221用样本的频率分布估计总体分布

合集下载

用样本的频率分布估计总体的频率分布

用样本的频率分布估计总体的频率分布

用样本的频率分布估计总体的频率分布频率分布是一种用于描述数据集中频次分布情况的统计工具,它描述了每个数值或数值范围出现的频率。

在样本中,我们可以利用频率分布来估计总体的频率分布,从而了解总体的特征。

为了确切估计总体的频率分布,我们需要采取一定的统计方法,下面将介绍一种常用的方法,直方图。

一、直方图的构建构建频率分布的首要任务是将数据分为不同的组或区间。

一般来说,我们会根据数据的特点选择合适的组距,然后根据不同的组距将数据分组。

例如,假设我们有一组数据代表了一些班级学生的测试成绩,我们选择了组距为10,那么我们可以将数据分为以下几个组:然后,我们统计每个组内数据出现的次数,即频次,得到每个组的频次数。

二、计算频率频率是频次的一个重要衍生指标,它反映的是不同数据值或数据范围在总体中的比例。

频率的计算公式为:频率=频次/总样本量在直方图中,我们通常将频率表示为每个组的相对频率。

这样可以更好地反映出组与组之间的差异。

三、绘制直方图绘制直方图是一种直观地表现频率分布的方法。

在直方图上,x轴表示不同的组或区间,y轴表示频率。

我们可以用矩形的高度来表示每个组的频率,矩形的宽度表示组距。

通过绘制多个矩形,可以将频率分布更直观地展示出来。

在绘制直方图时,需要注意以下几点:1.组距应该选择合适,既不过小也不过大,以保证直方图的直观性和准确性。

2.直方图的高度应该符合频率的大小,即高度越高表示频率越大。

3.直方图的矩形之间应该没有间隙,以保证数据的完整性。

四、利用样本频率分布估计总体频率分布样本的频率分布可以提供总体频率分布的一种估计方法。

我们可以基于样本数据构建直方图,并计算每个组的频率。

然后,我们可以将样本频率分布与总体的频率分布进行比较。

如果两个分布形状相似并且没有明显的偏差,那么我们可以认为样本的频率分布可以很好地估计总体的频率分布。

当然,在使用样本频率分布进行总体频率分布估计时,还需要注意以下几点:1.样本的选取应该具有代表性,以避免样本偏差对估计结果的影响。

用样本的频率分布估计总体的频率分布

用样本的频率分布估计总体的频率分布



ቤተ መጻሕፍቲ ባይዱ
ii.组距:各组数据左右两各端点之间的距离。 (3)分组:各组数据所在区间取左闭右开区间,最后一个 区间取闭区间。 (4)填表:统计各组数据频数、计算频率,将频数和频率 填在表格相应空格内。 2、例题 (1)讲与练P36 类型一 画样本的频率分布直方图 (例1) (2 )讲与练P36 类型一 画样本的频率分布直方图 (变式训练1)
(2)将茎按由小到大的顺序排成一列,写在左侧或右侧; (3)将共茎的表示叶的数据按由小到大的顺序排成一行写 在茎的左侧。
3、注意 (1)对于重复出现的叶不能省略; (2)若有双叶则应对称,即左边的叶按由小到大的顺序排 列,则右边的叶则应按由大到小的顺序排列。 4、例题 (1)讲与练P37 类型三 茎叶图及其应用 (例3) (2)讲与练P37 类型三 茎叶图及其应用 (变式训练3) 四、课堂作业
三、频率分布直方图
1、概念:用直方图的形式来表示频率分布规律的方图叫频
率分布直方图
2、制作 (1)取一直角标架,将直角标架的横轴连续分成几段; (2)以各段为边做矩形,其中矩形的底表示组距,高表示
频率 组距
(3)在各矩形中的底和高所对应的轴相应位置标注相应数据。 3、意义
频率 (1)各矩形面积为频率与 组距
用样本的频率分布 估计总体的频率分布
一、基本概念
1、频数:将全部数据分成几组后,各组数据的个数叫这组数据的频数。
2、频率:各组数据的频数除以全部数据的商叫这组数据的频率。
二、频率分布表
1、画频率分布表的步骤 (1)求极差(极差是全部数据的最大值与最小值之差) (2)求组距和组数
极差 极差 极差 整数,则 组数 整数 ,则 组数 1 i.若 极差 ,若 组距 组距 组距 组距

用样本的频率分布估计总体的分布

用样本的频率分布估计总体的分布

必修3《2.2.1 用样本的频率分布估计总体的分布》教学设计北京师范大学附属实验中学曹付生一、教学内容分析1.教学主要内容:本节课选自人教B版必修三,第二章第二小节,《用样本的频率分布估计总体的分布》,需要2课时完成,本节课是第一课时。

主要是画出样本的频率分布直方图,并能通过频率分布直方图对总体进行简单的估计。

2.教材编写特点本节是本章教材的第二小节,前面研究了随机抽样的方法及数据收集。

本节课主要研究对收集样本如何进行处理,突出对数据描述、处理的方法,特别是频率分布直方图画法,后面接着研究总体密度曲线、用样本的数字特征估计总体的数字特征以及正态曲线等,可以说本节课内容承上启下,地位非常重要。

从教材编写的角度来看,也正是要体现这一特点。

教材编写,通过对样本分析和总体估计的过程,突出了统计的实用性,从实际出发,收集数据,进行分析整理,再回到实际问题,感受数学对实际生活的需要,体现了统计的思想及其在实际问题中的应用价值,真正体会数学知识与现实生活的联系。

3.教材内容的数学核心思想教材内容的数学核心思想是用样本的频率分布直方图估计总体的统计思想方法。

4.我的思考:本节课重在教会学生绘制频率分布直方图,引导学生通过频率分布直方图分析总体的分布,体会统计的思想、方法。

在通读了教材的基础上,与人教A版的相应内容作了比较,再结合学生的情况,最终选择A版内容,更利于完成教学目标。

(1)人教A版教材中的例子与学生关系紧密,提出的问题更切合学生实际。

背景的熟悉使学生易于课堂参与。

(2)教材中问题的设计利于学生统计思想的建立等。

统计思想方法是数学的一个重要的思想方法,中学学习统计,除了掌握必要的统计知识之处,关键是让学生建立统计在现实生活中具有重要的作用,具有统计意识,同时体会到统计结果随机性、科学性,能作为总体的分布的合理性,是生活中某些问题决策必不可少的依据。

统计教学的核心目标正是让学生体会统计思维的特点和作用。

因此在设计中,从实际问题出发,再回到实际问题的决策,前后呼应,使学生真正体会数据处理的全过程、统计应用于现实生活的全过程,突出统计的思想、方法。

2.2.1用样本的频率分布估计总体分布课件人教新课标

2.2.1用样本的频率分布估计总体分布课件人教新课标

4. 茎叶图的概念 茎是指 中间的一列数 ,叶就是从茎的旁边生长出 来的数.茎叶图可用来分析单组数据,也可以对两组数 据进行比较.茎叶图不仅能够保留原始数据,而且能够 展示数据的散布情况.
【常考题型】
列频率散布表、画频率散布直方图 [例 1] 考察某校高二年级男生的身高,随机抽取 40 名 高二男生,实测身高数据(单位:cm)如下: 171 163 163 166 166 168 168 160 168 165 171 169 167 169 151 168 170 160 168 174 165 168 174 159 167 156 157 164 169 180 176 157 162 161 158 164 163 163 167 161 (1)作出频率分布表; (2)画出频率分布直方图和频率分布折线图.
(2)频率分布直方图和频率分布折线图如图所示:
(3)样本数据不足 0 的频率为: 0.035+0.055+0.075+0.2=0.365.
频率散布直方图的应用
[例 2] (1)某班 50 名学生在一次百米跑 测试中,成绩全部介于 13 s 与 19 s 之间,将 测试结果按如下方式分成六组:第一组,成 绩大于等于 13 s 且小于 14 s;第二组,成绩 大于等于 14 s 且小于 15 s;…;第六组,成 绩大于等于 18 s 且小于等于 19 s,如图所示是按上述分组方法 得到的频率分布直方图.设成绩小于 17 s 的学生人数占全班 总人数的百分比为 x,成绩大于等于 15 s 且小于 17 s 的学生人 数为 y,则从频率分布直方图(如图所示)中分析出 x 和 y 分别 为( )
3.如图是一个班的语文成绩的茎叶图(单位:分),则优秀率(90 分以上)是________,最低分是________.

2.2.1用样本的频率分布估计总体分布

2.2.1用样本的频率分布估计总体分布

分 组 [0,0.5) [0,0.5) [0.5, [0.5,1) [1,1.5) [1,1.5) [1.5, [1.5,2) [2,2.5) [2,2.5) [2.5, [2.5,3) [3,3.5) [3,3.5) [3.5, [3.5,4) [4, [4,4.5] 合计
频数 4 正 8 正 正 正 15 正 正 正 正 22 正 正 正 正 正 25 正 正 14 正 一 6 4 2 100
1.9 0.3 0.5 0.6 0.8 0.7 0.9 0.5 0.8 0.6
1.6 0.4 3.8 4.1 4.3 2.0 2.3 2.4 2.4 2.2
思考1 上述100个数据中的最大值和最 思考1:上述100个数据中的最大值和最 100 小值分别是什么? 小值分别是什么?由此说明样本数据的 变化范围是什么? 变化范围是什么? 0.2~ 0.2~4.3 思考2:样本数据中的最大值和最小值 思考2 的差称为极差 如果将上述100 极差. 100个数据 的差称为极差.如果将上述100个数据 组距为0.5进行分组 进行分组, 按组距为0.5进行分组,那么这些数据 共分为多少组? 共分为多少组? 4.3-0.2) (4.3-0.2)÷0.5=8.2
上图称为频率分布直方图, 上图称为频率分布直方图,其中横轴 频率分布直方图 表示月均用水量,纵轴表示频率/组距. 表示月均用水量,纵轴表示频率/组距. 频率分布直方图中各小长方形的和高 度在数量上有何特点? 度在数量上有何特点?
思考2 思考2:频率分布直方图中各小长方形的 面积表示什么? 面积表示什么?各小长方形的面积之和 为多少? 为多少?
频率 组距 0.5 0.4 0.3 0.2 0.1
O
0.5 1 1.5 2 2.5 3 3.5 4 4.5

2.2.1用样本的频率分布估计总体的分布课件(刘爱娟,2014.2.26)

2.2.1用样本的频率分布估计总体的分布课件(刘爱娟,2014.2.26)

• • • • • • • • • •
25.39 25.41 25.40 25.37 25.35 25.40 25.36 25.41 25.47 25.40
25.36 25.43 25.39 25.44 25.32 25.43 25.42 25.32 25.34 25.35
25.34 25.44 25.41 25.33 25.45 25.44 25.39 25.38 25.30 25.41
1.将每个数据分为茎(高位)和叶(低位) 两部分,在此例中,茎为十位上的数字, 叶为个位上的数字. 2.将最小茎和最大茎之间的数按大小次序 排成一列,写在中间. 3.将各个数据的叶按大小次序写在其茎的 左(右)侧.
用茎叶图表示数据的优点
一是从统计图上没有原始信息的损失,所 有的数据信息都可以从茎叶图中得到; 二是茎叶图可以在比赛是随时记录,方便 记录与表示。但茎叶图只便于表示两位有 效数字的数据,虽然可以表示两个人以上 的比赛结果(或两个以上的记录),但没 有表示两个记录那么直观、清晰
二、频率分布折线图
把频率分布直方图各个长方形上边的中点用线段 连接起来,就得到分布折线图。
三、总体密度曲线
• 频率分布直方图表明了所抽取的100件产品中, 尺寸落在各个小组内的频率大小.样本容量越大, 所分组数越多,各组的频率就越接近于总体在相 应各组取值的概率.设想样本容量无限增大,分
组的组距无限缩小,则频率分布直方图就会无限 接近于一条光滑曲线——总体密度曲线.它反映 了总体在各个范围内取值的规率.总体密度曲线
3、甲乙两个小组各10名学生的英语口语测试成绩如下(单位:分)
甲组 76 乙组 82 90 84 84 85 86 89 81 79 87 80 86 91 82 89 85 79 83 74

用样本的频率分布估计总体分布教案

用样本的频率分布估计总体分布教案

用样本的频率分布估计总体分布教案教案:用样本的频率分布估计总体分布一、教学目标:1.了解频率分布的概念和作用;2.学会使用频率分布来估计总体分布;3.掌握构建频率分布表的方法;4.能够利用频率分布表对总体进行估计。

二、教学内容:1.频率分布的概念和作用2.构建频率分布表的方法3.利用频率分布表对总体进行估计三、教学过程:一、频率分布的概念和作用(10分钟)1.频率分布是指对一组数据中各个数值出现的次数进行统计,从而得到数值的分布情况。

2.频率分布的作用是可以帮助我们了解数据的分布规律,从而对总体进行估计。

二、构建频率分布表的方法(30分钟)1.确定数据的分组区间:首先需要确定分组的宽度,即把数据分为若干个区间。

常用的方法有等宽分组和等频分组。

2.计算各个分组的频数:统计每个区间内数据的个数。

3.计算各个分组的频率:将各个分组的频数除以总样本数量,得到各个分组的频率。

4.制作频率分布表:将各个分组的上界、下界、频数和频率列成表格。

三、利用频率分布表对总体进行估计(40分钟)1.利用频率分布表进行估计的方法有两种:直接估计和间接估计。

2.直接估计是通过频率分布表直接读取各个分组的频率来估计总体分布。

3.间接估计是通过频率分布表的图形化表示来估计总体分布,常用的图形有直方图和折线图。

4.对于直方图,可以通过观察分布的形状和峰值来估计总体的分布情况。

5.对于折线图,可以通过观察分布曲线的形状来估计总体的分布情况。

四、练习和小结(20分钟)1.让学生根据给定的数据,完成频率分布表的构建。

2.让学生根据给定的频率分布表,进行总体分布的估计。

3.对学生进行小结和概念回顾,检查他们对于频率分布和总体估计的理解程度。

四、教学反思:通过本节课的教学,学生能够了解频率分布的概念和作用,掌握构建频率分布表的方法,以及利用频率分布表对总体进行估计的方法。

在教学过程中,可以利用实际案例和练习来加深学生对于频率分布和总体估计的理解。

高中数学第二章统计221用样本的频率分布估计总体分布练习含解析新人教A版必修

高中数学第二章统计221用样本的频率分布估计总体分布练习含解析新人教A版必修

2.2.1 用样本的频率分布估计总体分布A级基础巩固一、选择题1.没有信息的损失,所有的原始数据都可以从图中得到的统计图是( )A.总体密度曲线B.茎叶图C.频率分布折线图D.频率分布直方图答案:B2.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为( )B.C.D.解析:数据总个数n=10,又落在区间[22,30)内的数据个数为4,故所求的频率为410=0.4.答案:B3.某雷达测速区规定:凡车速大于或等于70 km/h的汽车视为“超速”,并将受到处罚.下图是某路段的一个检测点对300辆汽车的车速进行检测所得结果的频率分布直方图,则从图中可得出将被处罚的汽车数为( )A.30辆B.40辆C.60辆D.80辆解析:车速大于或等于70 km/h的汽车数为×10×300=60(辆).答案:C4.一个社会调查机构就某地区居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图),为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2 500,3 000)(单位:元)月收入段应抽出的人数为( )A.5 B.25 C.50 D.2 500解析:组距=500,在[2 500,3 000)的频率=0.000 5×500=,样本数为100,则在[2 500,3 000)内应抽100×=25(人).答案:B5.为了了解某校高三学生的视力情况,随机抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,仅知道后5组的频数和为62.设视力在到之间的学生数为a,最大频率为,则a的值为( )A.27 B.48 C.54 D.64解析:由已知,视力在到之间的学生数为100×=32,又视力在到之间的频率为1-+0.5)×-62100=,所以视力在到之间的学生数为100×=22,所以视力在到之间的学生数a =32+22=54.答案:C二、填空题6.某市共有5 000名高三学生参加联考,为了了解这些学生对数学知识的掌握情况,现从中随机抽出若干名学生在这次测试中的数学成绩,制成如下频率分布表:分组/分频数频率[80,90)①②[90,100)[100,110)[110,120)36[120,130)[130,140)12③[140,150]合计④根据上面的频率分布表,可以①处的数值为________,②处的数值为________. 解析:由位于[110,120)的频数为36,频率=36n=,得样本容量n =120,所以[130,140)的频率=12120=,②处的数值=1------=; ①处的数值为×120=3. 答案:37.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法抽取18人参加一项活动,则从身高在[140,150]内的学生中抽取的人数应为________.解析:所有小矩形的面积和等于10×++0.020+a +0.035)=1,解得a =;100名同学中,身高在[120,130)内的学生数是10××100=30,身高在[130,140)内的学生数是10××100=20,身高在[140,150]内的学生数是10××100=10,则三组内的总学生数是30+20+10=60,抽样比是1860=310,所以身高在[140,150]内的学生中选取的人数应为10×310=3.答案: 38.为了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校200名授课教师中抽取20名教师,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如下:据此可估计该校上学期200名教师中,使用多媒体进行教学次数在[15,25)内的人数为________.答案:60三、解答题9.为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00-10:00间各自的点击量,得到如图所示的茎叶图.(1)甲网站点击量在[10,40]间的频率是多少? (2)甲、乙两个网站哪个更受欢迎?请说明理由.解:(1)甲网站点击量在[10,40]内的有17,20,38,32,共有4天,则频率为414=27. (2)甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方,从数据的分布情况来看,甲网站更受欢迎.10.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少? 解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为:42+4+17+15+9+3=0.08.又因为第二小组的频率=第二小组的频数样本容量,所以样本容量=第二小组的频数第二小组的频率=120.08=150.(2)由题意估计该学校高一学生的达标率约为17+15+9+32+4+17+15+9+3×100%=88%.B 级 能力提升1.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图所示是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .6B .8C .12D .18解析:志愿者的总人数为20(+)×1=50,所以第三组的人数为50×=18,有疗效的人数为18-6=12.答案:C2.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.解析:由题意可知,这35名运动员的分组情况为,第一组(130,130,133,134,135),第二组(136,136,138,138,138),第三组(139,141,141,141,142),第四组(142,142,143,143,144),第五组(144,145,145,145,146),第六组(146,147,148,150,151),第七组(152,152,153,153,153),故成绩在区间[139,151]上的运动员恰有4组,则运动员人数为4.答案:43.从高一学生中抽取50名参加调研考试,成绩的分组及各组的频数如下(单位:分): [40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)估计成绩在[70,80)分的学生所占总体的百分比.解:(1)频率分布表如下:成绩分组频数频率[40,50)2[50,60)3[60,70)10[70,80)15[80,90)12[90,100]8合计50(2)由题意知组距为10,取小矩形的高根据表格画出如下的频率分布直方图:(3)由频率分布直方图,可估计成绩在[70,80)分的学生所占总体的百分比是×10==30%.。

课件6:2.2.1 用样本的频率分布估计总体的分布

课件6:2.2.1 用样本的频率分布估计总体的分布

[思路探索] 根据画频率分布直方图的步骤先画频率分布直方图,再 画折线图.
解 (1)频率分布表如下:
分组
频数 频率
[10.75,10.85)
3Байду номын сангаас
0.03
[10.85,10.95)
9
0.09
[10.95,11.05) [11.05,11.15) [11.15,11.25) [11.25,11.35) [11.35,11.45) [11.45,11.55) [11.55,11.65]
题型二 频率的分布直方图的应用 例2.(1)为了帮助班上的两名贫困生解决经济困难,班上的20名同学捐出 了自己的零花钱,他们捐款数(单位:元)如下:19,20,25,30,24, 23,25,29,27,27,28,28,26,27,21,30,20,19,22,20.班主 任老师准备将这组数据制成频率分布直方图,以表彰他们的爱心.制图 时先计算最大值与最小值的差是________.若取组距为2,则应分成 ________组;若第一组的起点定为18.5,则在[26.5,28.5)内的频数为 ________. (2)将容量为100的某个样本数据拆分为10组,若前七组的频率之和为0.79, 而剩下的三组中频率依次相差0.05,则剩下的三组中频率最大的一组的 频率为________.
(4)数据小于11.20的可能性即数据小于11.20的频率,设为x, 则(x-0.41)÷(11.20-11.15) =(0.67-0.41)÷(11.25-11.15), 所以x-0.41=0.13,即x=0.54, 从而估计数据小于11.20的可能性是54%.
变式3.美国历届总统中,就任时年纪最小的是罗斯福,他于1901年 就任,当时年仅42岁;就任时年纪最大的是里根,他于1981年就 任,当时69岁.下面按时间顺序(从1789年的华盛顿到2009年的奥 巴马,共44任)给出了历届美国总统就任时的年龄: 57,61,57,57,58,57,61,54,68,51,49,64,50,48, 65,52,56,46,54,49,51,47,55,55,54,42,51,56, 55,51,54,51,60,62,43,55,56,61,52,69,64,46, 54,48 (1)将数据进行适当的分组,并画出相应的频率分布直方图和频率 分布折线图. (2)用自己的语言描述一下历届美国总统就任时年龄的分布情况.

人教A版必修3《2.2.1用样本的频率分布估计总体分布》优化训练ppt课件

人教A版必修3《2.2.1用样本的频率分布估计总体分布》优化训练ppt课件

(1)列出样本频率分布表; (2)画出频率分布直方图. 解:(1)在样本数据中,最大值是 518,最小值是 483,极 差为 35.
35 3 若取组距为 4,则 4 =84,要分为 9 组,组数合适,故取
组距为 4,分 9 组,分点比数据多一位小数,故把第一组起点
稍微小一点,故分组如下:
[482.5,486.5],[486.5,490.5],„,[514.5,518.5].
(2)频率分布直方图,如图 D13.
图 D13
【变式与拓展】
2.为了让学生了解环保知识,增强环保意识,某中学举行
了一次“环保知识竞赛”,共有 900 名学生参加了这次竞赛.为 了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为 整数,满分为 100 分)进行统计.请你根据尚未完成并有局部污损 的频率分布表和频率分布直方图(如图 2-2-3),解答下列问题: (1)填充频率分布表的空格(将答案直接填在表格内);
列表如下: 分组 [482.5,486.5) [486.5,490.5) [490.5,494.5) [494.5,498.5) [498.5,502.5) [502.5,506.5) [506.5,510.5) [510.5,514.5) [514.5,518.5] 合计 频数累计 正 正正正 正正正正 正正 正正 正正正 正 频数 8 3 17 20 14 10 19 6 3 100 频率 0.08 0.03 0.17 0.20 0.14 0.10 0.19 0.06 0.03 1.00
当数据由整数部分和小数部分组成时,可以把整数部分作为
________ ,小数部分作为________. 茎 叶
练习 2:为了了解某校教师使用多媒体进行教学的情况,

221用样本的频率分布估计总体分布课件-四川省成都市石室中学高中数学必修三(共23张PPT)

221用样本的频率分布估计总体分布课件-四川省成都市石室中学高中数学必修三(共23张PPT)

知识点三 茎叶图 思考 茎叶图是表示样本数据分布情况的一种方法,那么“茎”、“叶” 分别指的是哪些数? 答案 茎是指中间的一列数,叶就是从茎的旁边生长出来的数. 当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字, 两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎, 两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图. 适用范围:当样本数据较少时,用茎叶图表示数据的效果较好.
茎叶图和频率分布表极为类似,事实上,茎相当于频率分布表中的分组; 茎上叶的数目相当于频率分布表中指定区间组的频率.
跟踪训练1 某赛季甲、乙两名篮球运动员每场比赛的得分情况如下: 甲运动员得分:13,51,23,8,26,38,16,33,14,28,39; 乙运动员得分:49,24,12,31,50,31,44,36,15,37,25,36,39. 试制作茎叶图来对比描述这些数据.
知识点二 频率分布折线图和总体密度曲线
1.频率分布折线图 连接频率分布直方图中各小长方形 上端的中点 ,就得到频率分布折线图. 2.总体密度曲线 随着样本容量的增加,作图时所分的组数 增加,组距减小,相应的频率折 线图会越来越接近于一条 光滑曲线,统计中称这条光滑曲线为总体密度曲 线,它反映了总体在各个范围内取值的百分比.
3、什么是茎叶图?怎样作茎叶图?
类型一 利用原始数据绘制频率分布表
例1 从某校高一年级的1 002名新生中用系统抽样的方法抽取一个容量为 100的身高样本,如下(单位:cm).作出该样本的频率分布表,并估计身高 不小于170(cm)的同学所占的百分率.
168 165 171 167 170 165 170 152 175 174 165 170 168 169 171 166 164 155 164 158 170 155 166 158 155 160 160 164 156 162 160 170 168 164 174 170 165 179 163 172 180 174 173 159 163 172 167 160 164 169 151 168 158 168 176 155 165 165 169 162 177 158 175 165 169 151 163 166 163 167 178 165 158 170 169 159 155 163 153 155 167 163 164 158 168 167 161 162 167 168 161 165 174 156 167 166 162 161 164 166

2.2.1 用样本的频率分布估计总体分布 课件(人教A版必修3) (1)

2.2.1 用样本的频率分布估计总体分布 课件(人教A版必修3) (1)

)
【做一做 2-2】 在画频率分布直方图时, 某组的频数为 10, 样本容量为 50, 总体容量为 600, 则该组的频率是( A.
1 5
) C.
1 10
B.

1 6 10 1
D.不确定
解析: 该组的频率是50 = 5. 答案: A
3.频率分布折线图和总体密度曲线 ( 1) 类似于频数分布折线图, 连接频率分布直方图中各个小长方形上端的中 点, 就得到频率分布折线图. 一般地, 当总体中的个体数较多时, 抽样时样本容量就不能太小.例如, 如果 要抽样调查一个省乃至全国的居民的月均用水量, 那么样本容量就应比调查一 个城市的时候大.可以想像, 随着样本容量的增加, 作图时所分的组数增加, 组距 减小, 相应的频率折线图会越来越接近于一条光滑曲线, 统计中称这条光滑曲线 为总体密度曲线.
频率分布折线图反映了数据的变化趋势.总体密度曲线反映了总体在各个范围 内取值的百分比, 它能给我们提供更加精细的信息.
( 2) 估计方法: 实际上, 尽管有些总体密度曲线是客观存在的, 但是在实际应 用中我们并不知道它的具体表达形式, 需要用样本来估计.由于样本是随机的, 不同的样本得到的频率分布折线图不同; 即使对于同一个样本, 不同的分组情况 得到的频率分布折线图也不同.频率分布折线图是随样本容量和分组情况的变 化而变化的, 因此不能用样本的频率分布折线图得到准确的总体密度曲线.
2.2
用样本估计总体
2.2.1
用样本的频率分布估计总体分布
1.了解分析数据的方法,知道估计总体频率分布的方法. 2.了解频率分布折线图和总体密度曲线,会画频率分布直方图和茎叶图. 3.理解频率分布直方图和茎叶图及其应用.
1.分析数据的方法 ( 1) 借助于图形. 用图将各个数据画出来, 作图可以达到两个目的, 一是从数据中提取信息; 二是利用图形传递信息. ( 2) 借助于表格. 用紧凑的表格改变数据的构成方式, 为我们提供解释数据的新方式.

山东省高中数学《2.2.1用样本的频率分布估计总体分布》导学案2 新人教A版必修3

山东省高中数学《2.2.1用样本的频率分布估计总体分布》导学案2 新人教A版必修3

自主学习 阅读课本 32-33 页并回答思考交流的问题. 抽象概括出: 1)编制频率分布直方表的步骤
学 习 过 程 与 方 法
2)频率分布直方图的绘制的步骤
3)频率分布折线图的绘制
精讲互动 1. 讲解几种频率分布的联系和区别
2. 例题讲解 例 1 :为检测某产品的质量,抽取了一个容量为 30 的样 本,检测结果为 一级品 5 件, 二级品 8 件,三级品 13 件,次品 4 件。 ⑴ 列出样本的频率分布表;
1
⑵此种产品为二级品或三级品的概率? ⑶能否画出样本分布的条形图? 分析: 当总体中的个体取不同数值很少时, 可用频率分布表或频率分布条形图估计总体分 布。
பைடு நூலகம்
达标训练 1.在用样本频率估计总 体分布的过程中,下列说法中正确的是( ) A.总体容量越大,估计越精确 B.总体容量越小,估计越精 确C.样本容量越大,估计越精确 D.样本容量越小,估计越 精确 2. 一个容量为n的样本,分成若干组,已知某数的频数和频率分别为 50 和 0.25,则n = . 3. 一个容量为 32 的样本,已知某组的样本的频率为 0.25,则该组样本的频数为( ) A.2 B.4 C.6 D.8 4.某 校为了了解学生的课外阅读情况,随机调 人数(人) 查了 50 名学生,得到他们在某一天各自课外阅 读所用时间的数据,结果用右侧的条形图表示. 20 根据条形图可得这 50 名学生这一天平均每人的 15 课外阅读时间为 ( ) 10 ( A) 0.6 小时 ( B ) 0.9 小时
§2.2.1 用样本的频率分布估计总体分布 2
授 课 时 间 学 习 目 标 重 点 难 点 第 周 星期 第 节 课型 新授课 主备课 人
1. 体会分布的意义和作用; 2. 学会列频率分布表,会画频率分布条形图、直方图; 3. 会用频率分布表或分布条形图、直方图估计总体分布,并作出合理解释。

人教b版数学必修三:2.2.1《用样本的频率分布估计、总体的分布》导学案

人教b版数学必修三:2.2.1《用样本的频率分布估计、总体的分布》导学案

§2.2用样本估计总体2.2.1用样本的频率分布估计总体的分布自主学习学习目标1.通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.2.在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体的分布,初步体会样本频率分布的随机性.自学导引1.极差的概念极差是一组数据的________________的差,它反映了一组数据____________,极差又叫________.2.频数、频率的概念将一批数据按要求分为若干组,对落在各个小组内数据的________进行累计,这个累计数叫做各个小组的______,各个小组的______除以________,即得该小组的______.3.频率分布直方图在频率分布直方图中,纵轴表示________________,各小长方形的面积等于________________,所有长方形面积之和等于________.4.频率分布折线图连接频率分布直方图中各个小长方形的____________,就得到频率分布折线图.5.总体密度曲线如果样本容量越大,所分组数越多,频率分布直方图中表示的频率分布就越接近总体在各个小组内所取值的________________的大小;当样本容量不断增大,分组的组距不断缩小时,频率分布直方图实际上越来越接近于____________,它可以用一条____________来描绘,这条光滑曲线就叫做________________.6.茎叶图用茎叶图表示数据的两个优点在于:一是从茎叶图上没有____________的损失,所有的数据信息都可以从茎叶图中得到;二是茎叶图可以在比赛时____________,方便记录与表示.对点讲练知识点一画频率分布直方图、频率分布折线图例1某中学同年级40名男生的体重数据如下(单位:千克):61605959595858575757575656565656565655555555545454545353525252525251515150504948列出样本的频率分布表,画出频率分布直方图,画出频率分布折线图.变式迁移1有一容量为200的样本,数据的分组以及各组的频数如下:[-20,-15),7;[-15,-10),11;[-10,-5),15;[-5,0),40;[0,5),49;[5,10),41;[10,15),20;[15,20),17.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)求样本数据不足0的频率.知识点二用样本的频率分布估计总体分布寿命(2)画出频率分布直方图及折线图;(3)估计电子元件寿命在400 h以上的概率.变式迁移2为了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5.(1)求第四小组的频率;(2)问参加这次测试的学生人数是多少?(3)问在这次测试中,学生跳绳次数的中位数落在第几小组内?例3某赛季甲、乙两名篮球运动员每场比赛的得分情况如下:甲的得分12,15,24,25,31,31,36,36,37,39,44,49,50;乙的得分8,13,14,16,23,26,28,33,38,39,51.(1)画出甲、乙两名运动员得分数据的茎叶图;(2)根据茎叶图分析甲、乙两运动员的水平.变式迁移3在某电脑杂志的一篇文章中,每个句子所含的字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17;在某报纸的一篇文章中,每个句子所含的字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22.(1)将这两组数据用茎叶图表示;(2)将这两组数据进行比较分析,得到什么结论?几种表示频率分布的方法的优点与不足(1)频率分布表在数量表示上比较确切,但不够直观、形象,分析数据分布的总体态势不太方便.(2)频率分布直方图能够很容易地表示大量数据,非常直观地表明分布的形状,使我们能够看到在分布表中看不清楚的数据模式.(3)频率分布折线图的优点是它反映了数据的变化趋势.如果样本容量不断增大,分组的组距不断缩小,那么折线图就趋向于总体密度曲线.(4)用茎叶图刻画数据有两个优点:一是所有的信息都可以从这个茎叶图中得到;二是茎叶图便于记录和表示,能够展示数据的分布情况,但当样本数据较多或数据位数较多时,茎叶图就显得不太方便了.课时作业一、选择题1.关于频率分布直方图中的有关数据,下列说法正确的是()A.小矩形的高表示取某数的频率B.小矩形的高表示该组上的个体在样本中出现的频率C.小矩形的高表示该组上的个体数与组距的比值D.小矩形的高表示该组上个体在样本中出现的频率与组距的比值2.关于样本频率分布直方图与总体密度曲线的关系,下列说法中正确的是()A.频率分布直方图与总体密度曲线无关B.频率分布直方图就是总体密度曲线C.样本容量很大的频率分布直方图就是总体密度曲线D.如果样本容量无限增大,分组的组距无限减小,那么相应的频率分布折线图会越来越接近一条光滑曲线,则这条光滑曲线为总体密度曲线3.已知10个数据如下:63,65,67,69,66,64,66,64,65,68.如果对这些数据绘制频率分布表,那么其中在64.5~66.5这组的频率是()A.0.4 B.0.5 C.5 D.4A.0.5 B.0.24 C.0.6 D.0.7二、填空题5.在求频率分布时,把数据分为5组,若已知其中的前四组频率分别为0.1,0.3,0.3,0.1,则第五组的频率是______,这五组的频数之比为________.6.在样本的频率分布直方图中,共有5个小长方形,已知中间一个小长方形面积是其余4个小长方形面积之和的13,且中间一组的频数为10,则这个样本容量是________.三、解答题7.在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为6月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图),已知从左到右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率较高?8.有关部门从甲,乙两个城市所有的自动售货机中分别随机抽取了16台,记录下一上午各自的销售情况如下:(单位:元)甲18,8,10,43,5,30,10,22,6,27,25,58,14,18,30,41乙22,31,32,42,20,27,48,23,38,43,12,34,18,10,34,23(1)请画出这两组数据的茎叶图.(2)将这两组数据进行比较分析,你能得到什么结论?§2.2用样本估计总体2.2.1用样本的频率分布估计总体的分布自学导引1.最大值与最小值变化的幅度全距2.个数频数频数样本容量频率3.频率与组距的比值相应各组的频率 14.上边的中点5.个数与总数比值总体的分布光滑曲线y=f(x)总体密度曲线6.原始信息随时记录对点讲练例1解(1)计算:61-48=13;(2)决定组距与组数,取组距为2,∵132=612,∴共分7组;(3)决定分点,使分点比数据多一位小数.并把第1小组的分点减小0.5,即分成如下7组:47.5~49.5,49.5~51.5,51.5~53.5,53.5~55.5,55.5~57.5,57.5~59.5,59.5~61.5.(4)51.5~53.5 7 0.175 53.5~55.5 8 0.20 55.5~57.5 11 0.275 57.5~59.5 5 0.125 59.5~61.5 2 0.05 合计4040 1.00(5)(6)取各小长方形上边的中点并用线段连接就构成了频率分布折线图. 变式迁移1 解 (1)分组 频数 频率[-20,-15)7 0.035 [-15,-10)11 0.055 [-10,-5)15 0.075 [-5,0)40 0.200 [0,5) 49 0.245 [5,10) 41 0.205 [10,15) 20 0.100 [15,20) 17 0.085合计200 (2)(3)样本数据不足0的频率为7+11+15+40200=0.365.例2 解 (1)寿命(h ) 频数 频率100~20020 0.10 200~30030 0.15 300~40080 0.40 400~50040 0.20 500~60030 0.15 合计200 1.00 (2)(3)由频率分布表可知,寿命在400 h 以上的电子元件出现的频率为0.20+0.15=0.35,故我们估计电子元件寿命在400 h 以上的频率为0.35.变式迁移2 解 (1)第四小组的频率为1-(0.1+0.3+0.4)=0.2. (2)n =第一小组的频数÷第一小组的频率=5÷0.1=50.(3)由0.1×50=5,0.3×50=15,0.4×50=20,0.2×50=10,得第一、第二、第三、第四小组的频数分别为5,15,20,10.所以学生跳绳次数的中位数落在第三小组内. 例3 解 (1)作出茎叶图如下图:(2)由上面的茎叶图可以看出,甲运动员的得分情况是大致对称的,中位数是36分;乙运动员的得分情况除一个特殊得分外,也大致对称,中位数是26分.因此甲运动员的发挥比较稳定,总体得分情况比乙运动员好.变式迁移3 解 (1)茎叶图如图所示:(2)电脑杂志上每个句子的字数集中在10~30之间,报纸上每个句子的字数集中在20~40之间,说明电脑杂志上每个句子的平均字数要比报纸上每个句子的平均字数要少.课时作业 1.D 2.D3.A [∵在这组中的数只有4个,∴频率=410=0.4.]4.D5.0.2 1∶3∶3∶1∶2 6.40解析 可知中间长方形的面积是所有长方形面积的14,即频率为14,∴样本容量为1014=40.7.解 (1)依题意知第三组的频率为42+3+4+6+4+1=15,又∵第三组的频数为12,∴本次活动的参评作品数为1215=60(件).(2)根据频率分布直方图,可以看出第四组上交的作品数量最多,共有60×62+3+4+6+4+1=18(件)(3)第四组的获奖率是1018=59,第六组上交的作品数量为60×12+3+4+6+4+1=3(件)∴第六组的获奖率为23=69,显然第六组的获奖率较高. 8.解 (1)茎叶图如图所示.(2)由图可以看出乙城市的销售额分布较对称,集中程度较高,故乙城市一上午的销售情况比较稳定且销售额较高.。

2.2.1用样本的频率分布估计总体的分布

2.2.1用样本的频率分布估计总体的分布

⑤上例中,如果规定,钢管内径的尺寸在 区间25.325~25.475内为优等品,我们可依 据抽样分析统计出产品中优等品的比例, 也就是它的频率。从上表或上图容易看出, 这个频率值等于0.12+0.18+0.25+0.16 +0.13=0.84,于是可以估计出所有生产的 钢管中有84%的优等品。工厂可以根据质 量规范,看看是否达到优等品率的要求, 如果没有达到,就需要进一步分析原因, 解决问题。
分组时,通常对组内数值所在区间取左 闭右开区间,最后一组取闭区间,当然也 可以采用其他分组方法。
④登记频数,计算频率,列出频率分布表 频数 频率= —————,如第1小组的频率 样本容量 1 为——— =0.01. 100
频率分布表:
⑤ 绘制频率分布直方图 利用直方图反映样本的频率分布规律, 这样的直方图称为频率分布直方图,简称 频率直方图。 下面仍以上例中的数据加 以说明。 (1)频率分布直方图的绘制方法与步骤 S1 先制作频率分布表,然后作直角坐标 系,以横轴表示产品内径尺寸,纵轴表示 频率/组距.
运用上面的算法得出这组样本数据的最 大值是25.56,用类似的算法可以得出最 小值是25.24它们的差为 25.56-25.24= 0.32,所以极差等于0.32mm. ②决定组距与组数 样本数据有100个,由上面算得极差为 0.32,取组距为0.03, 极差 那么组数= ——— =10.67,于是分成11组。 组距
4.列频率分布表的步骤
下面我们通过一个具体的实例来阐述这 一方法。 某钢铁加工厂生产内径为25.40mm的钢 管,为了掌握产品的生产状况,需定期对 产品进行检测,下面的数据是一次抽样中 的100件钢管的内径尺寸:
最大值
最小值
列频率分布表的方法步骤: ①求极差(也称全距,即一组数据中最 大值与最小值的差): 计算极差时,需要找出这组数据的最 大值和最小值,当数据很多时,可借助 如下算法(最大值): S1 把这100个数据命名为A(1)、A(2)、 A(3)、……、A(100); S2 设变量x=A(1); S3 把A(i) (i=2,3,……,100)逐个与x比 较,如果A(i)>x,则x=A(i);

2.2.1用样本的频率分布估计总体

2.2.1用样本的频率分布估计总体
0.6 0.5
频率/组距
0.4 0.3 0.2 0.1 0 0-0.5 0.5-1 1-1.5 1.5-2 2-2.5 2.5-3 3-3.5 3.5-4 4-4.5
用水量范围
连接频率分布直方图中各个小长方形上端的中点,频率分布折线图
随着样本容量的增加,作图时所分的组数也会增加,相应的频 率折线图会越来越接近于一条光滑的曲线,统计学中称这条光滑的 曲线为总体密度曲线
(3)根据频率分布直方图估计,数据落在[15.5, 24.5)的百分比是多少?
解:(1)组距为3,列频率分布表
分组 频数 频率 频率/ 组距
[12.5, [15.5, [18.5, [21.5, [24.5, [27.5, [30.5,
15.5) 3 18.5) 8 21.5) 9 24.5) 11 27.5) 10 30.5) 5 33.5) 4
甲 8 4 6 3 3 6 8 3 8 9 1 0 1

2 5 5 4 1 1 6 6 7 9 4 9 0
2
3 4 5
茎叶图的特征:
(1)用茎叶图表示数据有两个优点:一是从统计图上没 有原始数据信息的损失,所有数据信息都可以从茎叶图 中得到;二是茎叶图中的数据可以随时记录,随时添加, 方便记录与表示; (2)茎叶图只便于表示两位(或一位)有效数字的数据, 对位数多的数据不太容易操作;而且茎叶图只方便记录 两组的数据,两个以上的数据虽然能够记录,但是没有 表示两个记录那么直观,清晰; (3)茎叶图对重复出现的数据要重复记录,不能遗漏.
[0,0.5 ),[0.5,1 ),…,[4,4.5]
分组时,通常对组内数值所在区间取左 闭右开区间,最后一组取闭区间,当然也 可以采用其他分组方法。
4.列频率分布表

221用样本频率分布估计总体分布

221用样本频率分布估计总体分布

课堂小结
表示样本分布的方法: (1)频率分布表 (2)频率分布图(包括直方图和条形图) (3)频率分布折线图 (4)茎叶图
表示样本的分布的方法:
1.频率分布表
3.频率分布折线图 样本频率分布中,
分组 个数累计 频数 频率
当样本容量无限增
大,组距无限缩小
2.频率分布直方图
频率/组距
样本频率分布直方图接近 于一条光滑曲线——总体 密度曲线,反映了总体分 布。
• 2.掌握频率分布表和频率分布直方 图的画法。
• 3.了解折线图和密度曲线的意义。
频率分布
样本中所有数据(或数据组)的频数和 与样本容量的比,叫做该数据的频率。
所有数据(或数据组)的频数的分布 变化规律叫做样本的频率分布。
频率分布的表示形式有:
①样本频率分布表 ②样本频率分布图
样本频率分布条形图 样本频率分布直方图 ③样本频率分布折线图
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
频率 组距 0.5 0.4 0.3 0.2 0.1
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5
月均用水量/t
(1)居民月均用水量的分布是“山峰”状的,而 且是“单峰”的;
(2)大部分居民的月均用水量集中在一个中间值 附近,只有少数居民的月均用水量很多或很少;
[2.5,33)
[3,3.5) [3.5,4) [4,4.5]
合计
频数累计
频数
4

8
正正正
15
正 正 正 正 22
正 正 正 正 正 25
正正
14
正一
6
40.15 0.22 0.25
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档