 同学们小组讨论
(二)分析问题:
南京市劳动局职业技术培训处编印



第 2 页
试着做做:我们假设有复数根,设 z 是它的一个根.则 a z 2 +bz+c=0 在(1)式的两边同时取共扼复数,得: (1)


第 4 页
20’
2 解: 1 4 1 2 7 0.
所以原方程的两个根是:
z 1 7i _ 1 7i ,z . 2 2
2 例 2:已知方程 x x 1 0 的一个根是
z
1 3i , 2
写出这个方程的另一个根,并且求这两根之和与两根之积. 解:原方程的另一个根是
虚根
此时,经过验算得出:
_ b zz , a _ c zz . a
结论:实系数一元二次方程的根与系数的关系在判别式△<0 时 仍然成立。 (四)拓展探究: 那么当△<0 时,实系数一元二次方程 ax2+bx+c=0 还有其它根 吗?从验证(3)式的过程看出:如果虚数 z 是方程的一个根,则
a(
b 4ac b 2 i 2 4ac b 2 ) 2a 4a
(4ac b 2 )i 2 4ac b 2 4a 2 4a = a
=0.
南京市劳动局职业技术培训处编印

_


第 3 页
因此由(3)式给出的虚数 z 的确是一元二次方程 ax2+bx+c=0 的 一个根.从而, z 也是该方程的一个根.
理论课教案首页
章节标题 课题内容 教 学 目 的 和 要 求 CHAP 12 复数 授课班级 12 机电 1、2 12.3 △<0 的实系数一元二次方程的根
1.掌握△<0 的实系数一元二次方程的两个共扼虚根;掌握根与系数的关 系. 2.培养学生探索的精神. 3.学习猜想,对比,联系的学习方法.
重 点 重点:△<0的实系数一元二次方程的两个共扼虚根. 难 难点:对两个根的猜想. 点 授 课 发现问题——猜想——证明 方 法 挂 图 模 型 、 教 具 备课参考资料 课 后 小 结
七、板书设计
课题 一、知识点 (一) (三) 例题: 1. 2.
(二)
南京市劳动局职业技术培训处编印
相关文档
最新文档