高中数学用数形结合解零点问题

合集下载

高考数学《函数零点的个数问题》知识讲解与例题讲解

高考数学《函数零点的个数问题》知识讲解与例题讲解

高考数学《函数零点的个数问题》知识讲解与例题讲解一、知识点讲解与分析:1、零点的定义:一般地,对于函数()()y f x x D =∈,我们把方程()0f x =的实数根x 称为函数()()y f x x D =∈的零点2、函数零点存在性定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b <,那么在开区间(),a b 内至少有函数()f x 的一个零点,即至少有一点()0,x a b ∈,使得()00f x =。

(1)()f x 在[],a b 上连续是使用零点存在性定理判定零点的前提 (2)零点存在性定理中的几个“不一定”(假设()f x 连续) ① 若()()0f a f b <,则()f x 的零点不一定只有一个,可以有多个 ② 若()()0f a f b >,那么()f x 在[],a b 不一定有零点 ③ 若()f x 在[],a b 有零点,则()()f a f b 不一定必须异号3、若()f x 在[],a b 上是单调函数且连续,则()()()0f a f b f x <⇒在(),a b 的零点唯一4、函数的零点,方程的根,两图像交点之间的联系设函数为()y f x =,则()f x 的零点即为满足方程()0f x =的根,若()()()f x g x h x =−,则方程可转变为()()g x h x =,即方程的根在坐标系中为()(),g x h x 交点的横坐标,其范围和个数可从图像中得到。

由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化。

(详见方法技巧) 二、方法与技巧:1、零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内。

例如:对于方程ln 0x x +=,无法直接求出根,构造函数()ln f x x x =+,由()110,02f f ⎛⎫>< ⎪⎝⎭即可判定其零点必在1,12⎛⎫⎪⎝⎭中 2、函数的零点,方程的根,两函数的交点在零点问题中的作用 (1)函数的零点: 工具:零点存在性定理作用:通过代入特殊值精确计算,将零点圈定在一个较小的范围内。

数形结合巧运用,零点分布妙化解--浅谈对二次函数零点分布问题解题教学的研究

数形结合巧运用,零点分布妙化解--浅谈对二次函数零点分布问题解题教学的研究

解题探索数形结合巧运用,零点分布妙化解一浅谈对二次函数零点分布问题解题教学的研究张程燕(山东省济南中学,250001)一元二次函数是中学数学中最基本、最重要的 函数之一,也是高考考查的重要内容之一,是高考的 高频考点.高中数学教学中一元二次函数的零点分 布问题即初中数学教学中一元二次方程根的分布问 题,是二次函数部分的重点知识与内容,既是学生学 习的重点,也是学习的难点,因此对二次函数零点分 布问题的解题教学研究十分必要.目前,高中生对二 次函数零点分布问题的解题方法偏重于借助对二次 方程根的判别式和韦达定理的运用,能够解决的零 点分布问题有限且易出错,解题方法尚不够系统和 完善,针对这一学情,结合高中所学的零点存在定理 以及数形结合这一重要的数学思想方法,笔者将系 统地分析一元二次函数的零点分布问题,力求将解 题方法系统化、模式化、巧妙化,从而提高数学解题 教学的效率和质量,优化学生的思维品质,发展学生 的数学核心素养.1熟悉知识背景,理解方法本质学生对同一类数学题的解答与掌握,需要的不 仅仅是理解并掌握这类题目的解题方法与技巧,更 需要知晓题目所涉及的知识背景.从知识背景出发, 联系解题所需要的数学知识和方法,将知识与方法 有机融合在一起,构建起数学解题模型,既加深了学 生对数学知识的熟悉程度,也有助于学生理解数学 方法的本质,从而达到学以致用、举一反三的学习效 果,这也是数学解题教学的期望所在.本文所涉及的 数学知识与方法如下所述:1.函数零点存在定理:如果函数y =/(%)在区 间[a ,]上的图像是一^条连续不断的曲线,且有/ (a )/() <0,那么函数y =/()在区间(a ,)内至少 有一个零点,即存在c e (a ,),使得/(C) = 0,这个c 也就是方程/() =0的解[1].特别地,对于一次函数y = h +&(&#0)和二次 函数y = a / +心+c (a #0)而言,若/(幻在区间(a , 6)上满足零点存在定理,则在(a ,)上有且仅有一个零点.2.数形结合的思想方法——从四个方面将二次函数图像与代数不等式之间建立联系:①开口方向, ②对称轴,③判别式4,④特殊点函数值的符号.2探究典型例题,把握解题方法数学解题教学是数学教师根据教学需要选择合 适的试题,以学生的学情为起点,以自身的解题经 历、经验和研究为基础,通过师生间对话交互,促进 学生深度思考,优化学生思维品质的教学活动[2].本文选取四道典型例题,从思路分析、解答过程和 方法指导三个方面对二次函数零点分布问题进行解题 教学探究,全方位、多角度的对例题进行剖析,帮助学 生理解问题本质、建立解题模型以及掌握解题方法.例1如果方程尤2 + (^i -1)) +爪2 -2=0的两个 实根一个小于1,另一个大于1,求实数m 的取值范围.思路分析:(1)方程尤2 + (爪-1)尤+爪2-2=0根的分布问题0函数/(%) =%2 + (m - 1)% +m 2 -2的零点分布问题,完成方程的根与函数零点的转化;(2) 函数/() =% + (m -1)%+m 2 - 2 开口上,其与%轴的交点一个在1的左侧、一个在1的右 侧,易画出草图,熟悉题设,理清思路;(3)利用数形结合的思想方法,从四个方面二次函数图像与代数不等式之间建立联系:开口向 上是确定的;对称轴可以在1的左侧、右侧或者对称 轴为1;判别式4 = ( m - 1)2 - 4 ( m - 2 ) > 0;特殊 点函数值/(1) <0.解题过程1法一:数形结合由已知可列方程组:• 62•r 4 = (m -1)2 - A i m 1 - 2 ) >0, |/( 1) =1 + m — 1 + m 2 —2 <0.r 3m 2 + 2m -9 <0, m 2 + m - 2 <0.1 +2 槡 -1 +2 槡----;---< m <---------,33-2 < m < 1.%,^2满足0<% < 1<%2 <6,求实数a 的取值范围.思路分析:(1)函数开口向上,过定点(0,4),其 与X 轴有两个交点%,2满足0<%<1<% <6,易 画出草图,熟悉题设,理清思路;(2)利用数形结合的思想方法,从四个方面将 二次函数图像与代数不等式之间建立联系.解题过程:-2 < m < 1. m e ( - ,1)方法指导:因为/(X )开口向上,所以X —± ^ 时,/(X )— + (即/( -) >0,/( + ) >0),再有/(1) <0,则在区间(-^ ,1)和(1,+1)上都满足 零点存在定理,所以在两个区间都各有一个零点,从而满足题意.因此,判别式4 = (m -1)2 - 4(m 2 - 2 ) >0可省略不解,解答过程十分简单.解题过程1 :法一(简化):数形结合 由已知得:/(1) <0....1 + m - 1 + m 2 - 2 < 0. ... m 2 + m - 2 < 0..-2 < m < 1. .m e (-2,1).我们再来看一下第二种解题方法/昔助对二次 方程根的判别式和韦达定理的运用,来解决二次函 数零点分布问题.解题过程2:法二:韦达定理4 = (m -1)2 - 4(m 2 - 2 ) >0,xt - 1 )(%2 - 1) <0.4 = (m -1)2 - 4(m 2 - 2 ) >0,%1%2 _ (xt +X 2 ) +1 <0.4 = (m -1)2 - 4(m 2 - 2 ) >0,一2) -(1 一 m ) +1 <0.由已知,得{.{.{3m 2 + 2m -9<0,m 2 + m - <01 +2 槡 -1+2 槡...|-^^<m < ^3^,-2 < m < 1..- 2 < m < 1. .m e (-2,1).方法指导:韦达定理使用的前提是一元二次方 程的两根存在,即判别式4^0.因此在利用判别式 和韦达定理解决二次函数的零点分布问题时,判别 式4 = (m -1)2 - 4(m 2 - 2 ) >0不可以省略,必须 要求解.显然,在解决二次函数零点分布问题时,利 用韦达定理解题比利用数形结合解题计算量要大. 也就是说,数形结合方法解决零点分布问题更简易、 更巧妙、更通用.例2已知函数/(X ) =X 2 -2ax +4有两个零点由已知可列方程组:,/(0) =4>0, |/(1)=5-2a <0,...1/(6) =40 -12a >0.a >10a < —5 10 5 10.T <a <T .a E (T ’y ).方法指导:因为/(X )开口向上,且由图像可得, /(0) >0,(1) <0,(6) >0,则在区间(0,1)和(1,6)上 都满足零点存在定理,所以在区间(0,1 )和(1,)上各 有一个零点,满足题意“/(X )两个零点X i ,2且0 <X 1 < 1 <X 2 <6”,故而有关对称轴0 <a <6和判别式4 = (-2a )2 -4 x 1 x 4的不等式可省略.例3已知函数/(X ) =X 2 - 2aX +4有两个零点,且都大于1,求实数a 的取值范围.思路分析:(1)函数开口向上,过定点(0,4 ),且 两个零点X 1,2都大于1,易画出草图,熟悉题设,理 清思路;()利用数形结合的思想方法,从四个方面将 二次函数图像与代数不等式之间建立联系解题过程:• 63•由已知可列方程组:/(1) =5 -2a >0, a >1,轴=—2a2x 1=a > 1a <52,,4 =4a 2 - 16 >0. La >2 或 a <-2.2 < a <52a g5)•方法指导:因为/()开口向上,所以/( - 〇〇) > 0,/( + 〇〇 ) > 0,且由图像可得/(1) > 0,但仅仅凭借 特殊点函数值/(1) >0并不能满足零点存在定理, 这就需要其它三个方面加以限制,即开口方向、对称轴-冬>1和4>0.La例4函数/(*) =a *2 -*-1在区间(0,1)内恰有一个零点,求实数a 的取值范围.思路分析:(1)函数开口方向不确定,过定点 (0,_1);()首项系数含参且在(0,1)内恰有一个零点, 满足条件的草图有很多,因此需要分类讨论,而分类 讨论的依据可以是首项系数的符号.亦或者,我们可 以利用前面的解题思路,按照端点函数值/(0)/( 1) 的符号来讨论;(3)利用数形结合的思想方法,从四个方面将 二次函数图像与代数不等式之间建立联系.解题过程:分类讨论法一:按首项系数分类讨论(1) 若a =0,则/() = -*-1为一次函数,令/(*) =0,得 *= -1.此时/(*)只有*=-1这一个零点,在区间(0, 1)内无零点.(2)若 a >0,则/(*) = a *2 - * - 1 为一兀二次函数,开口向上,过定点(0, -1).由已知可列方程组:f (0) = ―1:0, .a >2.[/(1) =a - 2 >0.(3)若 a <0,则/(*) =a *2-*-1 为一兀二次 函数,开口向下,过定点(0, -1).由已知可列方程组:a <0,1 a <0,0 <^<1, ,、2a 或{ A =1 + 4a >0,4=1 +4a =0, |/(1) =a 一 2>0./(1) =a -2<0a <0,、a <2a <0,或a >a >2••.均无解.综上所述:的取值范围为(2,+ ^ )•方法指导:与例1例2、例3 —样,需要画出函 数草图,从开口方向、对称轴、判别式A 和特殊点函 数值的符号四个方面建立起函数图像与不等式之间 的关系.但由于函数首项系数含参,具有不确定性, 因此依据首项系数的符号进行分类讨论,进而求解 参数的范围.需要说明的是:在情形(2)中,二次函 数/(*) =a *2 -* - 1区间(0,1)上满足零点存在定 理,则在(0,1 )上有且仅有一个零点.法二:按特殊点函数值符号分类讨论:()当/(0)/(1) <0,由/(0) = -1,得/(1) =a-2 >0,即 a >2 时;此时满足零点存在定理,二次函数/(*) =a *2 -* -1在区间(0,)内必恰有一-零点.(2)当/(0)/(1) >0,由/(0) = -1,得/(1) =a-2 <0,即 a <2 时;由图可列方程组得:• 64•a<0,0 <2a<1,A-4a+1=0,/(0) = -1 <0,/(1) =a-2<0.a<0,a无解.、a<2.()当/(0)/() =0,由/(0) = -1,得/(1) -a -2=0,即a=2 时;v/(x) =ax2-x-1=22-x-1= (2+1) (-1),...令/(x) =(2x+1)(x- 1) =0.得 X1 =-+送(0,1),2 =1 送(0,1).■■■/(x) =ax2-X-1在区间(0,1)内没有零点..a=2不符合题意,舍去.综上所述:的取值范围为(2,+ 1X1 ).方法指导:1)当/(0)/() <0时,满足函数零 点存在定理,则对于二次函数而言在区间(0,1)有 且只有一个零点,满足题意;⑵当/(0)/(1) >0时,函数/(X)端点值同号,不满足零点存在定理,所以结合图像,还得添加其它 三个条件:开口方向、对称轴、判别式A;(3)当/(0)/(1)=0时,可直接求得a=2,此时 函数解析式确定,直接求出零点的值,再判断零点是 否在区间(0,1)内即可.通过对比按首项系数分类讨论和按特殊点函数 值符号(即是否满足零点存在定理)分类讨论两种 方法,我们发现:虽同为利用数形结合与分类讨论的 数学思想方法解题,但显然方法二比方法一简单许 多,再次验证了函数零点存在定理在零点分布问题 求解中的优势所在.3研究零点分布,归纳解题结论通过对典型例题的深度探究,我们发现:二次函 数的零点分布问题,可以从开口方向、对称轴、判别 式和特殊点函数值符号四个方面找寻二次函数图像 与代数不等式之间的关系,从而建立起数学解题模型.我们还发现,当特殊点的函数值符号异号时,即在某区间上函数满足零点存在定理时,那就只需要 列特殊点函数值符号的不等式即可,其它三个不等 式不用列也无需解;当不满足零点存在定理时,就需 要其它三个方面的不等式加以限制,此时不能省略.因此,从四个方面将二次函数图像与代数不等式之 间建立联系,利用数形结合解决二次函数的零点分 布问题时,要注意四个方面研究的顺序性,优先考虑 特殊点函数值的符号情况,若满足零点存在定理,则可简化解题步骤,巧妙解决二次函数的零点分布问 题.此外,对于需要分类讨论的二次函数零点存在问 题,以/( a)/( 6 )的符号为切入点展开分类讨论,显然思路比较清晰,便于求解.数形结合巧运用,零点分布妙化解.利用一个简单的数学知识——零点存在定理和一个常用的数学 思想方法——数形结合,把二次函数零点分布问题 的解题方法系统化、直观化和形象化,在题目的诸多变化中找到了数学解题的“不变性”,达到“以不变 应万变”的解题教学效果,从而能够促进学生的深 度思考,提升学生的解题能力,优化学生的数学思维 品质,发展学生的数学核心素养.(说明:本文中出现的函数图像,都是在假设存 在的前提下依据题意画出的草图,并不代表此函数 图像一定存在.尤其在涉及分类讨论求参数范围时,满足条件的函数图像是否真实存在取决于解题的结果是否有解.)参考文献:[1] 中学数学课程教材研究开发中心.普通中教科书数学必修第一册(2019年A版)[M].北 京:人民教育出版社,2019.[2] 安学保.讲在学生需要处,讲在思维深处——例谈高中数学解题教学中的问题驱动[J].中学数学教学参考,2019,(22) :54 -57.[3] 江春莲,胡玲.基于APOS理论和R M I原的二次函数图象平移教学实验研究[J].数学教育学报,2020,29(6) :2 -39.[4] 葛丽婷,旆梦媛,于国文.基于UbD理论单元教学设计——以平面解析几何为例[J].数学 教育学报,2020,29(5) :5 -31.• 65•。

高中数学函数零点问题及解题策略探究

高中数学函数零点问题及解题策略探究

高中数学函数零点问题及解题策略探究郭文峰(福建省宁德市民族中学ꎬ福建宁德355000)摘㊀要:函数是高中数学学习的重难点ꎬ函数零点问题则是函数的重点所在.本论文结合具体的例题ꎬ对不同类型的函数零点问题的解题方式进行了探究.关键词:高中数学ꎻ零点问题ꎻ策略探究中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)10-0036-03收稿日期:2023-01-05作者简介:郭文峰(1983.2-)ꎬ男ꎬ福建省福安人ꎬ本科ꎬ中学一级教师ꎬ从事高中数学教学研究.㊀㊀函数零点是沟通函数㊁方程和图象的重要媒介ꎬ充分体现了函数和方程之间的内在联系ꎬ也蕴含了丰富的数学思想.在函数零点问题解答中ꎬ由于题目类型不同ꎬ解题思路也就有所不同ꎬ学生不仅要理清这一类型题目的特点ꎬ还应掌握多种零点问题的解答方法ꎬ才能灵活应对各种函数零点问题的解答ꎬ真正提升学生的解题效率.1高中函数零点问题常考类型分析1.1求函数零点的值求函数零点值问题只要掌握了函数零点的定义ꎬ将函数问题转化成为方程ꎬ即可通过方程的根得出函数的零点值.例1㊀已知f(x)=x3-3x2-4xꎬ求该函数的零点.㊀解析㊀令f(x)=0ꎬ即x3-3x2-4x=0ꎬ解方程得出x1=0ꎬx2=4ꎬx3=-1.因此ꎬ函数f(x)的零点就是x3-3x2-4x=0的三个根ꎬ即0ꎬ4ꎬ-1.例2㊀已知f(x)=2x3-ax2+bꎬ求该函数的极值点.解析㊀由题可知fᶄ(x)=2x(3x-a)ꎬ令fᶄ(x)=0ꎬ得出x=0或x=a3.当a=0时ꎬ在(-¥ꎬ+¥)上ꎬfᶄ(x)ȡ0.因此ꎬf(x)=2x3-ax2+b在该区间内单调递增ꎬ不存在极值点.当a>0时ꎬ在(-¥ꎬ0)ꎬ(a3ꎬ+¥)上ꎬfᶄ(x)>0ꎬ因此ꎬf(x)=2x3-ax2+b在该区间内单调递增ꎻ在(0ꎬa3)上ꎬfᶄ(x)<0ꎬ则f(x)=2x3-ax2+b单调递减.此时ꎬ该函数具备极大值点0ꎬ极小值点a3.当a<0时ꎬ在(-¥ꎬa3)ꎬ(0ꎬ+¥)上ꎬfᶄ(x)>0ꎬ则f(x)=2x3-ax2+b单调递增ꎻ在(a3ꎬ0)上ꎬfᶄ(x)<0ꎬ则f(x)=2x3-ax2+b单调递减.因此ꎬ该函数具备极大值点a3ꎬ极小值点为0[1].1.2求函数零点个数此类题目可以先将函数的零点求出来ꎬ然后看零点一共有多少个ꎻ还可以利用零点存在性定理ꎬ并结合函数的单调性ꎬ对函数零点的个数进行确定ꎻ也可以通过构造函数的方式ꎬ将函数的零点问题进行转化ꎬ使其成为求函数图象的交点个数问题.例3㊀求函数f(x)=log0.5x-(12)x的零点63个数.解析㊀令log0.5x-(12)x=0ꎬ得出log0.5x=(12)xꎬ令y1=log0.5xꎬy2=(12)xꎬ绘制出函数图象(如图1所示).图1结合图象分析得出ꎬy1=log0.5xꎬy2=(12)x之间存在两个交点.因此ꎬ原函数f(x)=log0.5x-(12)x存在2个零点.例4㊀已知a>1eꎬ判断f(x)=ax2+(a+1)x-(a+1)xlnx-1的零点个数.解析㊀在函数定义域(0ꎬ+¥)内ꎬfᶄ(x)=2ax-(a+1) lnxꎬ令2ax-(a+1) lnx=h(x)ꎬ则hᶄ(x)=2a-a+1x=2ax-(a+1)x.令hᶄ(x)=0ꎬ则x=a+12a.当0<x<a+12a时ꎬ则hᶄ(x)<0ꎻ当x>a+12a时ꎬ则hᶄ(x)>0ꎬ所以fᶄ(x)在区间(0ꎬa+12a)内单调递减ꎬ在区间(a+12aꎬ+¥)内单调递增ꎬ因此ꎬfᶄ(x)的最小值为fᶄ(a+12a)=(a+1)(1-lna+12a).因为a>1eꎬ所以a+12a=12+12a<12+e2<eꎬ即fᶄ(x)最小值为fᶄ(a+12a)=(a+1)(1-lna+12a)>0.因此ꎬf(x)在(0ꎬ+¥)单调递增ꎬ至多存在一个零点.因为f(1)=2a>0ꎬ所以f(x)在区间(1ꎬ+¥)内没有零点.又因为a为常数ꎬ当xң0时ꎬ在原函数中ꎬax2ң0ꎬ(a+1)xң0ꎬlnxң-¥ꎬ所以f(x)ң-1<0.综上ꎬ函数f(x)在区间(0ꎬ1)内有一个零点ꎬ在(0ꎬ+¥)内有一个零点[2].1.3求函数零点的范围例5㊀已知函数f(x)=1x-2x在(n-1nꎬnn+1)上存在零点ꎬ则正整数n的值为多少?解析㊀易知函数f(x)为减函数ꎬ因为f(12)=2-2>0ꎬf(1)=1-2<0ꎬ因此该函数在(12ꎬ1)中存在零点.同时ꎬ由已知条件得出f(x)在(n-1nꎬnn+1)上存在零点ꎬ因此ꎬ0<n-1n<nn+1<1ꎬ得出nɤ2ꎻ将n=2代入nn+1ꎬ得出nn+1=23ꎬ所以f(23)<0ꎬ因此n=2符合题意.1.4根据函数零点个数求解参数范围1.4.1基于转化思想解决零点问题例6㊀已知函数f(x)=-x2+2ex+m-1ꎬg(x)=x+e2x(x>0).(1)若g(x)=m存在零点ꎬ求m的取值范围ꎻ(2)确定m的取值范围ꎬ使得函数h(x)=g(x)-f(x)存在两个零点.解析㊀(1)因为g(x)=x+e2xȡ2e2=2e(x>0)ꎬ当且仅当x=e2x时ꎬ取等号.因此ꎬ该函数存在最小值ꎬ即2e.所以ꎬ当mɪ[2eꎬ+¥)时ꎬ函数存在零点.(2)要使得h(x)=g(x)-f(x)存在两个零点ꎬ即g(x)-f(x)=0存在两个不同的实数根(如图2所示)ꎬ即两个函数的图象有两个不同的交点.因为f(x)=-x2+2ex+m-1=-(x-e)2+m-1+e2ꎬ其对称轴为x=e.所以当m>-e2+2e+173图2时ꎬ函数h(x)=g(x)-f(x)存在两个零点.1.4.2基于数形结合思想解决零点问题在高中函数零点问题中ꎬ数形结合思想是一种非常有效的方法ꎬ主要是借助函数零点的概念ꎬ引导学生对函数图象进行观察ꎬ明确函数图象与坐标轴的交点ꎬ在图象的辅助下ꎬ顺利解决函数零点问题.例7㊀已知函数f(x)=2-x-1ꎬxɤ0ꎬf(x-1)ꎬx>0ꎬ{若方程f(x)=x+a有且只有两个不相等的实数根ꎬ求实数a的取值范围.解析㊀将f(x)=x+a有且只有两个不相等的实数根ꎬ看做成为g(x)=f(x)-x-a存在两个不相同的零点.在平面直角坐标系中分别作出函数f(x)=2-x-1ꎬxɤ0ꎬf(x-1)ꎬx>0ꎬ{以及h(x)=x的图象(如图3)ꎬ接着对h(x)=x进行平移.当a<1时ꎬ两个函数存在两个交点ꎻ此时ꎬf(x)=x+a有且只有两个不相等的实数根.图41.4.3基于分类与整合思想解决零点问题分类讨论与整合ꎬ就是化整为零㊁各个击破ꎬ是一种非常有效的函数零点问题解决手段.通常ꎬ这一种方法常常被用于综合性的函数零点问题中ꎬ需要在解题的过程中ꎬ通过分类讨论ꎬ最终在各个击破的基础上ꎬ整合到一起.例8㊀已知函数f(x)是定义在R上的偶函数ꎬ当xȡ0时ꎬf(x)=x2-2mx+mꎬ如果函数存在两个不同的零点ꎬ求m的取值范围.解析㊀因为f(x)=x2-2mx+m的图象开口向上ꎬ且图象必须经过(0ꎬm)点㊁图象对称轴为x=m.(1)当m>0时ꎬ由于函数必然经过(0ꎬm)点ꎬ且y轴为图象的对称轴ꎬ根据判别式值等于0ꎬ得出m=1ꎻ(2)当m=0时ꎬ因为函数只有一个零点ꎬ所以m=0与题意不相符ꎻ(3)当m<0时ꎬ通过函数图象即可得知ꎬ该函数存在两个不同的零点ꎬ其符合题意.2基于函数零点问题解答的日常教学启示结合上述例题研究显示ꎬ学生对函数零点的概念㊁零点存在性定理的掌握情况以及对函数和方程㊁图象之间的关系熟悉程度ꎬ直接决定了学生的解题能力.鉴于此ꎬ为了真正提升学生的数学解题能力ꎬ高中数学教师在日常教学中ꎬ唯有坚持以生为本的理念ꎬ引导学生积极主动参与到相关数学概念和定理的探究学习中.为了全面提升学生的解题能力ꎬ唯有彻底转变传统的教学模式ꎬ指向数学新课程的要求ꎬ灵活借助多种方式优化课堂教学ꎬ包括:探究式学习㊁多媒体信息技术教学等ꎬ使得学生在多样化学习中ꎬ高效完成课堂学习目标.在最新的课程标准中明确提出了数学六大核心素养ꎬ并且已经成为当前考查的方向.在常见的函数零点问题中就蕴含了数形结合思想㊁转化化归思想㊁分类讨论思想等ꎬ学生唯有熟练掌握这些数学思想ꎬ才能促使其形成正确的解题思路.鉴于此ꎬ高中数学教师在日常教学时ꎬ应结合不同的例题内容ꎬ针对性地融入数学思想ꎬ使得学生在日常学习中ꎬ逐渐完成数学思想的内化和应用ꎬ进而提升自身的数学解题能力.参考文献:[1]孟彩彩ꎬ巩铠玮.基于波利亚 怎样解题表 的习题教学案例研究 以 函数的零点 为例[J].数学教学通讯ꎬ2022(09):6-8.[2]寿啸天.高中数学函数零点解决方法探究[J].试题与研究ꎬ2020(28):31-32.[责任编辑:李㊀璟]83。

函数零点问题的几种常见求解方法

函数零点问题的几种常见求解方法

函数零点问题的几种常见求解方法作者:卢杰来源:《中学教学参考·中旬》 2013年第1期湖北十堰市第一中学(442000)卢杰函数零点是函数与导数部分的重要知识,它涉及函数的图像与性质等基本知识,渗透着转化与化归、数形结合、分类讨论、函数与方程等重要思想,体现对学生综合能力的考查.下面对常见的几种函数零点解决办法作些归纳.方法一:解方程法.函数f(x)零点问题可转化为求方程f(x)=0的解,方程几个解就对应函数有几个零点.【例1】函数f(x)=xcosx2在区间[0,4]上零点的个数为().A.4B.5C.6D.7分析:求方程xcosx2=0在区间[0,4]上解的个数,x=0为一个解;x∈(0,4]时,x2∈(0,16],由cosx2=0得x2=kπ+π2 ,k∈Z,k只能取0,1,2,3,4,此时有5个解.综上,解的个数为6,即零点个数为6.选C.方法二:利用零点存在性定理法.如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,并且有f(a)·f(b)<0,那么,y=f(x)在区间(a,b)内有零点.若结合单调性,就能判断零点的个数.【例2】函数f(x)=ex+x-2的零点所在的一个区间是().A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)分析:因为f(0)=e0+0-2=-1<0,f(1)=e1+1-2=e-1>0,所以函数f(x)=ex+x-2的零点所在的一个区间是(0,1).选C.方法三:数形结合法.函数零点、方程的根与函数图象的关系为函数y=F(x)=f(x)-g(x)有零点�方程F(x)=f(x)-g(x)=0有实数根�函数y1=f(x)和y2=g(x)的图像有交点.故可以把函数零点问题转化为两个函数图象的交点问题,有时又需要把方程解的问题转化为函数零点问题,通过图象反映与轴交点的情况.【例4】函数f(x)=lgx-cosx的零点有().A.4个 B.3个 C.2个 D.1个分析:可画出y=lgx和y=cosx的图象,观察得出有3个交点.选B.【例5】函数f(x)=x2-8x+6lnx+m有三个零点,求实数m的取值范围.分析:函数有三个零点等价于图象与x轴有三个不同的交点.f(x)在(0,1)上递增,(1,3)上递减,(3,+∞)上递增.结合f(x)的图象可得f(1)>0且f(3)<0,解得7<m<15-6ln3.以上三种方法是常见的函数零点问题解决办法,前两种方法主要适用于较简单的问题,小题中运用较多;后一种方法有时直接画出函数图象看其与轴交点的个数,有时又必须画两个图象,注意在做题过程中加以区分.(责任编辑金铃)。

2024届高考数学二轮复习专题《运用数形结合思想探究函数零点问题》

2024届高考数学二轮复习专题《运用数形结合思想探究函数零点问题》

2024届高考数学二轮复习专题《运用数形结合思想探究函数零点问题》运用数形结合思想探究函数零点问题函数是数学中常见的一个概念,它描述了自变量和因变量之间的关系。

在学习函数的过程中,我们经常会遇到求函数的零点的问题。

函数的零点是指函数在哪些自变量取值下,其对应的因变量为0。

求解函数的零点在数学中具有重要的意义,不仅可以帮助我们分析数学问题,还可以在实际应用中发挥作用。

为了更好地探究函数零点问题,我们可以借助数形结合思想。

数形结合思想是数学的一种思维方式,通过将问题抽象为几何图形的形式,结合几何图形的性质来解决问题。

以简单的一元一次函数为例,我们考虑函数f(x)=ax+b,其中a和b为常数。

究竟什么样的条件下,函数f(x)的零点存在呢?我们可以通过数形结合思想进行探究。

首先,我们可以画出函数y=ax+b的图像。

这是一条直线,a决定了直线的斜率,b决定了直线在y轴上的截距。

我们可以从图像中直观地看出,当直线与x轴相交时,函数就有零点存在。

接下来,我们将函数的零点问题转化为几何问题。

我们可以将直线y=ax+b与x轴相交的点A与原点O连线,得到一条线段AO。

由于原点O的坐标为(0,0),所以点O可以看作是函数的零点。

通过几何分析,我们可以得到结论:当直线y=ax+b与x轴相交时,线段AO的长度就是零点的解。

而线段AO的长度可以通过两点之间的距离来计算,即0点到直线y=ax+b所对应的点A的距离,通常记为d。

根据直线到原点的距离公式,我们可以得到d的计算方法:d=,b,/√(a²+1)。

这个公式告诉我们,0点到直线y=ax+b所对应的点A的距离取决于a和b的值。

当a=0时,直线平行于x轴,不存在与x轴的交点,也就是函数不存在零点。

当a≠0时,直线与x轴相交于一点,也就是函数存在唯一的零点。

通过数形结合思想的探究,我们从几何的角度解释了函数零点的问题,并得到了函数零点存在的条件和计算零点的方法。

这种思考方式不仅能够加深对函数的理解,还可以培养我们的几何思维能力。

数形结合解复合函数的零点个数的常见解法

数形结合解复合函数的零点个数的常见解法

数形结合解复合函数的零点个数的常见解法
在学习数学的过程中,复合函数是学习者必须要掌握的重要知识之一。

然而,
求解复合函数的零点个数往往是极为复杂的,尤其对初学者来说,可能会困扰很长时间。

本文就简单介绍一种求解复合函数零点个数的常见解法——参数形式结合法。

首先,看到复合函数时,要分析此函数是由哪些函数叠加而成的,并找出复合
函数中有几个部分函数。

其次,把复合函数进行拆分,把每个部分函数的参数构造成一组参数形式,便于进行函数的乘法和分解。

最后,通过用参数形式结合在一起,用一定 means 来分解复合函数的零点个数,主要是根据复合函数中的参数的关系,分析各部分函数的零点;之后再综合考虑其他因素,如在此前讨论的参数构造,从而可以从不同角度求出复合函数的零点个数。

通过以上步骤,学习者就可以很好地通过参数形式结合解决复合函数零点个数
的问题,从而减少数学学习过程中的困惑和困难,达成更高的预期效果。

数形结合解零点问题(已修改,含答案)

数形结合解零点问题(已修改,含答案)

x 4 和 y 4 x的
x
x 4 x 4的 零 点 个 数 为1.
y y= x+4
O
1 y=4-x
x
(图1)
例 2 : 定 义 函 数 f ( x ) m in { x , x } , 其 中 { x / x 0}
2
2
满 足 函 数 G ( x ) f ( x ) k 有 四 个 零 点 , 求 k的 范 围 ( 即 图 象 f ( x )与 y k 有 四 个 交 点 )
0k 1
(二 ) 零 点 所 在 区 间 问 题 例 3 : 函 数 f ( x ) lg x x 3的 零 点 所 在 区 间 为 ( A.(0,1) B.(1,2) C.(2,3) D . ( 3 , + )
C
y

y=lgx O 1 3 y=-x+3
(图4)
x
若 题 目 改 为 零 点 所 在 区 间 ( n , n 1), n N , 则 n=?
评 注 : 数 形 结 合 , 要 在 结 合 方 面 下 功 夫 ,本 题 不 仅 要 通过图象直观估计,而且还要计算两个函数 值,通过比较其大小进行判断.
(三)零点值问题 例 4 : 若 函 数 f ( x ) e x 3的 零 点 x1, g ( x ) ln x x 3的 零 点 x 2 ,
2
(1 ) 函 数 f ( x ) 有 四 个 零 点 ( 2 ) 函 数 f ( x )有 三 个 零 点 (3 ) 函 数 f ( x )有 两 个 零 点
0a 1 a 1
a 0或a 1
(一 ) 零 点 个 数 问 题 例1 : 求 函 数 f

高中数学求零点个数例题

高中数学求零点个数例题

高中数学求零点个数例题①解方程:通过解方程 f(x)=0 得到零点;②数形结合:这是经常用到的分析方法,特别是选填题中得到广泛应用;③零点存在定理:用零点存在定理来确定某区间是否有零点,这是解答题中的重要方法;④求零点个数:求零点个数时,就要判断每个单调区间,同时还要判断个单调区间的零点存在性.而具体解答题的过程中,我们也会遇到函数较复杂,先将复杂问题转化为简单问题,再选择合适的方法来求零点.我们来看一个具体的例子.【例1】(2018全国2卷文数21-2)已知函数f(x)=\frac{1}{3}x^3-a(x^2+x+1),证明: f(x) 只有一个零点.【分析】 f(x) 是一个含参的三次函数,貌似是一个三次函数求零点个数问题,但是带着参数问题就变复杂了,所以这个时候可以转化一下,分离参数为求: a=\frac{x^3}{3(x^2+x+1)} 的解个数问题.进一步转化为函数g(x)=\frac{x^3}{3(x^2+x+1)}-a的零点个数问题.【解析】因为 x^2+x+1>0 恒成立.所以 f(x) 零点个数等价于函数函数g(x)=\frac{x^3}{3(x^2+x+1)}-a的零点个数问题.先判断 g(x) 单调性,用导数法:g'(x)=\frac{3x^2(x^2+x+1)-x^3(2x+1)}{3(x^2+x+1)^2}=\frac{x^2(x^2+2x+3)}{3(x^2+x+ 1)^2}\geq0 ,当且仅当 x=0 时 g'(x)=0 ,g(x) 单调递增.所以 g(x) 至多有一个零点,从而 f(x)至多有一个零点.又因为 f(3a+1)=\frac{1}{3}>0 , f(3a-1)=-6a^2+2a-\frac{1}{3}=-6(a-\frac{1}{6})^2-\frac{1}{6}<0 ,所以 f(x) 恰有一个零点.【小结】分离参数读者们应该还好理解,为什么要选择f(3a+1),f(3a-1) 就是一脸懵了.这属于找点的内容(内点定理),我们后面专门花章节来讲解这个内容.我们还是先理解零点存在定理的应用.本节我们重点讲解求零点个数问题的求法,近年高考也是热点题型,也是我们零点问题将面临的重点问题.【例2】(2019全国2卷理数20-1改编)已知函数f(x)=lnx-\frac{x+1}{x-1} ,求 f(x) 的零点个数.【分析】求零点个数问题,我们要求函数的单调区间,然后判断每一个单调区间的零点存在性.【解析】 f(x) 定义域为 (0,1)\cup(1,+\infty) ,而f(x)=lnx-1-\frac{2}{x-1} ,由和差法: y=lnx 和 y=-\frac{1}{x-1} 在(0,1)\cup(1,+\infty)上都是单调递增了,所以 f(x) 在(0,1)\cup(1,+\infty)单调递增;在 (0,1) 上 f(x) 单调递增,当 \frac{1}{3}<x<1 时,f(x)>f(\frac{1}{3})=\frac{2}{1-\frac{1}{3}}-1-ln3>\frac{2}{1-\frac{1}{3}}-3=0 ,当 0<x<\frac{1}{e^2} 时,f(x)<f(\frac{1}{e^2})=\frac{2}{1-\frac{1}{e^2}}-3<\frac{2}{1-\frac{1}{3}}-3=0 ,由零点存在定理和单调性, f(x) 在 (0,1) 有唯一零点,在 (1,+\infty) 上 f(x) 单调递增,当 1<x<3 时, f(x)<f(3)=ln3-2<0 ,当 x>e^2 时, f(x)>f(e^2)=1-\frac{2}{e^2-1}>1-\frac{2}{3-1}=0 ,所以 f(x) 在 (1,+\infty)有唯一零点.综上, f(x) 在定义域上有两个零点.【例3】(2019全国1卷文数20-1改编)已知函数h(x)=cosx+xsinx-1 ,证明: h(x) 在区间 (0,\pi) 存在唯一零点.【分析】让我确定零点个数,需要结合单调区间和零点存在定理来证明.【解析】给定了定义域区间为 (0,\pi) ,用导数法判断单调性: h'(x)=xcosx ,判正负区间: h'(x) 正负区间同 y=cosx ,易知在(0,\frac{\pi}{2}) 上 h'(x)>0,h(x) 单调递增;在(\frac{\pi}{2},\pi) 上, h'(x)<0,h(x) 单调递减.而 h(0)=0,h(\frac{\pi}{2})=\frac{\pi}{2}-1>0,h(\pi)=-2<0 ,由零点存在定理和单调性,所以在(0,\frac{\pi}{2})上 h(x) 无零点,在 (\frac{\pi}{2},\pi) 上有唯一零点.得证.【例4】(2015全国1卷文书21-1)设函数 f(x)=e^{2x}-alnx .讨论 f(x) 的导函数 f'(x) 零点的个数.【分析】先求出 f'(x) 及定义域,通过判断 f'(x) 单调性和零点存在性来确定零点个数.【解析】 f'(x)=2e^{2x}-\frac{a}{x}(x>0) .①当 a\leq0 时,显然 f'(x)>0 恒成立,无零点.②当 a>0 时,判断 f'(x) 的单调性,用和差法:y=2e^{2x},y=-\frac{a}{x} 都是在 (0,+\infty) 上的单调递增函数,所以 f'(x) 单调递增.当 x>max(1,\frac{a}{2e^2}) 时, f'(x)>2e^2-2e^2=0 ,当 x<min(1,\frac{a}{2e^2}) 时, f'(x)<2e^2-2e^2=0 ,所以此时 f'(x) 有唯一零点,综上,当 a\leq0 , f'(x) 无零点,当 a>0 时,有唯一零点.【例5】(2015广东理数19-2)设 a>1 ,函数f(x)=(1+x^2)e^x-a .证明 :f(x) 在 (-\infty,+\infty) 上仅有一个零点.【分析】还是求零点个数问题,用单调性+存在性来求解.【解析】 f(x) 的单调性,用求导法:f'(x)=e^x(x+1)^2\geq0 ,当且仅当 x=-1 时, f'(x)=0 ,所以 f(x) 是定义域上的单调递增函数.当 x>lna 时, f(x)>f(lna)>0 .当 -\sqrt{e-1}<x<-1 时,f(x)<\frac{e}{e}-a<0 ,由零点存在性定理及单调性,得证::f(x) 在 (-\infty,+\infty) 上仅有一个零点.【总结】通过上面五题,是否明白求解零点个数问题的基本方法,如果遇到复杂函数,分参转化为新函数的零点个数问题不失为一种思路;具体求解过程,先判断函数的单调性,再确定每个单调区间函数的零点存在性.但是对于开区间上零点的存在,往往很难通过取点来确定函数值的符号,我们也不容易用极限的思想来解释。

高一数学重点:零点问题的解题方法

高一数学重点:零点问题的解题方法

谈函数与方程(零点问题)的解题方法——解题技能篇从近几年高考试题看,函数的零点、方程的根的问题是高考的热点,题型主要以选择题、填空题为主,难度中等及以上.主要考查转化与化归、数形结合及函数与方程的思想.(1)函数零点的定义对于函数y=f(x) (x∈D),把使f(x)=0成立的实数x叫做函数y=f(x) (x∈D)的零点.(2)零点存在性定理(函数零点的判定)若函数y=f(x)在闭区间[a,b]上的图像是连续曲线,并且在区间端点的函数值符号相反,即f(a)·f(b)<0,则在区间(a,b)内,函数y=f(x)至少有一个零点,即相应方程f(x)=0在区间(a,b)内至少有一个实数解.也可以说:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.[提醒] 此定理只能判断出零点存在,不能确定零点的个数.(3)几个等价关系函数y=f(x)有零点⇔方程f(x)=0有实数根⇔函数y=f(x)的图象与函数y=0(即x轴)有交点.推广:函数y=f(x)-g(x)有零点⇔方程f(x)-g(x)=0有实数根⇔函数y=f(x)-g(x)的图象与y =0(即x轴)有交点.推广的变形:函数y=f(x)-g(x)有零点⇔方程f(x)=g(x)有实数根⇔函数y=f(x)的图象与y=g(x)有交点.1.函数的零点是函数y=f(x)与x轴的交点吗?是否任意函数都有零点?提示:函数的零点不是函数y=f(x)与x轴的交点,而是y=f(x)与x轴交点的横坐标,也就是说函数的零点不是一个点,而是一个实数;并非任意函数都有零点,只有f(x)=0有根的函数y=f(x)才有零点.2.若函数y=f(x)在区间(a,b)内有零点,一定有f(a)·f(b)<0吗?提示:不一定,如图所示,f(a)·f(b)>0.3.若函数y=f(x)在区间(a,b)内,有f(a)·f(b)<0成立,那么y=f(x)在(a,b)内存在唯一的零点吗?提示:不一定,可能有多个.(4)二次函数y=ax2+bx+c (a>0)的图象与零点的关系Δ=b2-4ac Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象与x轴的交点(x1,0),(x2,0) (x1,0) 无交点零点个数210对于日后的考试中仍以考查函数的零点、方程的根和两函数图象交点横坐标的等价转化为主要考点,涉及题目的主要考向有:1.函数零点的求解与所在区间的判断;2.判断函数零点个数;3.利用函数的零点求解参数及取值范围.考向一、函数零点的求解与所在区间的判断1.(2015·温州十校联考)设f(x)=ln x+x-2,则函数f(x)的零点所在的区间为( )A.(0,1) B.(1,2)C .(2,3)D .(3,4)【解析】法一:∵f (1)=ln 1+1-2=-1<0,f (2)=ln 2>0,∴f (1)·f (2)<0,∵函数f (x )=ln x +x -2的图象是连续的,∴函数f (x )的零点所在的区间是(1,2).法二:函数f (x )的零点所在的区间转化为函数g (x )=ln x ,h (x )=-x +2图象交点的横坐标所在的范围,如图所示,可知f (x )的零点所在的区间为(1,2).【答案】B2.(2015·西安五校联考)函数y =ln(x +1)与y =1x的图象交点的横坐标所在区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)【解析】函数y =ln(x +1)与y =1x 的图象交点的横坐标,即为函数f (x )=ln(x +1)-1x的零点,∵f (x )在(0,+∞)上为增函数,且f (1)=ln 2-1<0,f (2)=ln 3-12>0,∴f (x )的零点所在区间为(1,2).【答案】B3.函数f (x )=3x -7+ln x 的零点位于区间(n ,n +1)(n ∈N )内,则n =________.【解析】求函数f (x )=3x -7+ln x 的零点,可以大致估算两个相邻自然数的函数值,如f (2)=-1+ln 2,由于ln 2<ln e =1,所以f (2)<0,f (3)=2+ln 3,由于ln 3>1,所以f (3)>0,所以函数f (x )的零点位于区间(2,3)内,故n =2.【答案】24.(2015·长沙模拟)若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内【解析】本题考查零点的存在性定理.依题意得f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -b )(c -a )>0,因此由零点的存在性定理知f (x )的零点位于区间(a ,b )和(b ,c )内.【答案】A5.(2014·高考湖北卷)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}【解析】令x <0,则-x >0,所以f (x )=-f (-x )=-[(-x )2-3(-x )]=-x 2-3x .求函数g (x )=f (x )-x +3的零点等价于求方程f (x )=-3+x 的解.当x ≥0时,x 2-3x =-3+x ,解得x 1=3,x 2=1;当x <0时,-x 2-3x =-3+x ,解得x 3=-2-7.【答案】D确定函数f (x )零点所在区间的方法(1)解方程法:当对应方程f (x )=0易解时,可先解方程,再看解得的根是否落在给定区间上. (2)利用函数零点的存在性定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(3)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.1.已知函数f (x )=6x-log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)【解析】因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).【答案】C2.方程log 3x +x =3的根所在的区间为( )。

【高考理数】利用导数解决函数零点问题(解析版)

【高考理数】利用导数解决函数零点问题(解析版)

2020题型一 利用导数讨论函数零点的个数 【题型要点解析】对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域; (2)求导数,得单调区间和极值点; (3)画出函数草图;(4)数形结合,挖掘隐含条件,确定函数图象与x 轴的交点情况进而求解.1.已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ).(1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且存在x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围; (3)若g (x )=ln x ,试讨论函数h (x )(x >0)的零点个数.【解】 (1)∈函数f (x )=ax 3-3x 2+1,∈f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1=0或x 2=2a,∈a >0,∈x 1<x 2,列表如下:∈f (x )的极大值为f (0)=1,极小值为f ⎪⎭⎫⎝⎛a =8a 2-12a 2+1=1-4a 2. (2)g (x )=xf ′(x )=3ax 3-6x 2,∈存在x ∈[1,2],使h (x )=f (x ),∈f (x )≥g (x )在x ∈[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在x ∈[1,2]上有解, 即不等式2a ≤1x 3+3x 在x ∈[1,2]上有解.设y =1x 3+3x =3x 2+1x 3(x ∈[1,2]),∈y ′=-3x 2-3x 4<0对x ∈[1,2]恒成立,∈y =1x 3+3x 在x ∈[1,2]上单调递减,∈当x =1时,y =1x 3+3x 的最大值为4,∈2a ≤4,即a ≤2.(3)由(1)知,f (x )在(0,+∞)上的最小值为f ⎪⎭⎫⎝⎛a 2=1-4a 2, ∈当1-4a 2>0,即a >2时,f (x )>0在(0,+∞)上恒成立,∈h (x )=max{f (x ),g (x )}在(0,+∞)上无零点.∈当1-4a2=0,即a =2时,f (x )min =f (1)=0.又g (1)=0,∈h (x )=max{f (x ),g (x )}在(0,+∞)上有一个零点. ∈当1-4a2<0,即0<a <2时,设φ(x )=f (x )-g (x )=ax 3-3x 2+1-ln x (0<x <1), ∈φ′(x )=3ax 2-6x -1x <6x (x -1)-1x <0,∈φ(x )在(0,1)上单调递减.又φ(1)=a -2<0,φ⎪⎭⎫ ⎝⎛e 1=a e3+2e 2-3e 2>0,∈存在唯一的x 0∈⎪⎭⎫⎝⎛1,1e ,使得φ(x 0)=0,(∈)当0<x ≤x 0时,∈φ(x )=f (x )-g (x )≥φ(x 0)=0, ∈h (x )=f (x )且h (x )为减函数. 又h (x 0)=f (x 0)=g (x 0)=ln x 0<ln 1=0, f (0)=1>0,∈h (x )在(0,x 0)上有一个零点; (∈)当x >x 0时,∈φ(x )=f (x )-g (x )<φ(x 0)=0, ∈h (x )=g (x )且h (x )为增函数,∈g (1)=0,∈h (x )在(x 0,+∞)上有一零点;从而h (x )=max{f (x ),g (x )}在(0,+∞)上有两个零点,综上所述,当0<a <2时,h (x )有两个零点;当a =2时,h (x )有一个零点; 当a >2时,h (x )无零点.题组训练一 利用导数讨论函数零点的个数 已知函数f (x )=ln x -12ax +a -2,a ∈R .(1)求函数f (x )的单调区间;(2)当a <0时,试判断g (x )=xf (x )+2的零点个数. 【解析】 (1)f ′(x )=1x -a 2=2-ax2x(x >0).若a ≤0,则f ′(x )>0,∈函数f (x )的单调递增区间为(0,+∞);若a >0,当0<x <2a 时,f ′(x )>0,函数f (x )单调递增,当x >2a 时,f ′(x )<0,函数f (x )单调递减,综上,若a ≤0时,函数f (x )的单调递增区间为(0,+∞);若a >0时,函数f (x )的单调递增区间为⎪⎭⎫ ⎝⎛a 2,0,单调递减区间为⎪⎭⎫ ⎝⎛∞+a 2.(2)g (x )=x ln x -12ax 2+ax -2x +2,g ′(x )=-ax +ln x +a -1.又a <0,易知g ′(x )在(0,+∞)上单调递增, g ′(1)=-1<0,g ′(e)=-a e +a =a (1-e)>0, 故而g ′(x )在(1,e)上存在唯一的零点x 0, 使得g ′(x 0)=0.当0<x <x 0时,g ′(x )<0,g (x )单调递减;当x >x 0时,g ′(x )>0,g (x )单调递增, 取x 1=e a ,又a <0,∈0<x 1<1,∈g (x 1)=x 1)2221(ln 111x a ax x +-+-=e a⎪⎭⎫ ⎝⎛+-+-a a e a ae a 2221, 设h (a )=a -12a e a +a -2+2e a ,(a <0),h ′(a )=-12a e a -12e a -2e a +2,(a <0),h ′(0)=-12,h ″(a )=e -a -e a +e -a -12a e a >0,∈h ′(a )在(-∞,0)上单调递增,h ′(a )<h ′(0)<0, ∈h (a )在(-∞,0)上单调递减,∈h (a )>h (0)=0, ∈g (x 1)>0,即当a <0时,g (e a )>0.当x 趋于+∞时,g (x )趋于+∞,且g (2)=2ln2-2<0. ∈函数g (x )在(0,+∞)上始终有两个零点. 题型二 由函数零点个数求参数的取值范围 【题型要点解析】研究方程的根(或函数零点)的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根(函数零点)的情况,这是导数这一工具在研究方程中的重要应用.已知函数f (x )=mxln x ,曲线y =f (x )在点(e 2,f (e 2))处的切线与直线2x +y =0垂直(其中e为自然对数的底数).(1)求f (x )的解析式及单调减区间;(2)若函数g (x )=f (x )-kx 2x -1无零点,求k 的取值范围.【解析】 (1)函数f (x )=mx ln x 的导数为f ′(x )=m (ln x -1)(ln x )2,又由题意有:f ′(e2)=12∈m 4=12∈m =2,故f (x )=2xln x.此时f ′(x )=2(ln x -1)(ln x )2,由f ′(x )≤0∈0<x <1或1<x ≤e ,所以函数f (x )的单调减区间为(0,1)和(1,e].(2)g (x )=f (x )-kx 2x -1∈g (x )=x ⎪⎭⎫ ⎝⎛--1ln 2x kx x ,且定义域为(0,1)∈(1,+∞),要函数g (x )无零点,即要2ln x =kxx -1在x ∈(0,1)∈(1,+∞)内无解,亦即要k ln x -2(x -1)x =0在x ∈(0,1)∈(1,+∞)内无解.构造函数h (x )=k ln x -2(x -1)x ∈h ′(x )=kx -2x2.∈当k ≤0时,h ′(x )<0在x ∈(0,1)∈(1,+∞)内恒成立,所以函数h (x )在(0,1)内单调递减,h (x )在(1,+∞)内也单调递减.又h (1)=0,所以在(0,1)内无零点,在(1,+∞)内也无零点,故满足条件;∈当k >0时,h ′(x )=kx -2x 2∈h ′(x )=22x k x k ⎪⎭⎫ ⎝⎛-, (i)若0<k <2,则函数h (x )在(0,1)内单调递减,在⎪⎭⎫⎝⎛k 2,1内也单调递减,在⎪⎭⎫ ⎝⎛+∞,2k 内单调递增,又h (1)=0,所以在(0,1)内无零点;易知h ⎪⎭⎫ ⎝⎛k 2<0,而h (e 2k )=k ·2k -2+2e2k>0,故在⎪⎭⎫⎝⎛+∞,2k 内有一个零点,所以不满足条件;(ii)若k =2,则函数h (x )在(0,1)内单调递减,在(1,+∞)内单调递增.又h (1)=0,所以x ∈(0,1)∈(1,+∞)时,h (x )>0恒成立,故无零点,满足条件;(iii)若k >2,则函数h (x )在⎪⎭⎫ ⎝⎛k 2,0内单调递减,在⎪⎭⎫⎝⎛1,2k 内单调递增,在(1,+∞)内单调递增,又h (1)=0,所以在⎪⎭⎫⎝⎛1,2k 及(1,+∞)内均无零点. 又易知h ⎪⎭⎫⎝⎛k 2<0,而h (e -k )=k (-k )-2+2e k =2e k -k 2-2,又易证当k >2时,h (e -k )>0,所以函数h (x )在⎪⎭⎫ ⎝⎛k 2,0内有一零点,故不满足条件.综上可得:k 的取值范围为:k ≤0或k =2.题组训练二 由函数零点个数求参数的取值范围 已知函数f (x )=ln x -ax (ax +1),其中a ∈R . (1)讨论函数f (x )的单调性;(2)若函数f (x )在(0,1]内至少有1个零点,求实数a 的取值范围. 【解析】(1)依题意知,函数f (x )的定义域为(0,+∞), 且f ′(x )=1x-2a 2x -a=2a 2x 2+ax -1-x =(2ax -1)(ax +1)-x,当a =0时,f (x )=ln x ,函数f (x )在(0,+∞)上单调递增;当a >0时,由f ′(x )>0,得0<x <12a,由f ′(x )<0,得x >12a ,函数f (x )⎪⎭⎫⎝⎛a 21,0上单调递增, 在⎪⎭⎫⎝⎛+∞,21a 上单调递减. 当a <0时,由f ′(x )>0,得0<x <-1a ,由f ′(x )<0,得x >-1a,函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎪⎭⎫⎝⎛+∞-,1a 上单调递减. (2)当a =0时,函数f (x )在(]0,1内有1个零点x 0=1;当a >0时,由(1)知函数f (x )在⎪⎭⎫ ⎝⎛a 21,0上单调递增,在⎪⎭⎫⎝⎛+∞,21a 上单调递减. ∈若12a ≥1,即0<a ≤12时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞且f (1)=-a 2-a <0知,函数f (x )在(0,1]内无零点;∈若0<12a <1,即当a >12时,f (x )在⎪⎭⎫ ⎝⎛a 21,0上单调递增,在⎥⎦⎤⎝⎛1,21a 上单调递减,要使函数f (x )在(0,1]内至少有1个零点,只需满足f ⎪⎭⎫⎝⎛a 21≥0,即ln 12a ≥34, 又∈a >12,∈ln 12a <0,∈不等式不成立.∈f (x )在(0,1]内无零点;当a <0时,由(1)知函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎪⎭⎫⎝⎛+∞-,1a 上单调递减. ∈若-1a ≥1,即-1≤a <0时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞,且f (1)=-a 2-a >0,知函数f (x )在(0,1]内有1个零点;∈若0<-1a <1,即a <-1时,函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎥⎦⎤⎝⎛-1,1a 上单调递减,由于当x →0时,f (x )→-∞,且当a <-1时,f ⎪⎭⎫⎝⎛-a 1=ln ⎪⎭⎫⎝⎛-a 1<0,知函数f (x )在(0,1]内无零点.综上可得a 的取值范围是[-1,0].题型三 利用导数证明复杂方程在某区间上仅有一解 【题型要点解析】证明复杂方程在某区间上有且仅有一解的步骤: (1)在该区间上构造与方程相应的函数; (2)利用导数研究该函数在该区间上的单调性; (3)判断该函数在该区间端点处的函数值的符号; (4)作出结论.已知函数f (x )=(x 2-2x )ln x +ax 2+2.(1)当a =-1时,求f (x )在点(1,f (1))处的切线方程;(2)当a >0时,设函数g (x )=f (x )-x -2,且函数g (x )有且仅有一个零点,若e -2<x <e ,g (x )≤m ,求m 的取值范围.【解析】 (1)当a =-1时,f (x )=(x 2-2x )ln x -x 2+2,定义域为(0,+∞),∈f ′(x )=(2x -2)ln x +x -2-2x =(2x -2)ln x -x -2.∈f ′(1)=-3,又f (1)=1,f (x )在(1,f (1))处的切线方程3x +y -4=0.(2)令g (x )=f (x )-x -2=0,则(x 2-2x )ln x +ax 2+2=x +2,即a =1-(x -2)·ln xx ,令h (x )=1-(x -2)·ln xx,则h ′(x )=-1x 2-1x +2-2ln x x 2=1-x -2ln xx 2.令t (x )=1-x -2ln x ,t ′(x )=-1-2x =-x -2x ,∈t ′(x )<0,t (x )在(0,+∞)上是减函数, 又∈t (1)=h ′(1)=0,所以当0<x <1时,h ′(x )>0, 当x >1时,h ′(x )<0,所以h (x )在(0,1)上单调递增, 在(1,+∞)上单调递减,∈h (x )max =h (1)=1.因为a >0,所以当函数g (x )有且仅有一个零点时,a =1.g (x )=(x 2-2x )ln x +x 2-x ,若e -2<x <e ,g (x )≤m ,只需g (x )max ≤m , g ′(x )=(x -1)(3+2ln x ),令g ′(x )=0得x =1,或x =e -32,又∈e -2<x <e∈函数g (x )在(e -2,e -32)上单调递增,在(e -32,1)上单调递减,在(1,e)上单调递增,又g (e -32)=-12e -3+2e -32,g (e)=2e 2-3e ,∈g (e -32)=-12e -3+2e -32<2e -32<2e<2e ⎪⎭⎫ ⎝⎛-23e =g (e),即g (e -32)<g (e),g (x )max =g (e)=2e 2-3e ,∈m ≥2e 2-3e .题组训练三 利用导数证明复杂方程在某区间上仅有一解 已知y =4x 3+3tx 2-6t 2x +t -1,x ∈R ,t ∈R .(1)当x 为常数时,t 在区间⎥⎦⎤⎢⎣⎡32,0变化时,求y 的最小值φ(x );(2)证明:对任意的t ∈(0,+∞),总存在x 0∈(0,1),使得y =0.【解析】 (1)当x 为常数时,设f (t )=4x 3+3tx 2-6t 2x +t -1=-6xt 2+(3x 2+1)t +4x 3-1,f ′(t )=-12xt +3x 2+1.∈当x ≤0时,由t ∈⎥⎦⎤⎢⎣⎡32,0知f (t )>0,f (t )在⎥⎦⎤⎢⎣⎡32,0上递增,其最小值φ(x )=f (0)=4x 3-1;∈当x >0时,f (t )的图象是开口向下的抛物线,其对称轴为直线;t =-3x 2+1-12x =3x 2+112x ,若⎩⎪⎨⎪⎧x >0,3x 2+112x ≤13,即13≤x ≤1,则f (t )在⎥⎦⎤⎢⎣⎡32,0上的最小值为 φ(x )=f ⎪⎭⎫⎝⎛32=4x 3+2x 2-83x -13.若⎩⎪⎨⎪⎧x >0,3x 2+112x >13,即0<x <13或x >1,则f (t )在⎥⎦⎤⎢⎣⎡32,0上的最小值为φ(x )=f (0)=4x 3-1.综合∈∈,得φ(x )=⎩⎨⎧4x 3-1,x <13或x >1,4x 3+2x 2-83x -13,13≤x ≤1.(2)证明:设g (x )=4x 3+3tx 2-6t 2x +t -1,则g ′(x )=12x 2+6tx -6t 2=12(x +t )⎪⎭⎫ ⎝⎛-2t x 由t ∈(0,+∞),当x 在区间(0,+∞)内变化时,g ′(x ),g (x )取值的变化情况如下表:∈当t2≥1,即t ≥2时,g (x )在区间(0,1)内单调递减,g (0)=t -1>0,g (1)=-6t 2+4t +3=-2t (3t -2)+3≤-4(3-2)+3<0.所以对任意t ∈[2,+∞),g (x )在区间(0,1)内均存在零点,即存在x 0∈(0,1),使得g (x 0)=0.∈当0<t 2<1,即0<t <2时,g (x )在⎪⎭⎫ ⎝⎛2,0t 内单调递减,在⎪⎭⎫ ⎝⎛1,2t 内单调递增,若t ∈(0,1),则g ⎪⎭⎫⎝⎛2t =-74t 3+t -1≤-74t 3<0,g (1)=-6t 2+4t +3≥-6t +4t +3=-2t +3≥1>0,所以g (x )在⎪⎭⎫⎝⎛1,2t 内存在零点;若t ∈(1,2),则g (0)=t -1>0,g ⎪⎭⎫ ⎝⎛2t =-74t 3+t -1<-74×13+2-1<0,所以g (x )在⎪⎭⎫⎝⎛2,0t 内存在零点.所以,对任意t ∈(0,2),g (x )在区间(0,1)内均存在零点,即存在x 0∈(0,1),使得g (x 0)=0, 综合∈∈,对任意的t ∈(0,+∞),总存在x 0∈(0,1),使得y =0.【专题训练】1.已知函数f (x )=xln x+ax ,x >1.(1)若f (x )在(1,+∞)上单调递减,求实数a 的取值范围; (2)若a =2,求函数f (x )的极小值;(3)若方程(2x -m )ln x +x =0,在(1,e]上有两个不等实根,求实数m 的取值范围. [解析] (1)f ′(x )=ln x -1ln 2x +a ,由题意可得f ′(x )≤0在(1,+∞)上恒成立,∈a ≤1ln 2x -1ln x=221ln 1⎪⎭⎫⎝⎛-x -14.∈x ∈(1,+∞),∈ln x ∈(0,+∞), ∈当1ln x -12=0时,函数t =221ln 1⎪⎭⎫ ⎝⎛-x -14的最小值为-14,∈a ≤-14. 故实数a 的取值范围为⎥⎦⎤ ⎝⎛∞-41,(2)当a =2时,f (x )=xln x +2x ,f ′(x )=ln x -1+2ln 2x ln 2x,令f ′(x )=0,得2ln 2x +ln x -1=0, 解得ln x =12或ln x =-1(舍),即x =e 12.当1<x <e 12时,f ′(x )<0,当x >e 12时,f ′(x )>0,∈f (x )的极小值为f (e 12)=e 1212+2e 1e =4e 12.(3)将方程(2x -m )ln x +x =0两边同除以ln x 得(2x -m )+x ln x =0,整理得xln x+2x =m ,即函数g (x )=xln x +2x 的图象与函数y =m 的图象在(1,e]上有两个不同的交点.由(2)可知,g (x )在(1,e 12)上单调递减,在(e 12,e]上单调递增,g (e 12)=4e 12,g (e)=3e ,在(1,e]上,当x →1时,x ln x →+∞,∈4e 12<m ≤3e ,故实数m 的取值范围为(4e 12,3e].2.已知f (x )=2x ln x ,g (x )=x 3+ax 2-x +2.(1)如果函数g (x )的单调递减区间为⎪⎭⎫⎝⎛-1,31,求函数g (x )的解析式; (2)在(1)的条件下,求函数y =g (x )的图象在点P (-1,g (-1))处的切线方程; (3)已知不等式f (x )≤g ′(x )+2恒成立,若方程a e a -m =0恰有两个不等实根,求m 的取值范围.【解】 (1)g ′(x )=3x 2+2ax -1,由题意知,3x 2+2ax -1<0的解集为⎪⎭⎫⎝⎛-1,31, 即3x 2+2ax -1=0的两根分别是-13,1,代入得a =-1,∈g (x )=x 3-x 2-x +2. (2)由(1)知,g (-1)=1,∈g ′(x )=3x 2-2x -1,g ′(-1)=4,∈点P (-1,1)处的切线斜率k =g ′(-1)=4,∈函数y =g (x )的图象在点P (-1,1)处的切线方程为y -1=4(x +1),即4x -y +5=0.(3)由题意知,2x ln x ≤3x 2+2ax +1对x ∈(0,+∞)恒成立,可得a ≥ln x -32x -12x 对x ∈(0,+∞)恒成立.设h (x )=ln x -32x -12x,则h ′(x )=1x -32+12x 2=-(x -1)(3x +1)2x 2,令h ′(x )=0,得x =1,x =-13(舍),当0<x <1时,h ′(x )>0;当x >1时,h ′(x )<0, ∈当x =1时,h (x )取得最大值,h (x )max =h (1)=-2, ∈a ≥-2.令φ(a )=a e a ,则φ′(a )=e a +a e a =e a (a +1), ∈φ(a )在[-2,-1]上单调递减,在(-1,+∞)上单调递增,∈φ(-2)=-2e -2=-2e 2,φ(-1)=-e -1=-1e ,当a →+∞时,φ(a )→+∞,∈方程a e a -m =0恰有两个不等实根,只需-1e <m ≤-2e 2.3.设函数f (x )=x 3+ax 2+bx +c .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.【解析】 (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b .因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c .(2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4. 令f ′(x )=0,得3x 2+8x +4=0, 解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以,当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈⎪⎭⎫ ⎝⎛--3,2,x 3∈⎪⎭⎫⎝⎛-0,3,使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎪⎭⎫⎝⎛2732,0时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.(3)证明:当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增,所以f (x )不可能有三个不同零点.当Δ=4a 2-12b =0时,f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时,f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增; 当x ∈(x 0,+∞)时,f ′(x )>0,f (x )在的区间(x 0,+∞)上单调递增. 所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0. 故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件.因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.。

专题02 函数的零点个数问题、隐零点及零点赋值问题(学生版) -25年高考数学压轴大题必杀技系列导数

专题02 函数的零点个数问题、隐零点及零点赋值问题(学生版) -25年高考数学压轴大题必杀技系列导数

专题2 函数的零点个数问题、隐零点及零点赋值问题函数与导数一直是高考中的热点与难点,函数的零点个数问题、隐零点及零点赋值问题是近年高考的热点及难点,特别是隐零点及零点赋值经常成为导数压轴的法宝.(一) 确定函数零点个数1.研究函数零点的技巧用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.对于函数零点个数问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.但需注意探求与论证之间区别,论证是充要关系,要充分利用零点存在定理及函数单调性严格说明函数零点个数.2. 判断函数零点个数的常用方法(1)直接研究函数,求出极值以及最值,画出草图.函数零点的个数问题即是函数图象与x 轴交点的个数问题.(2)分离出参数,转化为a =g (x ),根据导数的知识求出函数g(x )在某区间的单调性,求出极值以及最值,画出草图.函数零点的个数问题即是直线y =a 与函数y =g (x )图象交点的个数问题.只需要用a 与函数g (x )的极值和最值进行比较即可.3. 处理函数y =f (x )与y =g (x )图像的交点问题的常用方法(1)数形结合,即分别作出两函数的图像,观察交点情况;(2)将函数交点问题转化为方程f (x )=g (x )根的个数问题,也通过构造函数y =f (x )-g (x ),把交点个数问题转化为利用导数研究函数的单调性及极值,并作出草图,根据草图确定根的情况.4.找点时若函数有多项有时可以通过恒等变形或放缩进行并项,有时有界函数可以放缩成常数,构造函数时合理分离参数,避开分母为0的情况.【例1】(2024届河南省湘豫名校联考高三下学期考前保温卷数)已知函数()()20,ex ax f x a a =¹ÎR .(1)求()f x 的极大值;(2)若1a =,求()()cos g x f x x =-在区间π,2024π2éù-êúëû上的零点个数.【解析】(1)由题易得,函数()2ex ax f x =的定义域为R ,又()()()22222e e 2e e e x xx xxax x ax ax ax ax f x ---===¢,所以,当0a >时,()(),f x f x ¢随x 的变化情况如下表:x(),0¥-0()0,22()2,¥+()f x ¢-0+0-()f x ]极小值Z极大值]由上表可知,()f x 的单调递增区间为()0,2,单调递减区间为()(),0,2,¥¥-+.所以()f x 的极大值为()()2420e af a =>.当a<0时,()(),f x f x ¢随x 的变化情况如下表:x(),0¥-0()0,22()2,¥+()f x ¢+0-0+()f x Z 极大值]极小值Z由上表可知,()f x 的单调递增区间为()(),0,2,¥¥-+,单调递减区间为()0,2.所以()f x 的极大值为()()000f a =<.综上所述,当0a >时,()f x 的极大值为24ea;当a<0时,()f x 的极大值为0.(2)方法一:当1a =时,()2e x xf x =,所以函数()()2cos cos e x xg x f x x x =-=-.由()0g x =,得2cos e xx x =.所以要求()g x 在区间π,2024π2éù-êúëû上的零点的个数,只需求()y f x =的图象与()cos h x x =的图象在区间π,2024π2éù-êúëû上的交点个数即可.由(1)知,当1a =时,()y f x =在()(),0,2,¥¥-+上单调递减,在()0,2上单调递增,所以()y f x =在区间π,02éù-êúëû上单调递减.又()cos h x x =在区间π,02éù-êúëû上单调递增,且()()()()()1e 1cos 11,001cos00f h f h -=>>-=-=<==,所以()2e x xf x =与()cos h x x =的图象在区间π,02éù-êúëû上只有一个交点,所以()g x 在区间π,02éù-êúëû上有且只有1个零点.因为当10a x =>,时,()20ex x f x =>,()f x 在区间()02,上单调递增,在区间()2,¥+上单调递减,所以()2e x xf x =在区间()0,¥+上有极大值()2421e f =<,即当1,0a x =>时,恒有()01f x <<.又当0x >时,()cos h x x =的值域为[]1,1-,且其最小正周期为2πT =,现考查在其一个周期(]0,2π上的情况,()2ex x f x =在区间(]0,2上单调递增,()cos h x x =在区间(]0,2上单调递减,且()()0001f h =<=,()()202cos2f h >>=,所以()cos h x x =与()2ex x f x =的图象在区间(]0,2上只有一个交点,即()g x 在区间(]0,2上有且只有1个零点.因为在区间3π2,2æùçúèû上,()()0,cos 0f x h x x >=£,所以()2e x xf x =与()cos h x x =的图象在区间3π2,2æùçúèû上无交点,即()g x 在区间3π2,2æùçúèû上无零点.在区间3π,2π2æùçúèû上,()2ex x f x =单调递减,()cos h x x =单调递增,且()()3π3π002π1cos2π2π22f h f h æöæö>><<==ç÷ç÷èøèø,,所以()cos h x x =与()2ex x f x =的图象在区间3π,2π2æùçúèû上只有一个交点,即()g x 在区间3π,2π2æùçúèû上有且只有1个零点.所以()g x 在一个周期(]0,2π上有且只有2个零点.同理可知,在区间(]()*2π,2π2πk k k +ÎN 上,()01f x <<且()2e xx f x =单调递减,()cos h x x =在区间(]2π,2ππk k +上单调递减,在区间(]2ππ,2π2πk k ++上单调递增,且()()()02π1cos 2π2πf k k h k <<==,()()()2ππ01cos 2ππ2ππf k k h k +>>-=+=+()()()02ππ1cos 2ππ2ππf k k h k <+<=+=+,所以()cos h x x =与()2ex x f x =的图象在区间(]2π,2ππk k +和2ππ,2π2π]k k ++(上各有一个交点,即()g x 在(]2π,2024π上的每一个区间(]()*2π,2π2πk k k +ÎN 上都有且只有2个零点.所以()g x 在0,2024π](上共有2024π220242π´=个零点.综上可知,()g x 在区间π,2024π2éù-êúëû上共有202412025+=个零点.方法二:当1a =时,()2e x xf x =,所以函数()()2cos cos ex x g x f x x x =-=-.当π,02éùÎ-êúëûx 时,()22sin 0e x x x g x x -=¢+£,所以()g x 在区间π,02éù-êúëû上单调递减.又()π0,002g g æö-><ç÷èø,所以存在唯一零点0π,02x éùÎ-êúëû,使得()00g x =.所以()g x 在区间π,02éù-êúëû上有且仅有一个零点.当π3π2π,2π,22x k k k æùÎ++ÎçúèûN 时,20cos 0ex x x ><,,所以()0g x >.所以()g x 在π3π2π,2π,22k k k æù++ÎçúèûN 上无零点.当π0,2x æùÎçèû时,()22sin 0exx x g x x -=¢+>,所以()g x 在区间π0,2æöç÷èø上单调递增.又()π00,g 02g æö<>ç÷èø,所以存在唯一零点.当*π2π,2π,2x k k k æùÎ+ÎçúèûN 时,()22sin exx x g x x ¢-=+,设()22sin e x x x x x j -=+,则()242cos 0exx x x x j -=+¢+>所以()g x ¢在*π2π,2π,2k k k æù+ÎçúèûN 上单调递增.又()π2π0,2π+02g k g k æö¢<>ç÷èø¢,所以存在*1π2π,2π,2x k k k æùÎ+ÎçúèûN ,使得()10g x ¢=.即当()12π,x k x Î时,()()10,g x g x <¢单调递减;当1π,2π2x x k æùÎ+çúèû时,()()10,g x g x >¢单调递增.又()π2π0,2π02g k g k æö<+>ç÷èø,所以()g x 在区间*π2π,2π,2k k k æù+ÎçúèûN 上有且仅有一个零点所以()g x 在区间π2π,2π,2k k k æù+ÎçúèûN 上有且仅有一个零点.当3π2π,2π2π,2x k k k æùÎ++ÎçúèûN 时,()22sin exx x g x x ¢-=+,设()22sin e x x x x x j -=+,则()242cos 0e xx x x x j -=+¢+>所以()g x ¢在3π2π,2π2π,2k k k æù++ÎçúèûN 上单调递增.又()3π2π0,2π2π02g k g k æö+<+<ç÷¢¢èø,所以()g x 在区间3π2π,2π2π,2k k k æù++ÎçúèûN 上单调递减:又()3π2π0,2π2π02g k g k æö+>+<ç÷èø,所以存在唯一23π2π,2π2π2x k k æöÎ++ç÷èø,使得()20g x =.所以()g x 在区间3π2π,2π2π,2k k k æù++ÎçúèûN 上有且仅有一个零点.所以()g x 在区间(]2π,2π2π,k k k +ÎN 上有两个零点.所以()g x 在(]0,2024π上共有2024π220242π´=个零点.综上所述,()g x 在区间π,2024π2éù-êúëû上共有202412025+=个零点.(二) 根据函数零点个数确定参数取值范围根据函数零点个数确定参数范围的两种方法1.直接法:根据零点个数求参数范围,通常先确定函数的单调性,根据单调性写出极值及相关端点值的范围,然后根据极值及端点值的正负建立不等式或不等式组求参数取值范围;2.分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围,分离参数法适用条件:(1)参数能够分类出来;(2)分离以后构造的新函数,性质比较容易确定.【例2】(2024届天津市民族中学高三下学期5月模拟)已知函数()()ln 2f x x =+(1)求曲线()y f x =在=1x -处的切线方程;(2)求证:e 1x x ³+;(3)函数()()()2h x f x a x =-+有且只有两个零点,求a 的取值范围.【解析】(1)因为()12f x x ¢=+,所以曲线()y f x =在=1x -处的切线斜率为()11112f -==-+¢,又()()1ln 120f -=-+=,所以切线方程为1y x =+.(2)记()e 1x g x x =--,则()e 1xg x ¢=-,当0x <时,()0g x ¢<,函数()g x 在(),0¥-上单调递减;当0x >时,()0g x ¢>,函数()g x 在()0,¥+上单调递增.所以当0x =时,()g x 取得最小值()00e 10g =-=,所以()e 10xg x x =--³,即e 1x x ³+.(3)()()()()()2ln 22,2h x f x a x x a x x =-+=+-+>-,由题知,()()ln 220x a x +-+=有且只有两个不相等实数根,即()ln 22x a x +=+有且只有两个不相等实数根,令()()ln 2,22x m x x x +=>-+,则()()()21ln 22x m x x -+=+¢,当2e 2x -<<-时,()0m x ¢>,()m x 在()2,e 2--上单调递增;当e 2x >-时,()0m x ¢<,()m x 在()e 2,¥-+上单调递减.当x 趋近于2-时,()m x 趋近于-¥,当x 趋近于+¥时,()m x 趋近于0,又()1e 2ef -=,所以可得()m x 的图象如图:由图可知,当10ea <<时,函数()m x 的图象与直线y a =有两个交点,所以,a 的取值范围为10,e æöç÷èø.(三)零点存在性赋值理论及应用1.确定零点是否存在或函数有几个零点,作为客观题常转化为图象交点问题,作为解答题一般不提倡利用图象求解,而是利用函数单调性及零点赋值理论.函数赋值是近年高考的一个热点, 赋值之所以“热”, 是因为它涉及到函数领域的方方面面:讨论函数零点的个数(包括零点的存在性, 唯一性); 求含参函数的极值或最值; 证明一类超越不等式; 求解某些特殊的超越方程或超越不等式以及各种题型中的参数取值范围等,零点赋值基本模式是已知 f (a ) 的符号,探求赋值点 m (假定 m < a )使得 f (m ) 与 f (a ) 异号,则在 (m ,a ) 上存在零点.2.赋值点遴选要领:遴选赋值点须做到三个确保:确保参数能取到它的一切值; 确保赋值点 x 0 落在规定区间内;确保运算可行三个优先:(1)优先常数赋值点;(2)优先借助已有极值求赋值点;(3)优先简单运算.3.有时赋值点无法确定,可以先对解析式进行放缩,再根据不等式的解确定赋值点(见例2解法),放缩法的难度在于“度”的掌握,难度比较大.【例3】(2024届山东省烟台招远市高考三模)已知函数()()e x f x x a a =+ÎR .(1)讨论函数()f x 的单调性;(2)当3a =时,若方程()()()1f x x xm f x x f x -+=+-有三个不等的实根,求实数m 的取值范围.【解析】(1)求导知()1e xf x a =¢+.当0a ³时,由()1e 10xf x a ¢=+³>可知,()f x 在(),¥¥-+上单调递增;当a<0时,对()ln x a <--有()()ln 1e 1e0a xf x a a --=+>+×=¢,对()ln x a >--有()()ln 1e 1e 0a x f x a a --=+<+×=¢,所以()f x 在()(,ln a ¥ù---û上单调递增,在())ln ,a ¥é--+ë上单调递减.综上,当0a ³时,()f x 在(),¥¥-+上单调递增;当a<0时,()f x 在()(,ln a ¥ù---û上单调递增,在())ln ,a ¥é--+ë上单调递减.(2)当3a =时,()3e xf x x =+,故原方程可化为3e 13e 3e xx xx m x +=++.而()23e 13e 3e 3e 3e 3e 3e x x x x x x xx x x x x x x +-=-=+++,所以原方程又等价于()23e 3e xx x m x =+.由于2x 和()3e3e xxx +不能同时为零,故原方程又等价于()23e 3e x x xm x =×+.即()()2e 3e 90x x x m x m --×-×-=.设()e xg x x -=×,则()()1e xg x x -=-×¢,从而对1x <有()0g x ¢>,对1x >有()0g x ¢<.故()g x 在(],1-¥上递增,在[)1,+¥上递减,这就得到()()1g x g £,且不等号两边相等当且仅当1x =.然后考虑关于x 的方程()g x t =:①若0t £,由于当1x >时有()e 0xg x x t -=×>³,而()g x 在(],1-¥上递增,故方程()g x t =至多有一个解;而()110eg t =>³,()0e e t g t t t t --=×£×=,所以方程()g x t =恰有一个解;②若10e t <<,由于()g x 在(],1-¥上递增,在[)1,+¥上递减,故方程()g x t =至多有两个解;而由()()122222e2e e 2e 2e 12e 22x x x x xxx x g x x g g -------æö=×=×××=××£××=×ç÷èø有1222ln 1ln 222ln 2e2e t t g t t -×-æö£×<×=ç÷èø,再结合()00g t =<,()11e g t =>,()22ln 2ln 2e ln e 1t>>=,即知方程()g x t =恰有两个解,且这两个解分别属于()0,1和21,2ln t æöç÷èø;③若1t e=,则()11e t g ==.由于()()1g x g £,且不等号两边相等当且仅当1x =,故方程()g x t =恰有一解1x =.④若1e t >,则()()11eg x g t £=<,故方程()g x t =无解.由刚刚讨论的()g x t =的解的数量情况可知,方程()()2e 3e 90x x x m x m --×-×-=存在三个不同的实根,当且仅当关于t 的二次方程2390t mt m --=有两个不同的根12,t t ,且110,e t æöÎç÷èø,21,e t ¥æùÎ-çúèû.一方面,若关于t 的二次方程2390t mt m --=有两个不同的根12,t t ,且110,e t æöÎç÷èø,21,e t ¥æùÎ-çúèû,则首先有()20Δ93694m m m m <=+=+,且1212119e e m t t t -=£<.故()(),40,m ¥¥Î--È+, 219e m >-,所以0m >.而方程2390t mt m--=,两解符号相反,故只能1t =,2t =23e m >这就得到203e m ->³,所以22243e m m m æö->+ç÷èø,解得219e 3e m <+.故我们得到2109e 3em <<+;另一方面,当2109e 3e m <<+时,关于t 的二次方程2390t mt m --=有两个不同的根1t =,2t 22116e 13319e 3e 9e 3e 2et +×+×++===,2t 综上,实数m 的取值范围是210,9e 3e æöç÷+èø.(四)隐零点问题1.函数零点按是否可求精确解可以分为两类:一类是数值上能精确求解的,称之为“显零点”;另一类是能够判断其存在但无法直接表示的,称之为“隐零点”.2.利用导数求函数的最值或单调区间,常常会把最值问题转化为求导函数的零点问题,若导数零点存在,但无法求出,我们可以设其为0x ,再利用导函数的单调性确定0x 所在区间,最后根据()00f x ¢=,研究()0f x ,我们把这类问题称为隐零点问题. 注意若)(x f 中含有参数a ,关系式0)('0=x f 是关于a x ,0的关系式,确定0x 的合适范围,往往和a 的范围有关.【例4】(2024届四川省成都市实验外国语学校教育集团高三下学期联考)已知函数()e xf x =,()ln g x x =.(1)若函数()()111x h x ag x x +=---,a ÎR ,讨论函数()h x 的单调性;(2)证明:()()()()1212224x f x f x g x -->-.(参考数据:45e 2.23»,12e 1.65»)【解析】(1)由题意()()1ln 1,11x h x a x x x +=-->-,所以()()22,11ax a h x x x -+¢=>-,当0a =时,()0h x ¢>,所以()h x 在()1,+¥上为增函数;当0a ¹时,令()0h x ¢=得21x a=-,所以若0a >时,211a-<,所以()0h x ¢>,所以()h x 在()1,+¥上为增函数,若0<a 时,211a ->,且211x a<<-时,()0h x ¢>,21x a >-时,()0h x ¢<,所以()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数,综上:当0a ³时,()h x 在()1,+¥上为增函数,当0<a 时,()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数;(2)()()()()1212224x f x f x g x -->-等价于()2121e e 2ln 204x x x x ---+>,设()()2121e e 2ln 24x x F x x x =---+,则()()()222e 2e 12e e 2e e x x x x x x x x x x F x x x x x-+--¢=--==,因为0x >,所以e 10x x +>,设()e 2x x x j =-,则()()10e xx x j ¢=+>,则()x j 在()0,¥+上单调递增,而()4544e 20,1e 2055j j æö=-<=->ç÷èø,所以存在04,15x æöÎç÷èø,使()00x j =,即00e 2xx =,所以00ln ln 2x x +=,即00ln ln 2x x =-,当00x x <<时,()0F x ¢<,则()F x 在()00,x 上单调递减,当0x x >时,()0F x ¢>,则()F x 在()0,x +¥上单调递增,所以()()00200min 121e e 2ln 24x x F x x x =---+()000220001421212ln 22222ln 224x x x x x x =---++=-+-+,设()21422ln 22,15m t t t t æö=-+-+<<ç÷èø,则()3220m t t ¢=+>,则()m t 在4,15æöç÷èø上单调递增,42581632ln 222ln 20516580m æö=-+-+=->ç÷èø,则()min 0F x >,则不等式()2121e e 2ln 204x x x x ---+>恒成立,即不等式()()()()1212224x f x f x g x -->-成立.【例1】(2024届山西省晋中市平遥县高考冲刺调研)已知函数()πln sin sin 10f x x x =++.(1)求函数()f x 在区间[]1,e 上的最小值;(2)判断函数()f x 的零点个数,并证明.【解析】(1)因为()πln sin sin 10f x x x =++,所以1()cos f x x x ¢=+,令()1()cos g x f x x x ==+¢,()21sin g x x x-¢=-,当[]1,e Îx 时,()21sin 0g x x x =--<¢,所以()g x 在[]1,e 上单调递减,且()11cos10g =+>,()112π11e cos e<cos 0e e 3e 2g =++=-<,所以由零点存在定理可知,在区间[1,e]存在唯一的a ,使()()0g f a a =¢=又当()1,x a Î时,()()0g x f x =¢>;当(),e x a Î时,()()0g x f x =¢<;所以()f x 在()1,x a Î上单调递增,在(),e x a Î上单调递减,又因为()ππ1ln1sin1sinsin1sin 1010f =++=+,()()ππe ln e sin e sin1sin e sin 11010f f =++=++>,所以函数()f x 在区间[1,e]上的最小值为()π1sin1sin10f =+.(2)函数()f x 在()0,¥+上有且仅有一个零点,证明如下:函数()πln sin sin 10f x x x =++,()0,x ¥Î+,则1()cos f x x x¢=+,若01x <£,1()cos 0f x x x+¢=>,所以()f x 在区间(]0,1上单调递增,又()π1sin1sin010f =+>,11πππ1sin sin 1sin sin 0e e 1066f æö=-++<-++=ç÷èø,结合零点存在定理可知,()f x 在区间(]0,1有且仅有一个零点,若1πx <£,则ln 0,sin 0x x >³,πsin010>,则()0f x >,若πx >,因为ln ln π1sin x x >>³-,所以()0f x >,综上,函数()f x 在()0,¥+有且仅有一个零点.【例2】(2024届江西省九江市高三三模)已知函数()e e (ax axf x a -=+ÎR ,且0)a ¹.(1)讨论()f x 的单调性;(2)若方程()1f x x x -=+有三个不同的实数解,求a 的取值范围.【解析】(1)解法一:()()e eax axf x a -=-¢令()()e e ax axg x a -=-,则()()2e e0ax axg x a -+¢=>()g x \在R 上单调递增.又()00,g =\当0x <时,()0g x <,即()0f x ¢<;当0x >时,()0g x >,即()0f x ¢>()f x \在(),0¥-上单调递减,在()0,¥+上单调递增.解法二:()()()()e 1e 1e e e ax ax ax ax axa f x a -+-=-=¢①当0a >时,由()0f x ¢<得0x <,由()0f x ¢>得0x >()f x \在(),0¥-上单调递减,在()0,¥+上单调递增②当0a <时,同理可得()f x 在(),0¥-上单调递减,在()0,¥+上单调递增.综上,当0a ¹时,()f x 在(),0¥-上单调递减,在()0,¥+上单调递增.(2)解法一:由()1f x x x -=+,得1e e ax ax x x --+=+,易得0x >令()e e x xh x -=+,则()()ln h ax h x =又()e e x xh x -=+Q 为偶函数,()()ln h ax h x \=由(1)知()h x 在()0,¥+上单调递增,ln ax x \=,即ln xa x=有三个不同的实数解.令()()2ln 1ln ,x x m x m x x x -=¢=,由()0m x ¢>,得0e;x <<由()0m x ¢<,得e x >,()m x \在(]0,e 上单调递增,在()e,¥+上单调递减,且()()110,e em m ==()y m x \=在(]0,1上单调递减,在(]1,e 上单调递增,在()e,¥+上单调递减当0x →时,()m x ¥→+;当x →+¥时,()0m x →,故10ea <<解得10e a -<<或10e a <<,故a 的取值范围是11,00,e e æöæö-Èç÷ç÷èøèø解法二:由()1f x x x -=+得1e e ax ax x x --+=+,易得0x >令()1h x x x -=+,则()h x 在()0,1上单调递减,在()1,¥+上单调递增.由()()e axh h x =,得e ax x =或1e ax x -=两边同时取以e 为底的对数,得ln ax x =或ln ax x =-,ln ax x \=,即ln xa x=有三个不同的实数解下同解法一.【例3】(2024届重庆市第一中学校高三下学期模拟预测)已知函数31()(ln 1)(0)f x a x a x =++>.(1)求证:1ln 0x x +>;(2)若12,x x 是()f x 的两个相异零点,求证:211x x -<【解析】(1)令()1ln ,(0,)g x x x x =+Î+¥,则()1ln g x x ¢=+.令()0g x ¢>,得1ex >;令()0g x ¢<,得10e x <<.所以()g x 在10,e æöç÷èø上单调递减,在1,e ¥æö+ç÷èø上单调递增.所以min 11()10e e g x g æö==->ç÷èø,所以1ln 0x x +>.(2)易知函数()f x 的定义域是(0,)+¥.由()(ln f x a x =+,可得()a f x x ¢=.令()0f x ¢>得x >()0f x ¢<得0<所以()0f x ¢>在æççè上单调递减,在¥ö+÷÷ø上单调递增,所以min 3()ln 333a a f x f a æö==++ç÷èø.①当3ln 3033a aa æö++³ç÷èø,即403e a <£时,()f x 至多有1个零点,故不满足题意.②当3ln 3033a a a æö++<ç÷èø,即43e a >1<<.因为()f x 在¥ö+÷÷ø上单调递增,且(1)10f a =+>.所以(1)0f f ×<,所以()f x 在¥ö+÷÷ø上有且只有1个零点,不妨记为1x 11x <<.由(1)知ln 1x x>-,所以33221(1)0f a a a a a æö=+>+=>ç÷ç÷èø.因为()f x 在æççè0f f <×<,所以()f x 在æççè上有且只有1个零点,记为2x 2x <<211x x <<<<2110x x -<-<.同理,若记12,x x öÎÎ÷÷ø则有2101x x <-<综上所述,211x x -<.【例4】(2022高考全国卷乙理)已知函数()()ln 1e xf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()f x 在区间()()1,0,0,-+¥各恰有一个零点,求a 取值范围.的【解析】(1)当1a =时,()ln(1),(0)0e xxf x x f =++=,所以切点为(0,0),11(),(0)21ex xf x f x -¢¢=+=+,所以切线斜率为2所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x =.(2)()ln(1)e x ax f x x =++,()2e 11(1)()1e (1)ex x xa x a x f x x x +--¢=+=++,设()2()e 1xg x a x=+-1°若0a >,当()2(1,0),()e 10x x g x a x Î-=+->,即()0f x ¢>所以()f x 在(1,0)-上单调递增,()(0)0f x f <=故()f x 在(1,0)-上没有零点,不合题意,2°若10a -……,当,()0x Î+¥时,()e 20xg x ax ¢=->所以()g x 在(0,)+¥上单调递增,所以()(0)10g x g a >=+…,即()0f x ¢>所以()f x 在(0,)+¥上单调递增,()(0)0f x f >=,故()f x 在(0,)+¥上没有零点,不合题意.3°若1a <-,(1)当,()0x Î+¥,则()e 20x g x ax ¢=->,所以()g x 在(0,)+¥上单调递增,(0)10,(1)e 0g a g =+<=>,所以存在(0,1)m Î,使得()0g m =,即()0¢=f m .当(0,),()0,()x m f x f x ¢Î<单调递减,当(,),()0,()x m f x f x ¢Î+¥>单调递增,所以当(0,),()(0)0x m f x f Î<=,当,()x f x →+¥→+¥,所以()f x 在(,)m +¥上有唯一零点,又()f x 在(0,)m 没有零点,即()f x 在(0,)+¥上有唯一零点,(2)当()2(1,0),()e 1xx g x a xÎ-=+-,()e2xg x ax ¢=-,设()()h x g x ¢=,则()e 20x h x a ¢=->,所以()g x ¢在(1,0)-上单调递增,1(1)20,(0)10eg a g ¢¢-=+<=>,所以存(1,0)n Î-,使得()0g n ¢=当(1,),()0,()x n g x g x ¢Î-<单调递减当(,0),()0,()x n g x g x ¢Î>单调递增,()(0)10g x g a <=+<,在又1(1)0eg -=>,所以存在(1,)t n Î-,使得()0g t =,即()0f t ¢=当(1,),()x t f x Î-单调递增,当(,0),()x t f x Î单调递减有1,()x f x →-→-¥而(0)0f =,所以当(,0),()0x t f x Î>,所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点,即()f x 在(1,0)-上有唯一零点,所以1a <-,符合题意,综上得()f x 在区间(1,0),(0,)-+¥各恰有一个零点,a 的取值范围为(,1)-¥-.【例5】(2024届辽宁省凤城市高三下学期考试)已知函数()1e ln xf x x x x -=--.(1)求函数()f x 的最小值;(2)求证:()()1e e e 1ln 2xf x x x +>---éùëû.【解析】(1)因为函数()1e ln x f x x x x -=--,所以()()()11111e 11e x x f x x x x x --æö=+--=+-çè¢÷ø,记()11e,0x h x x x -=->,()121e 0x h x x-¢=+>,所以()h x 在()0,¥+上单调递增,且()10h =,所以当01x <<时,()0h x <,即()0f x ¢<,所以()f x 在()0,1单调递减;当1x >时,()0h x >,即()0f x ¢>,所以()f x 在()1,¥+单调递增,且()10f ¢=,所以()()min 10f x f ==.(2)要证()()1e e e 1ln 2xf x x x éù+>---ëû,只需证明:()11e ln 02xx x --+>对于0x >恒成立,令()()11e ln 2xg x x x =--+,则()()1e 0xg x x x x¢=->,当0x >时,令1()()e xm x g x x x=¢=-,则21()(1)e 0xm x x x =+¢+>,()m x 在(0,)+¥上单调递增,即()1e xg x x x=¢-在(0,)+¥上为增函数,又因为222333223227e e033238g éùæöæöêú=-=-<ç÷ç÷êøøëû¢úèè,()1e 10g =¢->,所以存在02,13x æöÎç÷èø使得()00g x ¢=,由()0200000e 11e 0x x x g x x x x ¢-=-==,得020e 1xx =即0201x e x =即0201x e x =即002ln x x -=,所以当()00,x x Î时,()1e 0xg x x x=¢-<,()g x 单调递减,当()0,x x ¥Î+时,()1e 0xg x x x=¢->,()g x 单调递增,所以()()()0320000000022min0122111e ln 2222x x x x x x g x g x x x x x -++-==--+=++=,令()3222213x x x x x j æö=++-<<ç÷èø,则()22153223033x x x x j æö=++=++>ç÷èø¢,所以()x j 在2,13æöç÷èø上单调递增,所以()0220327x j j æö>=>ç÷èø,所以()()()002002x g x g x x j ³=>,所以()11e ln 02xx x --+>,即()()1e e e 1ln 2xf x x x éù+>---ëû.1.(2024届湖南省长沙市第一中学高考最后一卷)已知函数()()e 1,ln ,xf x xg x x mx m =-=-ÎR .(1)求()f x 的最小值;(2)设函数()()()h x f x g x =-,讨论()hx 零点的个数.2.(2024届河南省信阳市高三下学期三模)已知函数()()()ln 1.f x ax x a =--ÎR (1)若()0f x ³恒成立,求a 的值;(2)若()f x 有两个不同的零点12,x x ,且21e 1x x ->-,求a 的取值范围.3.(2024届江西省吉安市六校协作体高三下学期5月联考)已知函数()()1e x f x ax a a -=--ÎR .(1)当2a =时,求曲线()y f x =在1x =处的切线方程;(2)若函数()f x 有2个零点,求a 的取值范围.4.(2024届广东省茂名市高州市高三第一次模拟)设函数()e sin x f x a x =+,[)0,x Î+¥.(1)当1a =-时,()1f x bx ³+在[)0,¥+上恒成立,求实数b 的取值范围;(2)若()0,a f x >在[)0,¥+上存在零点,求实数a 的取值范围.5.(2024届河北省张家口市高三下学期第三次模)已知函数()ln 54f x x x =+-.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)证明:3()25f x x>--.6.(2024届上海市格致中学高三下学期三模)已知()e 1xf x ax =--,a ÎR ,e 是自然对数的底数.(1)当1a =时,求函数()y f x =的极值;(2)若关于x 的方程()10f x +=有两个不等实根,求a 的取值范围;(3)当0a >时,若满足()()()1212f x f x x x =<,求证:122ln x x a +<.7.(2024届河南师范大学附属中学高三下学期最后一卷)函数()e 4sin 2x f x x l l =-+-的图象在0x =处的切线为3,y ax a a =--ÎR .(1)求l 的值;(2)求()f x 在(0,)+¥上零点的个数.8.(2024年天津高考数学真题)设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ³在()0,x Î+¥时恒成立,求a 的值;(3)若()12,0,1x x Î,证明()()121212f x f x x x -£-.9.(2024届河北省高三学生全过程纵向评价六)已知函数()ex axf x =,()sin cosg x x x =+.(1)当1a =时,求()f x 的极值;(2)当()0,πx Î时,()()f x g x £恒成立,求a 的取值范围.10.(2024届四川省绵阳南山中学2高三下学期高考仿真练)已知函数()()1ln R f x a x x a x=-+Î.(1)讨论()f x 的零点个数;(2)若关于x 的不等式()22ef x x £-在()0,¥+上恒成立,求a 的取值范围.11.(2024届四川省成都石室中学高三下学期高考适应性考试)设()21)e sin 3x f x a x =-+-((1)当a =()f x 的零点个数.(2)函数2()()sin 22h x f x x x ax =--++,若对任意0x ³,恒有()0h x >,求实数a 的取值范围12.(2023届云南省保山市高三上学期期末质量监测)已知函数()2sin f x ax x =-.(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)当0x >时,()cos f x ax x ³恒成立,求实数a 的取值范围.13.(2024届广东省揭阳市高三上学期开学考试)已知函数()()212ln 1R 2f x x mx m =-+Î.(1)当1m =时,证明:()1f x <;(2)若关于x 的不等式()()2f x m x <-恒成立,求整数m 的最小值.14.(2023届黑龙江省哈尔滨市高三月考)设函数(1)若,,求曲线在点处的切线方程;(2)若,不等式对任意恒成立,求整数k 的最大值.15.(2023届江苏省连云港市高三学情检测)已知函数.(1)判断函数零点的个数,并证明;(2)证明:.322()33f x x ax b x =-+1a =0b =()y f x =()()1,1f 0a b <<1ln 1x k f f x x +æöæö>ç÷ç÷-èøèø()1,x Î+¥21()e xf x x=-()f x 2e ln 2cos 0x x x x x --->。

高考数学复习考点知识与题型专题讲解11---函数的零点与方程的解

高考数学复习考点知识与题型专题讲解11---函数的零点与方程的解

高考数学复习考点知识与题型专题讲解函数的零点与方程的解考试要求1.理解函数的零点与方程的解的联系.2.理解函数零点存在定理,并能简单应用.3.了解用二分法求方程的近似解.知识梳理1.函数的零点与方程的解(1)函数零点的概念对于一般函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.(2)函数零点与方程实数解的关系方程f(x)=0有实数解⇔函数y=f(x)有零点⇔函数y=f(x)的图象与x轴有公共点.(3)函数零点存在定理如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.2.二分法对于在区间[a,b]上图象连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数的零点就是函数的图象与x 轴的交点.(×)(2)连续函数y =f (x )在区间(a ,b )内有零点,则f (a )·f (b )<0.(×)(3)函数y =f (x )为R 上的单调函数,则f (x )有且仅有一个零点.(×)(4)二次函数y =ax 2+bx +c (a ≠0),若b 2-4ac <0,则f (x )无零点.(√) 教材改编题1.函数f (x )=ax 2-x -1有且仅有一个零点,则实数a 的值为()A .-14B .0C.14D .0或-14答案D解析当a =0时,f (x )=-x -1,令f (x )=0得x =-1,故f (x )只有一个零点为-1.当a ≠0时,则Δ=1+4a =0,∴a =-14. 综上有a =0或-14.2.已知函数f (x )=⎩⎨⎧x 2+x -2,x ≤0,-1+ln x ,x >0,则f (x )的零点为________. 答案-2,e解析⎩⎪⎨⎪⎧ x ≤0,x 2+x -2=0或⎩⎪⎨⎪⎧x >0,-1+ln x =0,解得x =-2或x =e.3.方程2x +x =k 在(1,2)内有解,则实数k 的取值范围是________.答案(3,6)解析设f (x )=2x +x ,∴f (x )在(1,2)上单调递增,又f (1)=3,f (2)=6,∴3<k <6.题型一 函数零点所在区间的判定例1(1)函数f (x )=x +ln x -3的零点所在的区间为()A .(0,1)B .(1,2)C .(2,3)D .(3,4)答案C解析∵f (x )在(0,+∞)上单调递增,且f (2)=ln2-1<0,f (3)=ln3>0,故f (x )在(2,3)上有唯一零点.(2)若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )·(x -c )+(x -c )(x -a )的两个零点分别位于区间()A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内答案A解析函数y =f (x )是开口向上的二次函数,最多有两个零点,由于a <b <c ,则a -b <0,a -c <0,b -c <0,因此f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.所以f (a )f (b )<0,f (b )f (c )<0,即f (x )在区间(a ,b )和区间(b ,c )内各有一个零点. 教师备选(2022·湖南雅礼中学月考)设函数f (x )=13x -ln x ,则函数y =f (x )() A .在区间⎝ ⎛⎭⎪⎫1e ,1,(1,e)内均有零点 B .在区间⎝ ⎛⎭⎪⎫1e ,1,(1,e)内均无零点 C .在区间⎝ ⎛⎭⎪⎫1e ,1内有零点,在区间(1,e)内无零点 D .在区间⎝ ⎛⎭⎪⎫1e ,1内无零点,在区间(1,e)内有零点 答案D解析f (x )的定义域为{x |x >0},f ′(x )=13-1x =x -33x ,令f ′(x )>0⇒x >3,f ′(x )<0⇒0<x <3,∴f (x )在(0,3)上单调递减,在(3,+∞)上单调递增,又f ⎝ ⎛⎭⎪⎫1e =13e +1>0,f (1)=13>0, ∴f (x )在⎝ ⎛⎭⎪⎫1e ,1内无零点. 又f (e)=e 3-1<0,∴f (x )在(1,e)内有零点.思维升华 确定函数零点所在区间的常用方法(1)利用函数零点存在定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(2)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断. 跟踪训练1(1)(2022·太原模拟)利用二分法求方程log 3x =3-x 的近似解,可以取的一个区间是()A .(0,1)B .(1,2)C .(2,3)D .(3,4)答案C解析设f (x )=log 3x -3+x ,当x →0时,f (x )→-∞,f (1)=-2,又∵f (2)=log 32-1<0,f(3)=log33-3+3=1>0,故f(2)·f(3)<0,故方程log3x=3-x在区间(2,3)上有解,即利用二分法求方程log3x=3-x的近似解,可以取的一个区间是(2,3).(2)已知2<a<3<b<4,函数y=log a x与y=-x+b的交点为(x0,y0),且x0∈(n,n+1),n∈N*,则n=________.答案2解析依题意x0为方程log a x=-x+b的解,即为函数f(x)=log a x+x-b的零点,∵2<a<3<b<4,∴f(x)在(0,+∞)上单调递增,又f(2)=log a2+2-b<0,f(3)=log a3+3-b>0,∴x0∈(2,3),即n=2.题型二函数零点个数的判定例2(1)已知函数y=f(x)是周期为2的周期函数,且当x∈[-1,1]时,f(x)=2|x|-1,则函数F(x)=f(x)-|lg x|的零点个数是()A.9B.10C.11D.18解析由函数y =f (x )的性质,画出函数y =f (x )的图象,如图,再作出函数y =|lg x |的图象,由图可知,y =f (x )与y =|lg x |共有10个交点,故原函数有10个零点.(2)函数f (x )=36-x 2·cos x 的零点个数为______.答案6解析令36-x 2≥0,解得-6≤x ≤6,∴f (x )的定义域为[-6,6].令f (x )=0得36-x 2=0或cos x =0,由36-x 2=0得x =±6,由cos x =0得x =π2+k π,k ∈Z ,又x ∈[-6,6],∴x 为-3π2,-π2,π2,3π2. 故f (x )共有6个零点.教师备选函数f (x )=2x |log 2x |-1的零点个数为()A .0B .1C .2D .4解析令f (x )=0,得|log 2x |=⎝ ⎛⎭⎪⎫12x ,分别作出y =|log 2x |与y =⎝ ⎛⎭⎪⎫12x 的图象(图略), 由图可知,y =|log 2x |与y =⎝ ⎛⎭⎪⎫12x 的图象有两个交点,即原函数有2个零点. 思维升华 求解函数零点个数的基本方法(1)直接法:令f (x )=0,方程有多少个解,则f (x )有多少个零点;(2)定理法:利用定理时往往还要结合函数的单调性、奇偶性等;(3)图象法:一般是把函数拆分为两个简单函数,依据两函数图象的交点个数得出函数的零点个数.跟踪训练2(1)函数f (x )是R 上最小正周期为2的周期函数,当0≤x <2时f (x )=x 2-x ,则函数y =f (x )的图象在区间[-3,3]上与x 轴的交点个数为()A .6B .7C .8D .9答案B解析令f (x )=x 2-x =0,所以x =0或x =1,所以f (0)=0,f (1)=0,因为函数的最小正周期为2,所以f (2)=0,f (3)=0,f (-2)=0,f (-1)=0,f (-3)=0.所以函数y =f (x )的图象在区间[-3,3]上与x 轴的交点个数为7.(2)函数f (x )=⎩⎨⎧ln x -x 2+2x ,x >0,4x +1,x ≤0的零点个数是() A .1B .2C .3D .4答案C解析当x >0时,作出函数y =ln x 和y =x 2-2x 的图象,由图知,当x >0时,f (x )有2个零点;当x ≤0时,由f (x )=0,得x =-14.综上,f (x )有3个零点.题型三 函数零点的应用命题点1根据函数零点个数求参数例3已知函数f (x )=⎩⎪⎨⎪⎧ ln (-x ),x <0,x +2x,x >0,若关于x 的方程f (x )-m -1=0恰有三个不同的实数解,则实数m 的取值范围是()A .(-∞,22]B .(-∞,22-1)C .(22-1,+∞)D .(22,+∞)答案C解析恰有三个不同的实数解等价于函数y =f (x )的图象与直线y =m +1有三个公共点. 作出f (x )的图象如图所示.由图可知,y =f (x )的图象与直线y =m +1有三个公共点时有m +1>22, 解得m >22-1,所以实数m 的取值范围为(22-1,+∞).命题点2根据函数零点范围求参数例4(2022·北京顺义区模拟)已知函数f (x )=3x -1+ax x .若存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围是()A.⎝ ⎛⎭⎪⎫-∞,43B.⎝ ⎛⎭⎪⎫0,43 C .(-∞,0) D.⎝ ⎛⎭⎪⎫43,+∞ 答案B解析由f (x )=3x-1+ax x =0, 可得a =3x -1x ,令g (x )=3x -1x ,其中x ∈(-∞,-1),由于存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围即为函数g (x )在(-∞,-1)上的值域.由于函数y =3x ,y =-1x 在区间(-∞,-1)上均单调递增,所以函数g (x )在(-∞,-1)上单调递增.当x ∈(-∞,-1)时,g (x )=3x -1x <3-1+1=43,又g (x )=3x-1x >0, 所以函数g (x )在(-∞,-1)上的值域为⎝ ⎛⎭⎪⎫0,43. 因此实数a 的取值范围是⎝ ⎛⎭⎪⎫0,43. 教师备选1.函数f (x )=x x +2-kx 2有两个零点,则实数k 的值为________. 答案-1 解析由f (x )=x x +2-kx 2=x ⎝ ⎛⎭⎪⎫1x +2-kx , 函数f (x )=x x +2-kx 2有两个零点,即函数y =1x +2-kx 只有一个零点x 0,且x 0≠0. 即方程1x +2-kx =0有且只有一个非零实根. 显然k ≠0,即1k =x 2+2x 有且只有一个非零实根.即二次函数y =x 2+2x 的图象与直线y =1k 有且只有一个交点(横坐标不为零).作出二次函数y =x 2+2x 的图象,如图.因为1k ≠0,由图可知,当1k >-1时,函数y =x 2+2x 的图象与直线y =1k 有两个交点,不满足条件.当1k =-1,即k =-1时满足条件.当1k <-1时,函数y =x 2+2x 的图象与直线y =1k 无交点,不满足条件.2.若函数f (x )=(m -2)x 2+mx +2m +1的两个零点分别在区间(-1,0)和区间(1,2)内,则m 的取值范围是________.答案⎝ ⎛⎭⎪⎫14,12 解析依题意,结合函数f (x )的图象分析可知,m 需满足⎩⎪⎨⎪⎧ m ≠2,f (-1)·f (0)<0,f (1)·f (2)<0,即⎩⎪⎨⎪⎧ m ≠2,(m -2-m +2m +1)(2m +1)<0,(m -2+m +2m +1)·[4(m -2)+2m +2m +1]<0,解得14<m <12.思维升华 已知函数有零点求参数值或取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围.(2)分离参数法:将参数分离,转化成求函数值域的问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.跟踪训练3(1)已知函数f (x )=e x -ax 2(a ∈R )有三个不同的零点,则实数a 的取值范围是() A.⎝ ⎛⎭⎪⎫e 4,+∞B.⎝ ⎛⎭⎪⎫e 2,+∞ C.⎝ ⎛⎭⎪⎫e 24,+∞D.⎝ ⎛⎭⎪⎫e 22,+∞ 答案C解析令f (x )=e x -ax 2=0,显然x ≠0,∴a =e xx 2,令g (x )=e x x 2(x ≠0),则问题转化为“若y =a 的图象与y =g (x )的图象有三个交点,求a 的取值范围”.∵g ′(x )=(x -2)e xx 3,令g ′(x )=0,解得x =2,∴当x <0或x >2时,g ′(x )>0,g (x )在(-∞,0),(2,+∞)上单调递增,当0<x <2时,g ′(x )<0,g (x )在(0,2)上单调递减,g (x )在x =2处取极小值g (2)=e 24,作出y =g (x )的简图,由图可知,要使直线y =a 与曲线g (x )=e x x 2有三个交点,则a >e 24,故实数a 的取值范围是⎝ ⎛⎭⎪⎫e 24,+∞. (2)已知函数f (x )=log 2(x +1)-1x +m 在区间(1,3]上有零点,则m 的取值范围为()A.⎝ ⎛⎭⎪⎫-53,0 B.⎝ ⎛⎭⎪⎫-∞,-53∪(0,+∞) C.⎝ ⎛⎦⎥⎤-∞,-53∪(0,+∞) D.⎣⎢⎡⎭⎪⎫-53,0 答案D解析由于函数y =log 2(x +1),y =m -1x 在区间(1,3]上单调递增,所以函数f (x )在(1,3]上单调递增,由于函数f (x )=log 2(x +1)-1x +m 在区间(1,3]上有零点,则⎩⎪⎨⎪⎧ f (1)<0,f (3)≥0,即⎩⎨⎧ m <0,m +53≥0,解得-53≤m <0. 因此,实数m 的取值范围是⎣⎢⎡⎭⎪⎫-53,0. 课时精练1.函数f (x )=x 3-⎝ ⎛⎭⎪⎫12x -2的零点所在的区间为() A .(0,1) B .(1,2) C .(2,3) D .(3,4)答案B解析由题意知,f (x )=x 3-⎝ ⎛⎭⎪⎫12x -2, f (0)=-4,f (1)=-1,f (2)=7,因为f (x )在R 上连续且在R 上单调递增,所以f (1)·f (2)<0,f (x )在(1,2)内有唯一零点.2.设函数f (x )=4x 3+x -8,用二分法求方程4x 3+x -8=0近似解的过程中,计算得到f (1)<0,f (3)>0,则方程的近似解落在区间()A.⎝ ⎛⎭⎪⎫1,32B.⎝ ⎛⎭⎪⎫32,2C.⎝ ⎛⎭⎪⎫2,52D.⎝ ⎛⎭⎪⎫52,3 答案A解析取x 1=2,因为f (2)=4×8+2-8=26>0,所以方程近似解x 0∈(1,2),取x 2=32,因为f ⎝ ⎛⎭⎪⎫32=4×278+32-8=7>0, 所以方程近似解x 0∈⎝ ⎛⎭⎪⎫1,32. 3.已知函数f (x )=⎩⎪⎨⎪⎧ e x -1-1,x <2,log 3x 2-13,x ≥2,则f (x )的零点为()A .1,2B .1,-2C .2,-2D .1,2,-2答案A解析当x <2时,令f (x )=e x -1-1=0,即e x -1=1,解得x =1,满足x <2;当x ≥2时,令f (x )=log 3x 2-13=0,则x 2-13=1,即x 2=4,得x =-2(舍)或x =2.因此,函数y =f (x )的零点为1,2.4.若函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是()A .(1,3)B .(1,2)C .(0,3)D .(0,2)答案C解析由条件可知f (1)·f (2)<0,即(2-2-a )(4-1-a )<0,即a (a -3)<0,解得0<a <3.5.若函数f (x )=⎩⎨⎧ log 4(x -1),x >1,-3x -m ,x ≤1存在2个零点,则实数m 的取值范围为() A .[-3,0) B .[-1,0)C .[0,1)D .[-3,+∞)答案A解析因为函数f (x )在(1,+∞)上单调递增,且f (2)=0,即f (x )在(1,+∞)上有一个零点,函数f (x )=⎩⎪⎨⎪⎧log 4(x -1),x >1,-3x -m ,x ≤1存在2个零点, 当且仅当f (x )在(-∞,1]上有一个零点,x ≤1时,f (x )=0⇔m =-3x ,即函数y =-3x 在(-∞,1]上的图象与直线y =m 有一个公共点,而y =-3x 在(-∞,1]上单调递减,且有-3≤-3x <0,则当-3≤m <0时,直线y =m 和函数y =-3x (x ≤1)的图象有一个公共点.6.(2022·重庆质检)已知函数f (x )=⎝ ⎛⎭⎪⎫13x -log 2x ,设0<a <b <c ,且满足f (a )·f (b )·f (c )<0,若实数x 0是方程f (x )=0的一个解,那么下列不等式中不可能成立的是()A .x 0<aB .x 0>cC .x 0<cD .x 0>b答案B解析f (x )=⎝ ⎛⎭⎪⎫13x -log 2x 在(0,+∞)上单调递减,由f (a )·f (b )·f (c )<0, 得f (a )<0,f (b )<0,f (c )<0或f (a )>0,f (b )>0,f (c )<0.∴x 0<a 或b <x 0<c ,故x 0>c 不成立.7.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 的交点个数不可能是()A .1B .2C .4D .6答案D解析由题意知,f (x )=sin x +2|sin x |,x ∈[0,2π],f (x )=⎩⎪⎨⎪⎧3sin x ,x ∈[0,π],-sin x ,x ∈(π,2π],在坐标系中画出函数f (x )的图象如图所示.由其图象知,直线y=k与y=f(x)的图象交点个数可能为0,1,2,3,4.8.(2022·北京西城区模拟)若偶函数f(x)(x∈R)满足f(x+2)=f(x)且x∈[0,1]时,f(x)=x,则方程f(x)=log3|x|的根的个数是()A.2B.3C.4D.多于4答案C解析f(x)=log3|x|的解的个数,等价于y=f(x)的图象与函数y=log3|x|的图象的交点个数,因为函数f(x)满足f(x+2)=f(x),所以周期T=2,当x∈[0,1]时,f(x)=x,且f(x)为偶函数,在同一平面直角坐标系中画出函数y=f(x)的图象与函数y=log3|x|的图象,如图所示.显然函数y=f(x)的图象与函数y=log3|x|的图象有4个交点.9.若函数f(x)=x3+ax2+bx+c是奇函数,且有三个不同的零点,写出一个符合条件的函数:f(x)=________.答案x 3-x (答案不唯一)解析f (x )=x 3+ax 2+bx +c 为奇函数,故a =c =0,f (x )=x 3+bx =x (x 2+b )有三个不同零点,∴b <0,∴f (x )=x 3-x 满足题意.10.函数f (x )=⎩⎨⎧2x ,x ≥0,-x 2-2x +1,x <0,若函数y =f (x )-m 有三个不同的零点,则实数m 的取值范围是________.答案(1,2)解析画出函数y =f (x )与y =m 的图象,如图所示,注意当x =-1时,f (-1)=-1+2+1=2,f (0)=1,∵函数y =f (x )-m 有三个不同的零点,∴函数y =f (x )与y =m 的图象有3个交点,由图象可得m 的取值范围为1<m <2.11.(2022·枣庄模拟)已知函数f (x )=|ln x |,若函数g (x )=f (x )-ax 在区间(0,e 2]上有三个零点,则实数a 的取值范围是______________.答案⎣⎢⎡⎭⎪⎫2e 2,1e 解析∵函数g (x )=f (x )-ax 在区间(0,e 2]上有三个零点,∴y =f (x )的图象与直线y =ax 在区间(0,e 2]上有三个交点,由函数y =f (x )与y =ax 的图象可知,k 1=2-0e 2-0=2e 2, f (x )=ln x (x >1),f ′(x )=1x ,设切点坐标为(t ,ln t ),则ln t -0t -0=1t , 解得t =e.∴k 2=1e .则直线y =ax 的斜率a ∈⎣⎢⎡⎭⎪⎫2e 2,1e . 12.(2022·安徽名校联盟联考)已知函数f (x )=2x +x +1,g (x )=log 2x +x +1的零点分别为a ,b ,则a +b =________.答案-1解析由已知得y =2x ,y =log 2x 的图象与直线y =-x -1的交点横坐标分别为a ,b , 又y =2x ,y =log 2x 的图象关于直线y =x 对称,且y =-x -1与y =x 交点横坐标为-12,故a +b =-1.13.已知函数f (x )=2x +x -1,g (x )=log 2x +x -1,h (x )=x 3+x -1的零点分别为a ,b ,c ,则a ,b ,c 的大小为()A .c >b >aB .b >c >aC .c >a >bD .a >c >b答案B解析令f (x )=0,则2x +x -1=0,得x =0,即a =0,令g (x )=0,则log 2x +x -1=0,得x =1,即b =1,因为函数h (x )=x 3+x -1在R 上为增函数,且h (0)=-1<0,h (1)=1>0,所以h (x )在区间(0,1)上存在唯一零点c ,且c ∈(0,1),综上,b >c >a .14.(2022·厦门模拟)已知函数f (x )=⎩⎨⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))的所有零点之和为________.答案12解析当x ≤0时,x +1=0,x =-1,由f(x)=-1,可得x+1=-1或log2x=-1,∴x=-2或x=1 2;当x>0时,log2x=0,x=1,由f(x)=1,可得x+1=1或log2x=1,∴x=0或x=2;∴函数y=f(f(x))的所有零点为-2,12,0,2,∴所有零点的和为-2+12+0+2=12.15.(2022·南京模拟)在数学中,布劳威尔不动点定理可应用到有限维空间,并是构成一般不动点定理的基石,它得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer),简单的讲就是对于满足一定条件的连续函数f(x),存在一个点x0,使得f(x0)=x0,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是________.(填序号)①f(x)=2x+x;②g(x)=x2-x-3;③f(x)=12x+1;④f(x)=|log2x|-1.答案②③④解析对于①,若f(x0)=x0,则02x=0,该方程无解,故①中函数不是“不动点”函数;对于②,若g(x0)=x0,则x20-2x0-3=0,解得x0=3或x0=-1,故②中函数是“不动点”函数;对于③,若f (x 0)=x 0,则120x +1=x 0,可得x 20-3x 0+1=0,且x 0≥1,解得x 0=3+52,故③中函数是“不动点”函数;对于④,若f (x 0)=x 0,则|log 2x 0|-1=x 0,即|log 2x 0|=x 0+1,作出y =|log 2x |与y =x +1的函数图象,如图,由图可知,方程|log 2x |=x +1有实数根x 0,即|log 2x 0|=x 0+1,故④中函数是“不动点”函数.16.已知M ={α|f (α)=0},N ={β|g (β)=0},若存在α∈M ,β∈N ,使得|α-β|<n ,则称函数f (x )与g (x )互为“n 度零点函数”.若f (x )=32-x -1与g (x )=x 2-a e x 互为“1度零点函数”,则实数a 的取值范围为________.答案⎝ ⎛⎦⎥⎤1e ,4e 2 解析由题意可知f (2)=0,且f (x )在R 上单调递减,所以函数f (x )只有一个零点2,由|2-β|<1,得1<β<3,所以函数g (x )=x 2-a e x 在区间(1,3)上存在零点.由g (x )=x 2-a e x=0,得a =x 2e x . 令h (x )=x 2e x ,则h ′(x )=2x -x 2e x =x (2-x )e x ,所以h (x )在区间(1,2)上单调递增,在区间(2,3)上单调递减,且h (1)=1e ,h (2)=4e 2,h (3)=9e 3>1e ,要使函数g (x )在区间(1,3)上存在零点,只需a ∈⎝ ⎛⎦⎥⎤1e ,4e 2.。

高三数学函数零点的判定定理知识点

高三数学函数零点的判定定理知识点

⾼三数学函数零点的判定定理知识点 函数零点问题是⾼等数学中的重要问题,⾼中数学课程中有基本的介绍,下⾯是店铺给⼤家带来的⾼三数学函数零点的判定定理知识点,希望对你有帮助。

⾼三数学函数零点的判定定理知识点(⼀) 函数零点存在性定理: ⼀般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的⼀条曲线,并且有f(a)。

f(b)<o,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=O,这个c也就是f(x)=0的根。

特别提醒:(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不⼀定唯⼀。

(2)并不是所有的零点都可以⽤该定理来确定,也可以说不满⾜该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x) =x2-3x +2有f(0)·f(3)>0,但函数f(x)在区间(0,3)上有两个零点。

(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a)。

f(b)<0,则fx)在(a,b)上有唯⼀的零点。

函数零点个数的判断⽅法: (1)⼏何法:对于不能⽤求根公式的⽅程,可以将它与函数y =f(x)的图象联系起来,并利⽤函数的性质找出零点。

特别提醒:①“⽅程的根”与“函数的零点”尽管有密切联系,但不能混为⼀谈,如⽅程x2-2x +1 =0在[0,2]上有两个等根,⽽函数f(x)=x2-2x +1在[0,2]上只有⼀个零点 ②函数的零点是实数⽽不是数轴上的点。

(2)代数法:求⽅程f(x)=0的实数根。

⾼三数学函数零点的判定定理知识点(⼆) 判断函数零点个数的常⽤⽅法 (1)解⽅程法:令f(x)=0,如果能求出解,则有⼏个解就有⼏个零点。

(2)零点存在性定理法:利⽤定理不仅要判断函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点。

高中数学基础之函数零点

高中数学基础之函数零点

高中数学基础之函数零点函数零点的考查往往以选择题或填空题的形式出现,在解答题中,特别是有关导数的解答题中也经常考查零点问题.根据高考试题的考查特点,建议掌握好函数零点的求法、含参数问题的解决办法以及常用的二次函数零点问题的求法.函数的零点(1)零点的定义:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.注:函数的零点不是函数y=f(x)的图象与x轴的交点,而是y=f(x)的图象与x轴交点的横坐标,也就是说函数的零点不是一个点,而是一个实数.(2)零点的几个等价关系:方程f(x)=0有实数解⇔函数y=f(x)的图象与x轴有公共点⇔函数y=f(x)有零点.零点存在定理如果函数y=f(x)在区间[a,b]上的图象是一条□01连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.注:函数零点存在定理只能判断函数在某个区间上的变号零点,而不能判断函数的不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分不必要条件.有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.一、函数零点及其所在区间的判断例1 函数f(x)=log3x+x-2的零点所在的区间为()A.(0,1) B.(1,2)C.(2,3) D.(3,4)答案B解析解法一(定理法):函数f(x)=log3x+x-2的定义域为(0,+∞),并且f(x)在(0,+∞)上单调递增,图象是一条连续的曲线.由题意知f(1)=-1<0,f(2)=log32>0,根据零点存在定理可知,函数f (x )=log 3x +x -2有唯一零点,且零点在区间(1,2)内.故选B.解法二(图象法):将函数f (x )的零点所在的区间转化为函数g (x )=log 3x 和h (x )=-x +2图象交点的横坐标所在的范围.作出两函数的图象如图所示,可知f (x )的零点所在的区间为(1,2).故选B.例2 已知函数f (x )=ln x +2x -6的零点在⎝ ⎛⎭⎪⎫k 2,k +12(k ∈Z )内,那么k = . 答案 5解析 因为x ∈(0,+∞),f ′(x )=1x +2>0,所以f (x )在(0,+∞)上单调递增,f ⎝ ⎛⎭⎪⎫52=ln52-1<0,f (3)=ln 3>0,所以f (x )的零点在⎝ ⎛⎭⎪⎫52,3内,则整数k =5. 总结:判断函数零点所在区间的方法(1)解方程法,当对应方程易解时,可直接解方程. (2)利用零点存在定理求解.(3)数形结合法,画出相应函数图象,观察与x 轴交点来判断,或转化为两个函数的图象在所给区间上是否有交点来判断.二、函数零点个数的判断例3 已知函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≤0,1+1x ,x >0,则函数y =f (x )+3x 的零点个数是( ) A .0 B .1 C .2 D .3 答案 C解析 令f (x )+3x =0,则⎩⎨⎧x ≤0,x 2-2x +3x =0或⎩⎪⎨⎪⎧x >0,1+1x +3x =0,解得x =0或x =-1,所以函数y =f (x )+3x 的零点个数是2.例4 若函数y =f (x )(x ∈R )满足f (x +4)=f (x ),且x ∈(-2,2]时,f (x )=12|x |,则函数y =f (x )的图象与函数y =lg |x |的图象的交点个数为( )A .4B .6C .8D .10 答案 C解析 因为f (x +4)=f (x ),所以函数f (x )是周期为4的周期函数.又x ∈(-2,2]时,f (x )=12|x |,所以作出函数f (x )的图象如图所示.因为x =±10时,y =lg |±10|=1,所以由数形结合可得函数y =f (x )的图象与函数y =lg |x |的图象的交点个数为8.例5 已知函数f (x )=⎩⎨⎧ln (x -1),x >1,2x -1-1,x ≤1,则f (x )的零点个数为( )A .0B .1C .2D .3 答案 C解析 当x >1时,令f (x )=ln (x -1)=0,得x =2;当x ≤1时,令f (x )=2x -1-1=0,得x =1,故f (x )的零点个数为2.例6 若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点有( )A .多于4个B .4个C .3个D .2个答案 B解析 分别作出y =f (x )与y =log 3|x |的图象如图所示,由图可知y =f (x )与y =log 3|x |的图象有4个交点,故函数y =f (x )-log 3|x |有4个零点.总结:函数零点个数的判断方法(1)直接求零点.令f (x )=0,有几个解就有几个零点.(2)零点存在定理.要求函数f (x )在区间[a ,b ]上的图象是连续不断的曲线,且f (a )f (b )<0,再结合函数的图象与性质确定函数零点个数.(3)利用图象交点个数判断.作出两函数图象,观察其交点个数即得零点个数. 三、函数零点的应用例7 已知方程x 2+(m -2)x +5-m =0的一根在区间(2,3)内,另一根在区间(3,4)内,则m 的取值范围是( )A .(-5,-4)B .⎝ ⎛⎭⎪⎫-133,-2C .⎝ ⎛⎭⎪⎫-133,-4D .(-5,-2) 答案 C解析 令f (x )=x 2+(m -2)x +5-m ,由二次函数根的分布性质,若一根在区间(2,3)内,另一根在区间(3,4)内,只需⎩⎪⎨⎪⎧f (2)>0,f (3)<0,f (4)>0,即⎩⎪⎨⎪⎧4+2(m -2)+5-m >0,9+3(m -2)+5-m <0,16+4(m -2)+5-m >0,解不等式组可得-133<m <-4,即m 的取值范围为⎝ ⎛⎭⎪⎫-133,-4.故选C. 例8 设函数f (x )=⎩⎨⎧|ln x |,x >0,e x (x +1),x ≤0.若函数g (x )=f (x )-b 有三个零点,则实数b 的取值范围是( )A .(1,+∞)B .⎝ ⎛⎭⎪⎫-1e 2,0C .{0}∪(1,+∞)D .(0,1]答案 D解析 函数g (x )=f (x )-b 有三个零点等价于f (x )=b 有三个根,当x ≤0时,f (x )=e x (x +1),则f ′(x )=e x (x +1)+e x =e x (x +2),由f ′(x )<0得x <-2,此时f (x )为减函数,由f ′(x )>0得-2<x ≤0,此时f (x )为增函数,即当x =-2时,f (x )取得极小值f (-2)=-1e 2,作出f (x )的图象如图,要使f (x )=b 有三个根,则0<b ≤1.故选D.例9 若函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,则实数a 的取值范围是 . 答案 ⎣⎢⎡⎦⎥⎤-14,2解析 因为函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,所以方程4x -2x -a =0在[-1,1]上有解,即方程a =4x -2x 在[-1,1]上有解.方程a =4x -2x 可变形为a =⎝ ⎛⎭⎪⎫2x -122-14,令2x=t ,因为x ∈[-1,1],所以t ∈⎣⎢⎡⎦⎥⎤12,2,a =⎝ ⎛⎭⎪⎫t -122-14,0≤t -12≤32,0≤⎝ ⎛⎭⎪⎫t -122≤94,-14≤⎝ ⎛⎭⎪⎫t -122-14≤2,所以实数a 的取值范围是⎣⎢⎡⎦⎥⎤-14,2.总结:已知函数有零点求参数值或取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围.(2)分离参数法:将参数分离,转化成求函数值域的问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.。

2023年高考数学一轮复习课件——利用导数研究函数零点

2023年高考数学一轮复习课件——利用导数研究函数零点

教师备选
(2022·淄博质检)已知 f(x)=13x3+32x2+2x,f′(x)是 f(x)的导函数. (1)求 f(x)的极值;
因为f′(x)=x2+3x+2=(x+1)(x+2), 令f′(x)=0,得x1=-1,x2=-2, 当x变化时,f′(x),f(x)的变化如表所示:
x (-∞,-2) -2 (-2,-1) -1 (-1,+∞)
当x∈(0,e)时,f′(x)<0;
当x∈(e,+∞)时,f′(x)>0,
∴f(x)在(0,e)上单调递减,在(e,+∞)上单调递增,
∴当x=e时,f(x)取得极小值f(e)=2.
(2)讨论函数 g(x)=f′(x)-3x零点的个数.
由题意知 g(x)=f′(x)-3x=1x-xm2-3x(x>0), 令 g(x)=0,得 m=-13x3+x(x>0). 设 φ(x)=-13x3+x(x>0), 则φ′(x)=-x2+1=-(x-1)(x+1).
④当m≤0时,函数g(x)有且只有一个零点.
综上所述,当 m>23时,函数 g(x)无零点; 当 m=23或 m≤0 时,函数 g(x)有且只有一个 零点; 当 0<m<23时,函数 g(x)有两个零点.
题型二 利用函数性质研究函数零点
例2 已知函数f(x)=x-aln x(a>0). (1)求函数f(x)的单调区间;
在(-1,+∞)上单调递减, 所以φ(x)max=φ(-1)=e,且x→-∞时, φ(x)→-∞;x→+∞时,φ(x)→0,
所以
0<1a<e,解得
1 a>e.
所以 a 的取值范围是1e,+∞.
教师备选
已知函数f(x)=xex+ex. (1)求函数f(x)的单调区间和极值;

高考数学:数形结合在函数问题

高考数学:数形结合在函数问题

例 2 已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=2 -|x+2|.若对任意的x∈[-1,2],f(x+a)>f(x)恒成立,则 实数a的取值范围是( D ) A.(0,2) B.(-∞,-6)∪(0,2) C.(-2,0) D.(-2,0)∪(6,+∞)
【解析】f(x)是定义在 R 上的奇函数,当 x<0 时,f(x)=2-|x+2|.根据奇函数的图像关于 原点对称,作出 f(x)的图像,如图所示.
g′(x)=(2a-1)e2x-2aex+1=(ex-1)·[(2a-1)ex-1],
①若 a>12,令 g′(x)=0,得极值点 x1=0,x2=ln 2a1-1.当 x2>x1=0,即12<a<1 时,在(x2, +∞)上有 g′(x)>0,此时 g(x)在区间(x2,+∞)上单调递增,并且在该区间上有 g(x)∈(g(x2), +∞),不合题意;
n-m
的最大值为3+2
10 .
分考点讲解
与不等式有关的问题
利用函数f(x)和g(x)图像的上下位置关系,可直观地得到不等 式f(x)>g(x)或f(x)<g(x)的解集.
当f(x)的图像在g(x)的图像的上方时,自变量x的范围是不等式 f(x)>g(x)的解集;当f(x)的图像在g(x)的图像的下方时,自变量x 的范围是不等式f(x)<g(x)的解集.
C.[1,+∞)
D.e12,1e
【解析】由 f(x)=xln2, (xx≤ +01, ),x>0,得 f(x)-1=xln2- (1x+,1x≤ )0-,1,x>0. 在平面直角坐标系中,画出函数 y=f(x)-1 与 y=a(x+1)的大致图像,如图所示.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数形结合解零点问题
“数缺形时少直觉,形少数时难入微”(华罗庚语).数形结合指的是在解决数学问题时,使数的问题,借助形更直观,而形的问题,借助数更理性.函数的零点就是函数图象与x轴的交点的横坐标,数形结合能给零点问题的解决带来极大的方便.
一、零点个数问题
例1
.函数()4
f x x
=+-的零点有个. 解析
: ()4
f x x
=-
的零点就是方程
4x
=-的解,
在同一平面直角坐标系中画出
y=4
y x
=-的图象(如图1) ,
可见函数
()4
f x x
=-的零点个数为1.
评注:函数()
f x
y=4
y=-
例2.讨论函数()
f x=
解析:
和y a
=的图象(如图
当0
a<时, 21
y x
=-和y a
=没有公共点, 函
数2
()1
f x x a
=--的零点个数为0;
当0
a=或1
a>时, 21
y x
=-和y a
=有2个公共点, 函数2
()1
f x x a
=--
的零点个数为2;
当1
a=时, 21
y x
=-和y a
=有3个公共点, 函数2
()1
f x x a
=--的零点个数为3;
(图2)
当01a <<时, 21y x =-和y a =有4个公共点, 函数2()1f x x
a =--的零点个数为4.
例3.若存在区间[,]a b ,使函数()f x k =+k 的范围.
解析: 因为()f x k =+在[2,)-+∞上递增,若存在区间[,]a b ,使()f x 在[,]a b 上的值域
是[,]a b ,必有()()f a a
f b b =⎧⎨=⎩.问题转化为“求k 使关于x 的方程k x +=有两个不等实根”.
在同一平面直角坐标系中画出y =2y x =+的图象(如图3),可见当
2k =-时, y =y x k =-的图象有两个不同的公共点.
由x k -=得: 22(21)20x k x k -++-=,49k ∆=+.所以当9
4
k =-时,
直线y x k =-与曲线y =.
结合图形观察得,当9
24
k -
<≤-时, y =y x k =-的图象有两个不同的公共点,此时关于x 的方程k x +=有两个不等实根.
所以k 的范围是9
(,2]4
--.
评注: 由于画图精确性的限制,观察得出,这时要以数助形,运算求解. 二、零点所在区间问题
例4.函数()lg 3f x x x =+-A .(0,1) B .(1,2) C .(2,+∞)
解析:。

相关文档
最新文档