《不等式的性质》教案1doc初中数学

合集下载

不等式的基本性质初中教案

不等式的基本性质初中教案

不等式的基本性质初中教案教学目标:1. 理解不等式的概念,掌握不等式的基本性质。

2. 能够运用不等式的基本性质解决实际问题。

教学重点:1. 不等式的定义和基本性质。

2. 运用不等式的基本性质解决实际问题。

教学准备:1. 教学课件或黑板。

2. 练习题。

教学过程:一、导入(5分钟)1. 引入不等式的概念,通过实际例子让学生感受不等式的存在。

2. 提问学生:不等式和等式有什么区别?二、不等式的基本性质(15分钟)1. 介绍不等式的基本性质,包括:a. 不等式的两边同时加上或减去同一个数,不等号的方向不变。

b. 不等式的两边同时乘以或除以同一个正数,不等号的方向不变。

c. 不等式的两边同时乘以或除以同一个负数,不等号的方向改变。

2. 通过示例和练习,让学生掌握不等式的基本性质。

三、运用不等式的基本性质解决实际问题(15分钟)1. 给出实际问题,让学生运用不等式的基本性质解决。

2. 引导学生思考如何将实际问题转化为不等式问题。

3. 通过示例和练习,让学生学会运用不等式的基本性质解决实际问题。

四、巩固练习(10分钟)1. 给出练习题,让学生独立完成。

2. 引导学生思考如何运用不等式的基本性质解决题目。

3. 对学生的答案进行讲解和指导。

五、总结和作业布置(5分钟)1. 对本节课的内容进行总结,让学生掌握不等式的基本性质和运用方法。

2. 布置作业,让学生巩固所学内容。

教学反思:本节课通过实际例子引入不等式的概念,让学生感受不等式的存在。

接着介绍了不等式的基本性质,并通过示例和练习让学生掌握不等式的基本性质。

最后,通过实际问题的解决,让学生学会运用不等式的基本性质解决实际问题。

在教学过程中,要注意引导学生思考如何将实际问题转化为不等式问题,培养学生的转化能力。

同时,通过练习题的巩固,让学生熟练掌握不等式的基本性质和运用方法。

作业布置要合理,难度要适中,以便让学生在巩固所学内容的同时,不断提高自己的解题能力。

不等式性质基本性质教案

不等式性质基本性质教案

不等式性质基本性质教案一、教学目标:1. 让学生理解不等式的基本性质,掌握不等式两边同加上或减去同一个数,不等号的方向不变;不等式两边同乘以或除以同一个正数,不等号的方向不变;不等式两边同乘以或除以同一个负数,不等号的方向改变。

2. 培养学生运用不等式的性质解决问题的能力。

3. 通过不等式的性质教学,培养学生抽象思维能力,渗透转化的数学思想。

二、教学内容:1. 不等式两边同加上或减去同一个数,不等号的方向不变。

2. 不等式两边同乘以或除以同一个正数,不等号的方向不变。

3. 不等式两边同乘以或除以同一个负数,不等号的方向改变。

4. 运用不等式的性质解决问题。

三、教学重点与难点:1. 教学重点:让学生掌握不等式的基本性质,能运用不等式的性质解决问题。

2. 教学难点:不等式两边同乘以或除以同一个负数,不等号的方向改变。

四、教学方法:1. 采用启发式教学法,引导学生发现不等式的性质,培养学生抽象思维能力。

2. 采用例题教学法,让学生通过观察、分析、归纳不等式的性质。

3. 采用练习法,巩固所学的不等式性质。

五、教学过程:1. 导入新课:复习相关知识点,如不等式的概念、不等式的解集等,为学生学习不等式的性质做好铺垫。

2. 教学不等式两边同加上或减去同一个数,不等号的方向不变:(1)展示例题,引导学生观察、分析,发现不等式两边同加上或减去同一个数,不等号的方向不变。

(2)让学生用语言表述这一性质。

(3)进行练习,巩固所学知识。

3. 教学不等式两边同乘以或除以同一个正数,不等号的方向不变:(1)展示例题,引导学生观察、分析,发现不等式两边同乘以或除以同一个正数,不等号的方向不变。

(2)让学生用语言表述这一性质。

(3)进行练习,巩固所学知识。

4. 教学不等式两边同乘以或除以同一个负数,不等号的方向改变:(1)展示例题,引导学生观察、分析,发现不等式两边同乘以或除以同一个负数,不等号的方向改变。

(2)让学生用语言表述这一性质。

不等式的基本性质(教案)

不等式的基本性质(教案)

不等式的基本性质一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。

2. 培养学生解决实际问题的能力,提高学生对数学的兴趣。

二、教学内容:1. 不等式的定义及表示方法2. 不等式的基本性质:a. 不等式两边加(减)同一个数(式子),不等号方向不变。

b. 不等式两边乘(除)同一个正数,不等号方向不变。

c. 不等式两边乘(除)同一个负数,不等号方向改变。

三、教学重点与难点:1. 教学重点:不等式的基本性质及运用。

2. 教学难点:不等式性质的灵活运用,解决实际问题。

四、教学方法:1. 采用启发式教学,引导学生发现不等式的基本性质。

2. 利用例题讲解,让学生学会运用不等式性质解决实际问题。

3. 小组讨论,培养学生的合作意识。

五、教学准备:1. 课件、黑板、粉笔2. 例题及练习题3. 学生分组合作的材料教案内容:一、导入(5分钟)1. 引入不等式的概念,让学生回顾已学的相关知识。

2. 提问:不等式有什么特点?如何表示不等式?二、新课讲解(15分钟)1. 讲解不等式的基本性质,引导学生发现规律。

2. 通过例题讲解,让学生学会运用不等式性质解决实际问题。

三、课堂练习(10分钟)1. 让学生独立完成练习题,巩固所学知识。

2. 教师点评答案,解答学生疑问。

四、小组讨论(10分钟)1. 教师给出讨论题目,让学生分组合作解决问题。

2. 各小组汇报讨论成果,教师点评并总结。

五、课堂小结(5分钟)1. 让学生总结不等式的基本性质及运用。

2. 教师补充讲解,强调重点知识点。

六、课后作业(课后自主完成)1. 巩固不等式的基本性质,提高解题能力。

2. 结合生活实际,解决相关问题。

六、教学拓展(10分钟)1. 引导学生思考:不等式性质在实际生活中的应用。

2. 举例说明:如购物时比较价格、比赛成绩排名等。

七、巩固练习(10分钟)1. 让学生完成一些巩固不等式性质的习题。

2. 教师点评答案,解答学生疑问。

八、课堂互动(10分钟)1. 教师提出问题,让学生分组讨论、回答。

不等式的性质教学教案

不等式的性质教学教案

不等式的性质教学教案一、教学目标1. 让学生理解不等式的概念,掌握不等式的基本性质。

2. 培养学生解决实际问题的能力,提高逻辑思维和运算能力。

3. 引导学生运用不等式的性质进行证明和推理,培养学生的数学素养。

二、教学内容1. 不等式的定义及表示方法2. 不等式的基本性质3. 不等式的运算规则4. 不等式与方程的关系5. 不等式在实际问题中的应用三、教学重点与难点1. 教学重点:不等式的概念、表示方法、基本性质和运算规则。

2. 教学难点:不等式的性质证明和应用。

四、教学方法1. 采用问题驱动法,引导学生探索不等式的性质。

2. 运用案例分析法,让学生解决实际问题,巩固不等式的应用。

3. 采用分组讨论法,培养学生的团队协作能力和沟通能力。

4. 利用多媒体辅助教学,提高课堂效果。

五、教学过程1. 导入新课:通过生活中的实例,引入不等式的概念,让学生感受不等式的实际意义。

2. 讲解不等式的表示方法,如“>”、“<”、“≥”、“≤”等,并进行举例说明。

3. 引导学生探索不等式的基本性质,如对称性、传递性等,并进行证明。

4. 讲解不等式的运算规则,如加减乘除等,并通过例题展示运算过程。

5. 分析不等式与方程的关系,引导学生掌握解不等式的方法。

6. 运用案例分析法,让学生解决实际问题,如分配问题、排序问题等。

8. 布置作业:设计相关练习题,巩固所学知识。

六、教学策略与评估1. 教学策略:运用比较方法,让学生通过观察和分析,发现不等式的性质。

利用图形和符号表示不等式,帮助学生形象地理解不等式的意义。

提供丰富的练习题,让学生在实践中掌握不等式的性质和应用。

鼓励学生参与课堂讨论,培养学生的表达能力和思维能力。

2. 评估策略:课堂提问:通过提问了解学生对不等式性质的理解程度。

作业批改:检查学生作业,评估学生对不等式性质的掌握情况。

小组讨论:观察学生在小组讨论中的表现,了解学生的合作能力和沟通能力。

课堂表现:评估学生在课堂上的参与度和表现。

不等式的基本性质(教案)

不等式的基本性质(教案)

不等式的基本性质一、教学目标1. 让学生理解不等式的概念,掌握不等式的基本性质。

2. 培养学生运用不等式解决实际问题的能力。

3. 提高学生对数学逻辑思维的认知。

二、教学内容1. 不等式的定义及表示方法2. 不等式的基本性质1) 不等式的两边加减同一个数,不等号的方向不变。

2) 不等式的两边乘除同一个正数,不等号的方向不变。

3) 不等式的两边乘除同一个负数,不等号的方向改变。

3. 运用不等式的基本性质解决实际问题。

三、教学重点与难点1. 教学重点:不等式的基本性质及其运用。

2. 教学难点:不等式性质3的理解与应用。

四、教学方法1. 采用启发式教学,引导学生发现不等式的基本性质。

2. 通过例题讲解,让学生学会运用不等式解决实际问题。

3. 利用小组讨论,培养学生合作学习的能力。

五、教学过程1. 导入:复习相关知识点,如实数、比较大小等,为学生学习不等式打下基础。

2. 新课讲解:介绍不等式的定义及表示方法,讲解不等式的基本性质,并通过例题展示运用。

3. 课堂练习:布置练习题,让学生巩固不等式的基本性质。

4. 实际问题解决:引导学生运用不等式解决实际问题,如分配问题、排序问题等。

5. 课堂小结:总结不等式的基本性质及运用方法。

6. 课后作业:布置相关作业,巩固所学知识。

六、教学评估1. 课堂提问:通过提问了解学生对不等式基本性质的理解程度。

2. 练习题解答:检查学生运用不等式解决实际问题的能力。

3. 课后作业:评估学生对课堂所学知识的掌握情况。

七、教学拓展1. 对比等式的性质,引导学生发现等式与不等式的异同。

2. 介绍不等式的其他性质,如不等式的传递性、同向不等式的可加性等。

八、课堂互动1. 小组讨论:让学生分组讨论不等式性质的应用,分享解题心得。

2. 教学游戏:设计有关不等式的游戏,提高学生的学习兴趣。

九、教学策略调整1. 根据学生掌握情况,针对性地讲解不等式的难点知识点。

2. 对于学习困难的学生,提供个别辅导,帮助他们跟上课堂进度。

不等式的基本性质(教案)

不等式的基本性质(教案)

不等式的基本性质教学目标:1. 了解不等式的概念及基本性质;2. 掌握不等式的运算规则;3. 能够运用不等式的基本性质解决实际问题。

教学重点:1. 不等式的基本性质;2. 不等式的运算规则。

教学难点:1. 不等式的性质3的推导;2. 不等式运算的灵活运用。

教学准备:1. 教学课件;2. 练习题。

教学过程:一、导入(5分钟)1. 引入不等式的概念,让学生回顾已学过的不等式知识;2. 提问:不等式有哪些基本性质?二、探究不等式的基本性质(15分钟)1. 引导学生发现不等式的性质1:不等式两边加(减)同一个数(或式子),不等号的方向不变;2. 引导学生发现不等式的性质2:不等式两边乘(除)同一个正数,不等号的方向不变;3. 引导学生发现不等式的性质3:不等式两边乘(除)同一个负数,不等号的方向改变。

三、不等式的运算规则(15分钟)1. 讲解不等式的加减法运算规则;2. 讲解不等式的乘除法运算规则;3. 举例说明不等式运算的运用。

四、巩固练习(10分钟)1. 让学生完成练习题,巩固不等式的基本性质和运算规则;五、课堂小结(5分钟)1. 回顾本节课所学的不等式的基本性质和运算规则;2. 强调不等式在实际问题中的应用。

教学反思:六、不等式的应用举例(15分钟)1. 举例说明不等式在实际生活中的应用,如分配问题、比赛评分等;2. 引导学生运用不等式的基本性质和运算规则解决实际问题;3. 让学生尝试解决一些复杂的不等式问题,培养学生的解决问题能力。

七、不等式的综合训练(15分钟)1. 给出一些综合性的不等式题目,让学生独立解答;2. 引导学生运用不等式的基本性质和运算规则,提高解题效率;3. 及时给予学生反馈,帮助学生纠正错误,提高解题正确率。

2. 强调不等式在实际问题中的应用,提醒学生课后加强练习。

九、课后作业(课后自主完成)1. 完成练习册上的相关题目,巩固不等式的基本性质和运算规则;2. 选择一些不等式的应用题目,尝试解决实际问题。

《不等式的性质》 word版 公开课一等奖教案1

《不等式的性质》 word版 公开课一等奖教案1

当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料。

这些资料因为用的比较少,所以在全网范围内,都不易被找到。

您看到的资料,制作于2021年,是根据最新版课本编辑而成。

我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品。

本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最终形成了本作品。

本作品为珍贵资源,如果您现在不用,请您收藏一下吧。

因为下次再搜索到我的机会不多哦!不等式的性质教学目标1、经历通过类比、猜测、验证发现不等式性质的探索过程,掌握不等式的性质;2、初步体会不等式与等式的异同;3、通过创设问题情境和实验探究活动,积极引导学生参与数学活动,提高学习数学的兴趣,增进学习数学的信心,体会在解决问题的过程中与他人交流合作的重要性.教学难点正确运用不等式的性质。

知识重点理解并掌握不等式的性质。

教学过程(师生活动)提出问题教师出示天平,并请学生仔细观察老师的操作过程,回答下列问题:1、天平被调整到什么状态?2、给不平衡的天平两边同时加人相同质量的砝码,天平会有什么变化?3、不平衡的天平两边同时拿掉相同质量的砝码,天平会有什么变化?4、如果对不平衡的天平两边砝码的质量同时扩大相同的倍数,天平会平衡吗?缩小相同的倍数呢?探究新知1、用“>”或“<”填空.(1)-1 < 3 -1+2 3+2 -1-3 3-3(2) 5 >3 5+a 3+a 5-a 3-a(3) 6 > 2 6×5 2×5 6×(-5)2×(-5)(4) -2 < 3(-2)×6 3×6(-2)×(-6) 3×(一6)(5)-4 >-6 (-4)÷2(-6)÷2(-4)十(-2)(-6)十(-2)2、从以上练习中,你发现了什么?请你再用几个例子试一试,还有类似的结论吗?请把你的发现告诉同学们并与他们交流.3、让学生充分发表“发现”,师生共同归纳得出:不等式性质1:不等式两边都加上(或减去)同一个数(或式子),不等号的方向不变.不等式性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.不等式性质3:不等式两边都乘(或除以)同一个负数,不等号的方向改变.4、你能说出不等式性质与等式性质的相同之处与不同之处吗?探究新知1、下列哪些是不等式x+3 > 6的解?哪些不是?-4,-2. 5,0,1,2.5,3,3.2,4.8,8,12 2、直接想出不等式的解集,并在数轴上表示出来:(1)x+3 > 6(2)2x < 8(3)x-2 > 0巩固新知1、判断(1)∵a < b ∴ a-b < b-b(2)∵a < b ∴33ba<(3)∵a < b ∴-2a < -2b(4)∵-2a > 0 ∴ a > 0(5)∵-a < 0 ∴ a < 32、填空(1)∵ 2a > 3a ∴ a是数(2)∵23aa<∴ a是数(3)∵ax < a且 x > 1 ∴ a是数3、根据下列已知条件,说出a与b的不等关系,并说明是根据不等式哪一条性质。

不等式的基本性质(教案)

不等式的基本性质(教案)

不等式的基本性质一、教学目标1. 知识与技能:使学生掌握不等式的性质,能够运用不等式的性质解有关不等式。

2. 过程与方法:通过观察、分析、归纳等方法,引导学生发现不等式的基本性质。

3. 情感态度价值观:培养学生对数学的兴趣,培养学生合作交流、归纳总结的能力。

二、教学重点与难点1. 教学重点:不等式的性质。

2. 教学难点:不等式性质的应用。

三、教学准备1. 教师准备:教案、PPT、黑板、粉笔。

2. 学生准备:课本、练习本、文具。

四、教学过程1. 导入新课1.1 复习相关知识:回顾一元一次不等式的解法。

1.2 提问:同学们,你们知道不等式有什么性质吗?今天我们就来学习不等式的基本性质。

2. 探究不等式的性质2.1 展示不等式实例,引导学生观察、分析。

2.2 引导学生发现不等式的性质,并总结出不等式的基本性质。

3. 例题讲解3.1 出示例题,讲解例题的解法,引导学生运用不等式的性质解决问题。

3.2 学生自主练习,教师巡回指导。

4. 课堂练习4.1 出示练习题,学生独立完成,教师批改并讲解。

4.2 学生总结练习中的经验教训。

五、课后作业1. 请学生根据不等式的性质,解决课后练习题。

2. 鼓励学生进行不等式性质的探究,发现更多的性质。

六、教学拓展1. 引导学生思考:不等式的性质在实际生活中有哪些应用?2. 举例说明不等式性质在生活中的应用,如购物、分配等。

3. 引导学生进行不等式性质的综合应用,提高解决问题的能力。

七、巩固练习1. 出示巩固练习题,学生独立完成。

2. 教师批改并讲解,学生总结解题思路和方法。

八、课堂小结1. 教师引导学生回顾本节课所学内容,总结不等式的基本性质。

2. 学生分享学习收获和感受。

九、课后反思1. 教师反思本节课的教学效果,找出不足之处,为下一节课做好准备。

2. 学生反思自己的学习过程,找出优点和不足,制定改进措施。

十、布置作业1. 请学生根据不等式的性质,解决课后练习题。

2. 鼓励学生进行不等式性质的探究,发现更多的性质。

人教版数学七年级下册《不等式的性质1》教学设计2

人教版数学七年级下册《不等式的性质1》教学设计2

人教版数学七年级下册《不等式的性质1》教学设计2一. 教材分析人教版数学七年级下册《不等式的性质1》是初中数学的重要内容,主要介绍了不等式的性质,包括不等式的两边同时加减同一个数或式子,不等式的两边同时乘除同一个正数,以及不等式的两边同时乘除同一个负数等。

这些性质为解决实际问题提供了有力的工具。

二. 学情分析学生在七年级上学期已经学习了不等式的基本概念和简单的运算,对于不等式的性质有一定的认知基础。

但学生对于不等式的性质的理解和应用还不够深入,需要通过本节课的学习进一步巩固和提高。

三. 教学目标1.了解不等式的性质,并能运用不等式的性质解决实际问题。

2.培养学生的逻辑思维能力和解决问题的能力。

3.激发学生学习数学的兴趣,提高学生的数学素养。

四. 教学重难点1.教学重点:不等式的性质及应用。

2.教学难点:不等式的性质的理解和运用。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生通过自主学习、合作交流,掌握不等式的性质。

六. 教学准备1.准备相关的不等式性质的案例和练习题。

2.准备多媒体教学设备,制作课件。

七. 教学过程1.导入(5分钟)通过一个实际问题引入不等式的性质,例如:“小明比小红高,如果小明再长高5cm,那么他比小红高多少?”引导学生思考不等式的性质。

2.呈现(10分钟)呈现不等式的性质,引导学生观察和总结不等式的性质。

同时,通过多媒体课件展示不等式的性质,加深学生对性质的理解。

3.操练(15分钟)让学生通过小组合作,解决一些关于不等式性质的实际问题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)让学生独立完成一些关于不等式性质的练习题,检验学生对不等式性质的掌握程度。

教师选取部分学生的作业进行讲解和分析。

5.拓展(10分钟)引导学生思考不等式性质在实际生活中的应用,例如:“如何在购物时 maximize your savings?”,让学生体会数学与生活的紧密联系。

《不等式的性质》教案

《不等式的性质》教案

《不等式的性质》教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。

2. 培养学生运用不等式解决实际问题的能力。

3. 提高学生对数学逻辑思维的认识。

二、教学内容:1. 不等式的定义与性质2. 不等式的运算规则3. 不等式在实际问题中的应用三、教学重点与难点:1. 教学重点:不等式的基本性质,不等式的运算规则。

2. 教学难点:不等式在实际问题中的应用。

四、教学方法:1. 采用问题驱动法,引导学生探究不等式的性质。

2. 运用案例分析法,让学生学会将不等式应用于实际问题。

3. 利用小组讨论法,培养学生的合作与交流能力。

五、教学过程:1. 导入:通过生活实例引入不等式的概念,让学生感受不等式的实际意义。

2. 新课导入:讲解不等式的定义与性质,引导学生理解不等式的基本概念。

3. 案例分析:分析实际问题,让学生掌握不等式在解决问题中的应用。

4. 课堂练习:布置练习题,巩固所学的不等式性质与运算规则。

5. 小组讨论:分组讨论不等式在实际问题中的应用,培养学生的合作与交流能力。

7. 作业布置:布置课后作业,巩固所学知识。

六、教学评价:1. 课堂参与度:观察学生在课堂上的参与情况,是否积极回答问题,参与小组讨论。

2. 练习题的正确率:检查学生完成练习题的正确率,以评估他们对不等式性质的理解和运用能力。

3. 课后作业:评估学生课后作业的质量,包括解题思路的清晰性和答案的准确性。

4. 小组讨论报告:评估学生在小组讨论中的表现,包括他们的思考深度和与他人合作的有效性。

七、教学资源:1. 教学PPT:制作包含不等式性质的图表、示例和练习题的PPT,以便进行多媒体教学。

2. 练习题库:准备一系列不等式练习题,包括填空题、选择题和解答题,以供课堂练习和课后作业使用。

3. 小组讨论模板:提供小组讨论的报告模板,包括讨论问题、成员贡献和结论等部分。

八、教学进度安排:1. 第1周:介绍不等式的定义和基本性质。

2. 第2周:讲解不等式的运算规则和性质。

《不等式的性质》教案

《不等式的性质》教案

《不等式的性质》教案一、教学目标:1. 理解不等式的概念,掌握不等式的基本性质。

2. 能够运用不等式的性质解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容:1. 不等式的定义和基本性质。

2. 不等式的运算规则。

3. 不等式在实际问题中的应用。

三、教学重点:1. 不等式的基本性质。

2. 不等式的运算规则。

四、教学难点:1. 不等式的性质在实际问题中的应用。

五、教学方法:1. 讲授法:讲解不等式的定义、性质和运算规则。

2. 案例分析法:通过实际问题引导学生运用不等式的性质解决问题。

3. 小组讨论法:分组讨论不等式问题,培养学生的合作能力。

教学过程:一、导入:1. 引入不等式的概念,引导学生回顾已学过的不等式知识。

2. 提问:不等式有什么特点?如何表示不等式?二、讲解不等式的基本性质:1. 性质1:不等式两边加(减)同一个数(或式子),不等号方向不变。

2. 性质2:不等式两边乘(除)同一个正数,不等号方向不变。

3. 性质3:不等式两边乘(除)同一个负数,不等号方向改变。

三、讲解不等式的运算规则:1. 不等式的加减法规则。

2. 不等式的乘除法规则。

四、案例分析:1. 举例说明不等式的性质在实际问题中的应用。

2. 引导学生运用不等式的性质解决问题。

五、小组讨论:1. 分成小组,让学生讨论不等式问题。

2. 鼓励学生提出自己的解题思路和答案。

六、总结:1. 回顾本节课所学的不等式的性质和运算规则。

2. 强调不等式在实际问题中的应用。

教学评价:1. 课后作业:布置有关不等式的练习题,检验学生对知识的掌握程度。

2. 课堂问答:通过提问了解学生对不等式的理解和运用情况。

3. 小组讨论:评价学生在讨论中的表现,包括思考问题、合作能力等。

六、教学反馈与评价:1. 课后收集学生作业,分析其掌握不等式性质的情况。

2. 在课堂中随机提问,了解学生对不等式性质的理解程度。

3. 观察小组讨论,评估学生在团队合作中的表现以及解决实际问题的能力。

不等式的性质(教案) 教学设计

不等式的性质(教案) 教学设计

不等式的性质(教案)教学设计一、教学目标1. 让学生理解不等式的概念,掌握不等式的基本性质。

2. 培养学生运用不等式解决实际问题的能力。

3. 提高学生分析问题、解决问题的能力。

二、教学内容1. 不等式的定义及表示方法。

2. 不等式的基本性质。

3. 不等式的应用。

三、教学重点与难点1. 教学重点:不等式的概念、表示方法及基本性质。

2. 教学难点:不等式的应用。

四、教学方法1. 采用问题驱动法,引导学生探究不等式的性质。

2. 运用案例分析法,让学生解决实际问题。

3. 利用小组讨论法,培养学生的合作能力。

五、教学过程1. 导入新课:通过生活实例引入不等式的概念,让学生感受不等式在实际生活中的应用。

2. 讲解不等式的表示方法,引导学生掌握不等式的基本写法。

3. 探究不等式的基本性质,引导学生发现并证明不等式的性质。

4. 运用案例分析,让学生解决实际问题,巩固不等式的应用。

5. 课堂小结,总结本节课的主要内容和知识点。

6. 布置作业,巩固所学知识。

附:教学反思在教学过程中,要注意关注学生的学习情况,针对不同学生的特点进行针对性指导。

要注重培养学生的动手操作能力和思维能力,让学生在学习过程中体验到数学的乐趣。

在案例分析环节,要选取具有代表性的实例,引导学生运用所学知识解决实际问题,提高学生的应用能力。

六、教学评价1. 评价内容:学生对不等式概念的理解、不等式表示方法的掌握、不等式性质的应用。

2. 评价方式:课堂问答、作业批改、小组讨论、课后访谈。

3. 评价标准:a. 对不等式概念的理解:能正确表述不等式的定义,区分不等式与等式。

b. 对不等式表示方法的掌握:能熟练运用不等号表示大小关系,正确书写不等式。

c. 对不等式性质的应用:能运用不等式性质解决实际问题,正确进行不等式变形。

七、教学拓展1. 对比等式与不等式的异同,让学生深入理解不等式的概念。

2. 介绍不等式的起源和发展历程,激发学生学习兴趣。

3. 引导学生探究不等式与其他数学知识的关系,如代数、几何等。

人教版数学七年级下册9.1.2《不等式的性质》教学设计1

人教版数学七年级下册9.1.2《不等式的性质》教学设计1

人教版数学七年级下册9.1.2《不等式的性质》教学设计1一. 教材分析《不等式的性质》是人教版数学七年级下册9.1.2的内容,本节内容是在学生已经掌握了不等式的概念和基本运算的基础上进行教学的。

本节课的主要内容是让学生了解和掌握不等式的性质,包括不等式的两边同时加减同一个数或式子,不等式的两边同时乘除同一个正数,不等式的两边同时乘除同一个负数,以及不等式的传递性质。

这些性质在解决实际问题和进行不等式运算中具有重要作用。

二. 学情分析学生在七年级上册已经学习了不等式的基本概念和基本运算,对于不等式的符号和基本运算规则有一定的了解。

但是,对于不等式的性质还没有接触过,需要通过本节课的学习来掌握。

学生的思维方式主要以直观形象思维为主,因此,在教学过程中需要通过具体的例子和实际问题来帮助学生理解和掌握不等式的性质。

三. 教学目标1.了解和掌握不等式的性质,包括不等式的两边同时加减同一个数或式子,不等式的两边同时乘除同一个正数,不等式的两边同时乘除同一个负数,以及不等式的传递性质。

2.能够运用不等式的性质解决实际问题和进行不等式运算。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.教学重点:不等式的性质及其应用。

2.教学难点:不等式的传递性质的理解和应用。

五. 教学方法1.情境教学法:通过具体的例子和实际问题,引导学生理解和掌握不等式的性质。

2.互动教学法:通过教师提问和学生回答,引导学生主动参与课堂,巩固所学知识。

3.练习法:通过大量的练习题,让学生巩固不等式的性质,提高解题能力。

六. 教学准备1.教学PPT:制作教学PPT,包括不等式的性质的讲解和练习题。

2.练习题:准备一些关于不等式的性质的练习题,用于课堂练习和巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的内容,例如:“小明比小红高,小红比小华高,请问小明比小华高吗?”让学生思考并回答,引导学生了解不等式的性质。

不等式的基本性质(教案)

不等式的基本性质(教案)

不等式的基本性质教学目标:1. 理解不等式的概念及基本性质;2. 学会解简单的不等式问题;3. 能够应用不等式的基本性质解决实际问题。

教学内容:第一章:不等式的概念1.1 不等式的定义1.2 不等式的表示方法1.3 不等式的性质第二章:不等式的基本性质2.1 性质1:不等式的两边加上或减去同一个数,不等号的方向不变;2.2 性质2:不等式的两边乘以或除以同一个正数,不等号的方向不变;2.3 性质3:不等式的两边乘以或除以同一个负数,不等号的方向改变。

第三章:解简单的不等式3.1 解一元一次不等式;3.2 解一元二次不等式;3.3 解不等式组。

第四章:不等式的应用4.1 实际问题转化为不等式;4.2 解不等式得到答案;4.3 检验答案的合理性。

第五章:不等式的综合练习5.1 填空题;5.2 选择题;5.3 解答题。

教学方法:1. 采用讲解、示例、练习、讨论等方式进行教学;2. 通过引导学生发现不等式的基本性质,培养学生的思维能力;3. 结合实际问题,培养学生的应用能力。

教学评估:1. 课堂练习:每章结束后进行课堂练习,检验学生掌握情况;2. 课后作业:布置相关作业,巩固所学知识;3. 期中考试:检查学生对不等式的基本性质的掌握程度。

教学资源:1. PPT课件;2. 教案;3. 练习题;4. 实际问题案例。

教学进度安排:1. 第一章:2课时;2. 第二章:3课时;3. 第三章:4课时;4. 第四章:3课时;5. 第五章:2课时。

第六章:不等式的扩展性质6.1 不等式的传递性质:如果a < b且b < c,a < c。

6.2 不等式的对称性质:如果a < b,则b > a。

6.3 不等式的多变量性质:解涉及多个变量的不等式。

第七章:不等式的图形表示7.1 直线与不等式的关系:直线y = mx + c与不等式y > mx + c的关系。

7.2 平面区域与不等式组:不等式组的图形表示及解集的确定。

人教版数学七年级下册9.1不等式的性质教案

人教版数学七年级下册9.1不等式的性质教案
-不等式的应用:将实际问题转化为不等式时,如何正确地建立不等式模型,以及如何解这些不等式。
-不等式的证明:对于一些不等式性质,学生可能需要通过证明来加深理解,这对于逻辑思维能力有一定的要求。
举例:
-难点解释:解释为什么当a > b时,对于任何正数c,都有ac > bc,以及当c为负数时,不等号方向改变。
三、教学难点与重点
1.教学重点
-不等式的定义:理解不等式的概念,掌握不等式的表示方法,如大于、小于、大于等于、小于等于等。
-不等式的性质:掌握同向不等式相加、相减的性质,反向不等式相乘、相除的性质,以及不等式的可乘性和可除性。
-不等式的简单应用:学会将实际问题抽象为不等式模型,并运用不等式解决实际问题。
举例:
-重点讲解a > b和a < b的含义,以及它们在数学表达中的应用。
-强调当乘以或除以同一个正数时,不等号方向不变;乘以或除以同一个负数时,不等号方向改变的性质。
-通过实际例题,演示如何将情境问题转化为不等式问题,并求解。
2.解不等式性质背后的逻辑,为什么乘以或除以不同性质的数会改变不等号的方向。
3.重点难点解析:在讲授过程中,我会特别强调不等式的性质和不等式的简单应用这两个重点。对于难点部分,比如不等式的性质,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与不等式相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如用不等式表示不同物体的重量关系。
同学们,今天我们将要学习的是《不等式的性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过比较两个数大小的情况?”(例如:比较两个人的身高)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索不等式的奥秘。

《不等式的性质》教学设计

《不等式的性质》教学设计

《不等式的性质》教学设计一、教材分析:本节课主要研究不等式的性质和简单应用.它是进一步学习一元一次不等式的基础。

它与前面学过的等式性质有联系也有区别,为渗秀类比、分类讨论的数学思想提供了很好的素材。

这节课在整个数材中起承上启下的作用,它是继方程后的又一种代数形式,继承了方程的有关思想,并实现了数形结合的思想,在初中数学教学中的重点和难点,对进一步学习一次函数的性质及应用有着极其重要的作用。

二、教学目标:1.知识目标:(1)探索并学握不等式的基本性质,能解简单的不等式;(2)理解不等式与等式件质的系与区别。

2.能力目标:(1)通过不等式性质的探索培养学生的观察,猜想,分析,归纳,概括的逻辑思维能力;(2)通过探索过程,渗透类比分类讨论的数学思想。

3.情感目标:(1)培养学生的钻研精申,同时加强同学间的合作与交流;(2)让学生获得亲自参与探索研的情感体验,从而增强学习数学的热情。

4.核心素养目标:通过不等式基本性质的学习,渗透不等式所具有的内在同解变形的数学美,激发学生探究数学美的兴趣与激情,从而陶治学生的数学情操。

三、学情分析从知识角度分析,学生的认知基础有:第一,会比较数的大小;第二,理解等式性质并知道等式性质是解方程的依据;第三、具备“通过观察、操作并抽象概括等活动获得数学结论”的体会,有一定的抽象概括能力和合情推理归纳能力。

从学生角度分析,不等式性质缺少生活经验的依据,已有知识经验对于性质造成负迁移,学生对于性质一与性质二很容易接受,而对于性质三却容易出错,不理解运用性质三时“为什么要改变不等号的方向”;在不等式的等价变形时不知道“什么时候要改变不等号的方向”。

四、教学预设过程:1. 基于“创造性的使用教材”和真正的“以学生为本”的教学理念,将教材内容沿两条主线展开。

第一条主线是探究性质:围绕“情景问题——猜想归纳——合作交流”模式,让学生经历自主探索、类比猜想、归纳得出性质并比较等式性质与不等式性质的异同.第二条主线是应用和巩固性质。

不等式的性质(教案) 教学设计

不等式的性质(教案) 教学设计

不等式的性质(教案)教学设计一、教学目标1. 让学生理解不等式的概念,掌握不等式的基本性质。

2. 培养学生解决实际问题的能力,提高逻辑思维和运算能力。

3. 引导学生运用不等式的性质进行证明和解决问题,培养学生的抽象思维能力。

二、教学内容1. 不等式的定义及表示方法2. 不等式的基本性质3. 不等式的运算规则4. 不等式的大小比较5. 不等式在实际问题中的应用三、教学重点与难点1. 教学重点:不等式的基本性质,不等式的运算规则。

2. 教学难点:不等式的大小比较,不等式在实际问题中的应用。

四、教学方法与手段1. 采用问题驱动法,引导学生探索不等式的性质。

2. 运用多媒体课件,展示不等式的图形和实例,提高学生的直观理解能力。

3. 运用小组合作学习,培养学生的团队协作能力。

4. 进行适量练习,巩固所学知识。

五、教学过程1. 导入:通过生活实例引入不等式的概念,引导学生理解不等式的表示方法。

2. 新课导入:介绍不等式的基本性质,引导学生探究并证明。

3. 案例分析:分析实际问题,运用不等式的性质解决问题。

4. 课堂练习:布置相关练习题,让学生巩固所学知识。

5. 总结与拓展:总结不等式的性质,提出拓展问题,激发学生的学习兴趣。

六、教学评估1. 课堂提问:通过提问了解学生对不等式性质的理解程度。

2. 练习反馈:收集学生的练习答案,评估掌握不等式运算规则的情况。

3. 小组讨论:观察学生在小组合作学习中的参与度和理解程度。

七、教学反思1. 教师课后总结教学效果,反思教学方法是否恰当。

2. 分析学生的练习情况,找出教学中需要改进的地方。

3. 根据学生的反馈调整教学计划,优化教学内容。

八、课后作业1. 巩固不等式的基本性质,完成相关练习题。

2. 运用不等式解决实际问题,提高应用能力。

3. 预习下一节课内容,为深入学习作准备。

九、课堂纪律与管理1. 建立课堂规则,维护课堂秩序。

3. 对违反纪律的学生进行适当批评和指导,帮助他们改正错误。

不等式的性质教案

不等式的性质教案

不等式的性质教学目的: 1理解同向不等式,异向不等式概念; 2理解不等式的性质定理1—3及其证明; 3理解证明不等式的逻辑推理方法. 4通过对不等式性质定理的掌握,培养学生灵活应变的解题能力和思考问题严谨周密的习惯教学重点:掌握不等式性质定理1、2、3及推论,注意每个定理的条件教学难点:1理解定理1、定理2的证明,即“a >b ⇔b <a 和a >b ,b >c ⇒a >c ”的证明这两个定理证明的依据是实数大小的比较与实数运算的符号法则 2定理3的推论,即“a >b ,c >d ⇒a +c >b +d ”是同向不等式相加法则的依据但两个同向不等式的两边分别相减时,就不能得出一般结论授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学方法:引导启发结合法——即在教师引导下,由学生利用已学过的有关知识,顺利完成定理的证明过程及定理的简单应用教学过程:一、复习引入:1.判断两个实数大小的充要条件是:0>-⇔>b a b a 0=-⇔=b a b a0<-⇔<b a b a2.(1)如果甲的年龄大于乙的年龄,那么乙的年龄小于甲的年龄吗?为什么?(2)如果甲的个子比乙高,乙的个子比丙高,那么甲的个子比丙高吗?为什么? 从而引出不等式的性质及其证明方法.二、讲解新课:1.同向不等式:两个不等号方向相同的不等式,例如:a>b ,c>d ,是同向不等式 异向不等式:两个不等号方向相反的不等式例如:a>b ,c<d ,是异向不等式 2.不等式的性质:性质1:如果a>b ,那么b<a ,如果b<a ,那么a>b .(对称性)即:a>b ⇒b<a ;b<a ⇒a>b证明:∵a>b ∴a-b>0由正数的相反数是负数,得-(a-b)<0即b-a<0 ∴b<a (定理的后半部分略) .点评:可能个别学生认为定理l 没有必要证明,那么问题:若a>b ,则a 1和b1谁大?根据学生的错误来说明证明的必要性“实数a 、b 的大小”与“a-b 与零的关系”是证明不等式性质的基础,本定理也称不等式的对称性.性质2:如果a>b ,且b>c ,那么a>c .(传递性)即a>b ,b>c ⇒a>c证明:∵a>b ,b>c ∴a-b>0, b-c>0根据两个正数的和仍是正数,得(a-b)+( b-c)>0 即a -c>0∴a>c根据定理l ,定理2还可以表示为:c<b ,b<a ⇒c<a点评:这是不等式的传递性、这种传递性可以推广到n 个的情形.性质3:如果a>b ,那么a+c>b+c .即a>b ⇒a+c>b+c证明:∵a>b , ∴a-b>0,∴(a+c)-( b+c)>0 即a+c>b+c点评:(1)定理3的逆命题也成立;(2)利用定理3可以得出:如果a+b>c ,那么a>c-b ,也就是说,不等式中任何一项改变符号后,可以把它从—边移到另一边.性质4:如果a>b ,且c>d ,那么a+c>b+d .(相加法则)即a>b , c>d ⇒a+c>b+d .证法一:⇒⎭⎬⎫+>+⇒>+>+⇒>d b c b d c c b c a b a a+c>b+d 证法二:⇒>-+-⇒⎭⎬⎫>-⇒>>-⇒>000d c b a d c d c b a b a a+c>b+d 点评:(1)这一推论可以推广到任意有限个同向不等式两边分别相加,即:两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向;(2)两个同向不等式的两边分别相减时,不能作出一般的结论;三、讲解范例:例 已知a>b ,c<d ,求证:a-c>b-d .(相减法则)分析:思路一:证明“a -c >b -d ”,实际是根据已知条件比较a -c 与b -d 的大小,所以以实数的运算性质与大小顺序之间的关系为依据,直接运用实数运算的符号法则来确定差的符号,最后达到证题目的证法一:∵a >b ,c <d∵a -b >0,d -c >0∴(a -c )-(b -d )=(a -b )+(d -c )>0(两个正数的和仍为正数)故a -c >b -d思路二:我们已熟悉不等式的性质中的定理1~定理3及推论,所以运用不等式的性质,加以变形,最后达到证明目的证法二:∵c <d ∴-c >-d又∵a >b∴a +(-c )>b +(-d )∴a -c >b -d四、课堂练习: 1判断下列命题的真假,并说明理由:(1)如果a >b ,那么a -c >b -c ;(2)如果a >b ,那么c a c 分析:从不等式性质定理找依据,与性质定理相违的为假,与定理相符的为真 答案:(1)真因为推理符号定理3 (2)假2,3(初中)可知,当c <0时,c a c 即不等式两边同乘以一个数,必须明确这个数的正负2回答下列问题:(1)如果a >b ,c >d ,能否断定a +c 与b +d 谁大谁小?举例说明;(2)如果a >b ,c >d ,能否断定a -2c 与b -2d 谁大谁小?举例说明 答案:(1)不能断定例如:2>1,1<3⇒2+1<1+3;而2>1,-1<-0⇒2-1>1-08异向不等式作加法没定论(2)不能断定例如a >b ,c =1>d =-1⇒a -2c =a -2,b +2=b -2d ,其大小不定a =8>1=b 时a -2c =6>b +2=3而a =2>1=b 时a -2c =0<b +2=33求证:(1)如果a >b ,c >d ,那么a -d >b -c ;(2)如果a >b ,那么c -2a <c -2b 证明:(1).c b d a d b c b d c d c d b d a b a ->-⇒⎪⎭⎪⎬⎫-<-⇒-<-⇒>->-⇒>(2)a >b ⇒-2a <-2b ⇒c -2a <c -2b 4已和a >b >c >d >0,且d c b a =,求证:a +d >b +c 证明:∵dc b a = ∴d d c b b a -=- ∴(a -b )d =(c -d )b又∵a >b >c >d >0∴a -b >0,c -d >0,b >d >0且d b >1 ∴d b d c b a =-->1 ∴a -b >c -d 即a +d >b +c评述:此题中,不等式性质和比例定理联合使用,使式子形与形之间的转换更迅速这道题不仅有不等式性质应用的信息,更有比例的信息,因此这道题既要重视性质的运用技巧,也要重视比例定理的应用技巧五、小结 :本节课我们学习了不等式的性质定理1~定理3及其推论,理解不等式性质的反对称性(a >b ⇔b <a =、传递性(a >b ,b >c ⇒a >c )、可加性(a >b ⇒a +c >b +c )、加法法则(a >b ,c >d ⇒a +c >b +d ),并记住这些性质的条件,尤其是字母的符号及不等式的方向,要搞清楚这些性质的主要用途及其证明的基本方法六、课后作业:课本P 84 习题3.1 A 组 4、5。

不等式的基本性质(教案)

不等式的基本性质(教案)

不等式的基本性质一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。

2. 培养学生运用不等式解决实际问题的能力。

3. 提高学生对数学逻辑思维的认知水平。

二、教学内容:1. 不等式的定义及表示方法。

2. 不等式的基本性质:加减乘除同一个数(或式子)到不等式的两边,不等号的方向不变。

3. 不等式的解集及其表示方法。

三、教学重点与难点:1. 教学重点:不等式的基本性质,不等式的解集表示方法。

2. 教学难点:不等式性质的灵活运用,解集的表示方法。

四、教学方法与手段:1. 采用问题驱动法,引导学生探索不等式的基本性质。

2. 利用多媒体课件,展示不等式的图形解集,增强直观感受。

3. 运用实例分析,让学生学会解决实际问题。

五、教学过程:1. 导入新课:通过生活实例引入不等式的概念,引导学生理解不等式的表示方法。

2. 探索不等式的基本性质:引导学生分组讨论,发现不等式的加减乘除性质。

3. 应用不等式性质解决实际问题:选取典型例题,讲解解题思路和方法。

4. 课堂练习:布置练习题,让学生巩固不等式的基本性质。

5. 总结与拓展:总结不等式的基本性质,提出拓展问题,激发学生思考。

教案附件:练习题:1. 判断下列不等式是否成立,并说明理由:a) 2x > 3xb) 5(x 2) < 3(2x + 1)c) 4x 12 < 3(2x + 6)2. 解下列不等式:a) 3x 7 > 2b) 2(x 5) > 15c) 5x + 6 <= 4x + 20答案:1. a) 不成立,因为2x < 3x;b) 成立,因为5(x 2) = 5x 10,3(2x + 1) = 6x + 3,5x 10 < 6x + 3;c) 成立,因为4x 12 = 4(x 3),3(2x + 6) = 6x + 18,4(x 3) < 6x + 18。

2. a) x > 3;b) x > 10;c) x <= 14。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《不等式的性质》教案1doc初中数学
7.3、不等式的性质
教学目标
1.把握不等式的性质。

2.能熟练运用不等式的性质进行不等式的变形。

3.通过不等式差不多性质的推导,培养学生观看、归纳的能力。

教学重点、难点
重点:不等式的差不多性质。

难点:不等式的变号咨询题。

设计思路
本节课是在前一节课的基础上,利用学生所熟悉的生活中的事例,通过观看、类比、试验、猜想等教学活动,让学生经历发觉不等式差不多性质的过程,培养学生把握由试验发觉规律的方法,积存解决数学咨询题的体会和方法。

教学过程
一、创设咨询题情境。

电梯里面有师生两人,老师的身高a米比学生的身高b米要高,当电梯的高度升高6米,老师相对与原先的高度仍比学生高,即:由a>b 可得 a+6>b +6 。

当电梯的高度降低6米,老师相对与原先的高度还比学生高,即:由a>b 可得 a-6>b-6 。

设计讲明:通过学生所熟悉的事例引导学生猜想并发觉不等式性质一。

二、探究新知。

1.不等式的性质1不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

用不等式表示为:假如a>b,那么a+c>b+c,a-c>b-c
讲明:由学生通过实际咨询题,研究、讨论其中所包蕴的数学思想、方法、规律,渗透概括、归纳的方法。

2.你能否用生活中的例子来讲明不等式的性质1呢?
3.不等式的两边都乘以(或除以)同一个不为零的数,不等号的方向是否也不变呢?
探究观看:将不等式5>3的两边都乘以同一个不为0的数,比较所得结果。

用〝<〞或〝>〞填空:
5×3 3×3,5×4 3×4,5×(-2) 3×(-2),5×(-0.5) 3×(-0.5) 5÷3 3÷3,5÷4 2÷4,5÷(-2) 3÷(-2),5÷(-0.5) 3÷(-0.5),提咨询:你能从中发觉什么?
设计讲明:启发学生由专门过渡到一样,逐步发觉规律和通过类比得出规律,
得到不等式性质二。

不等式的性质2不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

用不等式表示为:假如a>b,同时c>0,那么ac>bc;假如a>b,同时c <0,那么ac<bc。

4摸索:a:不等式两边都乘0,结果又如何样呢?
b:不等式的性质和等式的性质相比较有什么相同点与不同点?
三、应用举例。

例1依照不等式的性质,将不等式变形成x>a或x<a的形式。

(1)x-3>2;
(2)3x<2x-3。

例2依照不等式的性质,将不等式变形成x>a或x<a的形式。

(1)1
2
x>-3;
(2)-2x<3x+5
四、巩固练习。

1.课本第14页练习第1、2、3题。

设计讲明:培养学生应用不等式性质解不等式能力,进一步熟悉不等式的多个差不多性质。

五、拓展延伸。

1.a>b,能否推出ac2>bc2?
2.ac2>bc2,能否推出a>b?
3.x>5,能否推出2x-3>7
4.x<2,能否推出3-2x>-1
六、课堂小结。

1.将不等式2 x>4x的两边都除以x,得2>4。

你认为对吗?假如不对,错在哪呢?
2.你能把不等式-1>x变形为x<-1吗?什么缘故?
七、布置作业。

课本第14页习题7.3第1、2题;。

相关文档
最新文档