示范教案3.2圆的对称性第2课时

合集下载

九年级数学(北师大版)下册第3章3.2圆的对称性教案-文档资料

九年级数学(北师大版)下册第3章3.2圆的对称性教案-文档资料

课题:圆的对称性(二)教学思路:本节课设计充分体现新课程标准下数学课堂教学,以学生为主体,教师为引导的目的去进行教学,开展以“自主、合作、探究、师生互动”的学习方式,让学生经历学习数学的严谨探索过程,真正成为学习的主人。

教学内容:本节课教学内容是《义务教育课程标准实验教科书数学》(北师大版)九年级(下)第三章“圆”第二节“圆的对称性”第二课时。

是在第一节课的基础上进行教学,教学目的是让学生利用旋转的方法得到圆的旋转不变性;并利用它的旋转不变性重点探究了“圆心角、弧、弦之间关系”。

教材分析:圆这一章有许多重要性质,其中最主要的是圆的对称性,在探索、发现和证明圆的许多重要性质时,都运用了它的对称性。

同时圆的对称性在日常生活和生产中有着广泛的应用,因此这一节内容在整章中具有举足轻重的意义。

所以学好本节内容尤为重要。

“圆的对称性”第二课时的主要内容是垂径定理逆定理,它反映了圆的重要性质,是圆轴对称性的具体化,也是证明线段相等、角相等、弧相等、垂直关系的重要依据,同时也为圆的计算和作图提供了方法与依据。

所以本节知识与方法的学习直接影响着以后学习圆的兴趣。

教学目标:(一)学习目标:1、了解圆的旋转不变性;2、掌握圆心角、弧、弦之间的相等关系定理;(二)能力目标:1、经历探索圆的对称性及相关性质的过程,进一步体会和理解研究几何图形的各种方法。

2、使学生掌握“圆心角、弧、弦之间的关系定理”,以及对定理中“在同圆或等圆”条件的理解及定理的证明。

3、通过观察、比较、操作、推理、归纳等活动,发展空间观念、推理能力以及概括问题的能力。

(三)情感目标:1、培养学生积极探索数学新知的态度及方法,培养学生自主学习、相互合作交流的能力。

2、通过学习垂径定理逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生学习实事求是的科学态度和积极参与的主动精神。

教学重难点:学习重点:利用圆的旋转不变性研究圆心角、弧、弦之间相等关系的定理。

课题圆的对称性教学案

课题圆的对称性教学案
《2、圆的对称性》教学案
课题
2、圆的对称性
课型
新授课
第 2 课时
知识与技能
1、经历探索圆的中心对称性及有关性质的过程 2、理解圆的中心对称性及有关性质 3、会运用圆心角、弧、弦之间的关系解决有关问题
教学目标 过程与方法
经历探索圆的中心对称性及相关性质的过程,进一步体会和理解研究
几何图形的各种方法.
情感态度与
通过观察、比较、操作、推理、归纳等活动,发展学生的空间观念、
推理能力等
价值观
教学重点
理解圆的中心对称性及有关性质
教学难点
运用圆心角、弧、弦之间的关系解决有关问题
教与学策 略
指导探究和自主学习相结合.
课前
①做两张能折叠的透明的圆形纸片,学生每人准备两张透明的纸片
准备(教
②圆规、直尺
具、活动
准备等)
教学过程
∠AOB=
步骤
解和应
∠A′O B′
B′

B/
F
A/ O
课时小结
E
A
B
通过本节课的学习,你对圆的对称性有什么认识?在得出本节
课堂检测 定理的过程中,你用到了那些数学方法?
1、如图,OA、OB、OC 是⊙O 的半径,AC=BC,D、E 分
别是 OA、OB 的中点。CD 与 CE 相等吗?为什么?
训 练学生 知识的 应用能
D C
AB=DC,
学生分析,

例 2、如图 4-13 在⊙O 中,AB,A′B′是两条弦,OE⊥AB,OF⊥A′ 教师指导
深对定
B′,垂足分别是点 E,F.(1)如果∠AOB=∠A′O B′,求证:
学 生 板 书 理的理

北师大版数学九年级下册3.2《圆的对称性》教学设计

北师大版数学九年级下册3.2《圆的对称性》教学设计

北师大版数学九年级下册3.2《圆的对称性》教学设计一. 教材分析《圆的对称性》是北师大版数学九年级下册第3.2节的内容,本节课的主要内容是让学生理解圆的对称性,包括圆是轴对称图形,圆有无数条对称轴,圆的对称轴是圆的直径所在的直线。

教材通过生活中的实例引入圆的对称性,让学生感受圆的对称性在实际生活中的应用,培养学生的应用意识。

二. 学情分析九年级的学生已经学习了平面几何的基本知识,对轴对称图形和中心对称图形有了初步的认识,具备了一定的逻辑思维能力和空间想象力。

但是,对于圆的对称性的理解还需要通过具体的实例来引导和深化。

此外,学生可能对圆的对称性在实际生活中的应用还不够了解,需要通过实例演示和练习来提高。

三. 教学目标1.知识与技能:让学生理解圆的对称性,掌握圆的对称轴的定义和性质。

2.过程与方法:通过观察、操作、推理等活动,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:感受数学与生活的联系,提高学生学习数学的兴趣。

四. 教学重难点1.圆的对称性的理解。

2.圆的对称轴的定义和性质的掌握。

五. 教学方法采用问题驱动法、实例教学法和小组合作法。

通过提出问题,引导学生观察和操作实例,进行小组讨论和推理,从而理解和掌握圆的对称性。

六. 教学准备1.教学实例:准备一些生活中的实例,如圆形桌面、圆形餐具等,用于展示圆的对称性。

2.教学工具:准备多媒体教学设备,用于展示实例和引导学生进行操作。

七. 教学过程1.导入(5分钟)通过提出问题:“你们在生活中见到过哪些圆形的物体?它们有什么特点?”引导学生思考圆的对称性。

2.呈现(10分钟)呈现教学实例,如圆形桌面、圆形餐具等,引导学生观察和描述它们的对称性。

通过实例展示,让学生初步感受圆的对称性。

3.操练(10分钟)让学生分组进行操作,每组选择一个圆形物体,尝试找出它的所有对称轴,并记录下来。

通过操作活动,让学生更深入地理解圆的对称性。

4.巩固(5分钟)让学生汇报各自的操作结果,全班交流,总结圆的对称轴的性质。

《圆的对称性》(第2课时)教案探究版.doc

《圆的对称性》(第2课时)教案探究版.doc

《圆的对称性》(第2课时)教案探究版一、教学目标知识与技能掌握圆心角的度数与它所对的弧的度数的关系并运用其来解决问题.过程与方法在解决问题的过程中逐步培养学生的思考和表达能力.情感、态度敢于面对数学活动屮的困难,并有独立克服困难和运用所学知识解决问题的信心.二、教学重点、难点重点:圆心角的度数与它所对的弧的度数的关系.难点:圆心角的度数与它所对的弧的度数的关系及其应用.三、教学过程设计(一)复习引入上节课我们主要学习了圆的哪些内容?师生活动:教师出示问题;学生复习,冋答;教师订正.答:上节课我们主要学习了圆的轴对称性和圆的屮心对称性,知道了在同圆或等圆屮, 如果两个圆心角、两条弧、两条弦屮有一组量相等,那么它们所对应的其余各组量都分别相等.这节课我们在上节课所学知识的基础上来进一步研允圆心角的度数与它所对的弧的度数的关系.设计意图:通过教师提问的方式简单复习上节课所学知识,引出本节课所学内容.(二)探究新知想一想(1)1平角等于多少度?1周角等于多少度?(2)把顶点在圆心的周角等分成360份时,每一份的圆心角的度数是多少?整个圆被等分成多少份?师生活动:教师出示问题,学生思考并回答问题.答:(1)1平角等于180°, 1周角等于360°;(2)把顶点在圆心的周角等分成360份时,每一份的圆心角的度数是1。

,整个圆被等分成36()份,每一份这样的弧叫做1。

的弧.设计意图:通过问题让学生回顾平角和周角的知识,教师引出1°的弧的概念.议一议(1)r的圆心角所对的弧的度数是多少?反过来,1。

的弧所对的圆心角的度数是多少?(2)/的圆心角的度数与它所对的弧的度数(如图)有怎样的关系?师生活动:教师出示问题,学生思考、讨论,教师引导学生得出结果.答:(1)1。

的圆心角所对的弧的度数是1°; 1°的弧所对的圆心角的度数是1。

.(2) n。

的圆心角的度数与它所对的弧的度数相等.结论:圆心角的度数与它所对的弧的度数相等.设计意图:让学生在探究的过程中发现规律.(三)典例精析例1如图,在<30中,已知弦A3所对的劣弧为圆的丄,OO的半径为/?,求弦43 3的长.师生活动:教师出示例题并分析、引导,学生尝试完成,最后教师给出规范的解题过程.解:由题意可知,丽的度数为120°. .-.ZAOB=120° .TOA二OB, :. ZOAB=ZOBA=30° .作OC丄AB,垂足为点C,则O C=-OA = ~.2 2例2如图,已知AB, CQ 为OO 的两条直径,弦CE//AB, ZBOD=]\0° ,求拆的 度数.师生活动:教师出示例题,学生思考、讨论,教师分析、引导,师生共同完成解题过程. 解:连接 0E ・ VZBOD=110°, A ZBOC=70°. \9CE//AB, .,.ZC=70°. V OC=OE, A ZE=ZC=70。

3.2 圆的对称性(教案)-北师大版数学九年级下册

3.2 圆的对称性(教案)-北师大版数学九年级下册

第2节圆的对称性1.经历探索圆的对称性及相关性质的过程.2.理解圆的中心对称性及圆心角、弧、弦之间的相等关系.3.进一步体会和理解研究几何图形的各种方法.1.经历探索圆的对称性及相关性质的过程,进一步体会和理解研究几何图形的各种方法.2.培养学生独立探索、相互合作交流的精神.1.结合本课教学内容向学生渗透事物之间可相互转化的辩证唯物主义教育.2.渗透圆的内在美,并使得学生在小组合作中尝试交流,在“做数学”中体会数学的严谨性.【重点】理解并掌握圆的对称性及圆心角、弧、弦之间的相等关系.【难点】应用圆心角、弧、弦之间的相等关系定理解决有关问题.【教师准备】多媒体课件和教学圆规.【学生准备】1.复习圆心角、弧、弦等概念以及旋转的有关知识.2.圆规和自制圆形纸片.导入一:同学们,通过上节课的学习我们对圆已经有了初步的认识,圆与我们的生活有着密切的联系.请欣赏下面一些生活中美丽的图案,让我们一起走进圆的美丽世界.课件出示:【引入】因为有圆,万物才显得富有生机,我们的生活才会如此的美好!这些图案蕴含着一种对称美,你知道圆是什么样的对称图形吗?[设计意图]从美丽和谐的图案出发,发现圆的对称美的同时,开门见山引入新课,具有明显对比的图片非常容易激发学生的兴趣和引起学生的共鸣,提高了学生的学习兴趣,同时也让学生体会到数学来源于生活,增强学好本节课的信心.导入二:我们已经学习了几何图形的对称性,圆是什么对称图形?请说明理由.[设计意图]通过问题的形式,直入正题,让学生对本节课的探究内容一目了然.[过渡语]我们已经了解了一些几何图形的对称性,既有轴对称图形,也有中心对称图形,那么圆是什么对称图形呢?课件出示:如图所示,圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?思路一猜想【学生活动】学生凭借经验猜想:圆是轴对称图形,有无数条对称轴的结论.教师引导学生思考:圆的对称轴是直径还是直径所在的直线?【教师点评】圆是轴对称图形,有无数条对称轴,对称轴是直径所在的直线.思路二折纸【学生活动】学生交流后,想到可以利用折叠的方法,解决上述问题.学生利用自制的圆形纸片边动手实验,边思考把一个圆对折以后,圆的两部分重合,折痕是一条过圆心的直线,由于过圆心可以作无数条直线,这样便可知圆有无数条对称轴.师出示折叠示意图:【学生活动】学生观察分析这些对称轴的特点,发现它们都经过圆心.[过渡语]通过上面的实验,我们探索了圆的轴对称性,下面我们继续通过实验探索圆是不是中心对称图形.【想一想】一个圆绕着它的圆心旋转任意一个角度,还能与原来的图形重合吗?【学生活动】学生利用准备好的圆,同伴合作,共同操作完成,交流得出结论.【师生小结】一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.【教师点评】一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合的性质就是圆的旋转不变性;而圆的中心对称性是其旋转不变性的一个特例.圆是中心对称图形,对称中心为圆心.[设计意图]问题可以激发学生学习数学的兴趣,而兴趣又是最好的老师.通过设计一连串的问题情境容易引发学生学习和探究的兴趣,在动手操作中既复习圆的意义,又探索出圆的对称性.【做一做】在等圆☉O和☉O'中,分别作相等的圆心角∠AOB和∠A'O'B'(如图所示),将两圆重叠、并固定圆心,然后将其中一个圆旋转一个角度,使得OA与O'A'重合,你能发现哪些等量关系?说一说你的理由.【活动方式】分小组进行实验操作,小组之间交流.【师生活动】教师巡视、指导学生,等学生完成后,请各小组组长汇总,展示结果,教师板书.思路一旋转能使∠AOB和∠A'O'B'完全重合,从而可以得到OA=OB=O'A'=O'B',∠OAB=∠OBA=∠O'A'B'=∠O'B'A',AB=A'B',=,是通过证明△AOB≌△A'O'B'得到的.思路二由两圆旋转可知:点A与点A'重合,点B与点B'重合,所以=,AB=A'B'(叠合法).【学生小结】在等圆中,相等的圆心角所对的弧相等,所对的弦相等.【问题】你能对圆心角、弧、弦之间的相等关系进行证明吗?【学生活动】学生先独立解答,然后互相讨论交流.代表展示:证明:∵半径OA与O'A'重合,∠AOB=∠A'O'B',∴半径OB与O'B'重合.∵点A与点A'重合,点B与点B'重合,∴与重合,弦AB与弦A'B'重合.∴=,AB=A'B'.【议一议】上面的结论,在同圆中成立吗?【学生活动】学生思考、猜想后得出肯定的结论.【教师点评】圆心角、弧、弦之间相等关系定理:在同圆或等圆中,相等的圆心角所对的弧相【想一想】(1)在同圆或等圆中,如果两个圆心角所对的弧相等,那么它们所对的弦相等吗?这两个圆心角相等吗?(2)在同圆或等圆中,如果两条弦相等,你能得出什么结论?【学生活动】学生思考、猜想后得出结论,然后互相交流、讨论,统一想法.【教师活动】要求学生说明得出的结论的理由.(证明△AOB≌△A'O'B'或叠合法)【师生总结】在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.【教师强调】注意事项:(1)不能忽略“在同圆或等圆中”这个前提条件.(2)此定理中的“弧”一般指劣弧.(3)要结合图形深刻体会圆心角、弧、弦这三个概念和“所对”一词的含义,否则易错用此关系.[设计意图]“学起于思,思起于疑,无疑则无知”,所以通过让学生提出疑难,再解决疑难的方式来理解圆心角、弧、弦之间相等关系定理的含义,从而引发出圆心角、弧、弦之间相等关系定理的如图所示,AB,DE是☉O的直径,C是☉O上的一点,且=.BE与CE的大小有什么关系?为什么?〔解析〕通过观察可以猜想BE=CE.因为BE与CE都是☉O的弦,要证明弦相等,可证明弦所对的弧相等,因为=,又=,继而可得=.解:BE=CE.理由是:∵∠AOD=∠BOE,∴=.又∵=,∴=.∴BE=CE.【议一议】在得出本节结论的过程中,你用到了哪些方法?与同伴进行交流.【学生活动】学生思考后进行交流,得出本节课采用的方法:折叠、轴对称、旋转、推理证明等.[设计意图]本环节主要是通过例题透析,训练学生的知识综合应用能力,使其在巩固应用的基础上,拓展知识面,培养他们的概括、推理能力.1.圆的对称性:轴对称图形和中心对称图形.2.圆心角、弧、弦之间的关系:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.1.下列命题中,正确的是()A.圆只有一条对称轴B.圆的对称轴不止一条,但只有有限条C.圆有无数条对称轴,每条直径都是它的对称轴D.圆有无数条对称轴,每条直径所在的直线都是它的对称轴解析:圆有无数条对称轴,每条对称轴都是直径所在的直线.故选D.2.若圆的一条弦把圆分成度数比为1∶3的两条弧,则优弧所对的圆心角为()A.45°B.90°C.135°D.270°解析:如图所示,∵圆的一条弦把圆分成度数比为1∶3的两条弧,∴∠AOB∶大角∠AOB=1∶3,∴大角∠AOB=360°×=270°.故选D.3.如图所示,已知AB是☉O的直径,==,∠BOC=40°,那么∠AOE等于()A.40°B.60°C.80°D.120°解析:∵==,∠BOC=40°,∴∠BOE=3∠BOC=120°,∴∠AOE=180°-∠BOE=60°.故选B.(第4题图)4.如图所示,直尺ABCD的一边与量角器的零刻度线重合,若从量角器的中心O引射线OF经过刻度120°,交AD于点E,则∠DEF=.解析:由已知量角器的一条刻度线OF的读数为120°,即∠BOF=120°,得∠COF=180°-∠BOF=60°,∵AD∥BC,∴∠DEF=∠COF=60°.故填60°.2圆的对称性1.圆的对称性.(1)圆是轴对称图形,其对称轴是任意一条过圆心的直线.(2)圆是中心对称图形,对称中心为圆心.2.圆心角、弧、弦之间相等关系定理.(1)在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.(2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.一、教材作业【必做题】1.教材第72页随堂练习第1,2,3题.2.教材第72页习题3.2第1,2题.【选做题】教材第73页习题3.2第3题.二、课后作业【基础巩固】1.如图所示,在☉O中,∠B=37°,则劣弧AB的度数为()A.106°B.126°C.74°D.53°2.如图所示,在☉O中,=,∠A=30°,则∠B等于()A.150°B.75°C.60°D.15°3.如图所示,=,若AB=3,则CD=.4.如图所示,AB是☉O的直径,点C在☉O上,∠AOC=40°,D是弧BC的中点,则∠ACD=.【能力提升】5.如图所示,AB是☉O的直径,四边形ABCD内接于☉O,若BC=CD=DA=4cm,则☉O的周长为()A.5πcmB.6πcmC.9πcmD.8πcm6.(2014·菏泽中考)如图所示,在△ABC中,∠C=90°,∠A=35°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,则的度数为.7.如图所示,=,D,E分别是半径OA和OB的中点,CD与CE的大小有什么关系?为什么?【拓展探究】8.如图所示,AB是☉O的直径,点C,D在圆上,且=.若∠AOD=110°,求的度数.【答案与解析】1.A(解析:连接OA,∵OA=OB,∠B=37°,∴∠A=∠B=37°,∠O=180°-2∠B=106°.)2.B(解析:在☉O中,∵=,∴AB=AC,∴△ABC是等腰三角形,∴∠B=∠C.又∠A=30°,∴∠B==75°.故选B.)3.3(解析:∵=,∴-=-,即=,∴CD=AB=3.)4.125°(解析:连接OD,∵AB是☉O的直径,∠AOC=40°,∴∠BOC=140°,∠ACO=70°,∵D是弧BC的中点,∴∠COD=70°,∴∠OCD=55°,∴∠ACD=∠ACO+∠OCD=70°+55°=125°.)5.D(解析:如图所示,连接OD,OC.∵AB是☉O的直径,四边形ABCD内接于☉O,BC=CD=DA=4cm,∴==,∴∠AOD=∠DOC=∠BOC=60°.又OA=OD,∴△AOD是等边三角形,∴OA=AD=4cm,∴☉O的周长=2×4π=8π(cm).故选D.)6.70°(解析:∵∠C=90°,∠A=35°,∴∠B=55°,连接CD,∵CB=CD,∴∠BDC=55°,∴∠BCD=70°.∴的度数为70°.)7.解:CD=CE.理由如下:如图所示,连接OC,∵D,E分别是OA,OB的中点,∴OD=OE,又∵=,∴∠DOC=∠EOC,又OC=OC,∴△CDO≌△CEO,∴CD=CE.8.解:如图所示,连接OC.∵∠AOD=110°,∴∠DOB=70°.又∵=,∴∠COD=∠DOB=70°,∴∠AOC=∠AOD-∠COD=110°-70°=40°,∴的度数为40°.本节课首先利用课件出示生活中的圆形图片,利用圆的对称美引入新课,极大地活跃了课堂气氛,激发了学生学习的积极性.然后在课堂上可以先给学生留有充足的动手实验和思考的时间,在学生探究完成后利用多媒体进行动态演示,使探究的结论更加直观形象.同时,通过学生自己动手体验知识的形成过程,使学生获得成功的体验,使他们的观察、分析、归纳等能力都得到了进一步提升.本节课学生操作和自主学习的时间较多,所以教学时间不太容易把握,造成不能顺利完成课堂教学任务.合理安排时间,对于有些学生感觉有难度的知识点,可以通过小组交流讨论,这样既可以增强交流的意识,又节约了时间.随堂练习(教材第72页)1.解:如碗口、圆桌、方向盘等.2.解:如图所示.答案不唯一.3.解:四边形OACB是菱形.理由如下:如图所示,∵C是的中点,∴=.又∵∠AOB=120°,∴∠AOC=∠BOC=60°.∵OA=OC=OB,∴△AOC和△BOC都是等边三角形.∴OA=OB=AC=BC.∴四边形OACB是菱形.习题3.2(教材第72页)1.解:△ABC与△DCB全等.理由如下:∵AB=DC,BC=CB,∴=,∴AC=DB.∴在△ABC与△DCB中,AB=DC,BC=CB,AC=DB,∴△ABC≌△DCB(SSS).2.解:(1)OE=OF.理由如下:∵OE⊥AB,OF⊥CD,OA=OB,OC=OD,∴∠OEB=∠OFD=90°,∠EOB=∠AOB,∠FOD=∠COD,∵∠AOB=∠COD,∴∠EOB=∠FOD,∵在△EOB和△FOD中,∠OEB=∠OFD,∠EOB=∠FOD,OB=OD,∴△EOB≌△FOD(AAS),∴OE=OF.(2)AB=CD,=,∠AOB=∠COD.理由如下:∵OE⊥AB,OF⊥CD,∴∠OEB=∠OFD=90°,∵在Rt△BEO和Rt△DFO中,OB=OD,OE=OF,∴Rt△BEO≌Rt△DFO(HL),∴BE=DF,同理,AE=CF,∴AB=CD,∴=,∠AOB=∠COD.3.解:=.理由如下:连接OC,∵OD∥AC,∴∠BOD=∠A,∠ACO=∠COD.∵OA=OC,∴∠A=∠ACO,∴∠BOD=∠COD,∴=.1.本节课的重点是通过实验探究出圆的对称性,并利用对称性总结归纳出圆心角、弧、弦之间的相等关系,所以动手操作是学生探究学习的重点.2.让学生在课前预习的同时准备好本节课所需要的学具;在探究的过程中,要亲身体验实验过程,切记眼高手低,要在与同伴一起的操作过程中深刻理解圆的对称性,并对所探究出的结论进行及时总结,得出一般性的结论.3.要注意类比、转化、数形结合思想在探究过程中的运用.。

32圆的对称性第2课时教学案北师大版九年级下

32圆的对称性第2课时教学案北师大版九年级下

§ 3.2圆的对称性(第二课时)学习目标:圆的旋转不变性,圆心角、弧、弦之间相等关系定理.学习重点:圆心角、弧、弦之间关系定理.学习难点:“圆心角、弧、弦之间关系定理”中的“在同圆或等圆”条件的理解及定理的证明.学习方法:指导探索法.学习过程:一、例题讲解:【例1】已知A,B是O O上的两点,/ AOB=120,C是的中点,试确定四边形OACB勺形状,并说明理由.【例2]如图,AB CD EF都是O O的直径,且/仁/ 2=7 3,弦AC EB DF是否相等? 为什么?【例3]如图,弦DC FE的延长线交于O O外一点P,直线PAB经过圆心O,请你根据现有圆形,添加一个适当的条件:_________________ ,使/仁/ 2.1、判断题(1)相等的圆心角所对弦相等()(2)相等的弦所对的弧相等()2、填空题O O中,弦AB的长恰等于半径,则弦AB所对圆心角是 ________ 度.6.已知:如图2,O O 的直径CD 垂直于弦 AB 垂足为P,且 AP=4cm PD=2cm 则O O3、选择题如图,0为两个同圆的圆心,大圆的弦AB 交小圆于C D 两点,OEL AB 垂足为 E,若 AC= 2.5 cm , ED= 1.5 cm , 0A= 5 cm ,则 AB长度是 ____________ .A 、6 cmB 、8 cmC 7 cmD 7.5 cm4、选择填空题如图2,过O O 内一点P 引两条弦AB CD 使AB= CD 求证:OP 平分/ BPD证明:过 0作 OML AB 于 M ON L CD 于 N.AB = CD()()\^0M = 01^\ OP^^^BPDA OM L PB B OM L ABC ON L CD D ON L PD三、课后练习:1.下列命题中,正确的有( )A. 圆只有一条对称轴B. 圆的对称轴不止一条,但只有有限条C. 圆有无数条对称轴,每条直径都是它的对称轴D. 圆有无数条对称轴,经过圆心的每条直线都是它的对称轴 2.下列说法中,正确的是( )A.等弦所对的弧相等C.圆心角相等,所对的弦相等 3.下列命题中,不正确的是()A.圆是轴对称图形C.圆既是轴对称图形,又是中心对称图形 4. 半径为R 的圆中,垂直平分半径的弦长等于( )A. —3 RB. —3 RC. 3 RD. 23 R4 25. 如图1,半圆的直径 AB=4, O 为圆心,半径 OE L AB F 为OE 的中点,CD// AB,则弦B.等弧所对的弦相等 D.弦相等所对的圆心角相等B.圆是中心对称图形 D.以上都不对CD的长为()A. 2 . 3B. 3C. . 5D. 2 56.已知:如图2,O O的直径CD垂直于弦AB垂足为P,且AP=4cm PD=2cm 则O OA. 4cmB. 5cmC. 4 2 cmD. 2 3 cm7. 如图3,同心圆中,大圆的弦 AB 交小圆于 C D,已知AB=4, CD=2 AB 的弦心距等 于1,那么两个同心圆的半径之比为( )A. 3: 2B. 5 : 2C. .、5 :、『2D. 5: 48. 半径为R 的O O 中,弦AB=2R 弦CD=R 若两弦的弦心距分别为 OE OF,贝U OE OF= ( ) 9. 在O O 中,圆心角/ AOB=90 ,点O 到弦AB 的距离为4,则O O 的直径的长为( )C. 24D. 16)B.这两条弦所对的圆心角相等 D.以上答案都不对11 .O O 中若直径为25cm,弦AB 的弦心距为10cm ,则弦AB 的长为 ________________ . 12. ________ 若圆的半径为 2cm,圆中的一条弦长 2 _ 3 cm,则此弦中点到此弦所对劣弧的中点 的距离为 _________ .13. AB 为圆 O 的直径,弦 CDLAB 于 E ,且 CD=6cm OE=4cm 贝U AB= ______ . 14. _______________________________________________________________ 半径为5的O O 内有一点P,且OP=4则过点P 的最短的弦长是 ______________________________ ,最长的 弦长是 _________ . 15.弓形的弦长6cm,高为1cm,则弓形所在圆的半径为 cm.16. 在半径为6cm 的圆中,垂直平分半径的弦长为cm .17. _____________________________________________________ 一条弦把圆分成1 : 3两部分,则弦所对的圆心角为 ________________________________________ . 18. __________________________________________ 弦心距是弦的一半时,弦与直径的比是 ____________________________________________________ ,弦所对的圆心角是 _________ 19. ____________________________________________________ 如图 4,ABCD 是O O 的直径 OELAB, OF 丄CD 则/ EO ________________________________ / BOF AC ____ AE ,A. 2: 1B. 3: 2C. 2: 3D. 0 A. 4 .. 2B. 8 210.如果两条弦相等,那么( A.这两条弦所对的弧相等 C.这两条弦的弦心距相等20. 如图5, AB为O O的弦,P是AB上一点,AB=10cm OP=5cm PA=4cm 求O O的半径.21.如图6,已知以点 0为公共圆心的两个同心圆,大圆的弦AB 交小圆于C 、D.(1) 求证:AC=DB(2) 如果AB=6cm CD=4cm 求圆环的面积.22. O 0的直径为50cm,弦AB// CD 且AB=40cm CD=48cm 求弦AB 和CD 之间的距离.23. 如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?为什么?24•已知一弓形的弦长为 4・6 ,弓形所在的圆的半径为 7 ,求弓形的高.25.如图,已知O O 和O 02是等圆,直线 CF 顺次交这两个圆于 C D 、E 、F ,且CF 交 OQ 于点M CD EF , OM 和OM 相等吗?为什么?。

九年级数学下册3.2圆的对称性教案2

九年级数学下册3.2圆的对称性教案2

课题:3.2圆的的对称性教学目标:1.经历探索圆的轴对称性和中心对称性及其相关性质的过程;2.利用圆的旋转不变性研究圆心角、弧、弦之间相等关系的性质;3.经历探索圆旋转不变性,进一步体会和理解研究几何图形的各种方法.教学重点与难点:重点难点:利用圆的旋转不变性研究圆心角、弧、弦之间相等关系的定理.课前准备:圆形纸片,多媒体课件.教学过程:一、问题情境,导入新课活动内容:(多媒体出示)上一节我们学习了圆的相关概念,从这节课开始,我们学习圆的相关性质,以及由圆的各种性质而得出的定理和推论.问题1:请同学们拿出准备好的圆形纸片,你知道圆有哪些基本性质吗?问题2:圆是轴对称图形吗?如果是,它的对称轴是什么?你是怎么得到的?问题3:圆是中心对称图形吗?如果是,它的对称中心是什么?你是怎么得到的?处理方式:问题1可以放开让学生自由回答,如:圆上任意一点到圆心的距离等于半径,圆内任意一点到圆心的距离小于半径等;若学生提到或未提到对称性,教师都可直接展示问题2和问题3,学生自己动手操作,并举手回答.问题2第一问可直接得出,第二问若学生回答对称轴是直径,教师需要及时点拨纠正,第三问可以通过折叠的方法得出,然后教师追问,“你能得到几条对称轴?”问题3第一问和第二问可直接得出,第三问可将圆心固定,将圆旋转180°,还能和原来的图形重合,此时教师可追问:“一个圆绕着它的圆心旋转任意一个角度,还能与原来的图形重合吗?”最后,师生共同总结圆的对称性:轴对称性:圆是轴对称图形,其对称轴是任意一条过圆心的直线.(板书)旋转不变性:一个圆绕着它的圆心旋转任意一个角度,都能与圆来的图形重合.特别的,当旋转180°时,中心对称性:圆是中心对称图形,对称中心为圆心.(板书)设计意图:圆的对称性对于九年级来说较为简单,所以同时给出问题,让学生自己探索,利用纸片直观的感受圆的基本性质,教师需要及时纠正并总结,并适时的进行追问,从而得到结论,为后续的学习打下基础.二、探究学习,感悟新知活动内容1:今天我们先来研究一下圆的旋转不变性,看看由它能够得到什么.先来看仔细观看(多媒体演示).第一步:在等圆⊙O和⊙O′中,分别作相等的圆心角∠AOB和∠A′O′B′(图1),第二步:将两圆重叠,并固定圆心(图2),然后把其中一个圆旋转一个角度,使得OA 与O′A′重合(图3).图1图2 图3问题1:通过操作,对比图1和图3,你能发现哪些等量关系?说一说你的理由.问题2:由此你能得到什么结论?处理方式:教师利用多媒体演示操作过程后,让学生对比操作的初始图与最终图,让学生发现对应关系,从而利用叠合法得到等量关系.学生会发现很多等量关系,如:∠AOB=∠A′O′B′(已知),OA=OB=O′A′=O′B′(半径),∠OAB=∠OBA=∠O′A′B′=∠O′B′A′,,AB=A′B′.问题1在学生独立思考后提问回答,其他同学补充,最后板书答案(也可直接阅读课本):∵半径OA与O′A′重合,∠AOB=∠A′O′B′,∴半径OB与O′B′重合.∵点A与点A′重合,点B与点B′重合,∴与重合,弦AB与弦A′B′重合.即,AB=A′B′.(这种利用重合来证明的方法叫做叠合法)问题2引导学生观察条件和结论,总结出定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.(板书)得出结论时,注意引导学生注意同圆或等圆条件,或提出若非同圆或等圆,结论是否成立.设计意图:本环节是通过实验探索通过圆的旋转不变性来发现圆的另一个特性,此环节鼓励学生用多种手段和方法探索图形的性质,从而对于本节课所学的定理有一个本质性的认识,从而更好的掌握.活动内容2:思考上述命题的逆命题是否成立,发散思维拓展新定理.问题1:在同圆或等圆中,如果两个圆心角所对的弧相等,这两个圆心角相等吗?那么它们所的对的弦相等吗?你是怎么想的?问题2:在同圆或等圆中,如果两条弦相等,你能得出什么结论?处理方式:先出示问题1,让学生进行充分的思考后再进行合作交流,对于前两问学生很容易就可以得出;对于第三问,教师需要适时点拨学生可仿照前面的证明方法进行推理:∵半径OA与O′A′重合,,∴点B与点B′重合.半径OB与O′B′重合.∴∠AOB与∠A′O′B′重合,弦AB与弦A′B′重合.∴∠AOB=∠A′O′B′,AB=A′B′.解决完毕问题1后,追问:追问1:由此你能得到什么结论?学生可以总结逆命题1:在同圆或等圆中,相等的弧所对的圆心角相等,所对的弦相等.(板书)追问2:如果不加“在同圆或等圆中”,该定理是否也成立呢?引导学生回忆等弧的概念,从而发现等弧就已经涵盖了同圆或等圆这个条件了,所以不加也可.擦掉“在同圆或等圆中”得到:相等的弧所对的圆心角相等,所对的弦相等.然后再出示问题2,学生根据已有的学习经验可以得出结论:在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧相等.学生回答完问题2后,追问:追问1:一条弦所对的弧有几条?学生会发现,一条弦所对的弧有两条,从而发现原命题不够准确.追问2:上面的命题怎样叙述能够更准确?师生共同总结逆命题2:在同圆或等圆中,相等的弦所对的圆心角相等,所对的优弧相等、劣弧相等.(板书)活动内容3:归纳总结定理观察以上所得出的三条结论,你能将其总结为一条定理吗?处理方式:学生先试着总结,如果不够准确可自己看教材并理解.教师利用板书,将三条定理归纳为一条定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.(板书)设计意图:本环节是本节课的关键环节,由老师进行精讲点拨,引导学生对原命题进行变化,从而得到两种逆命题,并对每一种变化进行适当补充.如等弧无需加同圆或等圆的前提条件,再如弦所对的弧有两种情况等.在逆命题都完成的情况下,及时进行总结,让学生随时回顾反思,从让学生讲三条定理综合起来,得到新的结论.三、例题解析,应用新知活动内容1:下面我们综合利用刚刚学到的知识解决一下下面一道例题.例如图4,AB,DE是⊙O的直径,C是⊙O上的一点,且.BE与CE的大小有什么关系?为什么?处理方式:学生自主完成,一名同学板书,教师巡视并适时指导,规范步骤.解:BE=CE.理由是:∵∠AOD=∠BOE,∴.又∵,∴.∴BE=CE.活动内容2:例题变式变式:在例题的条件下,若C 为的中点,你还能得到哪些等量关系?试确定四边形OACE的形状,并说明理由.处理方式:第一问学生自由回答,只要理由充分即可.第二问可以让学生根据第一问的结果,并在充分的思考后进行交流,然后尝试写出证明过程,教师可利用口述或投影的方式,图4让学生展示答案.设计意图:本环节主要通过例题,强化学生对于定理的理解和应用,期间主要规范学生的书写步骤.变式练习主要结合课后随堂练习第3题,将其融入例题中,让学生对于定理的应用有更高的提升.四、回顾反思,达标检测活动内容1:回顾反思问题1:本节课你都学到了哪些知识?需要注意什么?问题2:在得出本节结论的过程中,你用到了哪些方法?与同伴进行交流.处理方式:先出现问题1,让学生自己回顾本节课所学的定理,以及需要注意的问题后,举手回答,其他同学补充;再出现问题2,引导学生有意识地归纳、总结所使用的研究图形的方法,本节课使用的方法有多重,如叠合法、轴对称、旋转、推理证明等,先给学生时间思考交流后总结方法.活动内容2:达标检测必做题:1.(2014·贵港)如图,AB 是⊙O 的直径,,∠COD =34°,则∠AEO 的度数是( )A.51°B.56°C.68°D.78°图5 图6 图72. 如图6,A ,B ,C ,D 是⊙O 上的四点,AB =DC ,△ABC 与△DCB 全等?为什么?选做题:3.如图7,在⊙O 中,AB ,CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F .(1)如果AOB COD ∠=∠,那么OE 与OF 的大小有什么关系?为什么?(2)如果OE =OF ,那么AB 与CD 的大小有什么关系?与的大小有什么关系?为什么?AOB COD ∠∠与呢?处理方式:根据教学时的剩余时间,以及学生的掌握情况,可以适当取舍题目,让学生自主完成.设计意图:本环节设计了三道题目,分别是两道必做题和选做题,其中第1题是弧与圆心角的对应关系,第2题是弧与弦的对应关系,第3题为三者的对应关系并加入弦心距的证明,意在加强对本节课定理的应用.板书设计:。

《圆的对称性》第2课时教案

《圆的对称性》第2课时教案

《圆的对称性》第2课时教案一、学生知识状况分析学生的知识技能基础:学生在七、八年级已经学习过轴对称图形以及中心对称图形的有关概念及性质,以及本节定理的证明要用到三角形全等的知识等。

在上节课中,学生学习了圆的轴对称性,并利用轴对称性研究了垂径定理及其逆定理。

学生具备一定的研究图形的方法,基本掌握探究问题的途径,具备合情推理的能力,并逐步发展了逻辑推理能力。

学生的活动经验基础:在平时的学习中,学生逐步适应应用多种手段和方法探究图形的性质。

同时,在平时的教学中,比较注重学生独立探索和四人小组互相合作交流,使学生形成一些数学活动的经验基础,具备一定探求新知的能力。

二、教学任务分析本节课的教学目标为:知识与技能:1.理解圆的旋转不变性;2.利用圆的旋转不变性研究圆心角、弧、弦之间相等关系的定理.过程与方法:1. 经历探索圆的对称性及相关性质的过程,进一步体会和理解研究几何图形的各种方法。

2. 通过观察、比较、操作、推理、归纳等活动,发展学生推理观念,推理能力以及概括问题的能力。

情感态度与价值观:培养学生积极探索数学问题的态度与方法。

教学重点:利用圆的旋转不变性研究圆心角、弧、弦之间相等关系的定理. 教学难点:理解相关定理中“同圆”或“等圆”的前提条件.三、教学过程分析第一环节 课前准备活动内容:(提前一天布置)每人用透明的胶片制作两个等圆。

预习课本P94--97内容。

第二环节 创设问题情境,引入新课活动内容:问题提出:我们研究过中心对称图形,我们是用什么方法来研究它的,它的定义是什么?活动目的:为了引出圆的旋转不变性。

实际教学效果:让学生认识到圆是一个特殊的图形,既是一个轴对称图形,又是一个中心对称图形,从而使学生较为自然地探讨圆的其他特性。

第三环节 讲授新课活动内容:(一)通过教师演示实验,探究圆的旋转不变性; 请同学们观察屏幕上两个半径相等的圆。

请回答:它们重合吗?如果重合,将它们的圆心固定。

将上面的圆旋转任意一个角度,两个圆还重合吗 ?归纳:圆具有旋转不变性。

数学圆的对称性教案设计

数学圆的对称性教案设计

数学圆的对称性教案设计篇一:圆的对称性教学设计圆的对称性教学设计宝鸡市陈仓区贾村镇第二初级中学王彦红圆的对称性(第二课时)一、教学背景分析教学内容分析:本节圆的对称性(第二课时)主要内容是圆心角、弧、弦之间的关系,它由圆的旋转不变性引出,是圆的轴对称性学习之后圆的又一重要性质,圆心角、弧、弦之间的相等关系在以后的证明和计算中有着重要的作用。

学生情况分析:学生在第二学段已经学习过中心对称与中心对称图形,对于直线型的图形如平行四边形、矩形、菱形等中心对称图形有一定的了解,了解中心对称的概念以及相关的性质。

前一节已经学习过弦、弧等圆的有关概念和垂径定理的内容,利用垂径定理及推论解决了与直径、弦、弧等有关的问题,对于圆是中心对称图形和圆具有旋转不变性容易理解。

但对弦、弧以及要学到的圆心角、弦心距等之间的关系,并且怎样利用这些关系解决一些有关的证明和计算等方面,学生缺乏亲身体验和总结。

教学方式及教学准备:教学方式:任务驱动问题教学小组合作探究教学准备:学生课前准备圆形纸片(两个等圆);教师制作几何画板课件;辅助教学的CAI软件二、教学目标知识目标:理解圆的旋转不变性,掌握圆心角、弧、弦之间的关系定理及其推论,会用这三者之间的关系进行简单的证明。

能力目标:通过本节课的学习培养学生观察、实验、探究、归纳和概括能力。

情感态度与价值观:结合本课教学内容向学生渗透事物之间可相互转化的辩证唯物主义教育;渗透圆的内在美。

并使得学生在小组合作中尝试交流,在“做数学”中体会数学的严谨性。

三、教学重点、难点重点:圆心角、弧、弦之间的关系定理及其推论难点:对定理中“在同圆或等圆中”前提条件的理解,以及从感性到理性的认识,发现归纳能力的培养。

四、教学过程设计教学进程创设情境直观感知教学内容知识链接:问题1:什么是中心对称图形?中心对称图形有什么性质?问题2:说出你所了解的中心对称图形。

情境引入:课件展示(我来转一转)如图是一个转盘,转盘分成六个相同的扇形,颜色分为红、绿两种颜色,指针的位置固定。

北师大版数学九年级下册3.2《圆的对称性》教案

北师大版数学九年级下册3.2《圆的对称性》教案

北师大版数学九年级下册3.2《圆的对称性》教案一. 教材分析北师大版数学九年级下册3.2《圆的对称性》是本册教材中的重要内容,主要让学生了解圆的对称性质,掌握圆的对称性的应用。

本节课的内容对于学生来说比较抽象,但与生活实际息息相关,有利于激发学生的学习兴趣,培养学生的抽象思维能力。

二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念,如圆的半径、直径等,并了解了一些基本的平面几何知识。

但是,对于圆的对称性的理解和应用,还需要进一步的引导和培养。

因此,在教学过程中,要注重启发学生思考,引导学生发现圆的对称性,并学会运用圆的对称性解决实际问题。

三. 教学目标1.知识与技能:让学生理解圆的对称性质,学会运用圆的对称性解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的抽象思维能力和解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和克服困难的决心。

四. 教学重难点1.重点:圆的对称性质的理解和应用。

2.难点:圆的对称性质在实际问题中的灵活运用。

五. 教学方法采用问题驱动法、合作学习法、案例教学法等,充分调动学生的积极性,引导学生主动探究,合作交流,提高学生的抽象思维能力和解决问题的能力。

六. 教学准备1.教具:黑板、粉笔、多媒体教学设备等。

2.学具:学生每人一本教材,一份练习题。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的圆对称现象,如圆形的挂钟、圆形的脸谱等,引导学生发现圆的对称性质,激发学生的学习兴趣。

2.呈现(10分钟)教师通过讲解和演示,向学生介绍圆的对称性质,如圆的任何一条直径所在的直线都是圆的对称轴,圆的任何一点关于圆心都有对称点等。

同时,引导学生发现圆的对称性质与生活的密切关系。

3.操练(10分钟)学生分组讨论,每组设计一个具有圆对称性质的图案,并利用圆规和直尺进行绘制。

通过实践活动,加深学生对圆的对称性质的理解。

北师大版九年级数学下册:3.2《圆的对称性》教学设计

北师大版九年级数学下册:3.2《圆的对称性》教学设计

北师大版九年级数学下册:3.2《圆的对称性》教学设计一. 教材分析《圆的对称性》是北师大版九年级数学下册第三章第二节的内容。

本节课主要让学生了解圆的对称性,掌握圆是轴对称图形,以及圆有无数条对称轴等特点。

通过学习,使学生能够运用圆的对称性解决一些实际问题,培养学生的空间想象能力和解决问题的能力。

二. 学情分析九年级的学生已经学习了初级代数、几何等知识,对图形的对称性有一定的了解。

但针对圆这一特殊图形的对称性,学生可能还比较陌生。

因此,在教学过程中,需要教师引导学生从具体实例中发现圆的对称性,并通过讲解和练习使学生理解和掌握。

三. 教学目标1.理解圆的对称性,知道圆是轴对称图形,圆有无数条对称轴。

2.能够运用圆的对称性解决一些实际问题。

3.培养学生的空间想象能力和解决问题的能力。

四. 教学重难点1.圆的对称性的理解。

2.圆的对称性在实际问题中的应用。

五. 教学方法采用问题驱动法、案例分析法、小组讨论法等教学方法。

通过具体实例引入圆的对称性,引导学生发现和总结圆的对称性特点,并通过练习和实际问题使学生理解和掌握圆的对称性。

六. 教学准备1.准备相关课件和教学素材。

2.准备练习题和实际问题。

七. 教学过程1.导入(5分钟)通过一个具体实例引入圆的对称性,例如:展示一个圆形图案,让学生观察并说出这个图案的特点。

引导学生发现圆的对称性,并提出问题:为什么圆有无数条对称轴?2.呈现(15分钟)教师通过讲解和动画演示,详细讲解圆的对称性。

讲解圆是轴对称图形,圆有无数条对称轴,以及圆的对称轴是如何确定的。

同时,展示一些实际问题,让学生理解和掌握圆的对称性。

3.操练(15分钟)学生分组进行练习,教师巡回指导。

练习题包括判断题、选择题和填空题等,主要考察学生对圆的对称性的理解和掌握。

4.巩固(10分钟)教师通过一些实际问题,让学生运用圆的对称性进行解决。

例如:一个圆形桌面,要如何摆放才能使桌子上的物体在桌面的任何位置都能看到?5.拓展(10分钟)引导学生思考圆的对称性在其他领域的应用,例如:在艺术设计、建筑、工程等领域中的应用。

3.2圆的对称性 教案

3.2圆的对称性  教案

第三章圆第2课时圆的对称性(温文勇)一、学习目标1.圆的旋转不变性,圆心角、弧、弦之间相等关系定理.2.圆心角、弧、弦之间关系定理.3、“圆心角、弧、弦之间关系定理”中的“在同圆或等圆”条件的理解及定理的证明.二、教学过程(一)温故知新我能行1、轴对称的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够_________,这样的图形叫做轴对称图形。

2、轴对称的性质:在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴_________,对应线段_______,对应角________。

3、中心对称的定义:如果把一个图形绕某一点旋转180°后能自身_________,这个图形就是心对称图形4、中心对称图形的性质:中心对称图形中,对应点连的线段都经过______________,并且被对称中心____________。

(二)、探索新知我能行1、判断题(1)相等的圆心角所对弦相等()(2)相等的弦所对的弧相等()2、填空题⊙O中,弦AB的长恰等于半径,则弦AB所对圆心角是________度.3、选择题如图,O为两个同圆的圆心,大圆的弦AB交小圆于C、D两点,OE⊥AB,垂足为E,若AC=2.5 cm,ED=1.5 cm,OA=5 cm,则AB长度是___________.A、6 cmB、8 cmC、7 cmD、7.5 cm4、选择填空题如图2,过⊙O内一点P引两条弦AB、CD,使AB=CD,求证:OP平分∠BPD.证明:过O作OM⊥AB于M,ON⊥CD于N.A OM⊥PB B OM⊥ABC ON⊥CD D ON⊥P D (三)、总结规律我能行1、圆是轴对称图形,它有________条对称轴,每一条直径所在的直线都是它的对称轴:圆又是中心对称图形,对称中心是_______。

2、在同圆或等圆中,相等的圆心角所对的弧________,所对的弦________。

3、在同圆或等圆中,如果两个圆心角,两条弧,两条弦有一组量________,那么它们所对应的其余各组量都分别________。

圆的对称性教案

圆的对称性教案

课题:圆的对称性(二)教案设计者四川省大邑县韩场镇学校:龚永彬教学思路:本节课设计充分体现新课程标准下数学课堂教学,以学生为主体,教师为引导的目的去进行教学,开展以“自主、合作、探究、师生互动”的学习方式,让学生经历学习数学的严谨探索过程,真正成为学习的主人。

教学内容:本节课教学内容是《义务教育课程标准实验教科书数学》(北师大版)九年级(下)第三章“圆”第二节“圆的对称性”第二课时。

是在第一节课的基础上进行教学,教学目的是让学生利用旋转的方法得到圆的旋转不变性;并利用它的旋转不变性重点探究了“圆心角、弧、弦之间关系”。

教材分析:圆这一章有许多重要性质,其中最主要的是圆的对称性,在探索、发现和证明圆的许多重要性质时,都运用了它的对称性。

同时圆的对称性在日常生活和生产中有着广泛的应用,因此这一节内容在整章中具有举足轻重的意义。

所以学好本节内容尤为重要。

“圆的对称性”第二课时的主要内容是垂径定理逆定理,它反映了圆的重要性质,是圆轴对称性的具体化,也是证明线段相等、角相等、弧相等、垂直关系的重要依据,同时也为圆的计算和作图提供了方法与依据。

所以本节知识与方法的学习直接影响着以后学习圆的兴趣。

教学目标:(一)学习目标:1、了解圆的旋转不变性;2、掌握圆心角、弧、弦之间的相等关系定理;(二)能力目标:1、经历探索圆的对称性及相关性质的过程,进一步体会和理解研究几何图形的各种方法。

2、使学生掌握“圆心角、弧、弦之间的关系定理”,以及对定理中“在同圆或等圆”条件的理解及定理的证明。

3、通过观察、比较、操作、推理、归纳等活动,发展空间观念、推理能力以及概括问题的能力。

(三)情感目标:1、培养学生积极探索数学新知的态度及方法,培养学生自主学习、相互合作交流的能力。

2、通过学习垂径定理逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生学习实事求是的科学态度和积极参与的主动精神。

教学重难点:学习重点:利用圆的旋转不变性研究圆心角、弧、弦之间相等关系的定理。

北师大版九年级数学下册:3.2《圆的对称性》教案2

北师大版九年级数学下册:3.2《圆的对称性》教案2

北师大版九年级数学下册:3.2《圆的对称性》教案2一. 教材分析《圆的对称性》是北师大版九年级数学下册第三章第二节的内容。

本节课主要介绍了圆的对称性,包括圆是轴对称图形和中心对称图形,以及圆的对称性质。

通过本节课的学习,学生能够理解圆的对称性,并能够运用圆的对称性质解决实际问题。

二. 学情分析九年级的学生已经掌握了轴对称和中心对称的基本概念,对对称性有一定的理解。

但是,对于圆的对称性的理解和运用还需要进一步的引导和培养。

因此,在教学过程中,需要通过实例和练习,让学生深入理解圆的对称性质,并能够灵活运用。

三. 教学目标1.理解圆是轴对称图形和中心对称图形。

2.掌握圆的对称性质,并能够运用解决实际问题。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.圆的对称性质的理解和运用。

2.圆的对称性质在实际问题中的应用。

五. 教学方法采用问题驱动法和案例教学法,通过实例和练习,引导学生深入理解圆的对称性质,并能够灵活运用。

六. 教学准备1.准备相关的实例和练习题。

2.准备PPT和黑板。

七. 教学过程1.导入(5分钟)通过一个实际的例子,如剪刀、扇子等,引导学生回顾轴对称和中心对称的概念。

然后,提出问题:“圆有哪些对称性质?”引发学生的思考。

2.呈现(10分钟)通过PPT或黑板,呈现圆的对称性质,包括圆是轴对称图形和中心对称图形,以及圆的对称性质。

引导学生观察和理解圆的对称性质。

3.操练(10分钟)给出一些练习题,让学生运用圆的对称性质进行解答。

通过练习,加深学生对圆的对称性质的理解。

4.巩固(10分钟)通过一些实例,让学生运用圆的对称性质解决实际问题。

如,设计一些图案,利用圆的对称性质进行设计和绘制。

5.拓展(10分钟)引导学生思考圆的对称性质在实际生活中的应用,如艺术设计、建筑等。

让学生发挥想象,运用所学知识解决实际问题。

6.小结(5分钟)对本节课的内容进行总结,强调圆的对称性质的重要性和运用。

圆的对称性2教案

圆的对称性2教案

圆的对称性2教案知识点二:圆的中心对称性.问:一个圆绕着它的圆心旋转任意一个角度,还能与原来的图形重合吗?让学生得出结论:一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合,我们把圆的这个特性称之为圆的旋转不变性.圆是中心对称图形,对称中心为圆心.做一做:在等圆⊙O和⊙O中,分别作相等的圆心角∠A O B和A O B(如图3-8),将两圆重叠,并固定圆心,然后把其中的一个圆旋转一个角度,得O A与O A重合.你能发现哪些等量关系吗?说一说你的理由.小红认为A B=A B,A B=A B,她是这样想的:∵半径O A重合,A O B=A O B,∴半径O B与O B重合,∵点A与点A重合,点B与点B重合,∴A B与AB重合,弦A B与弦A B重合,∴A B=A B,A B=A B.生:小红的想法正确吗?同学们交流自己想法,然后得出结论,教师点拨.结论:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.知识点三:圆心角、弧、弦之间的关系.问:在同圆或等圆中,如果两个圆心角所对的弧相等,那么它们所对的弦相等吗?这两个圆心角相等吗?你是怎么想的?否则当O A与O A重合时,O B与O B不能重合.3.将其中的一个圆旋转一个角度,使得O A与O A重合.[生]教师叙述步骤,同学们一起动手操作.[师]通过上面的做一做,你能发现哪些等量关系?同学们互相交流一下,说一说你的理由.[生甲]由已知条件可知∠A O B=∠A O B.[生乙]由两圆的半径相等,可以得到∠O A B=∠O B A=∠O A B=∠O B A.[生丙]由△A O B≌△A O B,可得到A B=A B.[生丁]由旋转法可知A B A B.……[师]很好.大家说得思路很清晰,其实刚才丁同学说到一种新的证明弧相等的方法——叠合法.[师生共析]我们在上述做一做的过程中发现,固定圆心,将其中一个圆旋转一个角度,使半径O A与O A重合时,由于∠A O B=∠A O B.这样便得到半径O B与O B重合.因为点A和点A重合,点B和点B重合,所以和重合,弦A B与弦A B重合,即,A B=A B.的理由是[师]在上述操作过程中,你会得出什么结论?[生]在等圆中,相等的圆心角所对的弧相等,所对的弦相等.[师]同学做得很好,这就是我们通过实验利用圆的旋转不变性探索到的圆的另一个特性:圆心角、弧、弦之间相等关系定理.下面,我们一起来看一看命题的证明.(学生互相讨论交流,学生口述,教师板书)如上图所示,已知:⊙O和⊙O是两个半径相等的圆,∠A O B=∠A O B.求证:,A B=A B.证明:将⊙O和⊙O叠合在一起,固定圆心,将其中的一个圆旋转,一个角度,使得半径O A与O A重合,∵∠A O B=∠A O B,∴半径O B与O B重合.∵点A与点A重合,点B与点B重合,∴∴与重合,弦A B 与弦A B重合.,A B=A B.上面的结论,在同圆中也成立.于是得到下面的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.注意:在运用这个定理时,一定不能忘记“在同圆或等圆中”这个前提.否则也不一定有所对的弧相等、弦相等这样的结论.[师](通过举反例强化对定理的理解)请同学们画一个只能是圆心角相等的这个条件的图.(出示投影片§3.2.2B) [生]如下图示,虽然∠A O B=∠A O B,但A B≠A B,下面我们共同想一想.[师]如果我们把两个圆心角用①表示;两条弧用②表示;两条弦用③表示.我们就可以得出这样的结论:在同圆或等圆中②也相等①相等③如果在同圆或等圆这个前提下.将题设和结论中任何一项交换一下,结论正确吗?你是怎么想的?请你说一说.(同学们互相交流、讨论)[生甲]如果将上述题设①和结论②换一下,结论仍正确.可以通旋转法可知A B A B.……[师]很好.大家说得思路很清晰,其实刚才丁同学说到一种新的证明弧相等的方法——叠合法.[师生共析]我们在上述做一做的过程中发现,固定圆心,将其中一个圆旋转一个角度,使半径O A与O A重合时,由于∠A O B=∠A O B.这样便得到半径O B与O B重合.因为点A和点A重合,点B和点B重合,所以和重合,弦A B与弦A B重合,即,A B=A B.的理由是[师]在上述操作过程中,你会得出什么结论?[生]在等圆中,相等的圆心角所对的弧相等,所对的弦相等.[师]同学做得很好,这就是我们通过实验利用圆的旋转不变性探索到的圆的另一个特性:圆心角、弧、弦之间相等关系定理.下面,我们一起来看一看命题的证明.(学生互相讨论交流,学生口述,教师板书)如上图所示,已知:⊙O和⊙O是两个半径相等的圆,∠A O B=∠A O B.求证:,A B=A B.证明:将⊙O和⊙O叠合在一起,固定圆心,将其中的一个圆旋转,一个角度,使得半径O A与O A重合,∵∠A O B=∠A O B,∴半径O B与O B重合.∵点A与点A重合,点B与点B重合,∴∴与重合,弦A B 与弦A B重合.,A B=A B.上面的结论,在同圆中也成立.于是得到下面的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.注意:在运用这个定理时,一定不能忘记“在同圆或等圆中”这个前提.否则也不一定有所对的弧相等、弦相等这样的结论.[师](通过举反例强化对定理的理解)请同学们画一个只能是圆心角相等的这个条件的图.(出示投影片§3.2.2B) [生]如下图示,虽然∠A O B=∠A O B,但A B≠A B,下面我们共同想一想.[师]如果我们把两个圆心角用①表示;两条弧用②表示;两条弦用③表示.我们就可以得出这样的结论:在同圆或等圆中②也相等①相等③如果在同圆或等圆这个前提下.将题设和结论中任何一项交换一下,结论正确吗?你是怎么想的?请你说一说.(同学们互相交流、讨论)[生甲]如果将上述题设①和结论②换一下,结论仍正确.可以通过旋转法或叠合法得到证明.[生乙]如果将上述题设①和结论③互换一下,结论也正确,可以通过证明全等或叠合法得到.[师]好,通过上面的探索,你得到了什么结论?[生]在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.注意:(1)不能忽略“在同圆或等圆中”这个前提条件,否则,。

华师大九年下第28章《圆的对称性》第2课时教案_ 圆的对称性(2)

华师大九年下第28章《圆的对称性》第2课时教案_ 圆的对称性(2)

圆的对称性(2)教学目标 1.知道圆是轴对称图形,并会用它推导出垂径定理。

2.能运用垂径定理解决问题,培养学生善于从实验中获取知识的科学的方法。

教学重点: 知道圆是轴对称图形,并会用它推导出垂径定理教学难点: 能运用垂径定理解决问题教学过程(一)实验情境导入我们知道圆是轴对称图形,它的任意一条直径所在的直线都是它的对称轴,由此我们可以如图28.1.6那样十分简捷地将一个圆2等分、4等分、8等分.图28.1.6试一试如图如果在图形纸片上任意画一条垂直于直径CD 的弦AB ,垂足为P ,再将纸片沿着直径CD 对折,比较AP 与PB 、AC ︵与CB ︵,你能发现什么结论?你的结论是:_________________________________________________________________________________________这就是我们这节课要研究的问题。

(二)应用与拓展例1、 如图,AB 是⊙O 的直径,弦CD ⊥AB 于M1、BC ︵=1 cm ,AD ︵=4 cm ,那么BD ︵=______cm ,AC ︵=_________cm ,⊙O 的周长为___________cm .2、若CD=8,AB=10,则OM=3、若BM=1,CD=8,则OC=例2、如图已知以点O为公共圆心的两个同心圆,大圆的弦AB交小圆于点C、D(1)试说明线段AC与BD的大小关系。

(2)若AB=8,CD=4,求圆环的面积。

例3、在直径为10的圆柱形油桶内装入一些油后,截面如图示,如果油面宽AB=8,那么油的最大深度是(三)课后小结课后作业:课后小记:。

北师大版九年级数学下册:3.2《圆的对称性》说课稿2

北师大版九年级数学下册:3.2《圆的对称性》说课稿2

北师大版九年级数学下册:3.2《圆的对称性》说课稿2一. 教材分析《圆的对称性》这一节内容是北师大版九年级数学下册的重点章节。

圆是初中数学中的一个基本概念,而圆的对称性是圆的一个重要性质。

本节内容主要介绍了圆的对称性,包括圆的对称轴、圆的对称点等。

通过学习圆的对称性,学生可以更好地理解和掌握圆的性质,为后续学习圆的方程和其他相关内容打下基础。

二. 学情分析九年级的学生已经具备了一定的数学基础,对圆的概念和性质有一定的了解。

但是,对于圆的对称性的理解和应用可能还存在一些困难。

因此,在教学过程中,我将以学生为中心,注重启发式教学,引导学生通过观察、思考、讨论等方式,自主探索和发现圆的对称性,提高他们的数学思维能力和解决问题的能力。

三. 说教学目标1.知识与技能目标:通过学习,使学生理解和掌握圆的对称性的概念和性质,能够运用圆的对称性解决一些简单问题。

2.过程与方法目标:通过观察、实验、推理等方法,培养学生的数学观察能力、实验能力和推理能力。

3.情感态度与价值观目标:激发学生对数学的兴趣和好奇心,培养学生的合作意识和探索精神。

四. 说教学重难点1.教学重点:圆的对称性的概念和性质。

2.教学难点:圆的对称性的理解和应用。

五. 说教学方法与手段1.教学方法:采用启发式教学法、探究式教学法和小组合作学习法,引导学生主动参与教学过程,提高他们的数学思维能力和解决问题的能力。

2.教学手段:利用多媒体课件和教具,直观地展示圆的对称性的性质和应用,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入:通过展示一些具有对称性的物体,如剪刀、镜子等,引导学生思考对称性的概念,引出圆的对称性的主题。

2.探究圆的对称性:引导学生通过观察、实验等方法,发现圆的对称性的性质,如圆的对称轴、圆的对称点等。

3.讲解与巩固:对圆的对称性的性质进行详细的讲解,并通过一些例题和练习题,帮助学生巩固和应用所学的知识。

4.拓展与应用:引导学生运用圆的对称性解决一些实际问题,提高学生的应用能力。

3.2圆的对称性(教案)2020-2021学年北师大版数学九年级下册

3.2圆的对称性(教案)2020-2021学年北师大版数学九年级下册
3.掌握圆的旋转对称性质,理解圆旋转任意角度后仍与原图形重合的特点。
二、核心素养目标
1.培养学生运用几何直观和空间想象能力,通过对圆的对称性探究,提高对图形性质的理解和把握。
2.培养学生逻辑推理和数学抽象素养,通过圆的对称性质推理出相关结论,并运用到实际问题中。
3.培养学生团队协作和问题解决能力,通过小组讨论和合作,发现圆的对称性质及其应用,增强数学交流与表达。
五、教学反思
在今天的教学过程中,我发现学生们对圆的对称性这一章节的内容表现出较高的兴趣。通过引入日常生活中的实例,同学们能够较快地进入学习状态,这让我觉得导入新课的方式还是蛮有效的。但在讲授过程中,我也注意到有些学生对圆的对称轴和旋转对称性质的理解还不够深入,这成为了今天教学的难点。
在理论介绍环节,我尝试用简洁明了的语言解释圆的对称性,但可能还是过于抽象,导致部分学生难以消化。在接下来的教学过程中,我考虑结合更多具体的例子和动态演示,让学生更直观地感受和理解圆的对称性。
3.重点难点解析:在讲授过程中,我会特别强调圆的直径对应的圆周角是直角和圆的旋转对称性质这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解组讨论:学生们将分成若干小组,每组讨论一个与圆的对称性相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如折叠圆形纸片来观察轴对称性质。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解圆的对称性的基本概念。圆的对称性是指圆具有轴对称和旋转对称的性质。它是几何学中的一个重要概念,广泛应用于日常生活和艺术设计中。
2.案例分析:接下来,我们来看一个具体的案例。通过分析圆桌的对称性,了解它在实际中的应用,以及如何帮助我们解决问题。
4.培养学生创新思维和审美观念,感受圆的对称美,激发对数学学科的兴趣和热爱。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2 圆的对称性课时安排2课时从容说课圆是一种特殊的图形,它既是中心对称图形又是轴对称图形.学生已经通过前面的学习,能用折叠的方法得到圆是一个轴对称图形,其对称轴是任意一条过圆心的直线.同时结合图形让学生认识一些和圆相关的概念.本节课的重点是垂点定理及其逆定理和圆心角、弧、弦、弦心距之间的关系定理.本节课的难点是垂点定理及其逆定理的证明与“圆心角、弧、弦、弦心距之间关系定理”中的“在同圆或等圆”的前提条件的理解及定理的证明.第二课时课题§3.2.1 圆的对称性(一)教学目标(一)教学知识点1.圆的轴对称性.2.垂径定理及其逆定理.3.运用垂径定理及其逆定理进行有关的计算和证明.(二)能力训练要求1.经历探索圆的对称性及相关性质的过程,进一步体会和理解研究几何图形的各种方法.2.培养学生独立探索,相互合作交流的精神.(三)情感与价值观要求通过学习垂径定理及其逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动精神.教学重点垂径定理及其逆定理.教学难点垂径定理及其逆定理的证明.教学方法指导探索和自主探索相结合.教具准备投影片两张:第一张:做一做(记作§3.2.1 A)第二张:想一想(记作§3.2.1 B)教学过程I.创设问题情境,引入新课,[师]前面我们已探讨过轴对称图形,哪位同学能叙述一下轴对称图形的定义?,[生]如果一个图形沿着某一条直线折叠后。

直线两旁的部分能够互相重合,那么这个图形叫轴对称图形,这条直线叫对称轴.[师]我们是用什么方法研究了轴对称图形?[生]折叠.[师]今天我们继续用前面的方法来研究圆的对称性.Ⅱ.讲授新课[师]同学们想一想:圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?[生]圆是轴对称图形,过圆心的直线是它的对称轴,有无数条对称轴.[师]是吗?你是用什么方法解决上述问题的?大家互相讨论一下.[生]我们可以利用折叠的方法,解决上述问题.把一个圆对折以后,圆的两半部分重合,折痕是一条过圆心的直线,由于过圆心可以作无数条直线,这样便可知圆有无数条对称轴. [师]很好.教师板书:圆是轴对称图形图形,对称轴是任意一条过圆心的直线.下面我们来认识一下弧、弦、直径这些与圆有关的概念.1.圆弧:圆上任意两点间的部分叫做圆弧,简称弧(arc).2.弦:连接圆上任意两点的线段叫做弦(chord).3.直径:经过圆心的弦叫直径(diameter).如右图。

以A、B为端点的弧记作AB,渎作“圆弧AB”或“弧AB”;线段AB是⊙O的一条弦,弧CD是⊙O的一条直径.注意:1.弧包括优弧(major arc)和劣弧(minor are),大于半圆的弧称为优弧,小于半圆的弧称为劣弧.如上图中,以A、D为端点的弧有两条:优弧ACD(记作ACD),劣弧ABD(记作AD).半圆,圆的任意一条直径的两个端点分圆成两条弧,每一条弧叫半圆弧,简称半圆.半圆是弧,但弧不一定是半圆;半圆既不是劣弧,也不是优弧.2.直径是弦,但弦不一定是直径.下面我们一起来做一做:(出示投影片§3.2.1 A)按下面的步骤做一做:1.在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合.2.得到一条折痕CD.3.在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中,点M是两条折痕的交点,即垂足.4.将纸打开,新的折痕与圆交于另一点B,如上图[师]老师和大家一起动手.(教师叙述步骤,师生共同操作)[师]通过第一步,我们可以得到什么?[生齐声]可以知道:圆是轴对称图形,过圆心的直线是它的对称轴.[师]很好.在上述的操作过程中,你发现了哪些相等的线段和相等的弧?[生]我发现了,AM=BM,弧AC=弧BC=弧AD=弧BD.[师]为什么呢?[生]因为折痕AM与BM互相重合,A点与D点重合.[师]还可以怎么说呢?能不能利用构造等腰三角形得出上面的等量关系?[师生共析]如右图示,连接OA、OB得到等腰△OAB,即OA=OB.因CD⊥AB,故△OAM与△OBM都是Rt△,又OM为公共边,所以两个直角三角形全等,则AM=BM.又⊙O关于直径CD对称,所以A点和B点关于CD对称,当圆沿着直径CD对折时,点A与点B重合,弧AC与弧BC重合.因此AM=BM,弧AC=弧BC=弧AD=弧BD.[师]在上述操作过程中,你会得出什么结论?[生]垂直于弦的直径平分这条弦,并且平分弦所对的弧.[师]同学们总结得很好.这就是利用圆的轴对称性得到的与圆相关的一个重要性质——垂径定理.在这里注意:①条件中的“弦”可以是直径.②结论中的“平分弧”指平分弦所对的劣弧、优弦.下面,我们一起看一下定理的证明:(教师边板书,边叙述)如上图,连结OA、OB,则OA=OB.在Rt△OAM和Rt△OBM中,∵OA=OB,OM=OM,∴Rt△OAM≌Rt△OBM,∴AM=BM.∴点A和点墨关于CD对称.∵⊙O关于直径CD对称,∴当圆沿着直径CD对折时,点A与点B重合,弧AC与弧BC重合,弧AD与弧BD重合.∴∴AC=∴BC, 弧AD与弧BD重合[师]为了运用的方便,不易出现错误,易于记忆,可将原定理叙述为:一条直线若满足:(1)过圆心;(2)垂直于弦,那么可推出:①平分弦,②平分弦所对的优弧,③平分弦所对的劣弧.即垂径定理的条件有两项,结论有三项.用符号语言可表述为:如图3—7,在⊙O中,AM=BM ,CD是直径弧AD=弧BD,CD⊥AB于MAC=弧BC.下面,我们通过求解例1,来熟悉垂径定理:[例1]如右图所示,一条公路的转弯处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上一点,且OE⊥CD,垂足为F,EF=90 m.求这段弯路的半径.[师生共析]要求弯路的半径,连结OC ,只要求出OC 的长便可以了.因为已知OE ⊥CD ,所以CF =21CD =300 cm ,OF =OE-EF ,此时就得到了一个Rt △CFO ,哪位同学能口述一下如何求解?[生]连结OC ,设弯路的半径为Rm ,则OF =(R-90)m ,∵OE ⊥CD ,∴CF =CD=×600=300(m).据勾股定理,得OC 2=CF 2+OF 2,即R 2=3002+(R-90)2.解这个方程,得R =545.∴这段弯路的半径为545 m .[师]在上述解题过程中使用了列方程的方法,用代数方法解决几何问题,这种思想应在今后的解题过程中注意运用.随堂练习:P 92.1.略下面我们来想一想(出示投影片§3.2.1 B)如下图示,AB 是⊙O 的弦(不是直径),作一条平分AB 的直径CD ,交AB 于点M .[师]右图是轴对称图形吗?如果是,其对称轴是什么?[生]它是轴对称图形,其对称轴是直径CD 所在的直线.[师]很好,你是用什么方法验证上述结论的?大家互相交流讨论一下,你还有什么发现?[生]通过折叠的方法,与刚才垂径定理的探索方法类似,在一张纸上画一个⊙O ,作一条不是直径的弦AB ,将圆对折,使点A 与点D 重合,便得到一条折痕CD 与弦AB 交于点M .CD 就是⊙O 的对称轴,A 点、B 点关于直径CD 对称.由轴对称可知,AB ⊥CD ,弧AC=弧BC ,弧AD=弧BD[师]大家想想还有别的方法吗?互相讨论一下.[生]如上图,连接OA 、OB 便可得到一个等腰△OAB ,即OA =OB ,又AM =MB ,即M 点为等腰△OAB 底边上的中线.由等腰三角形三线合一的性质可知CD ⊥AB ,又CD 是⊙O 的对称轴,当圆沿CD 对折时,点A 与点B 重合,弧AC 与弧BC 重合,弧AD 与弧BD 重合.[师]在上述的探讨中,你会得出什么结论?[生]平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.[师]为什么上述条件要强调“弦不是直径”?[生]因为圆的任意两条直径互相平分,但是它们不一定是互相垂直的.[师]我们把上述结论称为垂径定理的一个逆定理.[师]同学们,你能写出它的证明过程吗?[生]如上图,连结OA 、OB ,则OA =OB .在等腰△OAB 中,∵AM =MB ,∴CD ⊥AB(等腰三角形的三线合一).∵⊙O 关于直径CD 对称.∴当圆沿着直径CD 对折时,点A 与点B 重合,弧AC 与弧BC 重合,弧AD 与弧BD 重合.∴弧AC=弧BC ,弧AD=弧BD[师]接下来,做随堂练习:P 922.如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?为什么?答:相等.理由:如右图示,过圆心O 作垂直于弦的直径EF ,由垂径定理设弧AF=弧BF ,弧CF=弧DF ,用等量减等量差相等,得弧AF-弧CF=弧BF-弧DF ,即弧AC=弧BD ,故结论成立.符合条件的图形有三种情况:(1)圆心在平行弦外,(2)在其中一条线弦上,(3)在平行弦内,但理由相同.Ⅲ.课时小结1.本节课我们探索了圆的对称性.2.利用圆的轴对称性研究了垂径定理及其逆定理.3.垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.Ⅳ.课后作业(一)课本P 93,习题3.2,1、2(二)1.预习内容:P 94~972.预习提纲:(1)圆是中心对称图形.(2)圆心角、弧、弦之间相等关系定理.Ⅴ.活动与探究1.银川市某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图所示,污水水面宽度为60 cm ,水面至管道顶部距离为10 cm ,问修理人员应准备内径多大的管道?[过程]让学生在探究过程中,进一步把实际问题转化为数学问题,掌握通过作辅助线构造垂径定理基本结构图,进而发展学生的思维.[结果]如右图示,连结OA ,过O 作OE ⊥AB ,垂足为E ,交圆于F , 则AE=21AB=30 cm .令⊙O 的半径为R ,则OA=R ,OE =OF-EF =R-10.在Rt △AEO 中,OA 2=AE 2+OE 2,即R 2=302+(R-10)2.解得R=50cm .修理人员应准备内径为100 cm 的管道.板书设计§3.2.1 圆的对称性(一)一、圆是轴对称图形,其对称轴是任意一条过圆心的直径.二、与圆有关的概念:1.圆弧2.弦3.直径注意:弧包括优弧、劣弧、半圆.三、垂径定理:垂直干弦的直径平分这条弦,并且平分弦所对的弧.例1:略四、垂径定理逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.注意:弦不是直径.五、课堂练习六、课时小结七、课后作业备课资料参考练习1.已知点P到⊙O的最长距离为6 cm,最短距离为2 cm.求⊙O的半径.答案:4 cm或2 cm.2.⊙O的半径为10 cm,弦AB//CD,AB=12 cm,CD=16 cm.则AB和CD的距离为…………………………………( )A.2 cm B.14 cm C. 2 cm或14 cm D.10 cm或20 cm 答案:C。

相关文档
最新文档