4.2线段的长短比较线(2课时)教案

合集下载

4.2 第2课时 比较线段的长短 教案

4.2 第2课时 比较线段的长短  教案

第2课时比较线段的长短◇教学目标◇【知识与技能】1.了解尺规作图的概念,会用尺规作图作一条线段等于已知线段;了解度量线段的两种方法,对线段进行大小比较;2.理解线段中点的概念,利用和、差、倍、分关系计算线段的长度.【过程与方法】经历画图的数学活动过程,提高学生的动手操作与实践能力.【情感、态度价值观】体会数学是解决实际问题的重要工具,通过对解决问题过程的反思,懂得知识源于生活并用于生活.◇教学重难点◇【教学重点】线段大小比较,利用和、差、倍、分关系计算线段的长度.【教学难点】线段的等分点表示方法及运用.◇教学过程◇一、情境导入小明和小华在比身高,以下是他们的对话:小明:“我身高1.5 m.”小华:“我身高1.53 m,比你高3 cm.”怎样比较两条线段的长短呢?你能从比身高上受到一些启发吗?二、合作探究探究点1尺规作图典例1如图,已知线段a,b,c(a>b),用圆规和直尺画线段,使它等于a-b+2c.[解析]如图所示:线段AE=a-b+2c.已知线段a和b,且a>b,用直尺和圆规作一条线段,使它等于2a-b,并写出作图过程.[解析]首先画射线AP,再在射线上依次截取AB=BC=a,然后截取AD=b,则CD=2a-b.探究2 探索线段大小的比较方法典例2 A ,B ,C 三点在同一直线上,线段AB=5 cm,BC=4 cm,那么线段AC 的长度是( )A.1 cmB.9 cmC.1 cm 或9 cmD.以上答案都不对[解析] 第一种情况:C 点在AB 之间上,故AC=AB-BC=1 cm;第二种情况:当C 点在AB 的延长线上时,AC=AB+BC=9 cm .已知线段AB=8 cm,在直线AB 上画线段BC ,使BC=5 cm,则线段AC 的长度为( )A.3 cm 或13 cmB.3 cmC.13 cmD.18 cm[解析] ∵在直线AB 上画线段BC ,∴CB 的长度有两种可能:①当C 在AB 之间,此时AC=AB-BC=8-5=3 cm;②当C 在线段AB 的延长线上,此时AC=AB+BC=8+5=13 cm .[答案] A三、板书设计比较线段的长短比较线段的长短{度量法叠合法◇教学反思◇教师要尝试让学生自主学习,优化课堂数学的反馈与评价,通过评价激发学生的求知欲,坚定学生学习的自信心.。

4.2 直线、射线、线段(第2课时) 教案

4.2 直线、射线、线段(第2课时) 教案

4.2 直线、射线、线段(第二课时)课型新授单位主备人教学目标:1.知识与技能:(1)会用尺规画一条线段等于已知线段,会比较两条线段的长短.(2)会画线段的和与差2.过程与方法:(1)能在现实情境中,进行抽象的数学思考,提高抽象概括能力.(2)经历画图的数学活动过程,提高学生的动手操作与实践能力.3.情感、价值观:积极参与实验数学活动中,体会数学是解决实际问题的重要工具,通过对解决问题过程的反思,懂得知识源于生活并用于生活.重点、难点:教学重点:比较两条线段的长短,画一条线段等于已知线段,会画线段的和与差教学难点:根据语言描述画出图形,理解画图语言,建立图形与语言之间的联系.教学准备:PPT课件和微课等。

教学过程一、创设情景、引入新课你们平时是如何比较两个同学的身高的?你能从比身高的方法中得到启示来比较两条线段的长短吗?讨论后派一位代表上来说说你们的想法。

二、自主学习、合作探究探究(一)、如何比较两条线段的大小?学生活动设计:学生思考比较方法,可能有两种方法,一是分别用刻度尺量出线段的长度,比较长度即可(度量法),二是把其中的一条线段移到另一条线段上进行比较(叠合法).(课件:比较两条线段的大小)生讨论1、如上图,直接看出,总结第一种方法:目测法2、用刻度尺量,再比较数量大小------度量法,即用一把尺量出两条线段的长度,再进行比较。

3、利用圆规,把其中一条线段移到另一条线段上作比较------叠合法先把两条线段的一端重合,另一端落在同侧,根据另一端落下的位置,来比较总结比较线段长短的方法:1目测法 2 度量法 3 叠合法小试牛刀:观察下列三组图形,分别比较线段a、b的长短,再用刻度尺量一下,看看你的观察结果是否正确(1))(2)两条线段的关系有: AB=CD AB>CD AB<CD归纳总结:度量法数线段比较的方法叠合法形跟踪练习:教材128页1题探究(二):你能用直尺(没有刻度)和圆规画一条线段等于已知线段吗?已知线段a,作线段AB,使线段AB=a.学生活动设计:由于直尺没有刻度,因此直尺的作用是画线,不能进行度量,而圆规当半径不变时,可以把一条线段任意移动,因此圆规的作用是度量,于是有下列画法:(1)画射线AC(2)以点A为圆心,a的长为半径画弧,交射线AC于点B,线段AB就是符合条件的线段.aA B C所以 AB=a像这样仅用圆规和没有刻度的直尺作图的方法叫尺规作图.教师活动设计:在学生总结画法时,注意语言的简洁与规范,及时纠正学生的不规范的说法和表述.注意:不要求写画法,但一定要标清字母,写出有结论.也可以先量出线段a的长度,再画一条等于这个长度的线段例1 如图,已知线段a,借助圆规和直尺作一条线段使它等于2a.a A B C作业设计1、如图,已知A、B、C三点在同一条直线上,则(1)AB+BC=(2)AC-BC=(3)AC-AB=2、已知线段AB=5cm,(1)在线段AB上画线段BC=3 cm,并求线段AC的长(2)在直线AB上画线段BC=3 cm,并求线段AC的长3、如下图,四条线段AB、BC、CD、DA,且,用圆规比较图中的线段大小,确定出A、B、C、D四点的准确位置,再用刻度尺量出这四条线段的长度.最佳解决方案个课下学生独立完成教学设计反思:本节课通过比较两个人的高矮这一生活中的实例让学生进行思考,从而引出课题,极大地激发了学生的学习兴趣;并通过动手操作,亲身体验用叠合法比较线段的长短.教师要尝试让学生自主学习,优化课堂教学中的反馈与评价.通过评价,激发学生的求知欲,坚定学生学习的自信心。

线段的长短比较线(2课时)教案

线段的长短比较线(2课时)教案

4.1比较线段的长短第一课时一、 教学目标1.使学生在理解线段概念的基础上,了解线段的长度可以用正数来表示,因而线段可以度量、比较大小以及进行一些运算.使学生对几何图形与数之间的联系有一定的认识,从而初步了解数形结合的思想.2.掌握比较线段长短的两种方法3.会用直尺和圆规画一条线段等于已知线段4.理解线段和、差的概念及画法5.进一步培养学生的动手能力、观察能力。

二、 教学重点线段长短的两种比较方法三、 教学难点对线段与数之间的认识,掌握线段比较的正确方法四、 教具准备四支筷子(三红一绿,长短不一)、圆规、直尺五、 教学过程(一) 创设情境教师:老师手中有两只筷子(一红一绿)如何比较它们的长短?学生:先移动一根筷子,与另一根筷子一头对齐,两根棒靠紧,观察另一头的位置,多出的较长。

教师:比较长短的关键是什么?学生:必有一头对齐教师:除此之外,还有其他的方法吗?学生:可以用刻度尺分别测出两根筷子的长度,然后比较两个数值教师:我们可以用类似于比筷子的两种方法来比较两条线段的长短(二) 新课教学让学生在本子上画出AB 、CD 两条线段。

(长短不一)1.“议一议” 怎样比较两条线段的长短?先让学生用自己的语言描述比较的过程,然后教师边演示边用规范的几何语言描述叠合法:把线段AB 、CD 放在同一直线上比较,步骤有三:① 将线段AB 的端点A 与线段CD 的端点C 重合② 将线段AB 沿着线段CD 的方向落下③ 若端点B 与端点D 重合,则得到线段AB 等于线段CD ,可记做:AB=CD (几何语言)若端点B 落在D 内,则得到线段AB 小于线段CD ,可记做:AB <CD若端点B 落在D 外,则得到线段AB 大于线段CD ,可记做:AB >CD 如图1A CB D(注:讲此方法时,教师应采用圆规截取线段比较形象,还需向学生讲明从“形”角度去比较线段的长短)度量法:用刻度尺分别量出线段AB和线段CD的长度,再将长度进行比较。

北师大版-数学-七年级上册-4.2 比较线段的长短 教案(第二课时)

北师大版-数学-七年级上册-4.2 比较线段的长短 教案(第二课时)

比较线段的长短
教学设计
一、学习方式
1.学习方法
(1)借助有趣的情境,了解“两点之间,线段最短”。

(2)借助情境,提出线段比较的意义。

(3)通过学生动手、动脑、交流,学会怎样利用圆规去比较线段的大小。

2.学习倾向
通过情境设置,让学生感悟到现实生活中存在很多数学问题,引导学生通过观察,动脑思考。

二、学习任务
1.认知起点
(1)线段。

(2)怎样度量线段。

2.掌握概念
三、教学目标
1.借助有趣的情境,了解“两点之间的所有连线中,线段最短”。

2.能借助直尺、圆规等工具比较两条线段的长短。

3.能用圆规作一条线段等于已知线段。

4.知道什么是两点间的距离和线段的中点等概念。

四、教学重点和难点
重点:线段长短的比较
难点:怎样用直尺圆规比较线段的长短。

五、教学过程
表1
探索线段的中点
4.随堂练习
5.小结
(1)两点之间,线段最短。

(2)O为线段AB的中点,则OA=OB=1/2AB。

6.作业
参考教科书在AB上,且
OA=OB,则O叫AB
的中点。

2.若O为线
段AB的中点,则
OA=OB=1/2AB
指导、巡视
共同小结
电脑动画比

电脑显示内
容。

线段的长短比较 教学设计

线段的长短比较 教学设计

4.2线段的长短比较教学设计一、教学任务分析本课时的教学内容安排,首先是在具体的教学中参照教科书创设的“两棵树的高矮”、“两根铅笔的长短”等情景图,结合“两个人的身高比较方法”,和“折出这线段中点”等充分创设情境,极大丰富数学学习素材,充分调动学生学习热情进行主动的学习探究。

其次:问题引入:“从A到B的四条道路,哪条最近?”直接让学生从图和形的角度感受到生活现实中所蕴含的最本质的“直线距离最短”的性质,并和学生一起得出“线段”性质,并提出“两点之间的距离”的定义。

然后引出比较两条线段的大小的必要性,让学生充分思考和交流比较方法和策略,重点突破比较方法,并进一步作出线段的和、差,最后运用所学解释和解决实际问题。

鉴于学生的认知水平和几何方法的才起步,教学中要始终遵循学生主动学习的原则,给足时间思考、动手操作,通过丰富的活动让学生经历数学知识的获得与应用过程,同时采用多媒体辅助教学拓展学生的思维,初步培养学生数学语言的规范性。

二、教学对象分析本节课是教材第四章的第二节,是平面图形的重要的基础知识。

学生在前面了解了一些立体的、平面的几何图形。

在上一节课也学习了《线段、射线、直线》。

了解了线段的形象、描述性定义和表示方法,这一节将进一步研究线段的重要的基本性质和比较方法。

所以从学生的生活经验出发,抽象提炼线段的基本性质,线段的大小比较方法、和、差作图等,知识策略的获得完全是根据学生的生活经验和理解水平得到,能充分调动学生的积极性。

三、教学目标分析1.知识与技能目标理解并掌握“两点之间线段最短”的性质;能借助于尺、规等工具比较两条线段的大小。

2.过程与方法目标通过思考想象、合作交流、动手操作等数学探究过程,了解线段大小比较的两种方法策略,学习开始使用几何工具操作方法,发展几何图形意识和探究意识。

3.情感与态度目标在解决问题的过程中体验动手操作、合作交流、探究解决的学习过程,激发学生解决问题的积极性和主动性。

2024年湘教版七年级数学上册 4.2 第2课时 线段的长短比较(课件)

2024年湘教版七年级数学上册 4.2 第2课时 线段的长短比较(课件)
连接两点的线段的长度,叫作这两点的距离.
生活实例
1. 如图,这是 A,B 两地之间的公路,在公路工程 改造计划时,为使 A,B 两地行程最短,应如何 设计线路?请在图中画出,并说明理由.
B. A.
两点之间,线段最短
知识点3: 线段的和、差、倍、分
在直线上画出线段 AB = a,再在 AB 的延长线 上画线段 BC = b,线段 AC 就是 a 与 b 的和,记作 AC = a + b. 如果在 AB 上画线段 BD = b,那么线段 AD 就是 a 与 b 的差,记作 AD = a - b .
第4章 图形的认识
4.2 线段、射线、直线
第 2 课时 线段的长短比较
教学目标
1. 会用度量法与叠合法来比较线段的长短. 2. 知道两点之间线段最短这一基本事实,并能简单运
用,感受数学与生活的联系. 3. 知道两点间的距离、线段的中点等概念,会按要求
画线段. 重点:掌握比较线段长短的方法,线段中点的概念及表
叠合法 实际 如何在线段 CD 上画出线段 AB,并且一端端
点重合,另一个端点要放在公共端点的同侧?
A
B
C(A)
BD
归纳总结 叠合法比较线段的大小:
AB C
A C A C
图形
线段AB 与CD的关系 记作
D B D
B D
AB 小于 CD
AB<CD
AB 等于 CD AB 大于 CD
AB = CD AB>CD
a
AC 分成相等的两条线段 AB 与 BC, A 这时 B 叫作 AC 的中点.
B
C
几何语言:因为 B 是线段 AC 的中点,
所以 AB = BC = 1 AC (或 AC = 2AB = 2BC ).

4.2 比较线段的长短 教案

4.2 比较线段的长短  教案

《比较线段的长短》教学设计【教学目标】✧知识与技能(1)能用尺规作一条线段等于已知线段;(2)能借助直尺、圆规等工具比较两条线段的长短;(3)了解线段的基本性质;(4)掌握线段的中点的概念、画法,并会用线段的中点进行简单的计算和说理。

✧过程与方法(1)经历将实际问题抽象为数学问题的过程;(2)经历个体思考、合作化学习过程;(3)渗透数形结合的数学数学方法。

✧情感态度价值观(1)培养学生应用数学的意识;(2)养成良好的学习习惯和勤于思考的思维品质。

根据以上分析和教学目标,我确定本节课的重点、难点:【教学重点】比较线段的长短。

【教学难点】比较线段长短的方法及线段中点的意义及表示方法和应用。

结合本节课内容和学生实际,我采用了如下教法、学法:【教法分析】即引导发现式的教学方法并充分利用多媒体辅助教学。

【学法分析】在教学时,调动学生动手、动脑、共同探索来寻求解决问题的方法。

【教学手段】计算机、PPT、合作探究。

【教学过程设计】教学过程二、讲解新课1、线段的基本性质:(1)如图:从A村到B村,有三条路径可选择,你愿意选第几条路径?说出你的理由。

(2)从上面的例子来看,我们可以得出一个结论:线段的基本性质:两点之间的所有连线中,线段最短。

也可以说成:两点之间,线段最短。

(3)两点之间线段的长度,叫做两点之间的距离。

(4)线段的基本性质在生活中的应用如图:这是A、B两地之间的公路,在公路工程改造计划时,为使A、B两地行程最短,应如何设计线路?在图中画出。

你的理由是什么?2、比较线段的长短。

议一议:回答问题学生以人们在生活中每天都必须经历的活动——“走路”为背景,得到“两点之间,线段最短”这一事实,学生很容易理解,在此基础上介绍两点之间的距离就水到渠成了。

通过对定义的剖析,强化了数与形的A B教学过程下图中哪棵树高?哪支铅笔长?窗框相邻两条边哪条边长?你是怎么比较的?与同伴进行交流如何比较两条线段的长短?(1)①用刻度尺度量它们的长度进行比较——度量法。

数学《4.2.2 线段长短的比较与运算教学设计》

数学《4.2.2 线段长短的比较与运算教学设计》

4.2.2 线段长短的比较与运算观察图形,你能比较出每组图形中线段 a 和b 的长短吗?很多时候,眼见未必为实. 准确比较线段的长短还需要更加严谨的办法.作一条线段等于已知线段已知:线段a,作一条线段AB,使AB=a.第一步:用直尺画射线AF第二步:用圆规在射线AF 上截取AB = a.∴ 线段AB 为所求.在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图.(教师动画演示叠合的过程,呈现三种情况)设计意图在总结生活经验的基础上,引导学生归纳两人身高的比较方法以及需要注意的问题,再将方法迁移到“线段的长短比较”的数学问题中来,促进学生理解,锻炼学生几何语言的表达、概括能力,感受数学的严谨性,逐步培养学生用数学的眼光观察世界的能力,用数学的语言表达世界的能力.问题1 如图1(几何画板显示),当点C是线段AB 上一点时,图中有几条线段,它们的大小关系呢?生:有3条,分别是线段AC、CB、AB问题2:如图,线段AB和AC的大小关系是怎样的?线段AC与线段AB的差是哪条线段?你还能从图中观察出其他线段间的和、差关系吗?答案:AB<ACAB+BC=ACAC-AB=BCAC-BC=AB师:如果点C在线段AB 上移动(不与A、B两点重合),以上不等量关系和等量关系还成立吗?生:不等量关系中 AC<AB,CB<AB成立,而 AC>CB 不一定成立了;而等量关系都成立.师:利用几何画板的度量功能,可以把线段的长度都度量出来,请观察动画,当点C在线段AB上移动时,这3条线段的长度如何变化?(动画演示)生:当C刚开始移动时,有AC>CB,随着点C向点A方向移动,线段AC的长度越来越小,线段CB的长度越来越大,而线段AB 的长度保持不变.师:在点C移动的过程中,线段AC 和线段CB 的长度有没有可能相等?能找出相等时刻点C的位置吗?生1:有可能相等(上台演示).生2:如果能够折叠,将 AB=8.18厘米线段折叠,使点 A 与点B 重合AC=4.09厘米CB=4.09厘米重合,折痕与线段的交点就是点C.师:我们把这时的点C叫做线段AB 的中点,你能说说什么是线段的中点吗?生:线段AB上有一点C ,将线段AB 分成相等的两条线段AC 和CB ,就说点C是线段AB 的中点.强调:点C把线段AB分成相等的两条线段AC与BC,点C叫做线段AB的中点.符号语言:∴M是AB的中点∴AM=BM=12 AB想一想:什么是三等分点?四等分点呢?设计意图:利用直观图形,由线段的大小关系过渡到线段的和差关系,自然合理.利用多媒体动画及度量工具,揭示线段中点的含义.线段中点的表示采用两种表示法,渗透线段的倍分关系,为以后学习线段的三等分点、四等分点以及线段的几倍与几分之一打下基础.在概念的学习中,让学生体会一般与特殊的关系,通过不断逼近中点的演示,渗透极限思想,培养学生用数学的思维思考世界的能力.问题3:如图,从A地到B地有四条道路,除它们外能否再修一条从A地到B地的最短道路?如果能,请联系你以前所学的知识,在图上画出最短路线.强调1:两点的所有连线中,线段最短.简单地说:两点之间,线段最短.过关练习 1.如图,下列关系式中与图不符的是( )A.AD-CD=ACB. AB+BC=ACC.BD-BC=AB+BCD. AD-BD=AC-BC答案:C2.若AB = 6 cm,点C 是线段AB 的中点,点D 是线段CB 的中点,问:线段AD 的长是多少?3.如图,已知点C在线段AB上,线段AC=12,BC=8,点M,N分别是AC,BC的中点,求线段MN的长度;根据上面的计算过程与结果,设AC+BC=a,其他条件不变,你能猜出MN的长度吗?用简练的语言表述你发现的规律.解:(1)因为MC=12AC,NC=12BC,所以MN=12AC+12BC=12×12+12×8=10Aa aM B(2)因为MC =12AC ,NC =12BC ,所以MN =12AC +12BC =12×12+12×8=10如图,A ,B ,C 三点在一条直线上,线段4. AB = 4 cm ,BC = 6 cm ,若点 D 为线段 AB 的中点,点 E 为线段 BC 的中点,求线段 DE 的长.课堂小结设计意图 通过师生共同回顾本节课的学习内容和探究历程,构建知识框架,梳理知识的发生、发展过程,总结知识获得的方法,加深学生对所学知识的理解,感受数学的逻辑性和严密性.鼓励学生大胆发表自己的见解,培养语言表达和与人交流的能力.四、达标测评 检测小卷五、布置作业A 层作业:数学书128页练习1-3题B 层作业:练习卷C 层作业:拓展训练A DB E C线段长短的比较与运算 线段长短的比较基本事实线段的和差度量法叠合法中点两点之间线段最短 思想方法方程思想 分类思想基本作图。

人教版数学七年级上册4.2第2课时比较线段的长短优秀教学案例

人教版数学七年级上册4.2第2课时比较线段的长短优秀教学案例
(四)反思与评价
在课堂教学结束后,教师应组织学生进行反思与评价。首先,教师引导学生总结自己在课堂上学到的知识,反思学习过程中的收获和不足。其次,教师组织学生进行互相评价,让每个学生都能从同伴的评价中汲取经验,提高自己。最后,教师对学生的表现给予积极的评价,强调学生在课堂上的优点,对学生的不足给予指导性建议。通过反思与评价,帮助学生巩固知识,提高能力,培养正确的价值观。
三、教学策略
(一)情景创设
为了让学生更好地理解线段长度比较在实际生活中的应用,教师在本节课中应创设丰富多样的情景。例如,可以引入校园环境中的实例,如操场跑道的长度、篮球场的对角线长度等,让学生在实际情景中感受线段长度的比较。此外,还可以通过多媒体展示一些生活中的图片,如道路、桥梁、建筑物等,让学生观察并比较其中线段的长度。通过情景创设,激发学生的兴趣,引导学生主动参与课堂学习。
(三)小组合作
小组合作是本节课的重要教学策略。教师将学生分成若干小组,每个小组成员分工合作,共同完成线段长度比较的任务。在合作过程中,学生可以相互交流、讨论,共同探讨解决问题的方法。小组合作不仅有助于提高学生的合作能力,还能培养学生的团队精神和沟通能力。教师在此过程中要关注每个小组的进展,及时给予指导,确保小组合作的有效性。
d.度量法:利用尺子等工具,直接测量线段的长度,进行比较。
2.教师通过示例,展示如何运用这些方法比较线段长度,让学生理解并掌握这些方法。
(三)学生小组讨论
1.教师将学生分成若干小组,每个小组选择一个生活中的实例,如教室的课桌、窗户的边框等,运用所学方法比较线段长度。
2.小组成员相互讨论、交流,共同完成线段长度比较的任务。在此过程中,教师巡视各小组,给予指导和建议。
人教版数学七年级上册4.2第2课时比较线段的长短优秀教学案例

《4.2 第2课时 线段长短的比较与运算》教案、同步练习、导学案(3篇)

《4.2 第2课时 线段长短的比较与运算》教案、同步练习、导学案(3篇)

《第2课时线段长短的比较与运算》教案【教学目标】1.会画一条线段等于已知线段,会比较线段的长短;2.体验两点之间线段最短的性质,并能初步应用;(重点)3.知道两点之间的距离和线段中点的含义;(重点)4.在图形的基础上发展数学语言,体会研究几何的意义.【教学过程】一、情境导入比较两名同学的身高,可以有几种比较方法?向大家说说你的想法.二、合作探究探究点一:线段长度的比较和计算【类型一】比较线段的长短为比较两条线段AB与CD的大小,小明将点A与点C重合使两条线段在一条直线上,点B在CD的延长线上,则( )A.AB<CD B.AB>CDC.AB=CD D.以上都有可能解析:由点A与点C重合使两条线段在一条直线上,点B在CD的延长线上,得AB>CD,故选B.方法总结:比较线段长短时,叠合法是一种较为常用的方法.【类型二】根据线段的中点求线段的长如图,点C是线段AB上一点,点M是AC的中点,点N是BC的中点,如MC比NC长2cm,AC比BC长( )A.2cm B.4cm C.1cm D.6cm解析:点M是AC的中点,点N是BC的中点,∴AC=2MC,BC=2NC,∴AC -BC=(MC-NC)×2=4cm,即AC比BC长4cm,故选B.方法总结:根据线段的中点表示出线段的长,再根据线段的和、差求未知线段的长度.【类型三】已知线段的比求线段的长如图,B、C两点把线段AD分成2∶3∶4的三部分,点E是线段AD的中点,EC=2cm,求:(1)AD的长;(2)AB∶BE.解析:(1)根据线段的比,可设出未知数,根据线段的和差,可得方程,根据解方程,可得x的值,根据x的值,可得AD的长度;(2)根据线段的和差,可得线段BE的长,根据比的意义,可得答案.解:(1)设AB=2x,则BC=3x,CD=4x,由线段的和差,得AD=AB+BC+CD=9x.由E为AD的中点,得ED=12AD=92x.由线段的和差得CE=DE-CD=92x-4x=x2=2.解得x=4.∴AD=9x=36(cm);(2)AB=2x=8(cm),BC=3x=12(cm).由线段的和差,得BE=BC-CE=12-2=10(cm).∴AB∶BE=8∶10=4∶5.方法总结:在遇到线段之间比的问题时,往往设出未知数,列方程解答.【类型四】当图形不确定时求线段的长如果线段AB=6,点C在直线AB上,BC=4,D是AC的中点,那么A、D两点间的距离是( )A.5 B.2.5 C.5或2.5 D.5或1解析:本题有两种情形:(1)当点C在线段AB上时,如图:AC=AB-BC,又∵AB=6,BC=4,∴AC=6-4=2,D是AC的中点,∴AD=1;(2)当点C在线段AB的延长线上时,如图:AC=AB+BC,又∵AB=6,BC=4,∴AC=6+4=10,D是AC的中点,∴AD =5.故选D.方法总结:解答本题关键是正确画图,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.探究点二:有关线段的基本事实如图,把弯曲的河道改直,能够缩短航程,这样做的根据是( )A.两点之间,直线最短B.两点确定一条线段C.两点确定一条直线D.两点之间,线段最短解析:把弯曲的河道改直缩短航程的根据是:两点之间,线段最短.故选D.方法总结:本题考查了线段的性质,熟记两点之间线段最短是解题的关键.三、板书设计1.线段的比较与性质(1)比较线段:度量法和叠合法.(2)两点之间线段最短.2.线段长度的计算(1)中点:把线段AB分成两条相等线段的点.(2)两点间的距离:两点间线段的长度.【教学反思】本节课通过比较两个人的高矮这一生活中的实例让学生进行思考,从而引出课题,极大地激发了学生的学习兴趣;并通过动手操作,亲身体验用叠合法比较线段的长短.教师要尝试让学生自主学习,优化课堂教学中的反馈与评价.通过评价,激发学生的求知欲,坚定学生学习的自信心.《第2课时线段长短的比较与运算》同步练习能力提升1.如图所示,要在直线PQ上找一点C,使PC=3CQ,则点C应在( )A.P,Q之间B.点P的左边C.点Q的右边D.P,Q之间或在点Q的右边2.如果线段AB=5 cm,BC=3 cm,那么A,C两点间的距离是( )A.8 cmB.2 cmC.4 cmD.不能确定3.C为线段AB的一个三等分点,D为线段AB的中点,若AB的长为6.6 cm,则CD的长为( )A.0.8 cmB.1.1 cmC.3.3 cmD.4.4 cm4.如图所示,C是线段AB的中点,D是CB上一点,下列说法中错误的是( )A.CD=AC-BDB.CD=BCC.CD=AB-BDD.CD=AD-BC5.下面给出的4条线段中,最长的是( )A.dB.cC.bD.a6.已知A,B是数轴上的两点,点A表示的数是-1,且线段AB的长度为6,则点B表示的数是.7.已知线段AB=7 cm,在线段AB所在的直线上画线段BC=1 cm,则线段AC= .8.如图所示,设A,B,C,D为4个居民小区,现要在四边形ABCD内建一个购物中心,试问把购物中心建在何处,才能使4个居民小区到购物中心的距离之和最小?请说明理由.9.如图所示,点C是线段AB上一点,点M是线段AC的中点,点N是线段BC的中点.(1)如果AB=20 cm,AM=6 cm,求NC的长;(2)如果MN=6 cm,求AB的长.10.在桌面上放了一个正方体的盒子,如图所示,一只蚂蚁在顶点A处,它要爬到顶点B处找食物,你能帮助蚂蚁设计一条最短的爬行路线吗?要是食物在顶点C处呢?★11.已知线段AB=12 cm,直线AB上有一点C,且BC=6 cm,M是线段AC的中点,求线段AM的长.创新应用★12.在同一条公路旁,住着5人,他们在同一家公司上班,如图,不妨设这5人的家分别住在点A,B,D,E,F所示的位置,公司在点C处,若AB=4 km,BC=2 km,CD=3 km,DE=3 km,EF=1 km,他们全部乘出租车上班,车费单位报销.出租车收费标准是:起步价6元(3 km以内,包括3 km),超过3 km超出的部分每千米1.5元(不足1 km,以1 km计算),每辆车能容纳3人.(1)若他们分别乘出租车去上班,公司应支付车费多少元?(2)如果你是公司经理,你对他们有没有什么建议?参考答案能力提升1.D 注意本题中的条件是在直线PQ上找一点C,所以C可以在P,Q之间,也可以在点Q的右侧.2.D A,B,C三点位置不确定,可能共线,也可能不共线.3.B如图,AD=AB=3.3cm,AC=AB=2.2cm,所以CD=AD-AC=3.3-2.2=1.1(cm).4.B5.A6.-7或5 点B可能在点A的左侧,也有可能在点A的右侧.若点B在点A的左侧,则点B表示的数比点A表示的数小6,此时点B表示的数为-7;若点B在点A的右侧,则点B表示的数比点A表示的数大6,此时点B表示的数为5.7.8 cm或6 cm 分两种情况:①点C在线段AB内,②点C在线段AB的延长线上.8.解:连接AC,BD,交点P即为购物中心的位置.理由:根据公理“两点之间,线段最短”,要使购物中心到A,B,C,D的距离和最小,购物中心既要在AC上,又要在BD上.9.解:(1)因为M为AC的中点,所以MC=AM.又因为AM=6cm,所以AC=2×6=12(cm).因为AB=20cm,所以BC=AB-AC=20-12=8(cm).又因为N为BC的中点,所以NC=BC=4(cm).(2)因为M为AC的中点,所以MC=AM.因为N为BC的中点,所以CN=BN.所以AB=AC+BC=2(MC+CN)=2MN=2×6=12(cm).10.解:如图所示,是该正方体的侧面展开图.食物在B处时的最短路线为线段AB,食物在C处时的最短路线为线段AC.11.解:(1)当点C在线段AB上时,如图①,图①因为M是AC的中点,所以AM=AC.又因为AC=AB-BC,AB=12cm,BC=6cm,所以AM=(AB-BC)=×(12-6)=3(cm).(2)当点C在线段AB的延长线上时,如图②,图②因为M是AC的中点,所以AM=AC.又因为AC=AB+BC,AB=12cm,BC=6cm,所以AM=AC=(AB+BC)=×(12+6)=9(cm).故AM的长度为3cm或9cm.创新应用12.解:(1)在A处乘车的车费为6+(4+2-3)×1.5=10.5(元);在B处乘车的车费为6元;在D处乘车的车费为6元;在E处乘车的车费为6+(3+3-3)×1.5=10.5(元);在F处乘车的车费为6+(1+3+3-3)×1.5=12(元),合计45元.(2)A,B同乘一辆车,从A开出,D,E,F同乘一辆车,从F开出,合计22.5元.第四章几何图形初步4.2 直线、射线、线段《第1课时直线、射线、线段》导学案【学习目标】:1. 会用尺规画一条线段等于已知线段,会比较两条线段的长短.2. 理解线段等分点的意义.3. 能够运用线段的和、差、倍、分关系求线段的长度.4. 体会文字语言、符号语言和图形语言的相互转化.5. 了解两点间距离的意义,理解“两点之间,线段最短”的线段性质,并学会运用.【重点】:作一条线段等于已知线段,理解线段的和、差,掌握线段中点的概念,理解“两点之间,线段最短”的线段性质.【难点】:利用尺规作图作一条线段等于两条线段的和、差,利用线段的和、差、倍、分求线段的长度,“两点之间,线段最短”的实际运用.【课堂探究】一、要点探究探究点1:线段长短的比较合作探究:问题1 做手工时,在没有刻度尺的条件下,如何从较长的木棍上截下一段,使截下的木棒等于另一根短木棒的长?问题2 画在黑板上的线段是无法移动的,在只有圆规和无刻度的直尺的情况下,如何再画一条与它相等的线段?要点归纳:尺规作图:作一条线段(AB)等于已知线段(a)的作法:1.画射线AC;2.在射线AC上截取AB=a.问题3 若要比较两个同学的身高,有哪些办法?你能从比身高的方法中得到启示来比较两条线段的长短吗?试一试:比较线段AB,CD的长短.(1)度量法:分别测量线段AB、CD的长度,再进行比较:AB=_________;BC=_______,________>_______,所以_______>_______;(2)叠合法:将点A与点C重合,再进行比较:①若点 A 与点 C 重合,点 B 落在C,D之间,那么 AB_____CD.②若点 A 与点 C 重合,点 B 与点 D________,那么 AB = CD.③若点 A 与点 C 重合,点 B 落在 CD 的延长线上,那么 AB_________CD.探究点2:线段的和、差、倍、分画一画:在直线上画出线段AB=a,再在AB的延长线上画线段BC=b,线段AC就是与的和,记作AC= . 如果在AB上画线段BD=b,那么线段AD就是与的差,记作AD= .观察与思考:在一张纸上画一条线段,折叠纸片,使线段的端点重合,折痕与线段的交点处于线段的什么位置?要点归纳:如图,点 M 把线段 AB 分成相等的两条线段AM 与 BM,点 M 叫做线段 AB 的中点.几何语言:∵ M 是线段 AB 的中点∴ AM = MB = AB,或 AB = AM = MB例1 若AB = 6cm,点C是线段AB的中点,点D是线段CB的中点,求:线段AD的长是多少?例2 如图,B、C是线段AD上两点,且AB:BC:CD=3:2:5,E、F分别是AB、CD的中点,且EF=24,求线段AB、BC、CD的长.变式训练:如图,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长方法总结:求线段的长度时,当题目中涉及到线段长度的比例或倍分关系时,通常可以设未知数,运用方程思想求解.例3 A,B,C三点在同一直线上,线段AB=5cm,BC=4cm,那么A,C两点的距离是()A.1cm B.9cm C.1cm或9cm D.以上答案都不对变式训练:已知A,B,C三点共线,线段AB=25cm,BC=16cm,点E,F分别是线段AB,BC的中点,则线段EF的长为()A.21cm或4cm B.20.5cm C.4.5cm D.20.5cm或4.5cm方法总结:无图时求线段的长,应注意分类讨论,一般分以下两种情况:①点在某一线段上;②点在该线段的延长线.针对训练1.如图,点B ,C 在线段AD 上则AB +BC =____;AD -CD =___;BC = ___ -___= ___ - ___.第1题图 第2题图 第3题图2.如图,点C 是线段AB 的中点,若AB =8cm ,则AC = cm.3.如图,下列说法,不能判断点C 是线段AB 的中点的是 ( )A. AC =CBB. AB =2ACC. AC +CB =ABD. CB =21AB 4. 如图,已知线段a ,b ,画一条线段AB ,使AB =2a -b .5.如图,线段AB =4cm ,BC =6cm ,若点D 为线段AB 的中点,点E 为线段BC 的中点,求线段DE 的长.探究点3:有关线段的基本事实议一议:如图:从A 地到B 地有四条道路,除它们外能否再修一条从A 地到B 地的最短路?如果能,请你联系以前所学的知识,在图上画出最短路线.想一想:1.如图,这是A,B两地之间的公路,在公路工程改造计划时,为使A,B 两地行程最短,应如何设计线路?请在图中画出,并说明理由.2. 把原来弯曲的河道改直,A,B两地间的河道长度有什么变化?第1题图第2题图要点归纳:1.两点的所有连线中,_____最短.简称:两点之间,_____最短.2.连接两点间的线段的_______,叫做这两点的距离.针对训练1.如图,AB+BC AC,AC+BC AB,AB+AC BC(填“>”“<”或“=”). 其中蕴含的数学道理是 .2.在一条笔直的公路两侧,分别有A,B两个村庄,如图,现在要在公路l 上建一个汽车站C,使汽车站到A,B两村庄的距离之和最小,请在图中画出汽车站的位置.二、课堂小结1. 基本作图:作一条线段等于已知线段.2. 比较两条线段大小 (长短) 的方法:度量法;叠合法.3. 线段的中点.因为点M 是线段AB 的中点,所以AM =BM =21AB . (反过来说也是成立的) 4. 两点之间的所有连线中,线段最短;两点之间线段的长度 ,叫做这两点之间的距离.【当堂检测】1. 下列说法正确的是 ( )A. 两点间距离的定义是指两点之间的线段B. 两点之间的距离是指两点之间的直线C. 两点之间的距离是指连接两点之间线段的长度D. 两点之间的距离是两点之间的直线的长度2. 如图,AC =DB ,则图中另外两条相等的线段为_____________.第2题图 第3题图3.已知线段AB = 6 cm ,延长AB 到C ,使BC =2AB ,若D 为AB 的中点,则线段DC 的长为_____________.4.点A ,B ,C 在同一条数轴上,其中点A ,B 表示的数分别是-3,1,若BC=5,则AC=_________.5. 如图:AB =4cm ,BC =3cm ,如果点O 是线段AC 的中点.求线段OB 的长度.6.已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6,求CM和AD的长.。

4.2比较线段的长短(教案)北师大版数学七年级上册

4.2比较线段的长短(教案)北师大版数学七年级上册

4.2比较线段的长短
如图,从A地到C地有四条道路,哪条路最近?
学习准备
1.(1)可表示为线段(或)或者线
段.
2.请同学们阅读教材第2节《比较线段的长短》,并完成随堂练习和习题.
教材精读
1.线段的性质:两点之间的所有连线中,线段最短.简单地说:两点之间,线段最短.
2.线段大小的比较方法
(1)观察法;(2)叠合法;(3)度量法.
3.线段的中点
线段的中点是指在线段上且把线段分成相等的两条线段的点.线段的中点只有1个.
文字语言:点M把线段AB分成相等的两条线段AM与BM,点M叫做线段AB的中点.
用几何语言表示:
因为点M是线段AB的中点,
所以AM=BM=1
AB(或AB=2AM=2BM).
2
教材拓展
已知线段AB=20 cm,直线AB上有一点C,且BC=6 cm,D是AC的中点,求
CD的长?
分析:点A,B,C在同一条直线上,点C有两种可能:(1)点C在线段AB的延
长线上;(2)点C在线段AB上.
续表
是热点问题.
1.如图,直线上四点A,B,C,D,看图填空:
①AC=+BC;②CD=AD;③AC+BDBC=.
2.在直线AB上,有AB=5 cm,BC=3 cm,求AC的长.
(1)当C在线段AB上时,AC=.
(2)当C在线段AB的延长线上时,AC=.
3.如图,AB=20 cm,C是AB上一点,且AC=12 cm,D是AC的中点,E是BC的
中点,求线段DE的长.
4.已知:如图,B,C两点把线段AD分成2∶4∶3三部分,M是AD的中点,CD=6,
求线段MC的长.
5.如图所示:。

42线段的长短比较教案

42线段的长短比较教案

4.2《比较线段的长短》教学设计一、教学目标(1)知识技能目标:掌握两点之间线段最短;理解两点间距离的意义,能度量两点间距离;会比较线段的长短,理解线段的和差以及中点的意义(2)数学思考目标:培养学生独立思考、自主学习的能力;发展学生的形象思维与抽象思维能力;能清晰的表达自己的想法;在学习中点等过程中,初步建立符号意识,初步形成几何运算能力,发展逻辑思维能力。

(3)问题解决目标:让学生初步学会从数学的角度提出如何进行线段比较的问题并能在自主学习与他人交流中解决问题;培养学生利用所学数学知识(两点之间线段最短等)解决生活问题的能力,增强应用意识,发展思维的深度。

(4)情感目标:了解数学的价值并能在数学学习过程中独立思考、锻炼克服困难的意志,建立自信心。

二、教学重难点重点:1、线段长短的两种比较方法。

2、线段中点的概念及线段的基本性质难点:叠合法比较线段的长短;能用较规范的数学语言叙述自己的思想。

三、教学方法:启发式教学,引导发现法、自主学习、合作交流。

四、教学准备教师准备:多媒体课件,学生学案(人手一份),尺规,两根长短相近的筷子。

学生准备:三角板、圆规等作图工具,一小段绳子。

五、教学过程(一)创设情境,引入新课1、如图,从丽丽家到药店有四条路径(课件展示),她要想用最短的时间到达该如何选择呢?理由是什么?2、抽象总结:(1)两点之间线段最短(板书)(2)两点间距离的意义。

(板书)3、联系生活,学以致用:A、B两个村庄在河流的两侧,要在河上建一座桥,使A村庄到B村庄的距离最短,请你确定桥的位置(二)比较线段的长短1、引导:丽丽的妈妈胃疼的厉害,她家附近有两个药店,她要最快给妈妈买药回来,她该选择哪个药店呢?2、自主学习、小组交流:让学生利用手中的学案,给学生时间让学生进行自学,老师参与到学生中,然后由小组交流、汇报讲解,最后允许学生质疑提问。

具体预设内容:(1)引导生活问题:观察图中那棵树高?哪只铅笔长?窗框相邻的两条边哪条边长?三个生活问题引导学生从观察、测量等方法比较长(实际教学中可能会生成其他方法,教师予以鼓励引导)(2)数学抽象问题:你怎样比较两条线段的长度?(3)总结:在观察难以判断时,用度量法和叠合法对线段长短进行比较.a:度量法:经测量:AB = 2厘米,CD =2.6厘米,∴AB<CD或CD >AB。

比较线段的长短的教案

比较线段的长短的教案

4.2 比较线段的长短教学目标知识与能力1、借助具体情境了解“两点之间所有连线中,线段最短”的性质。

2、能借助直尺、圆规等工具比较两条线段的长短。

3、能用圆规作一条线段等于已知线段。

教学思考创设现实情境,鼓励学生独立思考、独立操作,然后通过合作、交流去探索问题,解决问题。

解决问题`立足具体情境,尽可能从学生感兴趣的话题出发,去发展有条理的思考,并能用语言表达自己的发现成果。

情感态度与价值观调动学生的主观能动性,积极参与数学活动,促使学生在学习中培养良好的情感态度、主动参与、合作的意识,进一步提高观察、分析和抽象的能力。

教学重点:了解线段性质及线段比较方法,两点之间的距离的概念和线段中点的概念。

教学难点用直尺和圆规作一条线段等于已知线段,比较线段长短的方法,线段中点的表示方法及应用。

教学过程一、创设情境,检查预习效果,引入新课想一想1、(1)由我家到八中的路线有四条,哪一条最近?我家到八中的距离是什么?检查学案探究一中的(1)到(4)小题。

线段的性质:两点之间的所有连线中,线段最短。

也可简述为:“两点之间,线段最短”这就是线段的基本性质两点之间的距离:两点之间线段的长度叫做这两点之间的距离(强调长度)(2)由小狗跑得远,还是小猫跑远?你是怎样比较的?(经过讨论、交流后,有的说“目测”,有的说“自己去度量”等。

)引出本节课题如果把小狗、小猫、骨头和鱼看作点,路径看作线段,其实质就是比较线段A B 的长短,这节课我们来研究比较线段的长短。

二、探究新知,学习新课在研究如何比较之前大家来看这个问题:如何在黑板上画一条和一根细木棍等长度的线段?学生独立思考后回答。

为后面的尺规作图打好基础,让学生初步感受类比法学习新知。

做一做怎样用圆规作一条线段等于已知线段(师生互动作图)1、例:已知线段a .求作线段,使AC =a 做法:①先作一条射线AB 。

②用圆规量出已知线段的长度a 。

③在射线AB 上以A 为圆心,截取AC = a 。

北师大版数学七年级上册4.2比较线段的长短教案

北师大版数学七年级上册4.2比较线段的长短教案
在实践活动和小组讨论环节,我发现学生们表现得相当积极,能够主动参与讨论和分享。但也有一些学生在讨论中显得不够自信,这可能是因为他们对知识点的掌握不够扎实。为了提高这部分学生的自信心,我会在课堂上多给予他们鼓励,并在课后提供更多的辅导和帮助。
同时,我也注意到,将实际问题引入课堂,能够激发学生们的学习兴趣,使他们更加投入地参与到课堂讨论和实践中。因此,在今后的教学中,我会继续寻找更多贴近生活的例子,让数学知识变得更加生动有趣。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了线段的定义、比较线段长短的方法和在实际生活中的应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
最后,通过今天的课程,我深刻认识到教学反思的重要性。在今后的教学过程中,我会更加关注学生的反馈,及时调整教学方法和策略,以提高教学效果。同时,我也会不断学习,提升自己的教育教学水平,为学生们提供更优质的教学服务。
-空间想象能力的培养可以通过模型展示、动画辅助等手段,帮助学生建立起线段在三维空间中的形象。
-对于实际问题的应用,可以设计一些实际问题,如测量房间内家具的长度,ቤተ መጻሕፍቲ ባይዱ学生通过实际操作,将所学知识应用于解决具体问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《比较线段的长短》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要比较两个物体长度的情况?”(如比较两支铅笔的长度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索比较线段长短的奥秘。

4.2线段的长短比较教案

4.2线段的长短比较教案

《比较线段的长短》教学设计一、教学目标(1)知识技能目标:掌握两点之间线段最短;理解两点间距离的意义,能度量两点间距离;会比较线段的长短,理解线段的和差以及中点的意义(2)数学思考目标:培养学生独立思考、自主学习的能力;发展学生的形象思维与抽象思维能力;能清晰的表达自己的想法;在学习中点等过程中,初步建立符号意识,初步形成几何运算能力,发展逻辑思维能力。

(3)问题解决目标:让学生初步学会从数学的角度提出如何进行线段比较的问题并能在自主学习与他人交流中解决问题;培养学生利用所学数学知识(两点之间线段最短等)解决生活问题的能力,增强应用意识,发展思维的深度。

(4)情感目标:了解数学的价值并能在数学学习过程中独立思考、锻炼克服困难的意志,建立自信心。

二、教学重难点重点:1、线段长短的两种比较方法。

2、线段中点的概念及线段的基本性质难点:叠合法比较线段的长短;能用较规范的数学语言叙述自己的思想。

三、教学方法:启发式教学,引导发现法、自主学习、合作交流。

四、教学准备教师准备:多媒体课件,学生学案(人手一份),尺规,一小段绳子。

学生准备:三角板、圆规等作图工具。

五、教学过程(一)创设情境,引入新课1、如图,从小颍家(A地)到学校(B地)有四条路径(课件展示),要想用最短时间到达你该如何选择?理由是什么?2、抽象总结:(1)两点之间线段最短(板书)(2)两点间距离的意义。

(板书)3、联系生活,学以致用:(1)A、B两个村庄,现要在A、B两村之间引一条管道,如何引才能使所需管道最短?(2)生活中有哪些利用两点之间线段最短的实例?(3)从小颍家到学校的第四条路长度是1500米,那么能否说小颍家到学校的距离是1500米?(二)比较线段的长短1、引导:小颍家到新华药店的距离与小颍家到学校的距离哪个远 ?2、自主学习、小组交流:让学生利用手中的学案,给学生时间让学生进行自学,老师参与到学生中,然后由小组交流、讲解,最后允许学生质疑提问。

4.2.2线段长短的比较与运算(教学设计)七年级数学上册(人教版)

4.2.2线段长短的比较与运算(教学设计)七年级数学上册(人教版)

4.2.2 线段长短的比较与运算教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第四章“几何图形初步”4.2.2 线段长短的比较与运算,内容包括:运用线段的和、差、倍、分关系求线段的长度;理解“两点之间,线段最短”的线段性质,并学会运用.2.内容解析本节知识是本教材第四章的第2节内容,是学习几何知识的开端,对调动学生学习几何的积极性,以及学习以后的几何知识非常重要,必须把握好教学的进度和难度.应充分注重直观认识和操作活动,充分培养学生的几何语言表达能力.立足于学生实际,着眼于中小学的衔接,从他们的生活背景和已有经验出发,鼓励他们的积极参与、动手操作、观察归纳,让他们了解几何学习的基本的操作方法,学习结论获得的策略,对进一步去理解线段本质属性与现实生活的紧密相关都有着较为深刻的意义,也有利于学生图形意识的培养.基于以上分析,确定本节课的教学重点为:线段比较大小以及线段的性质.二、目标和目标解析1.目标(1)会用尺规画一条线段等于已知线段,会比较两条线段的长短. 理解线段等分点的意义.(2)能够运用线段的和、差、倍、分关系求线段的长度.(3)体会文字语言、符号语言和图形语言的相互转化.(4)了解两点间距离的意义,理解“两点之间,线段最短”的线段性质,并学会运用.2.目标解析学生能够熟练运用叠合法和度量法比较线段的大小;会表示线段的大小关系;会画一条线段等于已知线段.学生能够分别用图形和符号来表示线段之间的和差关系;能够由等分点确定数量关系,或由数量关系确定等分点,综合运用几何语言的能力有所提高.学生通过思考、探究、比较得到“两点之间,线段最短”的基本事实,并能举例说明其实际应用;理解两点的距离是指连接两点的线段的长度,而不是线段本身.三、教学问题诊断分析虽然学生在小学阶段已经学习了一些几何知识,但将对图形的认识与对数量的认识结合起来,是学生未曾深入体验过的.尤其用作图来表示线段的和、差等数量关系,是文字语言、图形语言与符号语言的综合运用,对于刚刚进入几何语言学习的学生而言,是比较困难的学习任务.学生在前一学段对两点之间,线段最短已有所体会,但学生容易将两点的距离与连接两点的线段混淆,教学中应加强对这两个概念的辨析.基于以上学情分析,确定本节课的教学难点为:运用线段的和、差、倍、分关系求线段的长度.四、教学过程设计(一)自学导航问题:老师手里的纸上有一条线段,你能在你的本上作出一条同样大小的线段来吗?尺规作图在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图.作一条线段等于已知线段.则:线段AB就是所求的线段.思考:如何比较两个人的身高?怎样比较两条线段的长短呢?你能从比身高上受到一些启发吗?判断线段AB和CD的大小.(1)如图1,线段AB和CD的大小关系是AB___CD;(2)如图2,线段AB和CD的大小关系是AB___CD;(3)如图3,线段AB和CD的大小关系是AB___CD.(二)合作探究如图,线段AB和AC的大小关系是怎样的?线段AC与线段AB的差是哪条线段?你还能从图中观察出其他线段间的和、差关系吗?(1) AB<AC(2) AC-AB=BC,AC-BC=AB,BC+AB=AC.如图,已知线段a和线段b,怎样通过作图得到a与b的和、a与b的差呢?如图,已知线段a、b,作一条线段,使它等于2a-b.解:则:线段AC=2a-b.如图,已知线段a,求作线段AB=2a.解:则:线段AB=2a.如上图,点M把线段AB分成相等的两条线段AM和BM;点M叫做线段AB的中点.AB,AB=2AM=2BM.因此可得:AM=BM=12类似地,还有线段的三等分点、四等分点等.AB,AM=MN=NB=13AB=3AM=3MN=3NBAB,AM=MN=NP=PB=14AB=4AM=4MN=4NP=4PB思考:如图,从A地到B地有四条道路,除它们之外能否再修一条从A地到B地的最短道路?如果能,请联系你以前所学的知识,在图上画出最短路线.估计下列图中线段AB与线段AC的大小关系,再用刻度尺或用圆规来检验你的估计.AB___AC AB___AC AB___AC(二)考点解析例1.如图①,有一张三角形的纸片,你能准确地比较线段AB与线段BC的长短吗?解法1(度量法):用刻度尺测量AB=2.0cm,BC=1.7cm,所以AB>BC.解法2(叠合法):(1)如图①,折叠纸片,使线段BC与线段AB在一条直线上,这时点C落在A,B之间,所以AB>BC.(2)如图①,利用圆规在射线BA上截取BC'=BC.因为AB>BC'所以AB>BC.【迁移应用】1.如图,比较线段a和b的长度,结果正确的是( )A.a>bB.a<bC.a=bD.无法确定2.如图,用圆规比较两条线段AB和A'B'的长短,其中正确的是( )A.AB>A'B'B.AB=A'B'C.AB<A'B'D.没有刻度尺,无法确定3.体育课上,小悦在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四点处,则表示他最好成绩的点是( )A.MB.NC.PD.Q4.如图,比较这两组线段的长短.解:如图①,把图中的线段AB、线段CD放在同一条直线上,使端点A,C重合,点B与点D在点A的同侧,得点B在C,D之间,所以AB<CD.如图①,把图中的线段AB、线段CD放在同一条直线上,使端点A,C重合,得点D和点B重合,所以AB=CD.例2.如图,已知线段a、b、c,其中a>b>c.(1)尺规作图:在射线AP上求作线段AB,使AB=a+cb;(2)若a=4、b=3、c=2,求AB的长.解:(1)如图,在射线AP上作线段AC=a,在AC的延长线上作线段CD=c,在线段AD上作BD=b,则AB=a+cb.(2)因为a=4,b=3,c=2,所以AB=a+cb=4+23=3.【迁移应用】1.如图,已知线段a,b,求作线段AB,使得AB=a+2b.小明给出了四个步骤:①在射线AM上截取线段AP=a;①则线段AB=a+2b;①在射线PM上截取PQ=b,QB=b;①画射线AM.你认为正确的顺序是( )A.①①①①B.①①①①C.①①①①D.①①①①2.如图,下列关系式中与图形不符合的是( )A.ADCD=ACB.ACBC=ABC.AB+BD=ADD.AC+BD=AD例3.如图,AC=6cm , BC=15cm , M 是AC 的中点,在CB 上取一点N ,使得CN=13BC ,求MN 的长.解:因为M 是AC 的中点,AC=6cm , 所以MC=12AC=12×6=3(cm)因为BC=15cm所以CN=13BC=13×15=5(cm)所以MN=MC+CN=3+5=8(cm) 【迁移应用】1.下列条件中能确定C 是线段AB 的中点的是( )A.AC=BCB.AB=BCC.AC=BC=12AB D.AC+BC=AB2.如图,C ,D 是线段AB 上的两点,且D 是线段AC 的中点.若AB=10cm ,BC=4 cm ,则AD 的长为( ) A.2cm B.3cm C.4cm D.6cm3.如图,点C 在线段AB 的延长线上,且BC=2AB ,D 是AC 的中点,若AB=2cm ,求BD 的长.解:因为AB=2cm ,所以BC=2AB=4cm.所以AC=AB+BC=6cm.因为D是AC的中点,AC=3cm.所以AD=12所以BD=ADAB=lcm.4.如图,C,D是线段AB的三等分点,E是线段DB的中点,AB=12cm,求线段CE的长.解:因为C,D为线段AB的三等分点,×12=4(cm)所以CD=DB=13因为E是线段DB的中点,DB=2cm,所以DE=12所以CE=CD+DE=4+2=6(cm).例4.如图,小明家在B处,现在小明要去位于D处的同学家.(1)最近的路线是__________;(2)B,D两点的距离是线段______的长度.【迁移应用】1.若AB=4cm,BC=3cm,则A,C两点的距离( )A.1cmB.7cmC.1cm或7cmD.不确定2.小明捡到一片沿直线折断了的银剩下的杏叶(如图),他发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是____________________.3.如图,A,B是公路l两旁的两个村庄,若要在公路上修建一个汽车站Р,使它到A,B两个村庄的距离和最小,试在l上标出汽车站P的位置.解:如图,连接AB与直线l相交,交点即为汽车站Р的位置.例5.如图①,一只蚂蚁要沿着正方体表面从点A爬到点B,画出它爬行的最短路径(下底面不可通行).解:如图①,有4条最短路径,以A→E→B为例进行说明:如图①,将正方体的正面,右面展开,连接AB,与中间的一条边交于点E,则A→E→B即为其中一条最短路径.(其他三条类似)【迁移应用】如图,A,B,C,D为四个居民小区,现要在附近建一个购物中心.应把购物中心建在何处,才能使四个居民小区到购物中心的距离之和最小?请确定购物中心的位置,并说明理由.解:如图,连接AC ,BD 相交于点P ,点Р就是购物中心的位置. 理由:两点之间,线段最短.例6.如图,已知线段AB ,延长AB 到点C ,使BC=12AB ,D 为AC 的中点,DC=3cm ,求DB 的长.解:因为D 为AC 的中点,DC=3cm , 所以AC=2DC=2×3=6(cm). 因为BC=12AB ,所以BC=13AC=13×6=2(cm) 所以DB=DCBC=32=1(cm). 【迁移应用】1.如图,已知线段AB=3cm ,延长线段AB 到点C ,使BC=2AB ,延长线段BA 到点D ,使AD①AC=4①3,M 是BD 的中点.求线段AM 的长.解:因为AB=3cm ,BC=2AB , 所以BC=6cm , 所以AC=AB+BC=9cm. 因为AD:AC=4①3, 所以AD=43AC=12cm ,因为M 是BD 的中点, 所以BM=12BD=152cm ,所以AM=BMAB=1523=92(cm).例7.如图,已知C ,D 两点将线段AB 分为三部分,且AC:CD:DB=2:3:4.若M 为AB 的中点,N 为BD 的中点,且MN=5,求AB 的长.解:因为AC:CD:DB=2①3①4, 所以设AC=2x ,CD=3x ,DB=4x. 所以AB=AC+CD+DB=2x+3x+4x=9x. 因为M 为AB 的中点,N 为BD 的中点, 所以BM=12AB=92x ,BN=12BD=2x.因为MN=BMBN=5, 所以92x2x=5,解得x=2. 所以AB=9×2=18. 【迁移应用】1.如图,B 和C 为线段AD 上两点,AB①BC:CD=3①1①6,M 是AD 的中点.若MC=2,则AD 的长为________.2.如图,点C ,D 在线段AB 上,且满足CD=14AD=16BC ,E ,F 分别为线段AC ,BD 的中点.如果EF=5cm ,求线段AB 的长度.解:设CD=xcm. 因为 CD=14AD=16BC ,因为E ,F 分别为线段AC ,BD 的中点,所以EC=12AC=12(ADCD)=1.5xcm , DF=12BD=12(BCCD)=2.5xcm.因为EF=EC+CD+DF=5cm , 所以1.5x+x+2.5x=5, 所以x=1.所以AB=AD+BCCD=4x+6xx=9x=9(cm).例8.在直线l 上有四点A ,B ,C ,D ,已知AB=24,AC=6,D 是BC 的中点,求线段AD 的长. 解:分两种情况讨论:①如图①,当点C 在线段AB 的反向延长线上时,得 BC=AB+AC=24+6=30.由D 是BC 的中点,得CD=12BC=15.以AD=CDAC=9.①如图①,当点C 在线段AB 上时,得 BC=ABAC=246=18.由D 是BC 的中点,得CD=12BC=9.所以AD=CD+AC=15.综上所述,线段AD 的长为9或15.【迁移应用】1.如图,C 为线段AD 上的一点,B 为CD 的中点,且AD=9,CD=4.若点E 在直线AD 上,且EA=1,则BE 的长为( )A.4B.6或8C.6D.82.A ,B ,C 是直线l 上的点,线段BC 的长为4,M ,N 分别为线段AB ,BC 的中点,MN 的长为3,则线段AB 的长为__________.例9.如图,点C 在线段AB 上,M ,N 分别是AC ,BC 的中点. (1)若AC=9cm ,CB=6cm ,求线段MN 的长;(2)若C 为线段AB 上任意一点,AC+CB=acm ,其他条件不变,求线段MN 的长.解:(1)因为M ,N 分别是AC ,BC 的中点, 所以MC=12AC ,CN=12BC.因为AC=9cm ,CB=6cm ,所以MN=MC+CN=12AC+12BC=12(AC+BC)=12×(9+6)=7.5(cm). (2)因为M ,N 分别是AC ,BC 的中点, 所以MC=12AC ,CN=12BC.因为AC+CB=a cm ,所以MN=MC+CN=12(AC+CB)=12a cm. 【迁移应用】如图,D 为线段BC 的中点,E 为线段AC 的中点.若ED=9,求线段AB 的长度.解:因为D 是线段BC 的中点, 所以CD=BD.因为E 为线段AC 的中点, 所以AE=CE.所以AB=AC+BC=2EC+2CD=2ED=2×9=18.五、教学反思。

4.2.2线段长短的比较 教案(人教版数学七年级上册)

4.2.2线段长短的比较 教案(人教版数学七年级上册)

尺规作图的要点:1.直尺只能用来画线,不能量距;2.尺规作图要求作出图形,说明结果,并保留作图痕迹.问题2:你们平时是如何比较两个同学的身高的?你能从比身高的方法中得到启示来比较两条线段的长短吗?①用卷尺分别度量出两个同学的身高,将所得的数值进行比较. ——度量法.②让两个同学站在同一平地上,脚底平齐,观看两人的头顶,直接比出高矮. ——叠合法.试比较线段AB,CD的长短.叠合法结论:1.若点A 与点C 重合,点B 落在C,D之间,那么AB<CD.2.若点A 与点C 重合,点B 与点D重合,那么AB = CD.3.若点A 与点C 重合,点B 落在CD 的延长线上,那么AB>CD.线段的和、差、倍、分在直线上画出线段AB=a,再在AB 的延长线上画线段BC=b,线段AC 就是a与b的和,记作AC=a+b.C .把两条绳子重合,观察另一端情况D .没有办法挑选2.如图,AB =CD ,则AC 与BD 的大小关系是( C ) A .AC>BD B .AC<BD C .AC =BD D .不能确定3.如图:AB = 4 cm ,BC = 3 cm ,如果点O 是线段 AC 的中点.求线段 OB 的长度.解:∵ AC = AB + BC = 4+3=7 (cm), 点O 为线段 AC 的中点, ∴ OC =21AC=21×7 = 3.5 (cm), ∴ OB = OC -BC = 3.5-3 = 0.5 (cm). 4.如图,B 、C 是线段AD 上两点,且AB :BC :CD=3:2:5,E 、F 分别是AB 、CD 的中点,且EF=24,求线段AB 、BC 、CD 的长.解:设AB=3x ,BC=2x ,CD=5x , ∵E 、F 分别是AB 、CD 的中点,15,22CF CD x ==四、课堂小结4.2.2线段长短的比较。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.1比较线段的长短
第一课时
一、教学目标
1.使学生在理解线段概念的基础上,了解线段的长度可以用正数来表示,
因而线段可以度量、比较大小以及进行一些运算.使学生对几何图形与数之
间的联系有一定的认识,从而初步了解数形结合的思想.
2.掌握比较线段长短的两种方法
3.会用直尺和圆规画一条线段等于已知线段
4.理解线段和、差的概念及画法
5.进一步培养学生的动手能力、观察能力。

二、教学重点
线段长短的两种比较方法
三、教学难点
对线段与数之间的认识,掌握线段比较的正确方法
四、教具准备
四支筷子(三红一绿,长短不一)、圆规、直尺
五、教学过程
(一)创设情境
教师:老师手中有两只筷子(一红一绿)如何比较它们的长短?
学生:先移动一根筷子,与另一根筷子一头对齐,两根棒靠紧,观察另一头的位置,多出的较长。

教师:比较长短的关键是什么?
学生:必有一头对齐
教师:除此之外,还有其他的方法吗?
学生:可以用刻度尺分别测出两根筷子的长度,然后比较两个数值
教师:我们可以用类似于比筷子的两种方法来比较两条线段的长短
(二)新课教学
让学生在本子上画出AB、CD两条线段。

(长短不一)
1.“议一议”怎样比较两条线段的长短?
先让学生用自己的语言描述比较的过程,然后教师边演示边用规范的几何语言
描述
叠合法:把线段AB、CD放在同一直线上比较,步骤有三:
①将线段AB的端点A与线段CD的端点C重合
②将线段AB沿着线段CD的方向落下
③若端点B与端点D重合,则得到线段AB等于线段CD,可记做:AB=CD
(几何语言)
若端点B落在D内,则得到线段AB小于线段CD,可记做:AB<CD
若端点B落在D外,则得到线段AB大于线段CD,可记做:AB>CD 如图1
C D
(注:讲此方法时,教师应采用圆规截取线段比较形象,还需向学生讲明从“形”
角度去比较线段的长短)
度量法:用刻度尺分别量出线段AB和线段CD的长度,再将长度进行比较。

总结;用度量法比较线段大小,其实就是比较两个数的大小。

(从“数”的角度
去比较线段的长短)
2.“做一做”P141随堂练习第1题
(注意:可先让学生观察,再回答。

说明“眼见不一定为实”的道理,培养严
谨的推理习惯)
3.“想一想”
问题一:已知线段a(如图2),用直尺和圆规画一条线段,使它等于已知线段a。

a
图2:
先让学生自己尝试画,然后教师示范画图并叙述作法,让学生模仿画图。

画法;①先作一条射线AC
②用圆规量取已知线段a的长度
③在射线上截取AB=a,线段AB就是所求的线段
(注意:要求学生不必写画法,但最后必须写好结论)
问题二:已知线段a、b,画一条线段c,使它的长度等于已知线段的长度的和。

同样让学生自己先画,可以请一位学生板演。

教师总结,讲规范的步骤,同时指出线段和的感念
(强调:线段的和指的是线段的长度之和)
变式:画一条线段d,使它的长度等于已知线段的长度的差。

由学生自己讨论合作完成,教师作评价。

4.“做一做”P141习题4。

2知识技能1、2
课外题:(有时间可选做)
做一个三角形纸片,你能用几种方法比较线段AB与线段AC的
长短?
(三)课堂小结:
谈谈收获:(由学生总结)
①线段长短比较的两种方法
②画一条线段等于已知线段
③线段的和、差的概念及画法
(四)作业布置:作业题P(B组视学生定,可选做)
(五)板书设计:
1、线段长短比较的方法:问题1:问题2:
叠合法:(形)
A C
D AB=CD
AB <CD
AB >CD
度量法:(数) (板演处)
2、线段和、差:
教学反思:
1.本课时设计的主导思想是:将数形结合的思想渗透给学生,使学生对数与形有一个初步的认识.为将来的学习打下基础,这节课是一堂起始课,它为学生的思维开拓了一个新的天地.在传统的教学安排中,这节课的地位没有提到一定的高度,只是交给学生比较线段的方法,没有从数形结合的高度去认识.实际上这节课大有可讲,可以挖掘出较深的内容.在教知识的同时,交给学生一种很重要的数学思想.这一点不容忽视,在日常的教学中要时时注意.
2.学生在小学时只会用圆规画圆,不会用圆规去度量线段的大小以及截取线段,通过这节课,学生对圆规的用法有一个新的认识.
3.在课堂练习中安排了度量一些三角形的边的长度,目的是想通过度量使学生对“两点之间线段最短”这一结论有一个感性的认识,并为下面的教学做一个铺垫.
第二课时
一、教学目标
1.理解两点间距离的概念和线段中点的概念及表示方法
2.学会线段中点的简单应用
3.借助具体情境,了解“两点间线段最短”这一性质,并学会简单应用
4.培养学生交流合作的意识,进一步提高观察、分析和抽象的能力
二、教学重点
线段中点的概念及表示方法
三、教学难点
线段中点的应用
四、教学过程:
1.复习回顾:线段长短比较的两种方法
2.概念分析
(1)线段性质和两点间距离
“想一想”:小狗、小猫为什么都选择直的路?
出示课本图片,从上面的两个事例中,你能发现有什么共同之处?
(可让学生稍作讨论后回答)
学生:选择直路,路程较短
根据学生的回答,师生共同总结出线段的性质:
“两点之间的所有连线中,线段最短”
两点之间的距离:两点之间的线段的长度叫做这两点之间的距离。

要强调两点之间的线段的长度叫两点间的距离,而不是两点间的线段,线段是图形,线段的长度是数值。

教师:“两点间线段最短”的性质在实际生活中应用较广,你能否举一些例子?
学生:从A到B架电线,总是尽可能沿着线段AB架设等。

(2)线段的中点
请按下面的步骤操作:(学生做)
①在一张透明纸上画一条线段AB
②对折这张纸,使线段AB的两个端点重合
③把纸展开铺平,标明折痕点C
如图1
C
教师:线段AC和线段BC相等吗?你可以用是么方法去说明?
学生1:用刻度尺测出它们的长度,再比较
学生2:用圆规测量比较
教师:象图1这样,点C把线段AB分成相等的两条线段AC与BC,点C叫做线段AB的中点。

用几何语言表示:
∵点C是线段AB的中点∴ AC=BC=1
2AB (或AB=2AC=2BC)
教师:刚才用折纸的方法找出AB的中点C,你还能通过什么方法得到中点C呢?学生:用刻度尺去量出AB的长,再除以2,就得到点C(让学生板演)
3.巩固练习:
(1)填空:如图2
D
已知点C是线段AB的中点,点D是线段AC的中点,
①AB= BC ②BC= AD ③BD=_____AD
(2)“想一想”如图3,
P
C D
点P是线段的中点,点C、D把线段AB三等分。

已知线段CP的长为1.5cm,求线段AB的长。

可让学生讨论后再作答(教师可作如下分析:如果能得到线段CP与线段AB之间的长度比,就能求出线段AB的长。


由学生回答,教师板书完成。

解:∵点P把线段二等分,
∴AP=PB=1/2AB
∵点C、D把线段AB三等分,
∴AC=CD=DB=1/3AB
∴AP-AC=1/2AB-1/3AB=1/6AB, 即CP=1/6AB
∴AB=6CP=6×1.5=9cm
即AB的长为9cm
(3)随堂练习P141/第2题
4.课堂小结:
a
谈谈收获:①两点间距离的概念
②线段的性质“两点间线段最短”及应用
③线段的中点的概念及简单的应用
5.布置作业:
(1)P141/知识技能第3题选作:P142/联系拓广第1题(2)创新练习册比较线段的长短
6.板书设计:
线段的性质:例解:
两点之间的距离:
线段的中点:(板演处)。

相关文档
最新文档