直线的参数方程 (3)

合集下载

三直线的参数方程

三直线的参数方程
【基础知识梳理】
1.直线的参数方程
(1)过点 M0(x0,y0),倾斜角为 α 的直线 l 的参数方程为
x=x0+tcos α y=y0+t sin α
(t 为参数)
.
2 参数的几何意义 直线的参数方程中参数 t 的几何意义是:
直线上动点M到定点M0(x0,y0)的距离就是参数t的绝对值
当M→0M与 e(直线的单位方向向量)同向时,t 取 正数 ; 当M→0M与 e 反向时,t 取 负数 ;当点 M 与点 M0 重 合时,t 为 零 .
【课后练习】
写出经过点 P(1,-5),倾斜角是π3的直线参数方程, (1)利用这个参数方程求这条直线与直线 x-y-2 3=0 的交点 与点 P 的距离, (2)求这条直线和圆 x2+y2=16 的两个交点与点 P 的距离之积.
解:直线的参数方程为xy==-1+5+tcotssinπ3,π3,
即x=1+21t,

y=-5+
3 2 t.
将①代入直线方程 x-y-2 3=0,
得 1+12t+5- 23t-2 3=0,解得 t=4 3. 根据直线参数方程中参数 t 的几何意义知两条直线的交点与 P
点的距离为 4 3.
又将①代入圆的方程 x2+y2=16, 得1+21t2+-5+ 23t2=16, 即 t2+(1-5 3)t+10=0,则 t1+t2=5 3-1, t1·t2=10(t1,t2 为关于 t 的一元二次方程的两根),从而直线和圆 的两交点与点 P 的距离之积为 10.
例 3.已知直线的参数方程为xy==2--14+t 3t (t 为参数),它与曲线
(y-2)2-x2=1 交于 A,B 两点. (1)求|AB|的长; (2)求点 P(-1,2)到线段 AB 中点 C 的距离.

2017_18学年高中数学第二章参数方程三直线的参数方程教学案

2017_18学年高中数学第二章参数方程三直线的参数方程教学案

三 直线的参数方程[对应学生用书P27]1.直线的参数方程(1)过点M 0(x 0,y 0),倾斜角为α的直线l 的参数为⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数)(2)由α为直线的倾斜角知α∈[0,π)时,sin α≥0. 2.直线参数方程中参数t 的几何意义参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离. (1)当M 0M ―→与e (直线的单位方向向量)同向时,t 取正数. (2)当M 0M ―→与e 反向时,t 取负数,当M 与M 0重合时,t =0.[对应学生用书P27][例1] 已知直线l 的方程为3x -4y +1=0,点P (1,1)在直线l 上,写出直线l 的参数方程,并求点P 到点M (5,4)的距离.[思路点拨] 由直线参数方程的概念,先求其斜率,进而由斜率求出倾斜角的正、余弦值,从而得到直线参数方程.[解] 由直线方程3x -4y +1=0可知,直线的斜率为34,设直线的倾斜角为α,则tan α=34,sin α=35,cos α=45.又点P (1,1)在直线l 上,所以直线l 的参数方程为⎩⎪⎨⎪⎧x =1+45t ,y =1+35t (t 为参数).因为3×5-4×4+1=0,所以点M 在直线l 上.由1+45t =5,得t =5,即点P 到点M 的距离为5.理解并掌握直线参数方程的转化,弄清参数t 的几何意义,即直线上动点M 到定点M 0的距离等于参数t 的绝对值是解决此类问题的关键.1.设直线l 过点A (2,-4),倾斜角为5π6,则直线l 的参数方程为________________.解析:直线l的参数方程为⎩⎪⎨⎪⎧x =2+t cos5π6,y =-4+t sin 5π6(t 为参数),即⎩⎪⎨⎪⎧x =2-32t ,y =-4+12t (t 为参数).答案:⎩⎪⎨⎪⎧x =2-32t ,y =-4+12t (t 为参数)2.一直线过P 0(3,4),倾斜角α=π4,求此直线与直线3x +2y =6的交点M 与P 0之间的距离.解:设直线的参数方程为⎩⎪⎨⎪⎧x =3+22t ,y =4+22t ,将它代入已知直线3x +2y -6=0, 得3(3+22t )+2(4+22t )=6. 解得t =-1125,∴|MP 0|=|t |=1125.[例2] 已知直线l 经过点P (1,1),倾斜角α=π6,(1)写出直线l 的参数方程.(2)设l 与圆x 2+y 2=4相交于两点A 、B ,求点P 到A 、B 两点的距离之积.[思路点拨] (1)由直线参数方程的概念可直接写出方程;(2)充分利用参数几何意义求解.[解] (1)∵直线l 过点P (1,1),倾斜角为π6,∴直线的参数方程为⎩⎪⎨⎪⎧x =1+t cos π6,y =1+t sin π6,即⎩⎪⎨⎪⎧x =1+32t ,y =1+12t 为所求.(2)因为点A ,B 都在直线l 上,所以可设它们对应的参数为t 1和t 2,则点A ,B 的坐标分别为A (1+32t 1,1+12t 1),B (1+32t 2,1+12t 2), 以直线l 的参数方程代入圆的方程x 2+y 2=4整理得到t 2+(3+1)t -2=0,① 因为t 1和t 2是方程①的解,从而t 1t 2=-2. 所以|PA |·|PB |=|t 1t 2|=|-2|=2.求解直线与圆或圆锥曲线有关的弦长时,不必求出交点坐标,根据直线参数方程中参数t 的几何意义即可求得结果,与常规方法相比较,较为简捷.3.直线l 通过P 0(-4,0),倾斜角α=π6,l 与圆x 2+y 2=7相交于A 、B 两点.(1)求弦长|AB |; (2)求A 、B 两点坐标.解:∵直线l 通过P 0(-4,0),倾斜角α=π6,∴可设直线l 的参数方程为⎩⎪⎨⎪⎧x =-4+32t ,y =t 2.代入圆方程,得(-4+32t )2+(12t )2=7. 整理得t 2-43t +9=设A 、B 对应的参数分别t 1和t 2, 由根与系数的关系得t 1+t 2=43,t 1t 2=9 ∴|AB |=|t 2-t 1|=t 1+t 22-4t 1t 2=2 3.解得t 1=33,t 2=3,代入直线参数方程 ⎩⎪⎨⎪⎧x =-4+32t ,y =12t ,得A 点坐标(12,332),B 点坐标(-52,32).4.如图所示,已知直线l 过点P (2,0),斜率为43,直线l 和抛物线y2=2x 相交于A ,B 两点,设线段AB 的中点为M ,求:(1)P ,M 间的距离|PM |; (2)点M 的坐标.解:(1)由题意,知直线l 过点P (2,0),斜率为43,设直线l 的倾斜角为α,则tan α=43,cos α=35,sin α=45,∴直线l 的参数方程的标准形式为 ⎩⎪⎨⎪⎧x =2+35t ,y =45t(t 为参数). *∵直线l 和抛物线相交,∴将直线l 的参数方程代入抛物线方程y 2=2x 中, 整理得8t 2-15t -50=0,Δ=152+4×8×50>0. 设这个二次方程的两个根为t 1,t 2,由根与系数的关系得t 1+t 2=158,t 1t 2=-254.由M 为线段AB 的中点, 根据t 的几何意义,得|PM | =⎪⎪⎪⎪⎪⎪t 1+t 22=1516.(2)因为中点M 所对应的参数为t M =1516,将此值代入直线l 的参数方程的标准形式(*),得⎩⎪⎨⎪⎧x =2+35×1516=4116,y =45×1516=34,即M ⎝⎛⎭⎪⎫4116,34.[对应学生用书P28]一、选择题1.直线的参数方程为⎩⎪⎨⎪⎧x =-1+t 2,y =2-32t ,M 0(-1,2)和M (x ,y )是该直线上的定点和动点,则t 的几何意义是( )A .有向线段M 0M 的数量B .有向线段MM 0的数量C .|M 0M |D .以上都不是解析:参数方程可化为⎩⎪⎨⎪⎧x =-1+-12-t ,y =2+32-t答案:B2.曲线的参数方程为⎩⎪⎨⎪⎧x =3t 2+2,y =t 2-1(t 是参数),则曲线是( )A .线段B .双曲线的一支C .圆D .射线解析:由y =t 2-1得y +1=t 2,代入x =3t 2+2, 得x -3y -5=0(x ≥2).故选D. 答案:D3.直线⎩⎪⎨⎪⎧x =2+3t ,y =-1+t(t 为参数)上对应t =0,t =1两点间的距离是( )A .1 B.10 C .10D .2 2解析:因为题目所给方程不是参数方程的标准形式,参数t 不具有几何意义,故不能直接由1-0=1来得距离,应将t =0,t =1分别代入方程得到两点坐标(2,-1)和(5,0),由两点间距离公式来求出距离,即-2+-1-2=10.答案:B4.若直线⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数)与圆⎩⎪⎨⎪⎧x =4+2cos φ,y =2sin φ(φ为参数)相切,那么直线倾斜角α为( )A.π6 B.π4 C.π3D.π6或5π6解析:直线化为y x=tan α,即y =tan α·x , 圆方程化为(x -4)2+y 2=4, ∴由|4tan α|tan 2α+1=2⇒tan 2α=13, ∴tan α=±33,又α∈[0,π),∴α=π6或5π6. 答案:D 二、填空题5.直线⎩⎪⎨⎪⎧x =2+22t ,y =-3-22t (t 为参数)上到点M (2,-3)的距离为2且在点M 下方的点的坐标是________.解析:把参数方程化成标准形式为⎩⎪⎨⎪⎧x =2-22-t ,y =-3+22-t ,把-t 看作参数,所求的点在M (2,-3)的下方,所以取-t =-2,即t =2,所以所求点的坐标为(3,-4).答案:(3,-4)6.若直线l 的参数方程为⎩⎪⎨⎪⎧x =1-35t ,y =45t(t 为参数),则直线l 的斜率为______.解析:由参数方程可知,cos θ=-35,sin θ=45.(θ为倾斜角).∴tan θ=-43,即为直线斜率.答案:-437.已知直线l 1:⎩⎪⎨⎪⎧x =1-2t ,y =2+kt (t 为参数),l 2:⎩⎪⎨⎪⎧x =s ,y =1-2s (s 为参数),若l 1∥l 2,则k =____________;若l 1⊥l 2,则k =________.解析:将l 1,l 2的方程化为普通方程,得l 1:kx +2y -4-k =0,l 2:2x +y -1=0, l 1∥l 2⇒k 2=21≠4+k1⇒k =4.l 1⊥l 2⇒(-2)·(-k2)=-1⇒k =-1.答案:4 -1 三、解答题8.设直线的参数方程为⎩⎪⎨⎪⎧x =5+3t ,y =10-4t(t 为参数).(1)求直线的普通方程;(2)将参数方程的一般形式化为参数方程的标准形式. 解:(1)把t =x -53代入y 的表达式 得y =10-x -3,化简得4x +3y -50=0,所以直线的普通方程为4x +3y -50=0. (2)把参数方程变形为⎩⎪⎨⎪⎧x =5-35-5t ,y =10+45-5t ,令t ′=-5t ,即有⎩⎪⎨⎪⎧x =5-35t ′,y =10+45t ′(t ′为参数)为参数方程的标准形式.9.已知斜率为1的直线l 过椭圆x 24+y 2=1的右焦点,交椭圆于A ,B 两点,求弦AB 的长度.解:因为直线l 的斜率为1,所以直线l 的倾斜角为π4.椭圆x 24+y 2=1的右焦点为(3,0),直线l 的参数方程为⎩⎪⎨⎪⎧x =3+22t ,y =22t (t 为参数),代入椭圆方程x 24+y 2=1,得⎝ ⎛⎭⎪⎫3+22t 24+⎝ ⎛⎭⎪⎫22t 2=1,整理,得5t 2+26t -2=0. 设方程的两实根分别为t 1,t 2, 则t 1+t 2=-265,t 1·t 2=-25,|t 1-t 2|=t 1+t 22-4t 1t 2=⎝ ⎛⎭⎪⎫-2652+85=85, 所以弦AB 的长为85.10.已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+4cos θ,y =2+4sin θ(θ为参数),直线l 经过定点P (3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求|PA |·|PB |的值. 解:(1)曲线C :(x -1)2+(y -2)2=16,直线l :⎩⎪⎨⎪⎧x =3+12t ,y =5+32t (t 为参数).(2)将直线l 的参数方程代入圆C 的方程可得t 2+(2+33)t -3=0,设t 1,t 2是方程的两个根,则t 1t 2=-3,所以|PA ||PB |=|t 1||t 2|=|t 1t 2|=3.。

直线的参数方程及应用

直线的参数方程及应用

直线的参数方程及应用直线的参数方程及应用直线参数方程的标准式过点P(x,y),倾斜角为α的直线l的参数方程是x = x + tcosαy = y + tsinα其中t为参数,表示有向线段PP的数量,P(x,y)为直线上的任意一点。

直线l上的点与对应的参数t是一一对应关系。

若P1、P2是直线上两点,所对应的参数分别为t1、t2,则P1P2 = t2 - t1,|P1P2| = |t2 - t1|。

若P1、P2、P3是直线上的点,所对应的参数分别为t1、t2、t3,则P1P2中点P3的参数为t3 = (t1 + t2)/2,|PP3| = |(t1 + t2)/2|。

若P为P1P2的中点,则t1 + t2 = 0,t1·t2 < 0.直线参数方程的一般式过点P(xb,y),斜率为k = a的直线的参数方程是x = x + aty = y + bt其中t为参数,表示有向线段PP的数量,P(xb,y)为直线上的任意一点。

直线的参数方程给定点P(xl,y),倾斜角为α,求经过该点的直线l的参数方程。

直线l的参数方程为x = x + tcosαy = y + tsinα其中t为参数,表示有向线段PP的数量,P(xl,y)为直线上的任意一点。

特别地,若直线l的倾斜角α = 90°,直线l的参数方程为x = x + ty = y其中t为参数,表示有向线段PP的数量,P(xl,y)为直线上的任意一点。

2、直线的参数方程与标准形式如果直线的方向已知,那么可以使用参数方程来表示直线。

对于倾斜角为 $\alpha$,过点 $M(x,y)$ 的直线 $l$,其参数方程一般式为:begin{cases}x=x_M+t\cos\alpha \\y=y_M+t\sin\alphaend{cases}其中 $t$ 是参数,表示从点 $M$ 沿着直线 $l$ 方向前进的距离。

如果要将参数方程转化为标准形式,可以通过以下步骤:1.消去参数 $t$,得到 $y-y_M=\dfrac{\sin\alpha}{\cos\alpha}(x-x_M)$。

直线的参数方程

直线的参数方程

直线的参数方程(1)直线的标准参数方程:经过定点,倾斜角为的直线的参数方程为:(为参数);性质:(2)直线的一般参数方程:过定点,且其斜率为的直线的参数方程为: 性质:(为参数,为为常数,)例1.把y=2x+3化为参数方程。

变式:直线l 的方程:1sin 252cos 25x t y t ì=-ïí=+ïî(t 为参数),那么直线l 的倾斜角( ) A 65° B 25° C 155° D 115°例2. 已知直线l:15x t y ì=+ïíï=-î (t 为参数)与直线m:0x y --=交于P 点, 求点M(1,-5)到点P 的距离.例3:已知直线L过点M(1,1),且倾斜角的余弦值为35,L与圆229x y+=交与A,B,且AB中点为C(1)求L的参数方程(2)求中点C所对应的参数t及C点坐标(3)求|CM|(4)求|AM|(5)求|AB|(6)求|MA|+|MB|(7)求|MA||MB|二、根据t的式子求解1.在平面直角坐标系中,圆的参数方程为(为参数),直线经过点,倾斜角.(Ⅰ)写出圆的标准方程和直线的参数方程;(Ⅱ)设与圆相交于、两点,求的值.2.在直角坐标系xOy中,直线的参数方程为(为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以轴正半轴为极轴)中,圆C的方程为ρ=2sinθ.(1)求圆C的直角坐标方程;(2)设圆C与直线交于点.若点的坐标为(3,),求.3.在直角坐标系中,以原点为极点,以轴正半轴为极轴,圆的极坐标方程为(Ⅰ)将圆的极坐标方程化为直角坐标方程;(Ⅱ)过点作斜率为1直线与圆交于两点,试求的值.4.在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线,过点的直线的参数方程为 (为参数),与分别交于. (Ⅰ)写出的平面直角坐标系方程和的普通方程; (Ⅱ)若成等比数列,求的值.5.已知圆锥曲线(为参数)和定点,、是此圆锥曲线的左、右焦点,以原点为极点,以轴的正半轴为极轴建立极坐标系.(1)求直线的直角坐标方程; (2)经过点且与直线垂直的直线交此圆锥曲线于、两点,求的值.6.在直角坐标系xOy 中,圆C 的方程为22(+6)+=25x y .(Ⅰ)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是(t 为参数),l 与C 交于A ,B 两点,AB =求l 的斜率.圆的参数方程已知圆心为,半径为的圆的参数方程为:(是参数,);1.在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos r q =,0,2p q 轾Î犏臌. (Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.椭圆的参数方程椭圆()的参数方程(为参数)。

直线的参数方程

直线的参数方程

直线的参数方程1.直线的参数方程经过点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数).2.直线的参数方程中参数t 的几何意义(1)参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离.(2)当M 0M →与e (直线的单位方向向量)同向时,t 取正数.当M 0M →与e 反向时,t 取负数,当M 与M 0重合时,t =0.3.直线参数方程的其他形式对于同一条直线的普通方程,选取的参数不同,会得到不同的参数方程.我们把过点M 0(x 0,y 0),倾斜角为α的直线,选取参数t =M 0M 得到的参数方程⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数)称为直线参数方程的标准形式,此时的参数t 有明确的几何意义.一般地,过点M 0(x 0,y 0),斜率k =ba (a ,b 为常数)的直线,参数方程为⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt (t为参数),称为直线参数方程的一般形式,此时的参数t 不具有标准式中参数的几何意义.1.已知直线l 的方程⎩⎪⎨⎪⎧x =1-t sin 25°,y =2+t cos 25°(t 为参数),则直线l 的倾斜角为( )A .65°B .25°C .155°D .115°解析:选D.方程⎩⎪⎨⎪⎧x =1-t sin 25°,y =2+t cos 25°(t 为参数),化为标准形式⎩⎪⎨⎪⎧x =1+t cos 115°,y =2+t sin 115°(t为参数),倾斜角为115°.故选D.2.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1-22t ,y =2+22t (t 为参数),则直线l 的斜率为( )A .1B .-1 C.22D .-22解析:选B.直线l 的普通方程为x +y -1=0,斜率为-1.故选B.3.以t 为参数的方程⎩⎪⎨⎪⎧x =1-12t ,y =-2+32t表示( )A .过点(1,-2)且倾斜角为π3的直线B .过点(-1,2)且倾斜角为π3的直线C .过点(1,-2)且倾斜角为2π3的直线D .过点(-1,2)且倾斜角为2π3的直线解析:选C.化参数方程⎩⎪⎨⎪⎧x =1-12t ,y =-2+32t (t 为参数)为普通方程得y +2=-3(x -1).直线过定点(1,-2),斜率为-3,倾斜角为2π3,故选C.4.过抛物线y 2=4x 的焦点F 作倾斜角为π3的弦AB ,则弦AB 的长是________.解析:由已知焦点F (1,0),又倾斜角为π3,cos π3=12,sin π3=32.所以弦AB 所在直线的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t (t 为参数),代入抛物线的方程y 2=4x ,得⎝ ⎛⎭⎪⎫32t 2=4⎝ ⎛⎭⎪⎫1+12t .整理得3t 2-8t -16=0.设方程两根分别为t 1,t 2,则有⎩⎪⎨⎪⎧t 1+t 2=83,t 1·t 2=-163.由参数t 的几何意义得|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=⎝ ⎛⎭⎪⎫832+643=163.答案:163根据直线的参数方程求直线的倾斜角、斜率已知直线l 的参数方程是⎩⎪⎨⎪⎧x =1+t sin αy =-2+t cos α,(t 为参数),其中实数α的取值范围是⎝ ⎛⎭⎪⎫π2,π.求直线l 的倾斜角. [解] 设直线l 的倾斜角为θ,则由题意知tan θ=cos αsin α=1tan α=tan ⎝ ⎛⎭⎪⎫3π2-α,所以θ=3π2-α.所以直线l 的倾斜角为3π2-α.由直线的参数方程求倾斜角与斜率的方法已知直线l 的参数方程(1)若是标准式⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),则可直接得出倾斜角即方程中的α,否则需化成标准式再求α.(2)若是一般式⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt ,则当a ≠0时,斜率k =b a ,再由tan α=ba 及0≤α<π求出α,当a =0时,显然直线与x 轴垂直,倾斜角为α=π2.(3)若是其他形式,则通过消参化成普通方程,再求斜率及倾斜角.1.若直线的参数方程为⎩⎪⎨⎪⎧x =3+12t y =3-32t,(t为参数),则此直线的斜率为( )A. 3 B .- 3 C .33D .-33解析:选B.直线的参数方程⎩⎪⎨⎪⎧x =3+12t y =3-32t,(t为参数)可化为标准形式⎩⎪⎨⎪⎧x =3+⎝ ⎛⎭⎪⎫-12(-t )y =3+32(-t ),(-t 为参数). 所以直线的斜率为- 3.2.若直线的参数方程为⎩⎪⎨⎪⎧x =2-3ty =1+t ,(t 为参数),求直线的斜率.解:法一:把直线的参数方程⎩⎪⎨⎪⎧x =2-3ty =1+t ,消去参数t 得x +3y -5=0, 所以其斜率k =-13.法二:由⎩⎪⎨⎪⎧x =2-3t y =1+t ,得⎩⎪⎨⎪⎧x -2=-3ty -1=t ,所以k =y -1x -2=t -3t =-13. 直线参数方程中参数几何意义的应用已知过点M (2,-1)的直线l :⎩⎪⎨⎪⎧x =2-t2,y =-1+t2(t 为参数),与圆x 2+y 2=4交于A ,B 两点,求|AB |及|AM |·|BM |.[解] l 的参数方程为⎩⎪⎨⎪⎧x =2-22⎝ ⎛⎭⎪⎫t 2,y =-1+22⎝ ⎛⎭⎪⎫t 2(t 为参数).令t ′=t2,则有⎩⎪⎨⎪⎧x =2-22t ′,y =-1+22t ′(t ′为参数).其中t ′是点M (2,-1)到直线l 上的一点P (x ,y )的有向线段的数量,代入圆的方程x 2+y 2=4,化简得t ′2-32t ′+1=0.因为Δ>0,可设t 1′,t 2′是方程的两根,由根与系数的关系得t 1′+t 2′=32,t 1′t 2′=1.由参数t ′的几何意义得|MA |=|t 1′|,|MB |=|t 2′|,所以|MA |·|MB |=|t 1′·t 2′|=1,|AB |=|t 1′-t 2′|=(t 1′+t 2′)2-4t 1′t 2′=14.(1)在直线参数方程的标准形式下,直线上两点之间的距离可用|t 1-t 2|来求.本题易错的地方是:将题目所给参数方程直接代入圆的方程求解,忽视了参数t 的几何意义.(2)根据直线的参数方程的标准式中t 的几何意义,有如下常用结论: ①直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长l =|t 1-t 2|; ②定点M 0是弦M 1M 2的中点⇒t 1+t 2=0;③设弦M 1M 2中点为M ,则点M 对应的参数值t M =t 1+t 22(由此可求|M 1M 2|及中点坐标).在极坐标系中,已知圆心C ⎝⎛⎭⎪⎫3,π6,半径r =1.(1)求圆的直角坐标方程;(2)若直线⎩⎪⎨⎪⎧x =-1+32t ,y =12t(t 为参数)与圆交于A ,B 两点,求弦AB 的长.解:(1)由已知得圆心C ⎝ ⎛⎭⎪⎫332,32,半径为1,圆的方程为⎝⎛⎭⎪⎫x -3322+⎝ ⎛⎭⎪⎫y -322=1,即x 2+y 2-33x -3y +8=0.(2)由⎩⎪⎨⎪⎧x =-1+32t ,y =12t (t 为参数)得直线的直角坐标方程x -3y +1=0,圆心到直线的距离d =⎪⎪⎪⎪⎪⎪332-332+12=12,所以⎝ ⎛⎭⎪⎫|AB |22+d 2=1,解得|AB |= 3. 直线参数方程的综合应用已知直线l 过定点P (3,2)且与x 轴和y 轴的正半轴分别交于A ,B 两点,求|PA |·|PB |的值为最小时的直线l 的方程.[解] 设直线的倾斜角为α,则它的方程为⎩⎪⎨⎪⎧x =3+t cos α,y =2+t sin α(t 为参数).由A ,B 是坐标轴上的点知y A =0,x B =0,所以0=2+t sin α, 即|PA |=|t |=2sin α,0=3+t cos α,即|PB |=|t |=-3cos α,故|PA |·|PB |=2sin α·⎝ ⎛⎭⎪⎫-3cos α=-12sin 2α. 因为90°<α<180°,所以当2α=270°,即α=135°时, |PA |·|PB |有最小值.所以直线方程为⎩⎪⎨⎪⎧x =3-22t ,y =2+22t (t 为参数),化为普通方程为x +y -5=0.利用直线的参数方程,可以求一些距离问题,特别是求直线上某一定点与曲线交点距离时使用参数的几何意义更为方便.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t (t 为参数).在极坐标系(与直角坐标系xOy 取相同长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求|PA |+|PB |. 解:(1)由ρ=25sin θ,得ρ2=25ρsin θ. 所以x 2+y 2-25y =0,即x 2+(y -5)2=5. (2)法一:直线l 的普通方程为y =-x +3+5,与圆C :x 2+(y -5)2=5联立,消去y ,得x 2-3x +2=0,解之得⎩⎨⎧x =1y =2+5或⎩⎨⎧x =2,y =1+ 5.不妨设A (1,2+5),B (2,1+5). 又点P 的坐标为(3,5), 故|PA |+|PB |=8+2=3 2.法二:将l 的参数方程代入x 2+(y -5)2=5,得⎝⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0,① 由于Δ=(32)2-4×4=2>0. 故可设t 1,t 2是①式的两个实根. 所以t 1+t 2=32,且t 1t 2=4. 所以t 1>0,t 2>0.又直线l 过点P (3,5),所以由t 的几何意义,得|PA |+|PB |=|t 1|+|t 2|=3 2.1.对直线参数方程标准形式中参数t 的理解从参数方程推导的过程中可知参数t 应理解为直线l 上有向线段M 0M →的数量,它的几何意义可以与数轴上点A 的坐标的几何意义作类比,|t |=|M 0M →|代表有向线段M 0M →的长度.另外,将直线的点斜式方程y -y 0=k (x -x 0)改写成y -y 0sin α=x -x 0cos α,其中k =tan α,α为直线倾斜角,则t =y -y 0sin α=x -x 0cos α,则有⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α,从中不难看出直线的普通方程(点斜式)与参数方程(标准式)的联系.2.化直线的参数方程一般式⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt (t 为参数)为标准式⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),由⎩⎪⎨⎪⎧x =x 0+aty =y 0+bt 变形为⎩⎪⎨⎪⎧x =x 0+a a 2+b 2·a 2+b 2ty =y 0+b a 2+b2·a 2+b 2t,令cos α=aa 2+b2,sin α=b a 2+b2,t ′=a 2+b 2 t ,则可得标准式⎩⎪⎨⎪⎧x =x 0+t ′cos αy =y 0+t ′sin α(t ′为参数),其中α为直线的倾斜角,k =tan α=ba 为直线的斜率.1.直线⎩⎪⎨⎪⎧x =1+t cos αy =-2+t sin α,(α为参数,0≤α<π)必过点( )A .(1,-2)B .(-1,2)C .(-2,1)D .(2,-1)解析:选A.由参数方程可知该直线是过定点(1,-2),倾斜角为α的直线.2.已知直线l 1:⎩⎪⎨⎪⎧x =1+3ty =2-4t ,(t 为参数)与直线l 2:2x -4y =5相交于点B ,且点A (1,2),则|AB |=________.解析:将⎩⎪⎨⎪⎧x =1+3t y =2-4t,代入2x -4y =5,得t =12,则B ⎝ ⎛⎭⎪⎫52,0.而A (1,2),得|AB |=52.答案:523.已知曲线C 的极坐标方程为ρ=1,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,建立平面直角坐标系,直线l的参数方程是⎩⎪⎨⎪⎧x =-1+4ty =3t ,(t 为参数),则直线l与曲线C 相交所截得的弦长为________.解析:曲线C的直角坐标方程为x 2+y 2=1,将⎩⎪⎨⎪⎧x =-1+4ty =3t ,代入x 2+y 2=1中得25t 2-8t =0,解得t 1=0,t 2=825.故直线l 与曲线C 相交所截得的弦长l =42+32·|t 2-t 1|=5×825=85.答案:85[A 基础达标]1.直线⎩⎪⎨⎪⎧x =2+3ty =-1+t ,(t 为参数)上对应t =0,t =1两点间的距离是( )A .1B .10C .10D .2 2解析:选B.将t =0,t =1代入参数方程可得两点坐标为(2,-1)和(5,0), 所以d =(2-5)2+(-1-0)2=10.2.若⎩⎪⎨⎪⎧x =x 0-3λ,y =y 0+4λ(λ为参数)与⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)表示同一条直线,则λ与t 的关系是( )A .λ=5tB .λ=-5tC .t =5λD .t =-5λ解析:选C.由x -x 0,得-3λ=t cos α,由y -y 0,得4λ=t sin α,消去α的三角函数,得25λ2=t 2,得t =±5λ,借助于直线的斜率,可排除t =-5λ,所以t =5λ.3.经过点M (1,5)且倾斜角为π3的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A.⎩⎪⎨⎪⎧x =1+12t ,y =5-32t(t 为参数)B .⎩⎪⎨⎪⎧x =1-12t ,y =5+32t (t 为参数)C.⎩⎪⎨⎪⎧x =1-12t ,y =5-32t(t 为参数)D .⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数)解析:选D.该直线的参数方程为⎩⎪⎨⎪⎧x =1+t cos π3,y =5+t sin π3(t 为参数),即⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数),选D.4.若直线⎩⎪⎨⎪⎧x =-2t ,y =-12+at (t 为参数)与直线⎩⎪⎨⎪⎧x =1-s ,y =1+s (s 为参数)互相垂直,那么a 的值等于( )A .1B .-13C .-23D .-2解析:选D.直线⎩⎪⎨⎪⎧x =-2t ,y =-12+at (t 为参数)的斜率为y +12x =-a2,直线⎩⎪⎨⎪⎧x =1-s ,y =1+s (s 为参数)的斜率为y -1x -1=-1,由两直线垂直得-a2×(-1)=-1得a =-2.故选D. 5.对于参数方程⎩⎪⎨⎪⎧x =1-t cos 30°y =2+t sin 30°和⎩⎪⎨⎪⎧x =1+t cos 30°y =2-t sin 30°,下列结论正确的是( )A .是倾斜角为30°的两平行直线B .是倾斜角为150°的两重合直线C .是两条垂直相交于点(1,2)的直线D .是两条不垂直相交于点(1,2)的直线 解析:选B.因为参数方程⎩⎪⎨⎪⎧x =1-t cos 30°,y =2+t sin 30°可化为标准形式⎩⎪⎨⎪⎧x =1+t cos 150°,y =2+t sin 150°,所以其倾斜角为150°.同理,参数方程⎩⎪⎨⎪⎧x =1+t cos 30°,y =2-t sin 30°,可化为标准形式⎩⎪⎨⎪⎧x =1+(-t )cos 150°,y =2+(-t )sin 150°,所以其倾斜角也为150°.又因为两直线都过点(1,2),故两直线重合.6.若直线⎩⎪⎨⎪⎧x =1-2ty =2+3t ,(t 为参数)与直线4x +ky =1垂直,则常数k =________.解析:由直线的参数方程可得直线的斜率为-32,由题意得直线4x +ky =1的斜率为-4k ,故-32×⎝ ⎛⎭⎪⎫-4k =-1,解得k =-6.答案:-67.已知直线l 的斜率k =-1,经过点M 0(2,-1).点M 在直线上,以M 0M →的数量t 为参数,则直线l 的参数方程为____________.解析:因为直线的斜率为-1, 所以直线的倾斜角α=135°. 所以cos α=-22,sin α=22. 所以直线l 的参数方程为⎩⎪⎨⎪⎧x =2-22t y =-1+22t ,(t 为参数).答案:⎩⎪⎨⎪⎧x =2-22t y =-1+22t ,(t 为参数)8.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =1+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ=4⎝ ⎛⎭⎪⎫ρ>0,3π4<θ<5π4,则直线l 与曲线C 的交点的极坐标为________.解析:直线l 的普通方程为y =x +2,曲线C 的直角坐标方程为x 2-y 2=4(x ≤-2),故直线l 与曲线C 的交点为(-2,0),对应极坐标为(2,π).答案:(2,π)9.已知曲线C :ρ=2cos θ,直线l :⎩⎪⎨⎪⎧x =2-t ,y =32+34t ,(t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任一点P 作与l 夹角为45°的直线,交l 于点A ,求|PA |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α,(α是参数).直线l 的普通方程为3x +4y -12=0.(2)曲线C 上任意一点P (1+cos α,sin α)到l 的距离为d =15|3cos α+4sin α-9|,则|PA |=d sin 45°=2⎪⎪⎪⎪⎪⎪sin(α+φ)-95,且tan φ=34. 当sin(α+φ)=-1时,|PA |取得最大值1425; 当sin(α+φ)=1时,|PA |取得最小值425. 10.(2016·高考全国卷甲)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44. 由|AB |=10得cos 2α=38,tan α=±153. 所以l 的斜率为153或-153. [B 能力提升]11.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为( )A .1B .2C .3D .4 解析:选C.直线l :⎩⎪⎨⎪⎧x =t ,y =t -a消去参数t 后得y =x -a . 椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ消去参数φ后得x 29+y 24=1. 又椭圆C 的右顶点为(3,0),代入y =x -a 得a =3.12.给出两条直线l 1和l 2,斜率存在且不为0,如果满足斜率互为相反数,且在y 轴上的截距相等,那么直线l 1和l 2叫做“孪生直线”.现在给出4条直线的参数方程如下:l 1:⎩⎪⎨⎪⎧x =2+2t ,y =-4-2t (t 为参数); l 2:⎩⎪⎨⎪⎧x =3-22t ,y =4-22t (t 为参数); l 3:⎩⎪⎨⎪⎧x =1+t ,y =1-t (t 为参数); l 4:⎩⎪⎨⎪⎧x =6+22t ,y =8+22t (t 为参数). 其中能构成“孪生直线”的是________.解析:根据条件,两条直线构成“孪生直线”意味着它们的斜率存在且不为0,且互为相反数,且在y 轴上的截距相等,也就是在y 轴上交于同一点.对于本题,首先可以判断出其斜率分别为-1,1,-1,1,斜率互为相反数条件很明显.再判断在y 轴上的截距,令x =0得出相应的t 值,代入y 可得只有直线l 3和直线l 4在y 轴上的截距相等,而其斜率又恰好互为相反数,可以构成“孪生直线”.答案:直线l 3和直线l 413.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l 的参数方程为:⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,(t 为参数),直线l 与曲线C 分别交于M ,N 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)若|PM |,|MN |,|PN |成等比数列,求a 的值.解:(1)曲线的极坐标方程变为ρ2sin 2θ=2aρcos θ,化为直角坐标方程为y 2=2ax ;直线⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,(t 为参数)化为普通方程为y =x -2. (2)将⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,代入y 2=2ax 得 t 2-22(4+a )t +8(4+a )=0.则有t 1+t 2=22(4+a ),t 1t 2=8(4+a ),因为|MN |2=|PM |·|PN |,所以(t 1-t 2)2=t 1·t 2,即(t 1+t 2)2-4t 1t 2=t 1t 2,(t 1+t 2)2-5t 1t 2=0,故8(4+a )2-40(4+a )=0,解得a =1或a =-4(舍去).故所求a 的值为1.14.(选做题)以直角坐标系原点O 为极点,x 轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =12+t cos αy =t sin α,(t 为参数,0<α<π),曲线C的极坐标方程ρ=2cos θsin 2θ. (1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,当α变化时,求|AB |的最小值.解:(1)由ρ=2cos θsin 2θ得ρ2sin 2θ=2ρcos θ,所以曲线C 的直角坐标方程为y 2=2x . (2)将直线l 的参数方程代入y 2=2x ,得t 2sin 2α-2t cos α-1=0,设A ,B 两点对应的参数分别为t 1,t 2,则t 1+t 2=2cos αsin 2α,t 1·t 2=-1sin 2α, 所以|AB |=|t 1-t 2| =(t 1+t 2)2-4t 1t 2 =4cos 2αsin 4α+4sin 2α=2sin 2α, 当α=π2时,|AB |取得最小值2.。

直 线的参数方程

直 线的参数方程

直线的参数方程
直线的参数方程:
1、定义:直线的参数方程是一种表示直线的数学表达式,它是由一个普通方程式参数化而来,能够用简单的数学公式描述一条直线。

2、形式:直线的普通方程式为Ax+By+C=0,参数方程式表示为
\begin{cases}x=at+b\\y=ct+d\end{cases},其中a,b,c,d是常数,这条线的开始点和终止点分别是A(b,d),B(a+b,c+d),这条线的斜率为
m=\frac{c}{a}。

3、应用:直线的参数方程式可以用来解决一些数学的实际问题,如确定直线的斜率、表示直线空间平面内的位置关系以及描述两点之间的距离、判断两点间的方位以及计算直线上任意一点到直线两端点的距离等等。

4、解法:可以通过以下方法求解参数方程式:
(1)找出直线上的两点A、B;
(2)计算出直线的斜率m=\frac{y_2-y_1}{x_2-x_1};
(3)把斜率带入参数方程式,求出a和c的值,即:a=m, c=-m;(4)用A点求出b和d的值,即:b= x_1, d= y_1;
(5)完成求解。

直线的标准参数方程

直线的标准参数方程

直线的标准参数方程直线是我们在几何学中经常接触到的一种基本图形,而直线的参数方程是描述直线的一种重要方式。

在本文中,我们将详细介绍直线的标准参数方程及其应用。

首先,我们来看一下直线的标准参数方程是如何定义的。

对于直线上的任意一点P(x, y),我们可以用参数t来表示其坐标,即P(x, y) = P(x(t), y(t))。

而直线的标准参数方程可以表示为:x(t) = x1 + at。

y(t) = y1 + bt。

其中,(x1, y1)是直线上的一点,而a和b分别是直线的方向向量。

这样,我们就可以用参数t来表示直线上的任意一点,这就是直线的标准参数方程。

接下来,我们来看一下直线的标准参数方程的应用。

首先,我们可以通过参数方程方便地表示直线上的点。

当我们知道直线上的一点和方向向量时,直接代入参数t就可以得到直线上的任意一点的坐标。

这在计算直线上的点的坐标时非常方便。

其次,直线的标准参数方程还可以用于表示直线的方程。

我们知道,一般情况下直线的方程可以表示为Ax + By + C = 0,而通过参数方程我们也可以将直线的方程表示为x = x1 + at, y = y1 + bt的形式。

这样,我们就可以用参数方程来表示直线的方程,这对于一些特定问题的求解非常有用。

此外,直线的标准参数方程还可以用于表示直线的向量方程。

我们知道,直线的向量方程可以表示为r = a + tb,其中r是直线上的一点的位置向量,a是直线上的一点的位置向量,b是直线的方向向量。

而直线的标准参数方程正是直线的向量方程的一种特殊形式,通过参数方程我们也可以方便地得到直线的向量方程。

综上所述,直线的标准参数方程是描述直线的一种重要方式,它可以用于表示直线上的点、直线的方程以及直线的向量方程。

通过参数方程,我们可以更方便地进行直线相关问题的求解,这对于我们理解直线的性质和应用也非常有帮助。

总之,直线的标准参数方程是我们在几何学中经常接触到的一个重要概念,它有着广泛的应用价值。

直线的参数方程

直线的参数方程
等。
在物理学中的应用
在物理学中,直线的参数方程可 以用于描述物体的运动轨迹。
通过将物体的位置、速度、加速 度等物理量表示为时间的函数, 可以方便地研究物体的运动规律
和动力学特性。
直线的参数方程在物理学中的应 用还涉及到一些与直线运动相关 的课题,如简谐振动、弹性碰撞
等。
在工程中的应用
在工程中,直线的参数方程被广泛应用于机器视觉、图像处理等领域。
通过求解参数`t`的值,可以得 到直线上任意一点的坐标。
直线参数方程的应用场景
直线参数方程在物理学、工程学、计 算机图形学等领域都有广泛的应用。
在工程学中,直线参数方程可以用于 绘制直线图,以及在机器视觉中描述 物体的轮廓。
在物理学中,直线参数方程可以用于 描述质点的运动轨迹,以及在电路中 描述电流的变化情况。
网络学习资源与在线课程
中国大学MOOC:微分几何与拓扑学 爱课程:解析几何与微分几何
学堂在线:微分几何与拓扑学
相关研究论文与学术期刊
《参数曲线与曲面的几何性质研究》王志伟
《微分几何在函数论中的应用》- 陈省 《参数方程在几何中的应用》- 苏步青 身
THANKS FOR WATCHING
感谢您的观看
通过直线的参数方程,可以方便地描述图像中的直线段,实现图像分割 、边缘检测等任务。
直线的参数方程还可以用于工程设计中的几何建模,简化复杂形状的描 述和计算。
05 直线参数方程的扩展阅读 与参考文献
相关教材与参考书目
《解析几何与微分几 何》- 顾樵
《高等数学》- 同济 大学数学系
《微分几何》- 陈维 桓
当参数t变化时,直线上对应的点也会 发生变化,从而可以描述直线的运动 或变化。

直线的标准参数方程

直线的标准参数方程

直线的标准参数方程直线是我们在数学中经常接触到的一种基本几何图形,它具有很多重要的性质和特点。

在平面几何中,直线可以通过不同的方式来描述,其中一种常见的描述方式就是参数方程。

在本文中,我们将讨论直线的标准参数方程及其相关知识。

首先,我们来了解一下什么是参数方程。

参数方程是一种用参数表示的函数方程,它可以用来描述一条曲线或者曲面。

在平面几何中,我们可以利用参数方程来描述直线的位置和方向。

对于直线来说,我们通常会用到两种参数方程,点向式参数方程和标准参数方程。

在这里,我们重点讨论标准参数方程。

假设直线上有一点P(x, y),并且直线的方向向量为\vec{v}=(a, b),其中a和b 不全为0。

那么,直线的标准参数方程可以表示为:\begin{cases}。

x=x_0+at \\。

y=y_0+bt。

\end{cases}。

其中(x_0, y_0)为直线上的一点,t为参数。

通过这个参数方程,我们可以得到直线上任意一点的坐标。

当参数t取不同的值时,我们可以得到直线上不同位置的点的坐标。

这就是参数方程的作用所在,它可以帮助我们描述直线上所有的点。

接下来,我们来看一个具体的例子。

假设直线L上有一点P(1, 2),并且直线的方向向量为\vec{v}=(3, 4)。

那么,直线L的标准参数方程可以表示为:\begin{cases}。

x=1+3t \\。

y=2+4t。

\end{cases}。

通过这个参数方程,我们可以得到直线L上任意一点的坐标。

当参数t取不同的值时,我们可以得到直线L上不同位置的点的坐标。

这样,我们就可以用参数方程来描述直线L的位置和方向了。

除了上面讨论的直线的标准参数方程,我们还可以用其他方式来描述直线,比如点斜式方程、两点式方程等。

每种描述方式都有其独特的特点和适用范围。

在实际问题中,我们可以根据具体的情况选择合适的描述方式来描述直线。

总之,直线的标准参数方程是描述直线位置和方向的重要工具。

通过参数方程,我们可以方便地得到直线上任意一点的坐标,从而更好地理解和应用直线的相关知识。

直线的参数方程

直线的参数方程

直线的参数方程
直线是数学中最著名的几何体,在几何学和数学中,几乎没有比直线更重要的几何体。

直线有着许多有趣的性质,这些性质被称为“参数方程”。

参数方程定义了一条直线的性质,并用来解决复杂的数学问题。

参数方程的定义是:一条直线的参数方程是一个二元一次方程,其形式为:Ax + By + C = 0。

其中A,B和C是常数,x和y 为坐标变量。

参数方程的根据直线的特征而定义的。

例如,如果一条直线的斜率是m,那么它的参数方程为:y-y1= m(x-x1)。

其中m=斜率,x1和y1为直线上的某一点的坐标。

如果一条直线经过坐标原点,其参数方程为:y=mx,其中m为斜率。

如果一条直线的斜率为无穷大,则它的参数方程为:x=c,其中c为直线的一个游离参数。

当一条直线的斜率为零时,它的参数方程为:y=c,其中c为直线的另一个游离参数。

因此,参数方程定义了一条直线在坐标系中的位置,并用它可以描述任何一条直线在数学上的特征。

参数方程在许多方面都很有用,它不仅可以描述直线,而且可以帮助定义和解决复杂的几何问题或数学问题。

参数方程可以帮助研究者求解复杂的几何问题,例如求解两条直线的交点、求解两条
直线的位置关系等。

此外,参数方程还可以帮助解决复杂的数学问题,例如求解一元多次方程、求解曲线积分等。

总而言之,参数方程是一种强大而有效的数学工具,它可以帮助研究者解决各类几何和数学问题。

它可以帮助研究者更有效地描述和研究直线的各种性质和特征。

因此,参数方程在几何学和数学中有着十分重要的地位,是几何学和数学研究的重要工具和理论基础。

直线的标准参数方程

直线的标准参数方程

直线的标准参数方程直线是平面几何中最基本的图形之一,它具有许多重要的性质和特点。

在直角坐标系中,直线可以通过不同的方程来描述,其中标准参数方程是一种常用的描述方法。

本文将详细介绍直线的标准参数方程,包括其定义、性质和应用。

一、标准参数方程的定义。

直线的标准参数方程是指通过直线上任意一点到直线上某一固定点的距离与该点到另一固定点的距离之比为常数的方程。

设直线上某一点为P(x,y),直线上固定点为A(x₁,y₁)和B(x₂,y₂),则直线的标准参数方程可以表示为:(x x₁)/(x₂ x₁) = (y y₁)/(y₂ y₁)。

其中(x,y)为直线上任意一点的坐标。

二、标准参数方程的性质。

1. 直线的标准参数方程是直线的一般方程的一种特殊形式,通过标准参数方程可以方便地求出直线的斜率和截距。

2. 标准参数方程中的参数是直线上任意一点的坐标,通过参数的取值范围可以确定直线的位置和方向。

3. 直线的标准参数方程可以方便地表示直线的交点、垂直平分线、角平分线等相关性质。

三、标准参数方程的应用。

1. 在平面几何中,直线的标准参数方程可以用于求解直线的方程和性质,进而解决与直线相关的几何问题。

2. 在工程和物理学中,标准参数方程可以用于描述直线运动的轨迹和方向,为实际问题的分析和求解提供便利。

3. 在计算机图形学和计算机辅助设计领域,标准参数方程可以用于描述和绘制直线,实现图形的生成和变换。

四、总结。

直线的标准参数方程是描述直线的一种重要方法,它具有简洁、直观的特点,适用于多个领域的问题求解。

通过标准参数方程,我们可以方便地求解直线的性质、应用于实际问题的分析和计算,是平面几何和相关学科中不可或缺的重要工具。

以上就是关于直线的标准参数方程的介绍,希望对您有所帮助。

如果您对此有任何疑问或者补充,欢迎留言讨论。

直线参数方程标准形式

直线参数方程标准形式

直线参数方程标准形式直线是平面上的一种基本几何图形,它具有许多重要的性质和特点。

在解析几何中,我们常常需要描述直线的位置和性质,因此需要引入直线的参数方程标准形式来进行描述和分析。

本文将从直线的参数方程入手,介绍直线参数方程的标准形式及其相关知识。

一、直线的参数方程。

直线的参数方程是指用参数表示直线上的任意一点的坐标的方程。

设直线上一点的坐标为(x, y),直线的参数方程可以表示为:x = x0 + at。

y = y0 + bt。

其中(x0, y0)为直线上一点的已知坐标,a和b为常数,t为参数。

二、直线参数方程的标准形式。

直线的参数方程有多种形式,其中最常用的是标准形式。

直线参数方程的标准形式可以表示为:x = x0 + t (x1 x0)。

y = y0 + t (y1 y0)。

其中(x0, y0)和(x1, y1)分别为直线上的两个已知点的坐标,t为参数。

三、直线参数方程标准形式的性质。

1. 直线参数方程标准形式中(x1 x0)和(y1 y0)分别表示直线在x轴和y轴上的方向向量。

2. 当t取不同的值时,直线上的点的坐标也会随之变化,从而描述了直线上的所有点。

3. 当t取0时,得到直线上的一个已知点的坐标;当t取1时,得到直线上另一个已知点的坐标。

4. 直线参数方程标准形式可以简洁地描述直线的位置和方向,便于分析和计算。

四、直线参数方程标准形式的应用。

1. 在解析几何中,直线参数方程标准形式可以方便地描述直线的位置和方向,从而进行直线的性质分析和计算。

2. 在物理学和工程学中,直线参数方程标准形式可以用于描述物体的运动轨迹和位置变化。

3. 在计算机图形学中,直线参数方程标准形式可以用于描述和绘制直线。

五、总结。

直线参数方程标准形式是描述直线位置和方向的重要工具,它简洁而准确地描述了直线上的所有点的坐标。

通过学习和掌握直线参数方程标准形式,我们可以更好地理解和应用直线的性质和特点,为解决实际问题提供了重要的数学工具。

直线的参数方程

直线的参数方程

02
通过直线的参数方程,可以方便地表示直线上的点,以及与直线平行的向量。
03
直线的参数方程在极坐标系中也可以表示为`r=r0+λcosθ`或`r=r0+λsinθ`,其中`r0`是原点到直线的距离,λ是直线的长度。
直线参数方程在物理中的应用
在物理学中,直线的参数方程可以用来描述质点的运动轨迹。
对于匀速直线运动,其参数方程可以表示为`x=x0+vt, y=y0+vt`,其中`v`是速度,`t`是时间。
斜截式
对于斜截式直线,参数方程可以表示为 `x = ty + c`, `y = ts + b`,其中t为参数,b和c分别为y轴工程中,直线参数方程被广泛应用于机械设计、土木工程等领域。例如,在机械设计中,直线参数方程可以用来描述物体的运动轨迹。
工程应用
在数学建模中,直线参数方程被用来描述和分析直线的性质和特点。例如,在解析几何中,直线参数方程可以帮助我们更好地理解直线的方向、位置和形状等特性。
直线参数方程在解析几何、物理学、工程学等领域都有广泛的应用。例如,在解析几何中,直线参数方程可以用于求解线段的中点和交点等;在物理学中,直线参数方程可以用于描述粒子的运动轨迹;在工程学中,直线参数方程可以用于绘制复杂的曲线和曲面。
直线参数方程的概念
直线参数方程的优点
直线参数方程的应用
进一步探索直线参数方程的性质
在工程中,直线的参数方程可以用来描述机构的运动轨迹。
直线参数方程的推导
03
03
直线参数方程的意义
直线参数方程将直线的几何形式转化为代数形式,便于对直线进行解析和计算。
使用向量推导直线参数方程
01
向量与参数方程的关系

直线的参数方程

直线的参数方程

直线的参数方程直线是平面上的一种线形图形,由无数个点组成。

在平面直角坐标系下,直线通常可以用线段的两个端点来确定,或者可以用点斜式和斜截式来表示。

另外,还有一种常见的表示直线的方法是使用参数方程。

参数方程是一种通过引入一个参数作为自变量来表示一个二维曲线的方法。

x=x₀+a·t,y=y₀+b·t,其中(x₀,y₀)是直线上的一个点,t是参数,a和b是与直线的方向相关的参数。

参数方程的优点之一是可以直接通过给定的参数值来求解直线上的任意一点的坐标。

另外,参数方程还可以方便地描述直线的方向和倾斜角度。

下面将分别介绍直线的参数方程以及如何根据已知信息确定参数值的方法。

1.斜率-截距形式的直线方程假设直线方程为y = mx + c,我们可以将x表示为t的函数:x=t,y = mt + c.这样,我们就得到了直线的参数方程。

其中,t是参数,(x,y)是直线上的任意一点。

参数方程的参数a和b分别为1和m。

2.两点间的直线方程首先,我们可以求出直线的方向向量,即从点A到点B的向量。

该向量的分量为:a=x₂-x₁,b=y₂-y₁.然后,我们可以选择一个点作为原点,例如A点,将该点的坐标作为参数方程中的参数值:x₀=x₁,y₀=y₁.最后x=x₀+a·t=x₁+(x₂-x₁)·t,y=y₀+b·t=y₁+(y₂-y₁)·t.3.一般直线方程的参数方程假设直线方程为Ax+By+C=0,我们可以将x表示为t的函数:x=x₀+a·t,y=y₀+b·t.在这种情况下,参数方程的参数a和b可以表示为:a=-B,b=A.其中,(x₀,y₀)是直线上的一个点,t是参数。

总结起来,直线的参数方程可以用以上三种常见形式表示。

在给定直线的已知信息之后,我们可以根据特定的情况选择合适的参数方程形式,并确定参数值。

通过确定参数值,我们可以方便地求解直线上的任意一点的坐标,也可以直观地描述直线的方向和倾斜角度。

参数方程最全版

参数方程最全版

参数方程1.直线的参数方程(1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是(t 为参数) (2)一般式 :过定点P 0(x 0,y 0)斜率k=tg α=的直线的参数方程是 (t 不参数) 2.圆的参数方程圆心在(a,b),半径为r 的圆的参数方程是(φ是参数)a,b 是圆的圆心坐标,半径为r 的圆,标准方程为:3.椭圆椭圆(a >b >0)的参数方程是(φ为参数)得出圆的方程4.极坐标互化公式常用的公式:sin(α±β)=sin αcos β±cos αsin β.⎩⎨⎧+=+=a t y y at x x sin cos 00ab⎩⎨⎧+=+=bt y y atx x 00⎩⎨⎧+=+=ϕϕsin cos r b y r a x ()()222r b y a x =-+-12222=+by a x ⎩⎨⎧==ϕϕsin cos b y a x 12222=+by a x ⎩⎨⎧=='sin cos θρθρy x ⎪⎩⎪⎨⎧≠=+=)0(222x x ytg y x θρcos(α±β)=cos αcos β∓sin αsin β.1、已知直线的参数方程为,圆C 的参数方程为. (1)求直线和圆C 的普通方程; (2)若直线与圆C 有公共点,求实数的取值范围.2.. 在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y2=4x 相交于A ,B 两点,求线段AB 的长.3在平面直角坐标系xOy 中, 直线的参数方程为(t 为参数),曲线C 的参数方程为 (为参数).试求直线和曲线C 的普通方程, 并求出它们的公共点的坐标.4.在直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为,直线的极坐标方程为,且点A 在直线上。

直线的参数方程及应用

直线的参数方程及应用

直线的参数方程及应用基础知识点击: 1、 直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,)P 0P=t ∣P 0P ∣=t为直线上任意一点.(2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2,则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t1∣(3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=221t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<02、 直线参数方程的一般式过点P 0(00,y x ),斜率为abk =的直线的参数方程是⎩⎨⎧+=+=bty y atx x 00 (t 为参数)点击直线参数方程:一、直线的参数方程问题1:(直线由点和方向确定)求经过点P 0(00,y x ),倾斜角为α的直线l 的参数方程. ⎩⎨⎧+=+=ααsin cos 00t y y t x x 是所求的直线l 的参数方程∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P|=|t|① 当t>0时,点P 在点P 0的上方;② 当t =0时,点P 与点P 0重合; ③ 当t<0时,点P 在点P 0的下方; 特别地,若直线l 的倾斜角α=0时,直线l 的参数方程为⎩⎨⎧=+=00y y tx x④ 当t>0时,点P 在点P 0的右侧;⑤ 当t =0时,点P 与点P 0重合; ⑥ 当t<0时,点P 在点P 0的左侧; 问题2:直线l 上的点与对应的参数t 是一一对应关系.问题3:P 1、P 2为直线l 上两点所对应的参数分别为t 1、t 2 ,则P 1P 2=?,∣P 1P 2∣=?P 1P 2=P 1P 0+P 0P 2=-t 1+t 2=t 2-t 1,∣P 1P 2∣=∣ t 2-t 1∣问题4:一般地,若P 1、P 2、P 3是直线l 上的点, 所对应的参数分别为t 1、t 2、t 3, P 3为P 1、P 2的中点则t 3=221t t + 基础知识点拨:1、参数方程与普通方程的互化 例1:化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意 义,说明∣t ∣的几何意义. 点拨:求直线的参数方程先确定定点,再求倾斜角,注意参数的几何意义.例2⎩⎨⎧+=+-= t 313y tx (t.2中,参数t 的1l 的参数方程 例301,3),倾斜角yx ,为3π,判断方程⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 233211(t为参数)和方程⎩⎨⎧+=+= t 331y t x (t 为参数)是否为直线l 的参数方程?如果是直线l 的参数方程,指出方程中的参数t 是否具有标准形式中参数t 的几何意义.点拨:直线的参数方程不唯一,对于给定的参数方程能辨别其标准形式,会利用参数t 的几何意义解决有关问题.问题5:直线的参数方程⎩⎨⎧+=+= t331y tx 能否化为标准形式?是可以的,只需作参数t 的代换.(构造勾股数,实现标准化)2、直线非标准参数方程的标准化 一般地,对于倾斜角为α、过点M 0(00,y x )直线l 参数方程的一般式为,. 例4:写出经过点M 0(-2,3),倾斜角为43π的直线l 的标准参数方程,并且 求出直线l 上与点M 0相距为2的点的坐标.点拨:若使用直线的普通方程利用两点间的距离公式求M 点的坐标较麻烦, 而使用直线的参数方程,充分利用参数t 的几何意义求M 点的坐标较 容易.例5:直线⎩⎨⎧-=+=20cos 420sin 3t y t x (t 为参数)的倾斜角 .基础知识测试1:1、 求过点(6,7),倾斜角的余弦值是23的直线l 的标准参数方程.2、 直线l 的方程:⎩⎨⎧+=-=25cos 225sin 1t y t x (t 为参数),那么直线l 的倾斜角( )A 65°B 25°C 155°D 115°3、 直线⎪⎪⎩⎪⎪⎨⎧+-=-=ty tx 521511(t 为参数)的斜率和倾斜角分别是( )A) -2和arctg(-2) B) -21和arctg(-21)C) -2和π-arctg2 D) -21和π-arctg 21 4、 已知直线⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)上的点A 、B 所对应的参数分别为t 1,t 2,点P 分线段BA 所成的比为λ(λ≠-1),则P 所对应的参数是 .5、直线l 的方程: ⎩⎨⎧+=+=bty y atx x 00 (t 为参数)A 、B 是直线l 上的两个点,分别对应参数值t 1、t 2,那么|AB|等于( )A ∣t 1-t 2∣B 22b a +∣t 1-t 2∣C 2221ba t t +- D ∣t 1∣+∣t 2∣6、 已知直线l :⎩⎨⎧+-=+= t 351y tx (t 为参数)与直线m :032=--y x 交于P 点,求点M(1,-5)到点P 的距离. 二、直线参数方程的应用 例6:已知直线l 过点P (2,0),斜率为34,直线l和抛物线x y 22=相交于A 、B 两点,设线段AB 的中点为M,求:(1)P 、M 两点间的距离|PM|;(2)M 点的坐标; (3)线段AB 的长|AB| 点拨:利用直线l 的标准参数方程中参数t 的几何意义,在解决诸如直线l 上两点间的距离、直线l 上某两点的中点以及与此相关的一些问题时,比用直线l 的普通方程来解决显得比较灵活和简捷. 例7:已知直线l 经过点P (1,-33),倾斜角为3π,(1)求直线l 与直线l ':32-=x y 的交点Q 与P 点的距离| PQ|;(2)求直线l 和圆22y x +=16的两个交点A ,B 与P 点的距离之积.点拨:利用直线标准参数方程中的参数t 的几何意义解决距离问题、距离的乘积(或商)的问题,比使用直线的普通方程,与另一曲线方程联立先求得交点坐标再利用两点间的距离公式简便. 例8:设抛物线过两点A(-1,6)和B(-1,-2),对称轴与x 轴平行,开口向右, 直线y=2x +7被抛物线截得的线段长是410,求抛物线方程.点拨:(1)(对称性) 由两点A(-1,6)和B(-1,-2)的对称性及抛物线的对称性质,设出抛物线的方程(含P 一个未知量,由弦长AB 的值求得P ).(2)利用直线标准参数方程解决弦长问题.此题也可以运用直线的普通方程与抛物线方程联立后,求弦长。

第2讲3直线的参数方程课件人教新课标

第2讲3直线的参数方程课件人教新课标

应将t=0,t=1分别代入方程得到两点坐标(2,-1)和(5,0),由两点间距
离公式来求出距离,
即 2-52+-1-02= 10.
12345
解析 答案
2.直线
x=-3+tcos y=2+tsin α
α,(t为参数,α=Fra bibliotekπ 6
)不经过
A.第一象限
B.第二象限
C.第三象限
√D.第四象限
12345
答案
3.若直线 l1:yx==21+-2ktt, (t 为参数)与直线 l2:xy==s1,-2s (s 为参数)垂直, 则 k=_-__1_. 解析 由-2k·(-2)=-1,得 k=-1.
解答
类型三 直线参数方程的综合应用
x=-4+ 22t,
例4
已知曲线
C1:y=
2 2t
(t 为参数),C2:xy= =-1+2+ sincθos θ,
(θ 为参数).
(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;
解答
(2)若曲线C1和C2相交于A,B两点,求|AB|.
解答
引申探究 1.若点P(-4,0)是曲线C1上的定点,本例其它条件不变,求|PA|+|PB| 的值.
解答
2.在探究 1 条件不变的情况下,求|P1A|+|P1B|的值.
解 由探究 1 知,t1+t2=3 2,t1·t2=4,
所以|PA|+|PB|=|t1+t2|=3 2,
|PA|·|PB|=|t1t2|=4.
所以|P1A|+|P1B|=|P|PAA|+|·|P|PBB| |=3
4
2 .
解答
反思与感悟 (1)参数方程中一个确定的参数值对应着曲线上一个确定的 点,由参数方程求曲线交点坐标时,可以通过方程组求出参数值,再根 据参数值得出交点坐标. (2)解题时如果涉及求直线被曲线截得的线段的长度或者直线上的点与曲 线交点之间线段长度的和、乘积等,都可以利用直线参数方程中参数的 几何意义加以解决.

直线的参数方程及弦长公式概要

直线的参数方程及弦长公式概要

直线的参数方程及弦长公式概要x=ty = kt + b其中,t为参数,可以取任意实数。

参数方程的优点在于可以很方便地表示直线上的每一个点的位置坐标,同时也可以方便地求出直线的弦长。

弦长是指直线上两个点之间的距离。

假设直线上两个点的位置坐标分别为(x1,y1)和(x2,y2),则直线的弦长公式为:L=√((x2-x1)²+(y2-y1)²)其中,L为弦长。

接下来,我们将详细讲解直线的参数方程和弦长公式。

1.直线的参数方程对于直线y = kx + b,我们可以给x赋予任意实数作为参数,然后利用斜率k和截距b来求出对应的y坐标。

这样,我们就可以表示直线上的每一个点的位置坐标。

例如,对于直线y=2x+3来说,可以通过参数方程表示为:x=ty=2t+3这里的t可以取任意实数,通过取不同的t值,我们就可以得到直线上的不同点的位置坐标。

2.弦长公式弦长是指直线上两个点之间的距离。

对于直线上的两个点(x1,y1)和(x2,y2),我们可以利用勾股定理求出两点之间的距离,并用弦长公式进行表示。

弦长公式为:L=√((x2-x1)²+(y2-y1)²)其中,L为弦长,也就是两个点之间的距离。

例如,对于直线上的两个点A(1,2)和B(5,6),可以利用弦长公式求出两点之间的距离:L_AB=√((5-1)²+(6-2)²)=√(4²+4²)=√(16+16)=√32因此,点A和点B之间的距离为√323.参数方程与弦长公式的关系参数方程和弦长公式是在不同应用场景下的数学工具,它们之间没有直接的关系。

参数方程用于表示直线上的每一个点的位置坐标,而弦长公式用于计算直线上两个点之间的距离。

然而,在一些情况下,参数方程可以为求解弦长提供便利。

例如,当直线的两个端点的位置坐标已知,并且通过参数方程可以表达出直线上的其他点的位置坐标时,我们可以利用参数方程求解弦长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

参数t的几何意义吗?
uuuuuur r uuuuuur r
解: Q M0M te M0M te
r
r
y
又Q e是单位向量, e 1
M
uuuuuur r
M0M t e t
M0
r
所以,直线参数方程中参
e
数t的绝对值等于直线上 动点M到定点M0的距离.
O
x
|t|=|M0M|
uuuuuur r Q M0M te
AB 1 k2 ( x1 x2 )2 4x1 x2 2 5 10
由(*)解得:x1
1 2
5 ,x2
1 2
5
y1
3 2
5 ,y2
3 2
5
记直线与抛物线的交点坐标A( 1 5 , 3 5 ),B( 1 5 , 3 5 )
2
2
2
2
则 MA MB (1 1 5 )2 (2 3 5 )2 (1 1 5 )2 (2 3 5 )2
r
(x,
y)
(
x0
y0
)
(x x0, y
y0 )
设re是直线l的单位方向向量,则
e (cos,sin )
y
M(x,y)
er(cos , sin )
uuuuuur r
因为uuuMuuu0rM
// e,所以存在实数t r
R,
使M0M te,即
M0(x0,y0)
(x x0, y y0) t(cos,sin)
(1)

线
x y
3 t sin20(0 t为 t cos 200








(B)
A.200 B.700 C .1100 D.1600
(2) 直 线x
y
1
x 1
0的







y
2 2
2
t
2 (t为参数)
t

直线l的参数方程中
此时,若t>0,则 M0M 的方向向上;
若t<0,则 M0M 的点方向向下; 若t=0,则M与点M0重合.
y M(x,y)
r M0(x0,y0) e
O
x



x y
y x2
1
如0 果得在:x学2 习x 直1 线0 的参(数*) 方程之前,你会怎样
由韦达求定解理得本:题x1呢 x?2 1,x1 x2 1
•t只有在标准式中才有上述几何意义
设A,B为直线上任意两点,它们所对应的参 数值分别为t1,t2.
(1)|AB|=t1 t2
(2)M是AB的中点,求M对应的参
t1 t2 2
小结:
1.直线参数方程的标准式
x=x0
y
y0
t cos t sin
(t是参数)
|t|=|M0M|
2.参数直线方程的应用
求(线段)弦长
作业:
书面作业:习题2.3 第1题
课后思考:结合课本第26页习题第2题,思考:直线的 参数方程唯一吗?和本节课所学的参数方程
x=x0
y
y0
t cos t sin
(t是参数)
对比要注意什么?参数t的意义还一样吗?
直线的参数方程
课题引入
1. 在平面直角坐标系中,确定一条直线的几 何条件是什么?
一个定点和倾斜角可惟一确定一条直线
3. 根据直线的这个几何条件,你认为应当怎 样选择参数?
直线的参数方程 的推导
问题:已知一条直线过点M0(x0,y0 ),倾斜角,
在直线上任取一点M(x,y),则
uuuuuur
M
0
M
O
x
x x0 t cos, y y0 t sin
即,x x0 t cos, y y0 t sin
直线的参数方程(标准式)

线




程xy
x0 y0
t t
cos sin
(t为

数)
思考:
(1)直线的参数方程中哪些是常量?哪些是变量? (2)参数t的取值范围是什么? (3)该参数方程形式上有什么特点?
2
2
2
2
3 5 3 5 4 2
(1)如何写出直线l的参数方程?
(2)如何求出交点A,B所对应的参数t1,t2 ?
(3)
AB、MA
MB
与t1,t
有什么关系?
2
···· y
B A M(x,y)
M0(x0,y0)
x
y
x0 y0
t cos t sin
(t是参数)
O
x
•t表示有向线段M0P的数量。|t|=| M0M|
相关文档
最新文档