场论复习
电磁场与电磁波试卷及复习提纲.

《电磁场与电磁波》学习提要第一章场论简介1、方向导数和梯度的概念;方向导数和梯度的关系。
2、通量的定义;散度的定义及作用。
3、环量的定义;旋度的定义及作用;旋度的两个重要性质。
4、场论的两个重要定理:高斯散度定理和斯托克斯定理。
第二章静电场1、电场强度的定义和电力线的概念。
2、点电荷的场强公式及场强叠加原理;场强的计算实例。
3、静电场的高斯定理;用高斯定理求场强方法与实例。
4、电压、电位和电位差的概念;点电荷电位公式;电位叠加原理。
5、等位面的定义;等位面的性质;电位梯度,电位梯度与场强的关系。
6、静电场环路定理的积分形式和微分形式,静电场的基本性质。
7、电位梯度的概念;电位梯度和电场强度的关系。
8、导体静电平衡条件;处于静电平衡的导体的性质。
9、电偶极子的概念。
10、电位移向量;电位移向量与场强的关系;介质中高斯定理的微分形式和积分形式;求介质中的场强。
11、介质中静电场的基本方程;介质中静电场的性质。
12、独立导体的电容;两导体间的电容;求电容及电容器电场的方法与实例。
13、静电场的能量分布,和能量密度的概念。
第三章电流场和恒定电场1、传导电流和运流电流的概念。
2、电流强度和电流密度的概念;电流强度和电流密度的关系。
3、欧姆定律的微分形式和积分形式。
4、电流连续性方程的微分形式和积分形式;恒定电流的微分形式和积分形式及其意义。
5、电动势的定义。
6、恒定电场的基本方程及其性质。
第四章恒定磁场1、电流产生磁场,恒定电流产生恒定磁场。
2、电流元与电流元之间磁相互作用的规律-安培定律。
3、安培公式;磁感应强度矢量的定义;磁感应强度矢量的方向、大小和单位。
4、洛仑兹力及其计算公式。
5、电流元所产生的磁场元:比奥-萨伐尔定律;磁场叠加原理;磁感应线。
计算磁场的方法和实例。
6、磁通的定义和单位。
7、磁通连续性原理的微分形式、积分形式和它们的意义。
8、通量源和旋涡源的定义。
9、安培环路定律的积分形式和微分形式。
第二章 场论

第二章 场论2.1 场1.场的概念:若对全空间或其中的某一区域V 中每一点M ,都有一个数量(或矢量)与之对应,则称在V 上给定了一个数量场(或向量场)。
2.数量场的等值面、等值线设空间中的一数量场(,,)u x y z ,从后我们总假定它单值,连续且具有一阶连续的偏导数。
那么空间中u 取值相同的点在空间中是如何分布的呢?这些点满足方程 (,,)u x y z C ≡,其中C常数。
若u 一阶偏导数不全为0(这也可作为默认的假设),由隐函数存在唯一性定理可知方程(,,)u x y z C ≡中(,)z f x y =,称这一曲面为数量场(,,)u x y z 的等值面,曲面上所有点均满足(,,)u x y z C ≡。
随着常数C 选取的变化,方程(,,)u x y z C ≡对应着不同的等值面,因为C 可取遍了u 值域中的每一个值,所以数量场(,,)u x y z 所在的空间将被这族等值面所充满,这些等值面彼此互不相交(若相交的话u 就不是单值函数了)。
若空间中数量场为平面数量场(,)u x y ,(,)u x y C ≡表示了一条平面曲线,称为数量场(,)u x y 的等值线,显然平面数量场(,)u x y 所在的平面区域被一族等势线充满,这些等值线彼此不相交。
3.矢量场的矢量线、矢量面、矢量管ˆˆˆ(,,)(,,)(,,)(,,)x y z A x y z A x y z i A x y z j A x y z k =++为空间的一矢量场,在空间中作这样的曲线,使得曲线的任一点M 处切线的放向数是()A M的三个分量,即曲线满足微分方程:x y zdx dy dzA A A ==则称这样的曲线为矢量场(,,)A x y z 的矢量线。
由微分方程理论(解的存在与唯一性定理)我们可知x y zdx dy dz A A A ==的解是矢量线族,这族矢量线不仅存在,并且也充满了矢量场所在的空间区域,而且互不相交。
电磁场复习提纲(大连海事大学)

五.均匀平面波对导体平面的垂直入射
①入、反射波都是行波,合成波为纯驻波,振幅与位置有关。
②z=0和z为0.5 整数倍处是合成波电场波节、磁场波腹;z为0.25 奇数倍处是合成波电场波腹、磁场波节。合成波磁场与电场存在90°相差。
2.远区场
远区电场与磁场相位相同、相互垂直,复数波印亭矢量无虚部;
平均波印亭矢量不为零,电流元能量转换成电磁波向四周扩散。
瞬时玻印亭矢量的值始终不小于零,说明电磁能量一直向外辐射,因此远区场又称为辐射场。
电基本振子远区场的电气特性:
非均匀球面波横电磁波
E面:电场矢量所在的平面。
H面:磁场矢量所在的平面。
电场强度矢量指向电位Ф减小的方向,即由正电荷指向负电荷的方向,而电位梯度方向是电位Ф增大的方向。
电场能量密度
静电位能
镜像电荷:两个导板夹角为180°/n (n必须为整数)条件下镜像电荷数为2n−1。
电流元的镜像:电流元视为等量异号电荷构成的电偶极子。电流元电流正方向由负电荷指向正电荷。
两个带等量异号电荷导体的电容:
第4章恒定电场与恒定磁场
一.恒定电场【有源场,无旋场】
恒定电场基本方程
恒定电场边界条件
电流密度法向分量在边界上连续
恒定电场切向分量在边界上连续
电流线与 很大的媒质表面垂直。
电导率均匀,体电荷密度为0。换言之,各向同性线性均匀媒质不存在体电荷(媒质内没有净余电荷)。
通常导电媒质分界面上存在面电荷。除非 。
(2)导电媒质均匀平面波是TEM波, 仍成立。
场论知识点整理

*1.【圆函数】e (φ)=cos φi +sin φj .*2.a.弧长的微分ds =以点M 为界,当ds 位于s 增大一方时取正号;反之取负号.b.矢性函数的微分的模,等于(其矢端曲线的)弧微分的绝对值.矢性函数(其矢端曲线的)弧长s 的导数d r /ds 在几何上为一切单位矢量,恒指向s 增大的一方.+3.证明||.ds d d r t dt=证,d dx dy dz dtdt dtr i j k dt =++d dt r =由于ds 与dt 有相同的符号,故有.ds d dt dt r ===由此可知:矢端曲线的切向单位矢量.d d ds d d dt dt dt dtd r s r r r ==*4.【二重矢积】公式:a ×(b ×c )=(a ·c )b -(a ·b )c .+5.矢性函数A (t)的模不变的充要条件是.d d A A t•=0证假定|A |=常数,则有A 2=|A |2=常数.两端对t 求导[左端用导数公式],就得到.d d A A t •=0反之,若有.d d A A t •=0则有,d dt A =20从而有A 2=|A |2=常数.所有有|A |=常数.定常矢量A (t)与其导矢相互垂直.*6.''.A B A dt t B B A d ×=×+×∫∫''.A B A dt t B B A d •=•−•∫∫+7.一质点沿曲线r =rcos φi +rsin φj 运动,其中r,φ均为时间t 的函数.求速度v 在矢径方向及其垂直方向上的投影v r 和v φ.解将r 写成r =r e (φ),则有()().d dr d r dt dt v d r e e t ϕϕϕ==+1由此可知:,.r dr d v v r dt dtϕϕ==[使用圆函数e (φ),则e (φ)及e 1(φ)之方向即为矢径方向及与之垂直的方向.]*8.【矢量线】A =A x i +A y j +A z k 为单值、连续且有一阶连续导数。
场论基础试题及答案

场论基础试题及答案一、单项选择题(每题2分,共10分)1. 场论中,场的强度定义为:A. 场源的密度B. 场源的分布C. 场对单位测试电荷的作用力D. 场源的总电荷量答案:C2. 电场强度的方向是:A. 从正电荷指向负电荷B. 从负电荷指向正电荷C. 垂直于等势面D. 与电场线平行答案:B3. 根据麦克斯韦方程组,变化的磁场可以产生:A. 恒定电场B. 变化的电场C. 恒定磁场D. 变化的磁场答案:B4. 电磁波在真空中的传播速度是:A. 光速B. 声速C. 光速的一半D. 声速的两倍答案:A5. 洛伦兹力的方向与电荷运动方向的关系是:A. 垂直B. 平行C. 相反D. 相同答案:A二、填空题(每题2分,共10分)1. 电场强度的单位是________。
答案:牛顿/库仑2. 磁场强度的单位是________。
答案:特斯拉3. 电磁波的频率与波长的关系是________。
答案:频率与波长成反比4. 根据法拉第电磁感应定律,变化的磁场可以产生________。
答案:电场5. 电磁波的传播不需要________。
答案:介质三、简答题(每题5分,共20分)1. 简述电场和磁场的关系。
答案:电场和磁场是电磁场的两个方面,它们相互关联,可以相互转换。
变化的磁场可以产生电场,而变化的电场也可以产生磁场。
2. 什么是电磁波?请简述其特性。
答案:电磁波是由电场和磁场交替变化产生的波动现象。
电磁波的传播不需要介质,可以在真空中传播,具有波长和频率,且波速在真空中是一个常数。
3. 麦克斯韦方程组包含哪四个方程?请简述它们的意义。
答案:麦克斯韦方程组包括高斯定律、高斯磁定律、法拉第电磁感应定律和安培环路定律。
高斯定律描述了电荷分布与电场的关系;高斯磁定律表明磁场是由电流产生的;法拉第电磁感应定律描述了变化的磁场产生电场的现象;安培环路定律则描述了电流和磁场之间的关系。
4. 洛伦兹力是如何定义的?请简述其作用。
答案:洛伦兹力是运动电荷在电磁场中受到的力,其大小和方向由电荷量、电荷速度、电场强度和磁场强度共同决定。
电磁场与电磁波复习重点

梯度: 高斯定理:A d S ,电磁场与电磁波知识点要求第一章矢量分析和场论基础1理解标量场与矢量场的概念;场是描述物理量在空间区域的分布和变化规律的函数。
2、理解矢量场的散度和旋度、标量场的梯度的概念,熟练掌握散度、旋度和梯度的计算公 式和方法(限直角坐标系)。
:u;u;u e xe ye z ,-X;y: z物理意义:梯度的方向是标量u 随空间坐标变化最快的方向;梯度的大小:表示标量 u 的空间变化率的最大值。
散度:单位空间体积中的的通量源,有时也简称为源通量密度,旋度:其数值为某点的环流量面密度的最大值, 其方向为取得环量密度最大值时面积元的法 线方向。
斯托克斯定理:■ ■(S?AdS|L )A d l数学恒等式:' Cu )=o ,「c A )=o3、理解亥姆霍兹定理的重要意义:a时,n =3600/ a , n为整数,则需镜像电荷XY平面, r r r.S(—x,y ,z)-q ■严S(-x , -y ,z)S(x F q R 1qS(x;-y ,z )P(x,y,z)若矢量场A在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则矢量场由其散度和旋度唯一地确定,并且矢量场A可表示为一个标量函数的梯度和一个矢量函数的旋度之和。
A八F u第二、三、四章电磁场基本理论Q1、理解静电场与电位的关系,u= .E d l,E(r)=-V u(r)P2、理解静电场的通量和散度的意义,「s D d S「V "v dV \ D=,VE d l 二0 ' ' E= 0静电场是有散无旋场,电荷分布是静电场的散度源。
3、理解静电场边值问题的唯一性定理,能用平面镜像法解简单问题;唯一性定理表明:对任意的静电场,当电荷分布和求解区域边界上的边界条件确定时,空间区域的场分布就唯一地确定的镜像法:利用唯一性定理解静电场的间接方法。
关键在于在求解区域之外寻找虚拟电荷,使求解区域内的实际电荷与虚拟电荷共同产生的场满足实际边界上复杂的电荷分布或电位边界条件,又能满足求解区域内的微分方程。
场论 复习题

2在两导体平板(z = 0和z =d)之间的空气中,已知电场强度
试求:(1)磁场强度;(2)导体表面的电流密度。
解(1)由,有
将上式对时间t积分,得
(2)z = 0处导体表面的电流密度为
z =d处导体表面的电流密度为
第七章习题
1、在无源的电介质中( ),若已知电场强度矢量,
V/m
式中的E0为振幅、ω为角频率、k为相位常数。试确定k与ω之间所满足的关系,并求出 与相应的其它场矢量。
解: 是电磁场的场矢量,应满足麦克斯韦方程组。因此,利用麦克斯韦方程组可以确定k与ω之间所满足的关系,以及与 相应的其它场矢量。
对时间t积分,得
矩阵论复习题综合

1. 设+=R V 是正实数集,对于任意的V y x ∈,,定义x 与y 的和为 y x y x ⋅=⊕ 对于任意的数R k ∈,定义k 与x 的数乘为k x x k =⊗问:对于上述定义加法和数乘运算的集合V ,是否构成线性空间,并说明理由. 2.对任意的2,R y x ∈,),(21x x x =,),(21y y y =定义x 与y 的和为),(112211y x y x y x y x +++=⊕对于任意的数R k ∈,定义k 与x 的数乘为)2)1(,(2121x k k kx kx x k -+=⊗ 问:对于上述定义加法和数乘运算的集合2R ,是否构成线性空间,并说明理由. 3.设},022|),,{(321321R x x x x x x x S i ∈=++=,试证明S 是3R 的子空间,并求S 的一组基和S dim .4.设)(R P n 表示次数不超过n 的全体多项式构成的线性空间,)}()(,0)0(|)({R P x f f x f S n ∈='=证明S 是)(R P n 的子空间,并写出S 的一组基和计算S dim . 5. 设T 是2R 上的线性变换,对于基向量i 和j 有j i i T +=)( j i j T -=2)(1)确定T 在基},{j i 下的矩阵;2)若j i e -=1 j i e +=32,确定T 在基},{21e e 下的矩阵. 6. 设T 是3R 上的线性变换,对于基},,{k j i 有k j k j i T -=++)( i k j T =+)( k j i k T 532)(++=1)确定T 在基},,{k j i 下的矩阵; 2)求T 的零空间和像空间的维数.7.设线性空间3R 的两个基为(I):321,,x x x , (II):321,,y y y , 由基(I)到基(II)的过度矩阵为⎪⎪⎪⎭⎫ ⎝⎛--=101010101C , 3R 上的线性变换T 满足21321)32(y y x x x T +=++ 12323(24)T x x x y y ++=+31321)43(y y x x x T +=++ 1)求T 在基(II)下的矩阵; 2)求)(1y T 在基(I)下的坐标. 8.在线性空间)(3R P 中321)(x x x a x f +++= 3221)(x x ax x f +++= 32321)(x x x x f +++=讨论)(),(),(321x f x f x f 的线性相关性.9.在22R ⨯中求由基(I) 12101A ⎛⎫= ⎪⎝⎭ 20122A ⎛⎫= ⎪⎝⎭ 32112A -⎛⎫= ⎪⎝⎭ 41312A ⎛⎫= ⎪⎝⎭到基(II) 11210B ⎛⎫= ⎪-⎝⎭ 21111B -⎛⎫= ⎪⎝⎭ 32211B -⎛⎫= ⎪⎝⎭ 41101B --⎛⎫= ⎪⎝⎭的过渡矩阵.10.已知 1(1,2,1,0)α= 2(2,1,0,1)α=- 1(1,1,1,1)β=- 2(1,1,3,7)β=- 设1212(,)(,)V L L ααββ=⋂, 求线性空间V 的维数和基. 11.在)(2R P 中, 对任意的)()(),(2R P x g x f ∈定义内积为⎰=1)()())(),((dx x g x f x g x f若取)(2R P 的一组基},,1{2x x ,试用Schmidt Gram -正交化方法,求)(2R P 的一组正交基.12.(1) 设x 和y 是Eucild 空间V 的非零元,它们的夹角是θ,试证明θcos ||||||||2||||||||||||222y x y x y x ⋅-+=-12.(2) 求矩阵10002i A i +⎛⎫= ⎪⎝⎭的奇异值分解.13.设A 为n 阶实矩阵,证明A 可表示为一对称矩阵和一反对称矩阵之和. (提示:若A A T =,称A 为对称矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0.4 矢量场的环量与旋度
一、环量 矢量A沿空间有向闭合曲线L的线积分
A dl
L
环量
该环量表示绕线旋转趋势的大小。 例:流速场
图0.4.1 环量的计算
图0.4.2 流速场
水流沿平行于水管轴线方向流动 =0,无涡旋运动
流体做涡旋运动 0,有产生涡旋的源
二、旋度 1. 环量密度
则有:
g
式中
ex ey e z grad x y z
( , , ) x y z
梯度(gradient)
哈密顿算子
二. 梯度的物理意义 • 标量场的梯度是一个矢量,是空间坐标点的函数; • 梯度的大小为该点标量函数 的最大变化率,即该点最大方向导数; • 梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它 指向函数的增加方向. 例1 三维高度场的梯度 例2 电位场的梯度
E dS
S
若S 为闭合曲面
净通量的大小判断闭合面中源的性质:
E ds ,可以根据
s
图0.3.1 矢量场的通量
= 0 (无源)
< 0 (有负源)
图0.3.2 矢量场的通量
> 0 (有正源)
二、散度 如果包围点P的闭合面S所围区域V以任意方式缩小为点P时, 通量与体积 之比的极限存在,即
场 论 复 习
0.1 标量场和矢量场
场是一个标量或一个矢量的位置函数,即场中任一个点都有一个确定的标量值 或矢量. 例如,在直角坐标下, 标量场 如温度场,电位场,高度场等; 矢量场 如流速场,电场,涡流场等.
形象描绘场分布的工具--场线 标量场--等值线(面). 其方程为
矢量场--矢量线 其方程为
例:判断矢量场的性质
F ? =0 F ? =0
F ? 0 F ? =0
F ? =0 F ? 0
0.6 三种特殊形式的场
1.平行平面场:如果在经过某一轴线(设为 Z 轴)的一族平行平面上,场 F 的分布都 相同,即 F=f(x,y),则称这个场为平行平面场。 2.轴对称场:如果在经过某一轴线(设为 Z 轴)的一族子午面上,场 F 的分布都相同, 即 F=f(r,),则称这个场为轴对称场。 3,球面对称场:如果在一族同心球面上(设球心在原点),场 F 的分布都相同,即
F=f(r),则称这个场为球面对称场。
作业
.
试证明下列各题
1 1. r r ,
r r , r r
, 3
2. 0
3. A 0
式中:
r xe x ye y ze z r xe x ye y z e z
( x, y , z ) A Ax e x Ay e y Az e z
它与环量密度的关系为
d rot A en dS
旋度(curl)
ex
在直角坐标系下
ey
y
ez
z
A
x
Ax
Ay
Az
三、旋度的物理意义 • 矢量的旋度仍为矢量,是空间坐标点的函数。 • 点P的旋度的大小是该点环量密度的最大值。 • 点P的旋度的方向是该点最大环量密度的方向。 • 在矢量场中,若A=J0,称之为旋度场(或涡旋场),J 称为旋度源(或涡旋源);
( , , ) (cos ,cos ,cos ) l x y z
el (cos ,cos ,cos )
设
,分别是与x,y,z轴的夹角 , 式中 ,
g el | g | cos( g , el ) l 当 ( g ,el ) 0 ,即 e l 与 g 方向一致时, l 为最大.
• A= 0 (负源)
在矢量场中,若• A= 0,称之为有源场, 称为(通量)源密度;若矢量场
中处处• A=0,称之为无源场。
四、高斯公式(散度定理)
1 divA lim A dS v0 v S
由于 A 是通量源密度, 即穿过包围单位体积的闭合面的
通量,对 A 体积分后,为穿
A dl 0
h ( x, y, z ) const
图0.1.2 矢量线
在直角坐标下:
图0.1.1 等值线
二维场
Ax Ay dx dy
在某一高度上沿什么方向高度变化最快?三维场
0.2 标量场的梯度
一. 梯度 设一个标量函数(x,y,z),若函数 在点P可微,则 在点P沿任意方向 l 的方 向导数为:
1 divA lim A dS v0 v S
计算公式
div A A
Ax x
Ay y
Az z
散度(divergence)
三、散度的物理意义
• 矢量的散度是一个标量,是空间坐标点的函数;
• 散度代表矢量场的通量源的分布特性
• A= 0 (无源)
• A= 0 (正源)
出闭合面S的通量
图0.3.3 散度定理
A dS lim
S
n Vn 0 n 1
AV
n
AdV
V
A dS AdV
S V
高斯公式
• 矢量函数的面积分与体积分的互换。 • 该公式表明了区域V 中场A与边界S上的场A之间的关系。
• 若矢量场处处A=0,称之为无旋场。
四、斯托克斯(Stockes)定理
A 是环量密度,即围绕单位面积环路上的环量。
因此,其面积分后,环量为
l A dli ( A) dSi
i
l A dl ( A ) dS
S
Stocke’s定理
• 矢量函数的线积分与面积分的互换。 • 该公式表明了区域S中场A与边界L上的场A之间的关系
图0.2.1 三维高度场的梯度
图0.2.2 电位场的梯度源自高度场的梯度 • 与过该点的等高线垂直;
• 数值等于该点位移的最大变化率; • 指向地势升高的方向。
电位场的梯度 • 与过该点的等位线垂直; • 数值等于该点的最大方向导数; • 指向电位增加的方向。
0.3 矢量场的通量与散度
一、通量 矢量 E 沿有向曲面S 的面积分
图 0.4.3 斯托克斯定理
在电磁场理论中,Gauss公式和 Stockes公式是两个非常重要的公式。
0.5 亥姆霍茨定理
亥姆霍茨定理: 在有限区域内,矢量场由它的散度、旋度及边界条件唯一地确定。 矢量A的通量源密度 电荷密度 在电磁场中
已知
矢量A的旋度源密度 场域边界条件
电流密度J (矢量A唯一地确定) 场域边界条件
过点P作一微小曲面S,它的边界曲线记为L,面的法线方与曲线绕向成右手 螺旋法则。当S点P时,存在极限
d 1 lim S P S dS
Α dl
L
环量密度
取不同的路径,其环量密度不同。
2. 旋度
旋度是一个矢量,模值等于环量密度的最大值;方向为最大环量密度的方向。
rot A A