人教版七年级上册单项式与多项式测试卷
人教版七年级数学上册第二单元测试卷(三套)
整式的加减单元测试卷一.选择题(每小题3分,共24分)1. 单项式233xy z π-的系数和次数分别是( )A .-3,5B .-1,6C .-3π,6D .-3,7 2.在代数式222515,1,32,,,1x x x x x x π+--+++中,整式有( )A .3个B .4个C .5个D .6个 3.下面计算正确的是( ) A .2233x x -= B .235325a a a += C .33x x += D .10.2504ab ab -+=4.多项式2112x x ---的各项分别是( ) A .21,,12x x - B .21,,12x x --- C .21,,12x x D .21,,12x x --5.下列去括号正确的是( )A .()5252+-=--x xB .()222421+-=+-x x C .()n m n m +=-323231D . x m x m 232232--=⎪⎭⎫ ⎝⎛--6.下列各组中的两个单项式能合并的是( )A .4和4xB .32323x y y x -和C .c ab ab 221002和D .m 和2m7.如果51=-n m ,那么-3()m n -的值是 ( ) A .-53 B .35 C .53 D .1518.已知-51x 3y 2n 与2x 3m y 2是同类项,则mn 的值是( )A .1B .3C .6D .9二.填空题(每小题3分,共18分) 9.任写两个与b a 221-是同类项的单项式: ; . 10.多项式5253323+-+-y x y x xy 的次数是 ,最高次项系数是 _. 11.多项式y x 23-与多项式y x 24-的差是 .12.张强同学到文具商店为学校美术组的10名同学购买铅笔和橡皮,已知铅笔每支m 元,橡皮每块n 元,若给每名同学买3支铅笔和4块橡皮,则一共需付款 元. 13.已知单项式32b a m与-3214-n b a 的和是单项式,那么m = ,n = . 14.观察下列算式:;1010122=+=- 3121222=+=-; 5232322=+=-;7343422=+=-; 9454522=+=-; ……若字母n 表示自然数,请把你观察到的规律用含n 的式子表示出来: . 三.解答题(共58分) 15.计算(每题4分共16分) (1)b a b a b a 2222134+- (2) (x -3y )-(y -2x )(3)()()222243258ab b a ab b a --- (4)ab ab a ab a 21]421[2122-)-(-+16.先化简,后求值(每题6分共12分) (1)()()ab ba b a 245352323+++-,其中21,1=-=b a(2)1]242[6422+y x xy xy y x )--(--,其中1,21==y x -.17.(7分)已知某船顺水航行2小时,逆水航行3小时,(1)已知轮船在静水中前进的速度是x 千米/时,水流的速度是y 千米/时,则轮船共航行多少千米?(2)轮船在静水中前进的速度是60千米/时,水流的速度是5千米/时,则轮船共航行多少千米?18.(7分)有这样一道题:“当a =2010,b =-2011时,求多项式 201292842853233233++++a b a b a a b a b a a ---的值.”小颖说:本题中a =2009,b =—2010是多余的条件;小彤马上反对说:这不可能,多项式中含有a 和b ,不给出b a ,的值怎么能求出多项式的值呢? 你同意哪名同学的观点?请说明理由.19.(7分)某地区的手机收费有两种方式,用户可任选其一: A .月租费 20元,0.25元/分; B .月租费 25元,0.20元/分.(1)某用户某月打手机x 小时,请你写出两种方式下该用户应交付的费用; (2)若某用户估计一个月内打手机时间为25小时,你认为采用哪种方式更合算?20.(9分)如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r米,广场长为a米,宽为b米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为500米,宽为200米,圆形花坛的半径为20米,求广场空地的面积(计算结果保留 ).人教版七年级上数学第二单元测试题 一 选择题(3×10)1. 下列各组量中,互为相反意义的量是( )A 、收入200元与支出20元B 、上升10米与下降7米C 、超过0.05毫米与不足0.03毫米D 、增大2升与减少2升2.为迎接即将开幕的广州亚运会,亚组委共投入了2198000000元人民币建造各项体育设施,用科学记数法表示该数据是( )A 10100.2198⨯元B 6102198⨯元C 910198.2⨯元D 1010198.2⨯元 3. 对于近似数0.1830,下列说法正确的是( )A 、有两个有效数字,精确到千位B 、有三个有效数字,精确到千分位C 、有四个有效数字,精确到万分位D 、有五个有效数字,精确到万分 4.下列说法中正确的是 ( )A .a -一定是负数B a 一定是负数C a -一定不是负数D 2a -一定是负数 5.若b<0,则a+b,a,a-b 的大小关系为( ) A 、a+b>a>a-bB 、a-b>a>a+bC 、a>a-b>a+bD 、a-b>a+b>a6.如果一个数的平方等于它的倒数,那么这个数一定是( ) A 、0B 、1C 、-1D 、1或-17.已知b a m225-和n b a -347是同类项,则2m - n 的值是( ) A 、6 B 、4 C 、3 D 、28.当2=x 时, 整式13++qx px 的值等于2002,那么当2-=x 时,整式13++qx px 的值为( )A 、2001B 、-2001C 、2000D 、-2000 9.已知有理数x 的近似值是5.4,则x 的取值范围是( )A. 5.35<x<5.44B.5.35<x ≤5.44C.5.35≤x<5.45D.5.35≤x ≤5.45 10.x 2 +ax-2y+7- (bx 2 -2x+9y-1)的值与x 的取值无关,则a+b 的值为( )A.-1;B.1;C.-2D.2 二 填空题(4×10)1、-14的倒数是____,-3的相反数是_____,绝对值大于2而小于4的整数有 ,2、某地一周内每天最高与最低气温如下表,则温差最大的一天是星期_______.3、20082008)5.0()2(-⨯-= ,4、已知:++2)2(a │5-b │=0, 则=-b a5、若x P +4x 3-qx 2-2x +5是关于x 的五次四项式,则q -p= 。
七年级数学上册单项式与多项式达标测试题
七年级数学上册单项式与多项式达标测试题(附答案)
1、说出下列单项式的系数和次数
① -5 x3 ② xy3
③ -a ④ - x2
2、指出下列多项式每一项的系数和次数,分别是几次几项式
① 3a-2b+1 ② 2x2-3x+5
③ 2a-ab3 ④ 1-x+ x2
3、已知多项式 - x2y+3x2+2x2y2- ,回答下列问题:
(1) 这个多项式有几项
(2) 这个多项式的最高次项是哪一项写出它的次数和系数;
(3) 这个多项式有常数项吗如果有,是哪一项
数学学科七年级上册第六章第一节单项式与多项式达标测试题B卷
1、下列代数式中,( )是单项式,( )是多项式,( )是整式。
① -x ②③ 2ab ④ 2a+b ⑤⑥ -
2、指出下列多项式每一项的系数和次数
① x5- x2y-2y2 ② 5a2- ab+7b2
③4x2-7x+5 ④、 -2xy2+4x2y+3x2
3、下列多项式分别是几次几项式
①-x2y-2x2y ② x2-xy-2xy2
③ a3-3a2b+ab3 ④ -4m2-3m
数学学科七年级上册第六章第一节单项式与多项式达标测试题C卷1、下列代数式中,哪些是整式
-3x , 5xy + x , x2-7, , x+ .
2、写出下列单项式的系数和次数
① -x2y ② ab
③④ -
3、写出下列多项式是几次几项式
①- ab-5a2-7b2 ② - x2y+3x2+2xy2-
③ 3x2-2xy2+4x2y ④ a3-3a2b+ab3。
人教版数学七年级上册 第2章 2.1---2.2基础测试题含答案
2.1整式一.选择题1.多项式3xy﹣2xy2+1的次数及最高次项的系数分别是()A.2,﹣3B.2,3C.3,2D.3,﹣2 2.单项式﹣4πab2的次数是()A.﹣4B.2C.3D.4 3.单项式﹣6ab的系数与次数分别为()A.6,1 B.﹣6,1C.6,2D.﹣6,2 4.下列说法,正确的是()A.23x2是五次单项式B.2πR2的系数是2C.0是单项式D.a3b的系数是05.下列关于多项式x2+3x﹣2的说法,其中错误的是()A.是二次三项式B.最高次项的系数是1C.一次项系数是3D.常数项是26.在式子a2+2,,ab2,,﹣8x,3中,整式有()A.6个B.5个C.4个D.3个7.下列说法正确的是()A.多项式ab+c是二次三项式B.5不是单项式C.单项式﹣x3y2z的系数是﹣1,次数是6D.多项式2x2+3y的次数是38.在式子,2x+5y,0,﹣2a,﹣3x2y3,中,单项式的个数是()A.5个B.4个C.3个D.2个9.下列说法正确的是()A.﹣1不是单项式B.2πr3+的次数是3C.的次数是3D.的系数是10.下列说法中,正确的是()A.单项式的系数是﹣2,次数是3B.单项式a的系数是1,次数是0C.﹣3x2y+4x﹣1是三次三项式,常数项是1D.单项式的次数是2,系数为二.填空题11.多项式﹣x3y2+xy﹣2的常数项是,它的项数是,它的次数是.12.单项式﹣x2y的系数是;多项式2x2y﹣xy的次数是.13.如果一个单项式的系数和次数分别为m、n,那么2mn=.14.下列代数式:﹣6x2y、、﹣、a、、、﹣x2+2x﹣1中,单项式有个.15.如果y|m|﹣3﹣(m﹣5)y+16是关于y的二次三项式,则m的值是.三.解答题16.已知a、b互为相反数,c、d互为倒数,多项式﹣5x2y m+1+xy2﹣x3+6是六次四项式,单项式x2n y5﹣m的次数与这个多项式的次数相同,求(a+b)m+m n﹣(cd﹣n)2019的值.17.已知多项式A=ax a+4x2﹣,B=3x b﹣5x,若A,B两个多项式的次数相同,且最高次数项的系数互为相反数.(1)求a,b的值;(2)求b2﹣3b+4b﹣5的值.18.已知多项式2x2y3+x3y2+xy﹣5x4﹣.(1)把这个多项式按x的降幂重新排列;(2)请指出该多项式的次数,并写出它的二次项和常数项.19.已知式子M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,且二次项的系数为b,在数轴上有点A、B、C三个点,且点A、B、C三点所表示的数分别为a、b、c,如图所示已知AC=6AB(1)a=;b=;c=.(2)若动点P、Q分别从C、O两点同时出发,向右运动,且点Q不超过点A.在运动过程中,点E为线段AP的中点,点F为线段BQ的中点,若动点P的速度为每秒2个单位长度,动点Q的速度为每秒3个单位长度,求的值.(3)点P、Q分别自A、B出发的同时出发,都以每秒2个单位长度向左运动,动点M 自点C出发,以每秒6个单位长度的速度沿数轴向右运动设运动时间为t(秒),3<t<时,数轴上的有一点N与点M的距离始终为2,且点N在点M的左侧,点T为线段MN 上一点(点T不与点M、N重合),在运动的过程中,若满足MQ﹣NT=3PT(点T不与点P重合),求出此时线段PT的长度.参考答案与试题解析一.选择题1.【解答】解:多项式3xy﹣2xy2+1的次数及最高次项的系数分别是:3,﹣2.故选:D.2.【解答】解:单项式﹣4πab2的次数是3.故选:C.3.【解答】解:单项式﹣6ab的系数与次数分别为﹣6,2.故选:D.4.【解答】解:A、23x2是二次单项式,故A选项错误;B、2πR2的系数是2π,故B选项错误;C、0是单项式,故C选项正确;D、a3b的系数是1,故D选项错误.故选:C.5.【解答】解:A、多项式x2+3x﹣2是二次三项式,正确,不合题意;B、多项式x2+3x﹣2的最高次项的系数是1,正确,不合题意;C、多项式x2+3x﹣2的一次项系数是3,正确,不合题意;D、多项式x2+3x﹣2的常数项是﹣2,原式错误,符合题意.故选:D.6.【解答】解:在式子a2+2,,ab2,,﹣8x,3中,整式有:a2+2,ab2,,﹣8x,3共5个.故选:B.7.【解答】解:A、多项式ab+c是二次二项式,故此选项错误;B、5是单项式,故此选项错误;C、单项式﹣x3y2z的系数是﹣1,次数是6,故此选项正确;D、多项式2x2+3y的次数是2,故此选项错误.故选:C.8.【解答】解:式子,2x+5y,0,﹣2a,﹣3x2y3,中,单项式有:0,﹣2a,﹣3x2y3,共3个.故选:C.9.【解答】解:A、﹣1是单项式,错误;B、2πr3+的次数是4,错误;C、的次数是3,正确;D、﹣的系数是﹣,错误;故选:C.10.【解答】解:A、单项式的系数是﹣,次数是3,系数包括分母,故这个选项错误;B、单项式a的系数是1,次数是1,当系数和次数是1时,可以省去不写,故这个选项错误;C、﹣3x2y+4x﹣1是三次三项式,常数项是﹣1,每一项都包括这项前面的符号,故这个选项错误;D、单项式﹣的次数是2,系数为﹣,符合单项式系数、次数的定义,故这个选项正确;故选:D.二.填空题(共5小题)11.【解答】解:多项式﹣x3y2+xy﹣2的常数项是:﹣2,它的项数是:3,它的次数是:5.故答案为:﹣2,3,5.12.【解答】解:单项式﹣x2y的系数是:﹣;多项式2x2y﹣xy的次数是:3.故答案为:﹣,3.13.【解答】解:单项式的系数是﹣,次数是4,则m=﹣,n=4,所以:2mn=2×(﹣)×4=﹣,故答案为:﹣.14.【解答】解:根据单项式的定义,可以得到:﹣6x2y、、﹣、a是单项式,共4个.故答案为:4.15.【解答】解:∵y|m|﹣3﹣(m﹣5)y+16是关于y的二次三项式,∴|m|﹣3=2,m﹣5≠0,∴m=﹣5,故答案为:﹣5.三.解答题(共4小题)16.【解答】解:∵多项式﹣5x2y m+1+xy2﹣x3+6是六次四项式,∴2+m+1=6,解得:m=3,∵单项式x2n y5﹣m的次数与这个多项式的次数相同,∴2n+5﹣m=6,则2n+5﹣3=6,解得:n=2,∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1,∴(a+b)m+m n﹣(cd﹣n)2019=0+9﹣(1﹣2)2019=9﹣(﹣1)=10.17.【解答】解:(1)∵多项式A=ax a+4x2﹣,B=3x b﹣5x,若A,B两个多项式的次数相同,且最高次数项的系数互为相反数,∴,解得a=﹣7,b=2;(2)b2﹣3b+4b﹣5=,把b=2代入得:==2+2﹣5=﹣1.18.【解答】解:(1)按x降幂排列为:﹣5x4+x3y2+2x2y3+xy﹣;(2)该多项式的次数是5,它的二次项是xy,常数项是﹣.19.【解答】解:(1)∵M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,二次项的系数为b∴a=16,b=20;∴AB=4∵AC=6AB∴AC=24∴16﹣c=24∴c=﹣8故答案为:16,20,﹣8;(2)设点P的出发时间为t秒,由题意得:EF=AE﹣AF=AP﹣BQ+AB=(24﹣2t)﹣(20﹣3t)+4=6+∴BP﹣AQ=(28﹣2t)﹣(16﹣3t)=12+t,∴=2;(3)设点P的出发时间为t秒,P点表示的数为16﹣2t,Q点表示的数为20﹣2t,M点表示的数为6t﹣8,N点表示的数为6t﹣10,T点表示的数为x,∴MQ=28﹣8t,NT=x﹣6t+10,PT=|16﹣2t﹣x|2.2整式的加减一.选择题1.下列运算正确的是()A.3a2+a3=a5B.3a2b﹣5ab2=﹣2abC.3ab﹣ab=2D.3a+2a=5a2.若﹣4x2y和23x m y n是同类项,则m,n的值分别是()A.m=2,n=1B.m=2,n=0C.m=4,n=1D.m=4,n=0 3.下列各组代数式中,属于同类项的是()A.ab与3ba B.a2b与a2c C.2a2b与2ab2D.a与b4.若代数式2x2+7kxy﹣y2中不含xy项,则k的值为()A.0B.﹣C.D.15.下列计算中,正确的是()A.a3﹣a2=a B.5a﹣7a=﹣2C.2a3+3a2=5a5D.a2b﹣ba2=﹣a2b6.下列运算正确的是()A.5a2﹣3a2=2B.x2+x2=x4C.3a+2b=5ab D.7ab﹣6ba=ab 7.下列各式去括号正确的是()A.a2﹣(2a﹣b+c)=a2﹣2a﹣b+cB.a+(b﹣c﹣d)=a﹣b+c+dC.a﹣(b﹣c﹣d)=a﹣b+c+dD.2a﹣[2a﹣(﹣2a)]=08.若单项式与﹣y2n x3的和仍是单项式,则(mn)2021的值为()A.﹣1B.C.D.19.已知与3xy4+b的和是单项式,那么a、b的值分别是()A.B.C.D.10.已知2x2y3a与﹣4x2a y1+b是同类项,则b a的值为()A.2B.﹣2C.1D.﹣1二.填空题11.若代数式﹣a m b4和3ab n相加后仍是单项式,则m+n=.12.甲、乙、丙三人有相同数量的小球.如果甲给乙2颗,丙给甲5颗,然后乙再给丙一些球,所给的数量与丙还有的球数量相同,那么乙最后剩下颗球.13.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×,所捂多项式是.14.单项式x﹣|a﹣1|y与是同类项,则b a=.15.某同学在做计算A+B时,误将“A+B”看成了“A﹣B”,求得的结果是9x2﹣2x+7,已知B=x2+3x+2,则A+B的正确答案为.三.解答题16.合并同类项:5m+2n﹣m﹣3n.17.化简(1)5xy﹣2y2﹣3xy﹣4y2.(2)2(2a﹣3b)﹣3(2b﹣3a).18.多项式A=x3+mx2+2x﹣8、B=3x﹣n,A与B的乘积中不含有x3和x项.(1)试确定m和n的值;(2)求3A﹣2B.19.小红做一道题:已知两个多项式A,B,其中A=y2+ay﹣1,计算B﹣2A她误将B﹣2A 写成2B﹣A,结果答案是3y2+5ay﹣4y﹣1.(1)求多项式B;(2)若a为常数,要使得B中不含一次项,则a的值为多少?参考答案与试题解析一.选择题1.【解答】解:3a2与a3、3a2b与5ab2都不是同类项,不能合并,故选项A、B错误;3ab﹣ab=2≠2ab,故选项C错误;3a+2a=5a,合并正确.故选:D.2.【解答】解:∵﹣4x2y和23x m y n是同类项,∴m=2,n=1,故选:A.3.【解答】解:A、ab与3ba符合同类项的定义,它们是同类项.故本选项正确;B、a2b与a2c所含的字母不相同,它们不是同类项.故本选项错误;C、2a2b与2ab2相同字母的指数不相同,它们不是同类项.故本选项错误;D、a与b所含字母不相同,它们不是同类项.故本选项错误;故选:A.4.【解答】解:∵代数式2x2+7kxy﹣y2中不含xy项,∴7k=0.解得:k=0.故选:A.5.【解答】解:A、a3与﹣a2不是同类项,所以不能合并,故本选项不合题意;B、5a﹣7a=﹣2a,故本选项不合题意;C、2a3与3a2不是同类项,所以不能合并,故本选项不合题意;D、,故本选项符合题意.故选:D.6.【解答】解:A、5a2﹣3a2=2a2,故本选项不合题意;B、x2+x2=2x2,故本选项不合题意;C、3a和2b不是同类项,所以不能合并,故本选项不合题意;D、7ab﹣6ba=ab,故本选项符合题意.故选:D.7.【解答】解:A、a2﹣(2a﹣b+c)=a2﹣2a+b﹣c;B、a+(b﹣c﹣d)=a+b﹣c﹣d;C、a﹣(b﹣c﹣d)=a﹣b+c+d;D、2a﹣[2a﹣(﹣2a)]=2a﹣(2a+2a)=2a﹣2a﹣2a=﹣2a;故选:C.8.【解答】解:依题意得:,解得:,∴(mn)2021=()2021=﹣1.故选:A.9.【解答】解:∵与3xy4+b的和是单项式,∴与3xy4+b是同类项.∴.∴a=2,b=﹣1.故选:B.10.【解答】解:根据题意可得:,解得:,所以b a的值=21=2,故选:A.二.填空题11.【解答】解:∵代数式﹣a m b4和3ab n相加后仍是单项式,∴﹣a m b4和3ab n是同类项.∴m=1,n=4.∴m+n=5.故答案为:5.12.【解答】解:设甲、乙、丙原来有a颗小球,乙最后剩下的小球有:a+2﹣(a﹣5)=a+2﹣a+5=7,故答案为:7.13.【解答】解:由题意可得,所捂多项式是:(3x2y﹣xy2+xy)÷(﹣xy)=3x2y÷(﹣xy)﹣xy2÷(﹣xy)+xy÷(﹣xy)=﹣6x+2y﹣1.故答案为:﹣6x+2y﹣1.14.【解答】解:由题意知﹣|a﹣1|=≥0,∴a=1,b=1,则a b=11=1,故答案为:1.15.【解答】解:∵A﹣B=9x2﹣2x+7,B=x2+3x+2,∴A=x2+3x+2+9x2﹣2x+7,=10x2+x+9,∴A+B=10x2+x+9+x2+3x+2,=11x2+4x+11.故答案为:11x2+4x+11.三.解答题16.【解答】解:5m+2n﹣m﹣3n=(5m﹣m)+(2n﹣3n)=4m﹣n.17.【解答】解:(1)原式=5xy﹣3xy﹣4y2﹣2y2=2xy﹣6y2.(2)原式=4a﹣6b﹣6b+9a=13a﹣12b.18.【解答】解:(1)(x3+mx2+2x﹣8)(3x﹣n)=3x4+3mx3+6x2﹣24x﹣nx3+mnx2+2nx+8n=3x4+(3m﹣n)x3+(6+mn)x2+(2n﹣24)x+8n,∵多项式A=x3+mx2+2x﹣8、B=3x﹣n,A与B的乘积中不含有x3和x项,∴3m﹣n=0,2n﹣24=0,解得:n=12,m=4;(2)由(1)得:3A﹣2B=3(x3+mx2+2x﹣8)﹣2(3x﹣n)=3(x3+4x2+2x﹣8)﹣2(3x﹣12)=3x3+12x2+6x﹣24﹣6x+24=3x3+12x2.19.【解答】解:(1)∵2B﹣A=3y2+5ay﹣4y﹣1,A=y2+ay﹣1,∴2B=3y2+5ay﹣4y﹣1+y2+ay﹣1=4y2+6ay﹣4y﹣2,∴B=2y2+3ay﹣2y﹣1。
2.1第3课时多项式---同步训练习题2021-2022学年人教版数学七年级上册
2.1 第3课时 多项式命题点 1 多项式的项及整式的识别1.在abc 22,2x 4-1,17c+1d ,a+b 2,m+n m 中,多项式有 ( )A .2个B .3个C .4个D .5个 2.下列式子:x 2+2,1a +4,3ab 27,ab c ,5x ,0中,整式的个数是 ( )A .3B .4C .5D .63.二次三项式2x 2-3x -1的二次项系数、一次项系数、常数项分别是( ) A .2,-3,-1 B .2,3,1C .2,3,-1D .2,-3,14.若多项式x 2+(k -1)x+3中不含有x 的一次项,则k= .5.在-12,xy 23,a ,a π,n m ,12x+13y ,a 2+ab+1b 2中,哪些是单项式?哪些是多项式?哪些是整式?6.一个关于a ,b 的多项式,除常数项为-1外,其余各项的次数都为3,系数都为-1,并且各项都不相同,这个多项式最多有几项?请将这个多项式写出来.命题点 2 多项式的项数与次数7.多项式x 2+x+18是 ( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式8.下列关于多项式-3a 2b+ab -2的说法中,正确的是( )A .次数是5B .最高次项是-3a 2bC .是二次三项式D .二次项系数是09.若多项式12x |m|-(m -2)x+7是关于x 的二次三项式,则m 的值为( ) A .2 B .-2 C .±2D .310.将多项式3mn 3-4m 2n 2+2-5m 3n 的各项按照m 的指数从大到小的顺序排列为 .11.若关于x 的多项式(m -2)x 3+3x n+1-5x 的次数是2,则m+n= .12.一个关于x 的二次三项式,二次项的系数是-1,一次项的系数和常数项都是2,则这个多项式是 .13.已知单项式-xy 3,5x 4y ,-4y 5,23x 6y 4,3x 2y 2,请你用这些单项式按下列要求解决问题: (1)写出一个五次三项式;(2)所有这些单项式相加可以组成一个多项式,它是几次几项式?14.已知关于x ,y 的多项式-35x 2y m+1+12x 2y 2-3y 2+8是八次四项式,单项式5x n y 6-m 的次数与该多项式的次数相同,求m ,n 的值.命题点 3 求多项式的值15.若多项式2y 2-3y+1的值是5,则多项式4y 2-6y+1的值是 ( )A .-8B .-9C .8D .916.若当x=2时,x 3+mx 2-n 的值为6,则当x=-2时,x 3+mx 2-n 的值为 ( )A .-10B .-6C .6D .1417.如图是一个运算程序的示意图,若开始输入的x 值为625,则第2021次输出的结果为( )A .1B .5C .25D .62518.有一组规格相同的饭碗,测得一个饭碗的高度为4.5 cm,两个饭碗整齐叠放在桌面上的高度为6.5 cm,三个饭碗整齐叠放在桌面上的高度为8.5 cm .根据以上信息回答下列问题:(1)若饭碗有x 个,用含x 的式子表示x 个饭碗整齐叠放在桌面上的高度;(2)当10个饭碗整齐叠放在桌面上时,求这叠饭碗的高度.19.[2020·北京朝阳区期中]定义:f(a,b)是关于a,b的多项式,如果f(a,b)=f(b,a),那么f(a,b)叫做“对称多项式”.例如,若f(a,b)=a2+a+b+b2,则f(b,a)=b2+b+a+a2,显然f(a,b)=f(b,a),所以f(a,b)是“对称多项式”.(1)f(a,b)=a2-2ab+b2是“对称多项式”吗?请说明理由.(2)请写一个“对称多项式”:f(a,b)=(不多于四项).(3)如果f1(a,b)和f2(a,b)均为“对称多项式”,那么f1(a,b)+f2(a,b)一定是“对称多项式”吗?如果一定是,请说明理由;如果不一定是,请举例说明.典题讲评与答案详析1.A [解析] 多项式有2x 4-1,a+b 2,共2个. 2.B 3.A4.1 [解析] 多项式x 2+(k -1)x+3中不含有x 的一次项,则k -1=0,解得k=1.5.解:-12,xy 23,a ,a π是单项式;12x+13y 是多项式;-12,xy 23,a ,a π,12x+13y 是整式.6.解:这个多项式最多有五项,即-a 3-a 2b -ab 2-b 3-1.7.B 8.B9.B [解析] 由题意,得|m|=2且-(m -2)≠0,所以m=-2.10.-5m 3n -4m 2n 2+3mn 3+211.312.-x 2+2x+213.解:(1)答案不唯一,如:5x 4y -4y 5-xy 3.(2)组成的多项式是-xy 3+5x 4y -4y 5+23x 6y 4+3x 2y 2,它是十次五项式.14.解:因为多项式-35x 2y m+1+12x 2y 2-3y 2+8是八次四项式, 所以2+m+1=8.所以m=5.又因为5x n y 6-m 的次数与该多项式的次数相同,所以n+6-m=8.所以n=7.15.D16.A [解析] 因为当x=2时,x 3+mx 2-n=6,所以8+4m -n=6.所以4m -n=-2.所以当x=-2时,x 3+mx 2-n=-8+4m -n=-8-2=-10.故选A .17.B [解析] 当x=625时,15x=125;当x=125时,15x=25;当x=25时,15x=5;x=1;当x=5时,15当x=1时,x+4=5,x=1;当x=5时,15…可知从第3次输入开始,结果以5,1循环.因为(2021-2)÷2=1009……1,所以第2021次输出的结果是5.故选B.18.解:(1)因为一个饭碗的高度为4.5=(2+2.5)cm,两个饭碗整齐叠放在桌面上的高度为6.5=(2×2+2.5)cm,三个饭碗整齐叠放在桌面上的高度为8.5=(2×3+2.5)cm,所以x个饭碗整齐叠放在桌面上的高度为(2x+2.5)cm.(2)当x=10时,2x+2.5=2×10+2.5=22.5(cm).答:这叠饭碗的高度为22.5 cm.19.解:(1)是.理由:由题意,得f(b,a)=b2-2ba+a2,则f(a,b)=f(b,a),故f(a,b)=a2-2ab+b2是“对称多项式”.(2)答案不唯一,如a+b(3)不一定是.举例:f1(a,b)=a+b,f2(a,b)=-a-b,它们都是对称多项式,而f1(a,b)+f2(a,b)=0,是单项式,不是多项式.。
人教版数学七年级上册第二、第三章测试题附答案(各一套)
人教版数学七年级上册第二章测试题一、选择题(共10小题,每小题3分,满分30分)1.(3分)单项式﹣3πxy2z3的系数是()A.﹣πB.﹣1 C.﹣3πD.﹣32.(3分)下面计算正确的是()A.3x2﹣x2=3 B.3a2+2a3=5a5C.3+x=3x D.﹣0.25ab+ba=03.(3分)下列运算中,正确的是()A.3a+5b=8ab B.3y2﹣y2=3C.6a3+4a3=10a6D.5m2n﹣3nm2=2m2n4.(3分)下列去括号正确的是()A.﹣(2x+5)=﹣2x+5 B.C.D.5.(3分)若单项式2x n y m﹣n与单项式3x3y2n的和是5x n y2n,则m与n的值分别是()A.m=3,n=9 B.m=9,n=9 C.m=9,n=3 D.m=3,n=36.(3分)单项式﹣3πxy2z3的系数和次数分别是()A.﹣π,5 B.﹣1,6 C.﹣3π,6 D.﹣3,77.(3分)代数式2a2+3a+1的值是6,那么代数式6a2+9a+5的值是()A.20 B.18 C.16 D.158.(3分)已知2x3y2和﹣x3m y2是同类项,则式子4m﹣24的值是()A.20 B.﹣20 C.28 D.﹣289.(3分)已知a是一位数,b是两位数,将a放在b的左边,所得的三位数是()A.ab B.a+b C.10a+b D.100a+b10.(3分)原产量n吨,增产30%之后的产量应为()A.(1﹣30%)n吨B.(1+30%)n吨C.n+30%吨D.30%n吨二、填空题(每小题3分,共18分)11.(3分)单项式的系数是,次数是.12.(3分)多项式2x2y﹣+1的次数是.13.(3分)任写一个与﹣a2b是同类项的单项式.14.(3分)多项式3x+2y与多项式4x﹣2y的差是.15.(3分)李明同学到文具商店为学校美术组的30名同学购买铅笔和橡皮,已知铅笔每支m元,橡皮每块n元,若给每名同学买两支铅笔和三块橡皮,则一共需付款元.16.(3分)按如图程序输入一个数x,若输入的数x=﹣1,则输出结果为.三、计算:(每小题20分,共20分)17.(20分)(1)a+2b+3a﹣2b.(2)(3a﹣2)﹣3(a﹣5)(3)3x2﹣3x2﹣y2+5y+x2﹣5y+y2.(4)(4a2b﹣5ab2)﹣(3a2b﹣4ab2)四、先化简下式,再求值.(每小题6分,共12分)18.(6分)化简求值:3a2b﹣[2ab2﹣2(﹣a2b+4ab2)]﹣5ab2,其中a=﹣2,b=.19.(6分)先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x)+3(x2y2+y),其中x=﹣1,y=2.五、解答题:(每小题分,共20分)20.(10分)已知A=2x2﹣1,B=3﹣2x2,求B﹣2A的值.21.(10分)计算某个整式减去多项式ab﹣2bc+3a+bc+8ac时,一个同学误认为。
人教版七年级上册数学分层单元测第二章 整式的加减--提升卷(解析版)
2020-2021学年七年级数学上册《单元测试定心卷》(人教版)第二章 整式的加减(能力提升)一、选择题1. 下列叙述中,正确的是( )A. 单项式212xy π的系数是12,次数是4 B. 202a π、、、都是单项式C. 多项式32321a b a +-的常数项是1D. 2m n+是单项式【答案】B 【解析】【分析】根据单项式的次数、系数的定义和多项式的次数、系数的定义解答.【详解】A 、错误,单项式212xy π的系数是12π,次数是3;B 、正确,符合单项式的定义;C 、错误,多项式32321a b a +-的常数项是-1;D 、错误,2m n+是一次二项式. 故选:B .【点睛】此题主要考查了多项式与单项式,正确把握相关定义是解题关键. 2. 点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A. 2x -+B. 2x --C. 2x +D. -2【答案】A 【解析】【分析】由BC=2,C 点所表示的数为x ,求出B 表示的数,然后根据OA=OB ,得到点A 、B 表示的数互为相反数,则问题可解. 【详解】解:∵BC=2,C 点所表示的数为x , ∴B 点表示的数是x-2,又∵OA=OB ,∴B 点和A 点表示的数互为相反数, ∴A 点所表示的数是-(x-2),即-x+2. 故选:A .【点睛】此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题.3. 单项式21412n a b --与83m ab 是同类项,则57(1)(1)+-n m =( )A.14B. 14-C. 4D. -4【答案】B 【解析】【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项,∴21184n m -=⎧⎨=⎩,解得:121m n ⎧=⎪⎨⎪=⎩, 则()()5711n m +-=14-, 故答案选:B .【点睛】本题考查的知识点是同类项,解题的关键是熟练地掌握同类项. 4. 下列去括号正确的是( )A. 112222x y x y ⎛⎫ =⎭-⎪⎝--- B. ()12122x y x y ++=+- C. ()16433232x y x y --+=-++ D. ()22x y z x y z +-+=-+【答案】D 【解析】【分析】根据整式混合运算法则和去括号的法则计算各项即可.【详解】A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误;B. ()12122x y x y ++=++,错误;C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确; 故答案为:D .【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键.5. 若多项式2x 3﹣8x 2+x ﹣1与多项式3x 3+2mx 2﹣5x +3的差不含二次项,则m 等于( ) A. 2 B. ﹣2C. 4D. ﹣4【答案】D 【解析】【分析】直接利用整式的加减运算法则得出8+2m =0,进而得出答案.【详解】解:∵多项式2x 3﹣8x 2+x ﹣1与多项式3x 3+2mx 2﹣5x +3的差不含二次项, ∴2x 3﹣8x 2+x ﹣1﹣(3x 3+2mx 2﹣5x +3)=﹣x 3﹣(8+2m )x 2+6x ﹣4, ∴8+2m =0,解得:m =﹣4,故D 正确. 故选:D .【点睛】此题主要考查了整式的加减,正确合并同类项是解题关键.6. 已知a+4b =﹣15,那么代数式9(a+2b )﹣2(2a ﹣b )的值是( )A. ﹣15B. ﹣1C. 15D. 1【答案】B 【解析】【分析】先化简所求代数式,再将已知等式作为一个整体代入求解即可. 【详解】9(2)2(2)a b a b +--91842a b a b =+-+ 520a b =+5(4)a b =+将145a b +=-代入得:原式15(4)5()15a b =+=⨯-=-故选:B .【点睛】本题考查了代数式的化简求值,掌握代数式的化简方法是解题关键. 7. 若2M 3x 5x 2=-+,2 N 3x 5x 1=-- 则M 和N 的大小关系为 ( ) A. M<N B. M=N C. M> N D. 无法确定【答案】C 【解析】【分析】要比较两个代数式的大小,可以求出它们的差来作比较.若差小于0,则被减数小于减数; 若差大于0,则被减数大于减数;若差等于0,则被减数等于减数.【详解】解:∵2M 3x 5x 2=-+,2 N 3x 5x 1=--,∴()()2222M N 3x 5x 23x 5x 13x 5x 23x 5x 13-=-+---=-+-++=>0,∴M N > 故选C .【点睛】本题考查代数式如何比较大小的问题,熟练掌握代数式比较大小的方法,如作差法、作商法等等是解题关键.8. 实数a 在数轴上的位置如图所示,则|a-4|+|a-11|化简后为( )A. 7B. -7C. 2a -15D. 无法确定【答案】A 【解析】【详解】解:由图可知:5,a ,10,,a -4,0,a -11,0,,|a -4|+|a -11|=a -4+11-a =7,故选A,点睛:考查绝对值的化简问题;判断出绝对值里面的式子的符号是解决本题的关键;用到的知识点为:正数的绝对值是它本身;负数的绝对值是它的相反数. 9. 如图1,将一个边长为a 的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A. 2a﹣3bB. 4a﹣8bC. 2a﹣4bD. 4a﹣10b【答案】B【解析】【分析】剪下的两个小矩形的长为a−b,宽为1(a−3b),所以这两个小矩形拼成2的新矩形的长为(a−b),宽为(a−3b),然后计算这个新矩形的周长.【详解】解:根据题意得:2(a﹣b+a﹣3b)=2(2a﹣4b)=4a﹣8b,故选B.【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解题的关键用a和b表示出剪下的两个小矩形的长与宽.10. 用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为()A. 3nB. 6nC. 3n+6D. 3n+3【答案】D【解析】【详解】观察可知:①中有棋子6个,6=3×1+3,②中有棋子9个,9=3×2+3,③中有棋子12个,12=3×3+3, …所以第n 个图形用的棋子个数为:3n +3, 故答案为:3n +3,【点睛】主要考查了规律性问题,通过题中的图形找出规律是解决本题的关键.二、填空题11. 若关于x 、y 的多项式25x 2y ﹣7mxy+34y 3+6xy 化简后不含二次项,则m=______. 【答案】67【解析】【分析】根据合并同类项法则进行合并后得25 x 2y+34 y 3+(6-7m)xy ,再由不含二次项即可求出m 的值 【详解】25x 2y ﹣7mxy+34y 3+6xy=25x 2y+34y 3+(6-7m)xy , ∵不含二次项, ∴6-7m=0, ∴m=67【点睛】此题主要考查整式的加减,解题的关键是熟知不含某项可得其系数为0.12. 已知多项式21231363m x y xy x +-+--是五次四项式,单项式250.4n m x y -的次数与这个多项式的次数相同,则m =__________,n =__________. 【答案】 ①. 2 ②. 1 【解析】【详解】解:,多项式21231363m x y xy x +-+--的次数是5,单项式250.4n m x y -的次数与这个多项式的次数相同, ,2+m +1=5,2n +5﹣m =5, ,m =2, ,n =1. 故答案为2,1.13. 当x=1时,多项式3ax bx 1++的值为5,则当x=-1时,多项式311ax bx 122++的值为________. 【答案】-1 【解析】【分析】将x=1代入多项式中得出a+b 的值,再将x=-1及a+b 分别代入所求多项式中计算即可解答.【详解】解:由x=1时,代数式3ax bx 1++的值为5得:a+b+1=5 整理得:a+b=4.将311ax bx 122++变形为31ax bx 12++()将x=-1代入31(ax bx)12++得:1(a b)12-++将a+b=4代入上式,得14112-⨯+=-故代数式311ax bx 122++的值为-1,故答案为:﹣1.【点睛】本题考查了代数式的求值,利用整体代入的思想方法是解答本题的关键.14. 已知22251,34A x ax y B x x by =+-+=+--,且对于任意有理数 ,x y ,代数式 2A B - 的值不变,则12()(2)33a A b B ---的值是_______.【答案】-2 【解析】【分析】先根据代数式2A B -为定值求出a,b 的值及 2A B -的值,然后对所求代数式进行变形,然后代入计算即可.【详解】222(251)2(34)A B x ax y x x by -=+-+-+--222512628x ax y x x by =+-+--++ (6)(25)9a x b y =-+-+∵对于任意有理数,x y ,代数式 2A B - 的值不变 ∴60,250a b -=-=,29A B -=56,2a b ∴==∵121()(2)2(2)333a Ab B a b A B ---=---∴原式=51629653223-⨯-⨯=--=-故答案为:-2【点睛】本题主要考查代数式的求值,能够对代数式进行化简,变形是解题的关键.15. 如图,图1是“杨辉三角”数阵;图2是(a+b )n 的展开式(按b 的升幂排列).若(1+x )45的展开式按x 的升幂排列得:(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=_____.【答案】990 【解析】【分析】根据图形中的规律即可求出(1+x )45的展开式中第三项的系数为前44个数的和,计算得到结论.【详解】解:由图2知:(a+b )1的第三项系数为0, (a+b )2的第三项的系数为:1, (a+b )3的第三项的系数为:3=1+2, (a+b )4的第三项的系数为:6=1+2+3, …∴发现(1+x )3的第三项系数为:3=1+2; (1+x )4的第三项系数为6=1+2+3; (1+x )5的第三项系数为10=1+2+3+4;不难发现(1+x )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1), ∴(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=1+2+3+…+44=44(441)2⨯+=990; 故答案为:990.【点睛】本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b )n 中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.三、解答题16. 先化简下列各式,再求值。
七年级数学上册《多项式》同步练习题(附答案解析)
七年级数学上册《多项式》同步练习题(附答案解析)课前练习1. 像ab ,a 2,-m ,12x 这些式子都是数或字母的积,这样的式子叫做_______.单独的一个数或一个字母也是__________.单项式中的数字因数叫做这个单项式的________.一个单项式中,所有字母的指数的和叫做这个单项式的_______.2. 1.3x +5y +2z ,212ab r π-,x 2+2x −18都可以看成几个单项式的和,像这样几个单项式的和,叫做________.其中,每个单项式叫做多项式的________,不含字母的项叫做________.多项式里,次数最高项的次数,叫做这个多项式的_______.例如:x 2+2x −18的项分别为________,常数项是_________,最高次项的次数是_______,因此x 2+2x −18是___次___项式.3. 单项式和多项式统称为__________.4. 多项式xy 2-9xy +5x 2y -25的二次项系数是_____________.5. 多项式4x 2y ﹣5x 3y 2+7xy 3﹣ 67 的次数是________,最高次项是________,常数项是________.6. 一个关于字母x 的二次三项式的二次项系数为4,一次项系数为1,常数项为7,则这个二次三项式为___.7. 多项式(x +3)a y b +12ab 2−5是关于a 、b 的四次三项式,且最高次项的系数为-2,则x =______,y = ___.课前练习参考答案1. ①. 单项式 ②. 单项式 ③. 系数 ④. 次数2. ①. 多项式 ②. 项 ③. 常数项 ④. 次数 ⑤. 2x ,2x ,-18, ⑥. -18,2 ⑦. 2x ⑧. 二 ⑨. 三3.整式【解析】根据整式的定义即可解答.【详解】单项式和多项式统称为整式.故答案是:整式.【点睛】本题考查了整式的定义,理解定义是关键.4. -95. ①. 5 ②. ﹣5x 3y 2③. ﹣676. 4x 2+x +77. ①. -5 ②. 3课堂练习1.下列整式中,单项式是________________;多项式是 ________________.a,25x −by 3,−13x 2y,2πr,x 2+xy +y 2,2x −1. 2.在代数式12x ﹣y ,5a ,x 2﹣y +23,1π,xyz ,−5y ,x+y+z 3中,有( )A .5个整式B .4个单项式,3个多项式C .6个整式,4个单项式D .6个整式,单项式与多项式的个数相同 3.在整式:3x −2y ,−8b 9,b−3y 36,0.2,5mn −n −7,6+a 2−b 中,有_____个单项式,_____个多项式,多项式分别是_______.4.−2xy 23+3xy −4是_______次_______项式.5.下列说法正确的是( )A .−3xy 5系数是-3B .x 2+x-1的常数项为1C .22ab 3的次数是6次D .2x-5x 2+7是二次三项式 6.多项式3232486xy x y x y y ----是____次_____项式,最高次项是______,常数项是_______.7.把多项式7x -12x 2+9按字母x 做降幂排列为___.8.把多项式442239235x y xy x y -+-按y 的降幂排列:______9.已知多项式x 2−3xy 2−4的次数是a ,二次项系数是b ,那么a +b 的值为( )A .4B .3C .2D .110.若A 是一个五次多项式,B 也是一个五次多项式,则A +B 一定是( )A .五次多项式B .不高于五次的整式C .不高于五次的多项式D .十次多项式11.四次三项式2x +5x 2yz -3y 2中,二次项的系数为______.12.多项式−2x −3x 3+4x 2+1,按x 的升幂排列为__________________.13.指出下列代数式中的单项式、多项式和整式.2πx 2, 1x , ﹣5,a ,π2, 0,n+m 2, 1﹣1a , 3ab ﹣2a ﹣1.课堂练习参考答案1.a,−13x 2y,2πr ; 25x −by 3,x 2+xy +y 2,2x −1【解析】单项式的定义:表示数或字母的积的式子叫做单项式.多项式的定义:若干个单项式的和组成的式子叫做多项式,再结合题目即可得出答案.【详解】根据单项式与多项式的定义可知:单项式有:a,−13x 2y,2πr ,多项式有:25x −by 3,x 2+xy +y 2,2x −1,故填a,−13x 2y,2πr ;25x −by 3,x 2+xy +y 2,2x −1.【点睛】本题考查多项式和单项式的定义,解题的关键是熟悉多项式和单项式的定义.2.D【分析】根据整式、单项式、多项式的概念即可判断.【详解】解:12x ﹣y ,5a ,x 2﹣y +23,1π,xyz ,x+y+z 3是整式, 其中式12x ﹣y ,x 2﹣y +23,x+y+z 3是多项式, 5a ,1π,xyz 是单项式,故选:D .【点睛】本题主要考查整式的概念及单项式与多项式,熟练掌握整式及单项式、多项式的概念是解题的关键.3.2 4 3x −2y 、b−3y 36、5mn −n −7、6+a 2−b【分析】根据单项式与多项式的概念即可求出答案.【详解】解:单项式有2个:−8b 9,0.2,,多项式有4个:3x −2y ,b−3y 36,5mn −n −76+a 2−b【点睛】本题考查单项式与多项式的概念,解题的关键是正确理解单项式与多项式之间的联系,本题属于基础题型.4.三三【分析】直接利用多项式的次数与项数确定方法分析得出答案.【详解】解:−2xy23+3xy−4是三次三项式,故答案为:三,三.【点睛】此题主要考查了多项式,正确把握多项式的次数与项数确定方法是解题关键.5.D【分析】根据单项式和多项式的相关概念逐一求解即可得到答案.【详解】解:A.−3xy5的系数是−35,故本选项错误;B.x2+x−1的常数项是−1,故本选项错误;C.22ab3的次数是4次,故本选项错误;D.2x−5x2+7的次数是二次三项式,故本选项正确.故选:D【点睛】本题考查了单项式、多项式的相关基本概念等知识点,熟练掌握相关知识是解题的关键.6.五五 -x3y2 -6【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【详解】解:多项式xy3-8x2y-x3y2-y4-6是五次五项式,最高次项是:-x3y2,常数项是-6.故答案为:五,五,-x3y2,-6.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.7.−12x2+7x+9【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列.【详解】解:多项式7x-12x2+9的项为7x,-12 x2,9,按字母x降幂排列为−12x2+7x+9,故答案为:−12x2+7x+9.【点睛】本题考查了多项式,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.8.423242539y x y xy x --++【分析】多项式的项的概念和降幂排列的概念,可知多项式的项为:9x 4,−2y 4,+3xy 2,−5x 2y 3将各项按y 的指数由大到小排列为−2y 4,−5x 2y 3,+3xy 2,9x 4.【详解】解:把多项式442239235x y xy x y -+-,按y 的指数降幂排列后为423242539y x y xy x --++. 故答案是423242539y x y xy x --++.【点睛】本题考查了多项式的项的概念和降幂排列的概念.(1)多项式中的每个单项式叫做多项式的项;(2)一个多项式的各项按照某个字母指数从大到小或者从小到大的顺序排列,叫做降幂或升幂排列.在解题时要注意灵活运用.9.A【分析】根据多项式的有关定义得到a 、b 的值,然后计算它们的和即可.【详解】解:根据题意得a=3,b=1,所以a+b=3+1=4.故选:A .【点睛】本题考查了多项式:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.10.B【解析】几个多项式相加后所得的多项式可能增加项数,但不会增加次数.【详解】A 是五次多项式,B 也是五次多项式,∵几个多项式相加后所得的多项式可能增加项数,但不会增加次数,故A+B 的次数不高于五次.故选:B .【点睛】本题考查多项式的知识,难度不大,掌握多项式相加的特点是关键.11.-3【分析】先把多项式按降幂排列,找出二次项,再确定系数即可.【详解】解:四次三项式2x +5x 2yz -3y 2中进行降幂排列5x 2yz -3y 2+2x ,二次项为-3y 2,二次项的系数为-3,故答案为:-3.【点睛】本题考查多项式中二次项系数问题,掌握多项式的定义,项,项数,某项系数,常数项的区别与联系是解题关键.12.2312+43x x x--【分析】按照x的指数从小到大的顺序把各项重新排列即可.【详解】解:多项式−2x−3x3+4x2+1,按x的升幂排列为231243x x x-+-.故答案为:1-2x+4x2-3x3.【点睛】本题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键.13.2πx2是单项式,是整式;1x 是分式;﹣5是单项式,是整式;a是单项式,是整式;π2是单项式,是整式;0是单项式,是整式;n+m2是多项式,是整式;1﹣1a是分式;3ab﹣2a﹣1是多项式,是整式.【分析】根据整式,单项式,多项式的概念进行分类即可.单项式是字母和数的乘积,多项式是若干个单项式的和,单项式和多项式统称为整式.【详解】解:2πx2是单项式,是整式;1x是分式;﹣5是单项式,是整式;a是单项式,是整式;π2是单项式,是整式;0是单项式,是整式;n+m2是多项式,是整式;1﹣1a是分式;3ab﹣2a﹣1是多项式,是整式.【点睛】主要考查了整式的概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.课后练习1.在下列说法中,正确的是()A.多项式ax2+bx+c是二次多项式B.四次多项式是指多项式中各项均为四次单项式C.−ab2,−x都是单项式,也都是整式D.−4a2b,3 ab,5是多项式2435a b ab-+-中的项2.多项式x2﹣3xy2﹣4的次数和常数项分别是()A.2和4 B.2和﹣4 C.3和4 D.3和﹣43.已知x m−1+3x−1是关于x的三次三项式,那么m的值为()A.3 B.4 C.5 D.64.将多项式6a2b+3b3−2ab2−a3按字母b的降幂排列正确的是()A.−a3+3b3−2ab2+6a2b B.3b3−2ab2+6a2b−a3C.3b3−a3+6a2b−2ab2D.−a3+6a2b−2ab2+3b35.在式子:2a , a3, 1x+y, −12, 1−x−5xy2,−x,6xy+1,a2−b2中,其中多项式有____个.6.多项式2x3−x2y2−3xy+x−1是______次______项式,常数项是______.7.若多项式25x3m y+1是四次多项式,m=______.8.若已知3a2−2ab3−7a n−1b2与−32π2x3y5的次数相等,则(−1)n+1=_______.9.指出下列各式中,哪些是单项式、哪些是多项式、哪些是整式?填在相应的横线上:①22m n+;②-x;③a+b3;④10;⑤6xy+1;⑥1x;⑦17m2n;⑧2x2-x-5;⑨a7;⑩2x+y单项式:____________________________;多项式:________________________;整式:________________________;10.已知多项式3x3−y3−5x2y−x2+1.(1)求次数为3的项的系数和.(2)当x=−1,y=−2时,求该多项式的值.11.已知整式(a−1)x3−2x−(a+3).(1)若它是关于x的一次式,求a的值并写出常数项;(2)若它是关于x的三次二项式,求a的值并写出最高次项.12.已知关于x,y的多项式x4+(m+2)x n y﹣xy2+3.(1)当m,n为何值时,它是五次四项式?(2)当m,n为何值时,它是四次三项式?课后练习参考答案1.C【分析】直接利用单项式的次数与系数以及多项式的定义、次数与系数分别分析得出答案.【详解】解:A、多项式ax2+bx+c,当a≠0时是二次多项式,故此选项不合题意;B、多项式中次数最高项的次数叫多项式的次数,故此选项不合题意;C、数与字母的积叫单项式,单项式和多项式统称整式,−ab2,−x都是单项式,也都是整式,正确,符合题意;D、−4a2b,3ab,5-是多项式2a b ab-+-中的项,故此选项不合题意.435故选C.【点睛】此题主要考查了多项式以及单项式有关定义,正确把握相关定义是解题关键.2.D【分析】根据多项式的次数和项的定义得出选项即可.【详解】解:多项式x2﹣3xy2﹣4的次数是3,常数项是﹣4,故选:D.【点睛】此题主要考查多项式的次数和项的判定,解题的关键是熟知多项式的次数和项的定义.3.B【分析】式子要想是三次三项式,则x m−1的次数必须为3,可得m的值.【详解】∵x m−1+3x−1是关于x的三次三项式∴x m−1的次数为3,即m-1=3解得:m=4故选:B.【点睛】本题考查多项式的概念,注意,多项式的次数指的是组成多项式的所有单项式中次数最高的那个单项式的次数.4.B【分析】按照字母b的次数由高到低进行排列得到答案.【详解】解:根据题意,6a2b+3b3−2ab2−a3按字母b的降幂排列正确的是3b3−2ab2+6a2b−a3;故选:B.【点睛】本题考查了多项式:几个单项式的和叫多项式.多项式中每个单项式都是多项式的项,这些单项式的最高次数,就是这个多项式的次数.5.3【分析】几个单项式的和为多项式,根据这个定义判定.【详解】2a ,1x y,分母有字母,不是单项式,也不是多项式;a 3,−12,−x,是单项式,不是多项式; 1−x−5xy2,6xy+1,a2−b2都是单项式相加得到,是多项式故答案为:3【点睛】本题考查多项式的概念,在判定中需要注意,当分母中包含字母时,这个式子就既不是单项式也不是多项式了.6.四五 -1【分析】根据多项式的次数、项数判断即可.【详解】解:多项式2x3−x2y2−3xy+x−1最高次项是四次,一共有五项,常数项是-1.故答案为:四,五,-1.【点睛】本题考查了多项式的有关概念,解题关键是熟记多项式的相关概念,注意:每一项都包括它的符号.7.1【分析】由多项式25x3m y+1是四次多项式,可得3m+1=4,解方程可得答案.【详解】解:∵多项式25x3m y+1是四次多项式,∴3m+1=4,∴3m=3,∴m=1.故答案为:1.【点睛】本题考查的是多项式的次数,掌握多项式的次数的概念是解题的关键.8.1【分析】先根据多项式与单项式的次数的定义求出n的值,再代入计算有理数的乘方即可得.【详解】单项式−32π2x3y5的次数为3+5=8,∵3a2−2ab3−7a n−1b2与−32π2x3y5的次数相等,∴n−1+2=8,解得n=7,则(−1)n+1=(−1)7+1=(−1)8=1,故答案为:1.【点睛】本题考查了多项式与单项式的次数、有理数的乘方运算,熟练掌握多项式与单项式的次数的概念是解题关键.9.②④⑦⑨;①③⑤⑧;①②③④⑤⑦⑧⑨.【分析】1x ,2x+y的分母中含有字母,所以它们既不是单项式,也不是多项式,再根据单项式、多项式和整式的概念来分类.【详解】解:单项式有:-x,10,17m2n,a7;多项式有:22m n+,a+b3,6xy+1,2x2-x-5;整式有:22m n+,-x,a+b3,10,6xy+1,17m2n,2x2-x-5,a7.【点睛】本题主要考查了整式的定义,掌握单项式、多项式和整式的概念和关系是解答此题的关键,注意分式与整式的区别在于分母中是否含有字母.10.(1)3;(2)15【分析】(1)先得到次数为3的项,再得到它们的系数,再相加;(2)将x和y值代入计算即可.【详解】解:(1)多项式3x3−y3−5x2y−x2+1中,次数为3的项是3x3,−y3和−5x2y,系数分别是3,-1,-5,∴和为3-1-5=-3;(2)当x=−1,y=−2时,3x3−y3−5x2y−x2+1=15.【点睛】本题考查了多项式的次数和系数,有理数的加法,代数式求值,重点掌握多项式的相关概念是解题的关键.11.(1)1a=,常数项为-4;(2)a=−3,最高次项为−4x3【分析】(1)已知多项式是一次式,则x的最高次数是1,由此可得a-1=0,据此可得a的值,求出常数项−(a+3)的值即可;(2)根据多项式是三次二项式,结合多项式的概念可得到a-1≠0且a+3=0,求解的a的值,再求出(a−1)x3即可解答此题.【详解】解:(1)若它是关于x的一次式,则a−1=0,∴1a=,常数项为−(a+3)=−4;(2)若它是关于x的三次二项式,则a−1≠0,a≠1,a+3=0,∴a=−3,所以最高次项为−4x3.【点睛】本题考查多项式的知识,需要根据多项式次数和项数的定义来解答.12.(1)n=4,m≠﹣2;(2)m=﹣2,n为任意实数【分析】(1)根据多项式是五次四项式可知n+1=5,m+2≠0,从而可求得m、n的取值;(2)根据多项式是四次三项式可知:m+2=0,n为任意实数.【详解】解:(1)∵多项式是五次四项式,∴n+1=5,m+2≠0,∴n=4,m≠﹣2;(2)∵多项式是四次三项式,∴m+2=0,n为任意实数,∴m=﹣2,n为任意实数.【点睛】本题主要考查的是多项式的定义,掌握多项式的定义是解题的关键.第11页共11页。
2021-2022学年人教版七年级数学上册第二章2.1《整式-多项式》专项练习
专题2.4 整式-多项式(专项练习)一、填空题类型一、多项式的判断1.在式子①25x +,①1-,①222a ab b ++,①xyz ,①11x y +,①2x y +,①23π+,①22x y -中是整式的有________,其中是单项式的有________,是多项式的有________.2.在代数式23xy ,m ,263a a -+,12,22145x yz xy -,23ab 中,单项式有___个,多项式有____个. 3.代数式2x y -、m 、2x xy -、0、2ab -、1x 、3a b +、()2a b +、0.5-、xy a +中,单项式有________个,多项式有________个,整式有________个.4.在代数式xy ,﹣3,31+14x -,x ﹣y ,﹣m 2n ,1x ,4x ,4﹣x 2,ab 2,23x +中,单项式有_____个,多项式有_____个. 类型二、多项式的项、项的系数、次数5.多项式234a b ++的常数项是_____. 6.多项式12x |m|﹣(m ﹣3)x+6是关于x 的三次三项式,则m 的值是_____. 7.如果y |m|﹣3﹣(m -5)y+16是关于y 的二次三项式,则m 的值是_____.8.多项式3233525xy x y x y -+-+的次数是________,最高次项的系数是________,常数项是________. 类型三、由多项式的系数求值9.若多项式||22(2)1m n xy n x y 是关于x ,y 的三次多项式,则mn =_____.10.若关于x ,y 的多项式4xy 3–2ax 2–3xy +2x 2–1不含x 2项,则a =__________.11.已知多项式kx 2+4x ﹣x 2﹣5是关于x 的一次多项式,则k=_____.12.若多项式()()4322311x a x x b x --+-+-中不含3x 和x 项,则a+b=_______. 类型四、由多项式的指数求值13.已知多项式x |m |+(m ﹣2)x ﹣10是二次三项式,m 为常数,则m 的值为_____.14.如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________. 15.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________.16.已知p=(m+2)2m x ﹣(n ﹣3)xy |n|﹣1﹣y ,若P 是关于x 的四次三项式,又是关于y 的二次三项式,则32m n +的值为_____. 类型五、按某个字母升幂(降幂)排列 17.把多项式 32x 3y ﹣45y 2+ 12xy ﹣12x 2 按照字母 x 升幂排列:_____. 18.把多项式2ab 2-5a 2b -7+a 3b 3按字母b 的降幂排列,排在第三项的是___________.19.将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____.20.2a 4+a 3b 2-5a 2b 3+a -1是____次____项式.它的第三项是__________.把它按a 的升幂排列是____________________.类型六、据要求写出多项式21.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________22.一个只含有字母x 的二次三项式,它的二次项系数为-2,一次项系数为37,常数项为-1,则这个二次三项式为__________.23.请写出一个单项式,同时满足下列条件:①含有字母x 、y ;①系数是负整数;①次数是4,你写的单项式为______. 类型七、整式的判断24.一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________.25.如果一个整式具备以下三个条件:(1)它是一个关于字母x 的二次三项式;(2)各项系数的和等于10;(3)它的二次项系数和常数项都比﹣2小1,请写出满足这些条件的一个整式_____.26.在下列各式中:12x y -,3x ,22x x y -+,5x ,3x y z +-中,单项式有________,多项式有________,整式有________. 27.代数式2x ,223x x --,2x a +,322y y y+-中,整式有________个. 类型八、数字类规律探索28.找出下列各图形中数的规律,依此,a 的值为_____.29.按一定规律排列的一列数为12-,2,92-,8,252-,18……,则第8个数为________,第n个数为_________.30.观察以下一列数:3,54,79,916,1125,…则第20个数是_____.31.按一定规律排列的一列数:3,23,13-,33,43-,73,113-,183,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是__________.类型九、图形类规律探索32.如图所示是一组有规律的图案,第l个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中的基础图形个数为_______ (用含n的式子表示).33.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图①,图①的规律摆下去,摆成第n个“T”字形需要的棋子个数为_______.34.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形按此规律摆下去,第n个图案有_______个三角形(用含n 的代数式表示).35.如图,每一幅图中有若干个菱形,第1幅图中有1个菱形,第2幅图中有3菱形.第3幅图中有5个菱形,依照此规律,第6幅图中有_____个菱形.参考答案1.①①①①①①① ①① ①①①①①【解析】【分析】根据整式、单项式、多项式的定义,结合所给各式进行判断即可.【详解】解:所给式子中整式有:①①①①①①①;单项式有:①①①;多项式有:①①①①.故答案为:①①①①①①①、①①、①①①①①.【点睛】本题考查了多项式、单项式及整式的知识,掌握三者的定义是解题的关键,属于基础知识考察类题目. 2.3 2【详解】单项式有:3xy 2,m ,12,共3个,多项式有:6a 2-a+3,4x 2yz -15xy 2,共2个. 故答案为3,2.3.4 4 8【解析】【分析】根据整式的定义和多项式、单项式的定义求解.【详解】解:单项式有:m 、0、-ab 2、|-0.5|共4个.多项式有2x -y 、x 2-xy 、3a +b 、2(a+b )共4个. 1x 、x a+y 分母中含有未知数不是整式,其余的都是整式,共8个. 故答案为:4,4,8.【点睛】本题重点对整式、单项式、单项式定义的考查.4.5, 3【解析】【分析】根据单项式和多项式的概念解答即可.【详解】在代数式xy ,﹣3,31+14x -,x ﹣y ,﹣m 2n ,1x ,4x ,4﹣x 2,ab 2,23x +中,单项式有: xy ,﹣3,﹣m 2n ,,4x ,ab 2,5个,多项式有:31+14x -,x ﹣y ,4﹣x 2,3个.故答案为:(1). 5 (2). 3. 【点睛】本题考查了单项式和多项式的概念,解题的关键是掌握:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式;几个单项式的和叫做多项式.5.34【解析】【分析】根据常数项的定义即可求解.【详解】a+2b+3a 2b 3=++4444. 故答案为34. 【点睛】本题主要考查常数项的定义,熟悉掌握是关键.6.-3【分析】由题意可知:|m|=3,且m -3≠0即可作答.【详解】由题意可知:|m|=3,且m -3≠0;①m= -3;故答案为-3.【点睛】本题考查了单项式与多项式的概念,掌握一个单项式中,所有字母的指数的和叫做这个单项式的次数.多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数是解题的关键. 7.-5【分析】根据二次三项式的定义,可知多项式y |m|-3-(m -5)y+16的最高次数是二次,共有三项,据此列出m 的关系式,从而确定m 的值.【详解】①y |m|-3-(m -5)y+16是关于y 的二次三项式,①|m|-3=2,m -5≠0,①m=-5,故答案为-5.【点睛】本题考查了二次三项式的定义:一个多项式含有几项,是几次就叫几次几项式.注意一个多项式含有哪一项时,哪一项的系数就不等于0.8.5 -2 +5【解析】【分析】根据多项式的概念及单项式的次数、系数的定义解答.【详解】多项式3233525xy x y x y -+-+的次数是5.最高次项系数是-2,常数项是+5.故答案为:5,-2,+5.【点睛】本题考查了多项式:几个单项式的和叫多项式.多项式中每个单项式都是多项式的项,这些单项式的最高次数,就是这个多项式的次数.9.0或8【分析】直接利用多项式的次数确定方法得出答案.【详解】 解:多项式||22(2)1m n xy n x y 是关于x ,y 的三次多项式,20n ∴-=,1||3m n ,2n ∴=,||2m n ,2m n ∴-=或2n m ,4m ∴=或0m =,0mn 或8.故答案为:0或8.【点睛】本题主要考查了多项式,正确掌握多项式的次数确定方法是解题关键.10.1【分析】把a看成是常数,合并同类项,然后令x2项的系数为0即可求出a的值.【详解】解:4xy3-2ax2-3xy+2x2-1=4xy3+(2-2a)x2-3xy-1,因为多项式不含x2项,所以2-2a=0,解得:a=1.故答案为1.【点睛】此题主要考查了多项式,关键是掌握合并同类项法则.即系数相加作为系数,字母和字母的指数不变.在多项式中不含某一项,即合并同类项后令这一项的系数为0.11.1.【分析】根据多项式的次数的定义来解题.要先找到题中的等量关系,然后列出方程求解.【详解】多项式kx2+4x﹣x2﹣5是关于的一次多项式, 多项式不含x2项,即k-1=0,k=1.故k的值是1.【点睛】本题考查了以下概念:(1)组成多项式的每个单项式叫做多项式的项;(2)多项式中次数最高项的次数叫做多项式的次数.12.1【解析】【分析】根据多项式的有关概念和题目要求得到-(a-2)=0,b+1=0,然后解一次方程即可.【详解】根据题意得−(a−2)=0,b+1=0,解得a=2,b=−1,则a+b=2-1=1.故答案为:1.【点睛】此题考查多项式,代数式求值,解题关键在于掌握其概念.13.-2【详解】因为多项式x |m|+(m -2)x -10是二次三项式,可得:m−2≠0,|m|=2,解得:m=−2,故答案为−214.24-【分析】根据多项式的次数的定义,先求出n 的值,然后代入计算,即可得到答案.【详解】解:①多项式42142mx x +-与多项式35n x x +的次数相同, ①4n =,①22234243443212424n n -+-=-⨯+⨯-=-+-=-;故答案为:24-.【点睛】本题考查了求代数式的值,以及多项式次数的定义,解题的关键是正确求出n 的值.15.2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值.【详解】①多项式||1(2)32m x m x --+是关于x 的二次三项式, ①||2m =,且()20m --≠,①2m =-.故答案为:2-.【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键.16.56- 【解析】分析:根据多项式的概念即可求出m ,n 的值,然后代入求值.详解:依题意得:m 2=4且m+2≠0,|n|-1=2且n -3≠0,解得m=2,n=-3, 所以32m n +=235326-+=-. 故答案是:56-. 点睛:本题考查多项式的概念,解题的关键是熟练运用多项式概念17.﹣45y 2+ 12xy ﹣12x 2 +32x 3y 【解析】【分析】先分清多项式的各项:32x 3y ,﹣45y 2, 12xy ﹣12x 2;再按升幂排列的定义排列. 【详解】多项式32x 3y ﹣45y 2+ 12xy ﹣12x 2按字母x 的升幂排列是: 2234112?3252y xy x x y ﹣﹣++. 故答案是:2234112?3252y xy x x y ﹣﹣++. 【点睛】本题考查了多项式.解答此题必须熟悉降幂排列的定义:我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列称为按这个字母的降幂或升幂排列.18.-5a 2b【分析】先把多项式2ab 2-5a 2b -7+a 3b 3按字母b 的降幂排列,然后找出符合条件的项即可.【详解】多项式2ab 2-5a 2b -7+a 3b 3按字母b 的降幂排列为:a 3b 3+2ab 2-5a 2b -7.故答案为-5a 2b .【点睛】本题主要考查的是多项式概念,掌握多项式按照某一字母的升降幂排列的方法是解题的关键.19.﹣2b 3+3ab 2+4a 2b+a 3.【分析】找出a 的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b 3+3ab 2+4a 2b+a 3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.20.五 五 −5a 2b 3 −1+a −5a 2b 3+a 3b 2+2a 4【解析】【分析】根据多项式的次数和项数的定义进行求解,再根据a 的指数的大小按升幂排列起来即可.【详解】2a 4+a 3b 2-5a 2b 3+a -1是五次五项式,它的第三项是-5a 2b 3,把它按a 的升幂排列是-1+a -5a 2b 3+a 3b 2+2a 4. 故答案为:五,五,−5a 2b 3,-1+a -5a 2b 3+a 3b 2+2a 4.【点睛】此题考查了多项式,用到的知识点是多项式的次数和项数以及排列顺序;多项式里次数最高项的次数,叫做这个多项式的次数,多项式中的每个单项式叫做多项式的项.21.-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.22.23217x x -+- 【解析】一个只含有x 的二次三项式,它的二次项系数为-2,一次项系数为37,常数项为-1,得 23217x x -+-. 故答案是:23217x x -+-. 23.﹣xy 3.【解析】①含有字母x 、y ;①系数是负整数;①次数是4,符合条件的单项式不唯一,例如:-xy 3.故答案是:-xy 3等.24.21122x x -+- 【解析】根据题意,要求写一个关于字母x 的二次三项式,其中二次项是x 2,一次项是-12x ,常数项是1,所以再相加可得此二次三项式为211x x 22-+-. 25.﹣3x 2+16x ﹣3【解析】分析:根据整式的概念写出要求的整式.详解:根据题意可知答案不唯一,(1)它是一个关于字母x 的二次三项式;(2)各项系数的和等于10,如-3+16-3=10;(3)它的二次项系数和常数项都比-2小1,如二次项系数是-3,常数项是-3,所以满足这些条件的一个整式为:-3x 2+16x -3故本题答案为:-3x 2+16x -3.点睛:主要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.本题的关键是根据描述写出式子要特别熟悉整式的特点.26.3x ,5x 12x y -,3x y z +- 3x ,5x ,12x y -,3x y z +- 【解析】【分析】单项式和多项式统称为整式.由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式,字母前的常数为单项式的系数,字母的指数和为单项式的次数.多项式的定义:若干个单项式的和组成的式子叫做多项式.多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.根据定义逐项判断即可.【详解】解:单项式有:3x ,5x ; 多项式有:12x y -,3x y z +-; 整式有:3x ,5x ,12x y -,3x y z +-; 故答案为:(1)3x ,5x ;(2)12x y -,3x y z +-;(3)3x ,5x ,12x y -,3x y z +-. 【点睛】本题考查了对多项式、单项式、整式的定义的应用.易错点,多项式和单项式都是整式.27.2【解析】【分析】根据整式的概念分析判断各个式子.【详解】根据整式的概念可知,整式有x 2−x−23,2x a +,共2个. 故答案为:2.【点睛】本题考查了整式的概念,解题的关键是熟练的掌握整式的概念.28.226.【详解】试题分析:观察图形可得,0+2=1×2,2+10=3×4,4+26=5×6,6+50=7×8,由此规律可得14+a=15×16,解得:a=226.考点:规律探究题. 29.32 22(1)n n -⋅ 【分析】首先把整数化为分母是2的分数,可以发现该数列中的每一个数的绝对值的分母都为2,分子恰是自然数列的平方,前面的符号,第奇数个为负,第偶数个为正,可用(﹣1)n 表示,代入即可求解.【详解】把整数化为分母是2的分数,可以发现该数列中的每一个数的绝对值的分母都为2,分子恰是自然数列的平方,前面的符号,第奇数个为负,第偶数个为正,可用(﹣1)n 表示,故第n 个数为:(﹣1)n22n ⨯,第8个数为:(﹣1)8282⨯=32. 故答案为32,(﹣1)n 22n ⨯. 【点睛】本题考查了数列的探索与运用,合理的统一数列中的分母寻找规律是解题的关键.30.41400【分析】观察已知数列得到一般性规律,写出第20个数即可.【详解】解:观察数列得:第n 个数为221n n +,则第20个数是41400. 故答案为41400. 【点睛】本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键.31.bc=a【分析】根据题目中的数字,可以发现相邻的数字之间的关系,从而可以得到a ,b ,c 之间满足的关系式.【详解】解:①一列数:3,23,13-,33,43-,73,113-,183-,…,可发现:第n 个数等于前面两个数的商,①a ,b ,c 表示这列数中的连续三个数,①bc=a ,故答案为:bc=a .【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律,求出a ,b ,c 之间的关系式.32.3n+1【详解】试题分析:由图可知每个图案一次增加3个基本图形,第一个图案有4个基本图形,则第n 个图案的基础图形有4+3(n -1)=3n+1个考点:规律型33.3n +2.【分析】根据题意和图形,可以发现图形中棋子的变化规律,从而可以求得第n 个“T”字形需要的棋子个数.【详解】解:由图可得,图①中棋子的个数为:3+2=5,图①中棋子的个数为:5+3=8,图①中棋子的个数为:7+4=11,……则第n 个“T”字形需要的棋子个数为:(2n+1)+(n+1)=3n+2,故答案为3n+2.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中棋子的变化规律,利用数形结合的思想解答.34.()31n +【分析】由图形可知第1个图案有3+1=4个三角形,第2个图案有3×2+ 1=7个三角形,第3个图案有3×3+ 1=10个三角形...依此类推即可解答.【详解】解:由图形可知:第1个图案有3+1=4个三角形,第2个图案有3×2+ 1=7个三角形,第3个图案有3×3+ 1=10个三角形,...第n 个图案有3×n+ 1=(3n+1)个三角形.故答案为(3n+1).【点睛】本题考查图形的变化规律,根据图形的排列、归纳图形的变化规律是解答本题的关键.35.11【分析】根据题意分析可得:第1幅图中有1个,第2幅图中有2×2﹣1=3个,第3幅图中有2×3﹣1=5个,…,可以发现,每个图形都比前一个图形多2个,继而即可得出答案.【详解】解:根据题意分析可得:第1幅图中有1个.第2幅图中有2×2﹣1=3个.第3幅图中有2×3﹣1=5个.第4幅图中有2×4﹣1=7个.….可以发现,每个图形都比前一个图形多2个.故第n幅图中共有(2n﹣1)个.当n=6时,2n﹣1=2×6﹣1=11,故答案为:11.【点睛】本题主要考查图形规律类,根据图形的变化找到规律是解题的关键.。
七年级数学上册单项式多项式与同类项问题习题
课堂检测一.选择题:1.下列单项式中,与-3a 2b 为同类项的是( )A.-3ab 3B.-41ba 2C.2ab 2D.3a 2b 22.下面各组式子中,是同类项的是( )A.2a 和a 2B.4b 和4aC.100和21D.6x 2y 和6y 2x 二、填空题:3.m+n -p 的相反数为__________.4.若 -31x 2a-1 y 4 与 3x 3y 4 是同类项,则 a 的值为 三. (1)-3x 2+8x-5 x 2-6x (2)xy xy wx xy 12587-+-(挑战自我)某商店以每件160元的价格进了10件衣服,加价四成后作为衣服的标价,然后打8折全部优惠卖出,试通过计算说明这家商店在这次生意中的赔赚情况.第4讲:整式的运算【考纲要求】本节课我们要体会用字母表示数的必要性,理解代数式的概念和意义,明确代数式的书写习惯,理解代数式的值的概念并能够计算代数式的值,理解代数式能够表达数字和图形中的普遍规律,体现了特殊与一般的辨证关系,体会代数式的优越性.【教学重难点】整式可以简洁地表明实际问题中的数量关系,它比只有具体数字表示的算式更有一般性.本讲主要复习列代数式、代数式求值及整式的相关概念.1.字母表示数:用字母表示数,渗透了从具体的数到字母的抽象概括的思维方式,它具有简明、普遍的优越性。
字母和数一样都可以参与运算,不同的是数的运算结果是一个数,字母运算的结果是一个式子。
字母可以表示任何数.2.代数式:用运算符号连接数与字母的式子是代数式,单独 也是代数式。
3.代数式的书写规则:(1)乘号写为“”或者省略, 数与字母相乘时放于之前(2)带分数与字母的积,要把带分数化为(3)除法运算一般写为的形式(4)单位问题:在代数式运算结果中,如有单位时,要正确地使用4.代数式求值:用代替代数式中的,就可以求出代数式的值5.整式:表示数与字母的乘积的式子叫做,单独一个数或字母单项式几个单项式的和叫做,单项式和多项式统称为单项式中的数字因数叫做这个单项式的,单项式中的叫做这个单项式的次数一个多项式中,每个叫做多项式的项,次数,叫做这个多项式的次数【本讲命题方向】选择题、填空题、简答题约5~8%【典型题例精讲】1.列代数式【例1】1.小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费()A.(3a+4b)元 B.(4a+3b)元 C.4(a+b)元 D.3(a+b)元2.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是米.3.吉林广播电视塔“五一”假期第一天接待游客m人,第二天接待游客n人,则这2天平均每天接待游客人4.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10人,两种都会的有7人。
新人教版七年级数学上册第一二单元测试卷
暑期培训测试卷姓名:一、选择题(本题共10小题,每小题3分,共30分)1.如果水库的水位高于正常水位2m 时,记作+2m ,那么低于正常水位3m 时,应记作( )A.+3mB.-3mC.+13D.- 132. 室内温度是150℃,室外温度是-30℃,则室外温度比室内温度低( )A .120℃ B.180℃ C.-120℃ D.-180℃3. 一个数和它的倒数相等,则这个数是( )A.1B.-1C.±1 D .±1和04. 若|a|=5,b =-3,则a -b 的值是( )A.2或8B.-2或8C.2或-8D.-2或-85. 点A 在数轴上表示+2,从点A 沿数轴向左平移3个单位到点B ,点B 表示的数是( )A. 3B.-1C.5D.-1或36.我国发现首个世界级大气田,储量达6000亿立方米,6000亿立方米用科学记数法表示为( )A 6×103亿立方米B 6000亿立方米C 6×104亿立方米D 0.6×10-3亿立方米7.下列式子中,是单项式的是( )A.x +y 2B.-12x 3yz 2C.5xD. x -y8.下面计算正确的是( )A.6a -5a =1B.a +2a2=3a2C.2(a +b )=2a +bD.-(a -b )=-a +b9.多项式4xy 2-3xy 3+12的次数为( )A.4B.3C.6D.710.已知一个三角形的周长是3m -n ,其中两边长的和为m +n -4,则这个三角形的第三边的长为( )A. 2m -4B.2m -2n +4C. 2m -2n -4D.4m -2n +4二、填空题(本题共6小题,每小题3分,共18分)11. 甲潜水员所在高度为-45米,乙潜水员在甲的上方15米处,则乙潜水员的所在的高度是 .12. 在数轴上,与表示数-1的点的距离是5的点表示的数是 。
13. 小明不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是 。
(人教版)初中数学七年级上册 全册测试卷一(附答案)
(人教版)初中数学七年级上册全册测试卷一(附答案)第一章综合测试一、选择题(每小题4分,共28分) 1.(舟山中考)6-的绝对值是( ) A.6B.6-C.16D.16-2.(台州中考)在12,0,1,2-这四个数中,最小的数是( )A.12B.0C.1D.2-3.下列各数:0.8-,123-,8.2--(), 2.7+-(),17-+(), 2 012+-.其中负数的个数是( ) A.6B.5C.4D.34.下列运算结果等于1的是( ) A.33-+-()() B.33---()() C.33-⨯-()D.33-÷-()()5.(福州中考)2010年某市启动了历史上规模最大的轨道交通投资建设,预计某市轨道交通投资将达到51 800 000 000元人民币.将51 800 000 000用科学记数法表示正确的是( ) A.105.1810⨯ B.951.810⨯ C.110.51810⨯D.851810⨯6.(吉林中考)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是( )ABCD7.(舟山中考)一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,被截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是( )A.2 010B.2 011C.2 012D.2 013二、填空题(每小题5分,共25分) 8.3-的倒数是_______.9.(河南中考)计算:212-+-=()_______.10.用“<”“>”或“=”填空: (1)0.02-_______1;(2)45-_______56-;(3)34⎛⎫-- ⎪⎝⎭_______[(0.75)]-+-.11.绝对值大于1而小于4的整数有_______,其和为_______. 12.若a ,b 互为相反数,x ,y 互为倒数,则()xa b xy y+-=_______ 三、解答题(共47分)13.(14分)(1)2432232(2)(4)5⨯-÷---⨯;(2)2531324524864⎡⎛⎫⎤-+-⨯÷ ⎪⎢⎥⎣⎝⎭⎦.14.(10分)“十一”黄金周期间,某商场家电部大力促销,收银情况一直看好.下表为当天与前一天的营业额的涨跌情况(单位:万元).已知9月30日的营业额为26万元:(1)黄金周内营业额最低的是哪一天?那天的营业额是多少?(直接回答,不必写过程) (2)黄金周内平均每天的营业额是多少?15.(11分)有一出租车在一条南北走向直的公路上进行出租运营服务,如果规定向北为正,向南为负,出租车运营8次的行车里程如下(单位:千米):13+,7-,11+,10-,5-,9+,12-,8+.(1)将最后一位乘客送到目的地时,该出租车在出发点的什么方向?距离出发点多远? (2)若出租车耗油量为a 升/千米,则以上8次出租运营服务共耗油多少升?16.(12分)(中山中考)阅读下列材料:112(123012)3⨯=⨯⨯-⨯⨯,123(234123)3⨯=⨯⨯-⨯⨯,134(345234)3⨯=⨯⨯-⨯⨯,由以上三个等式相加,可得1122334345203⨯+⨯+⨯=⨯⨯⨯=.读完以上材料,请你计算下列各题:(1)1223341011⨯+⨯+⨯+⋯+⨯(写出过程); (2)122334(1)n n ⨯+⨯+⨯+⋯+⨯+=_______; (3)123234345789⨯⨯+⨯⨯+⨯⨯+⋯+⨯⨯=_______.第一章综合测试答案解析一、 1.【答案】A 2.【答案】【解析】正数大于0,负数小于0,正数大于负数,所以上述四个数中最小的数是2-. 3.【答案】C 4.【答案】D【解析】因为336-+-=-()(); 330---=()(); 339-⨯-=();331÷-=(-)().5.【答案】A6.【答案】C7.【答案】D 二、8.【答案】13- 9.【答案】5 10.【答案】(1)< (2)> (3)=【解析】(1)因为负数小于正数,所以0.02-<1.(2)因为40.85-=,50.836-≈,又因为5465-->,所以4556-->.(3)因为330.7544⎛⎫--== ⎪⎝⎭,[(0.75)]0.75-+-=, 所以3[(0.75)]4⎛⎫--=-+- ⎪⎝⎭.11.【答案】23±±, 0 12.【答案】1- 三、13.【答案】(1)原式2916(8)165=⨯-÷--⨯18280=+- 60=-(2)原式253131242424248645⎛⎫-⨯-⨯+⨯⨯ ⎪⎝⎭= 2519418245⎛⎫=--+⨯ ⎪⎝⎭ 2515245⎛⎫=+⨯ ⎪⎝⎭25115551124552424=⨯+⨯=+=.14.【答案】(1)10月7日的营业额最低,营业额是26万元.(2)30333535343126732++++++÷=(),即黄金周内每天的平均营业额是32万元. 15.【答案】(1)137111059128+-+--+-+ 131198710512=++++----()()4134=- 7=(千米).答:将最后一位乘客送到目的地时,该出租车在出发点向北方向,距离出发点有7千米. (2)()1371111059128175a a ++-+++-+-+++-++⨯=(升). 答:以上8次出租运营服务共耗油75a 升. 16.【答案】(1)1223341011⨯+⨯+⨯+⋯+⨯111(123012)(23412 3) (10111291011)333=⨯⨯-⨯⨯+⨯⨯-⨯⨯++⨯⨯-⨯⨯L 11011124403=⨯⨯⨯=. (2)1(1)(2)3n n n ++(3)123234345789⨯⨯+⨯⨯+⨯⨯++⨯⨯L1111(23451234)(12340123)(789106789)444=⨯⨯⨯-⨯⨯⨯++⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯L 178910 1 2604=⨯⨯⨯⨯=.第二章综合测试一、选择题(每小题4分,共28分) 1.下列说法正确的是( ) A.x 的指数是0B.x 的系数是0C.3-是一次单项式D.23ab -的系数是23-2.下列式子中,整式的个数为( )1x a +,abc ,225b ab -,πy x+,2xy -,5- A.3B.4C.5D.63.若A 是3次多项式,B 也是3次多项式,则A B +一定是( ) A.6次多项式B.次数不低于3次的多项式C.次数不高于3次的整式D.以上答案都不正确4.单项式233πxy z -的系数和次数分别是( )A.π-,5B.1-,6C.3x -,6D.3-,7 5.四个连续偶数中,最小的一个为22n -(),则最大的一个是( ) A.2(2)3n -+ B.2(1)n + C.23n +D.2(2)n +6.()223422x x x x --+=-,括号内应填( )A.2532x x --B.23x x -+C.232x x -++D.232x x -+-7.(衢州中考)如图,边长为3m +()的正方形纸片剪出一个边长为m 的正方形之后剩余部分又剪拼成一个长方形(不重叠无缝隙).若拼成的长方形一边长为3,则另一边长是( )A.23m +B.26m +C.3m +D.6m +二、填空题(每小题5分,共25分)8.已知单项式312n a b +与223m a b --是同类项,则23m n +=______. 9.254143a b ab --+是______次______项式,常数项为______. 10.若40.5m x y -与36m x y 的次数相同,则m =______. 11.(绥化中考)若2345x x --的值为7,则2453x x --的值为______. 12.如图所示,它是一个程序计算器,用字母及符号把它的程序表达出来为______,如果输入3m =,那么输出______.三、解答题(共47分)13.(10分)试说明把一个两位数的十位上的数字与个位上的数字互换位置后所得的新两位数与原两位数之和可被11整除。
新人教版七年级数学上册第二章题型总结
新人教版七年级数学上册第二章整式的加减知识点和典型例题I 基本题型一、列单项式、多项式1.某次旅游分甲、乙两组,已知甲组a 名队员,平均门票m 元,乙组有b 名队员,平均门票n 元,则共要付门票___元. 2.某公司职员,月工资a 元,增加10%后达到________元.3.如果一个两位数,十位上数字为x ,个位上数字为y ,则这个两位数为________.4.甲车的速度为每小时x 千米,乙车的速度为每小时y 千米.若甲、乙两车由两地同时出发,相向而行,t 小时后相遇,则两地距离为________千米.若两车同时分别从两地出发,同向而行,t 小时甲车追上乙车,则两地距离为_____千米.5.有一棵树苗,刚栽下去时,树高2.1米,以后每年长0.3米,则n 年后树高________米.6.含盐20%的盐水x 千克,其中含盐________千克,含水________千克.7.某项工程甲独干a 天完成,乙独干b 天完成,则甲、乙合作每天完成工程的_____ 8.一种小麦磨成面粉后,重量减轻15%,要得到m 千克面粉,需要小麦______千克。
9.一辆汽车从A 地出发,先行驶了s 米之后,又以υ米/秒的速度行驶了t 秒.汽车行驶的全部路程等于 米 10.电影院第一排有a 个座位,后面每排都比前一排多一个座位,若第n 排有m 个座位,那么m=11.用含有字母的式子填空:(1)a 与b 的143倍的差是_.(2)某商品原价为a 元,提高了20%后的价格 . 12.已知三角形的第一边长是2a b +,第二边比第一边长(2)b -,第三边比第二边小5。
则三角形的周长为 。
13.某公园一块草坪的形状如图所示(阴影部分),用代数式表示它的面积为二、判断区分单项式、多项式、整式 1.在代数式21215,5,,,,,233x y z x y a x y xyz y π+---+-中有 ( )A .5个整式B .4个单项,3个多项式C .6个整式,4个单项式D .6个整式,单项式与多项式个数相同2.在代数式ba b a b a x a m +-+-,,2,31,0,21π中,整式有( )A 、3个 B 、4个 C 、5个 D 、6个 3.下列代数式中,是单项式的有 .①-15; ②32a ; ③π1x 2y; ④ abc32; ⑤3a+2b; ⑥0; ⑦ 7m4.单项式22ab 2c 的系数是 ,次数是 .5.πR 2是次单项式,-32是次单项式.6.把下列代数式分别填在相应的括号里:a 2b,,43,3,2,1ab y x x ---x 2-x-1 单项式:{ }多项式:{ }整 式:{ }7.整式21,3x -y 2,23x 2y ,a ,πx +21y ,522a π,x +1中,单项式有: 多项式有:8.在,中,单项式有: 。
2021-2022学年人教版七年级数学上册第二章2.1《整式-单项式》专项练习
专题2.2 整式-单项式(专项练习)一、填空题知识点一、用字母表示数1.一个两位数的个位上的数字是1,十位上的数字比个位上的数字大a,则这个两位数是______.2.今年五月份,由于禽流感的影响,我市鸡肉的价格下降了10%,设鸡肉原来的价格为a元/千克,则五月份的价格为________元/千克.3.某大型超市从生产基地以每千克a元的价格购进一种水果m千克,运输过程中重量损失了10%,超市在进价的基础上增加了30%作为售价,假定不计超市其他费用,那么售完这种水果,超市获得的利润是_____元(用含m、a的代数式表示)4.设n为自然数,则奇数表示为_____,能被5整除的数为_____,被4除余3的数为_____.知识点二、列代数式5.标价m元的上衣,打八五折后,便宜了_____元钱.6.某工厂去年的产值是a万元,今年比去年增加10%,今年的产值是__万元.7.为了鼓励居民节约用水,某自来水公司采取分段计费,每月每户用水不超过10吨,每吨2.2元;超过10吨的部分,每吨加收1.3元.小明家4月份用水15吨,应交水费_____元.8.如图,用代数式表示图中阴影部分的面积为___________________.知识点三、用代数式表示数、图形规律9.观察下列单项式:3a2、5a5、7a10、9a17、11a26…它们是按一定规律排列的,那么这列式子的第n个单项式是_____.10.如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n幅图中有2019个菱形,则n=_____.11.将一些形状相同的小五角星如图所示的规律摆放,据此规律,第10个图形有_______个五角星.12.观察下列各等式:231-+=56784--++=1011121314159---+++=171819202122232416----++++=……根据以上规律可知第11行左起第一个数是__.知识点四、代数式概念13.下列式子中是代数式________;是单项式________;是整式________;是多项式________.2y ,5a -,2y ,24a b ,6-,223a ab b ++,a ,1x =,3π,x -,1123>,0. 14.在x y +,0,21>,2a b -,210x +=中,代数式有______个.15.若0<a <1,则a ,-a ,1a ,-1a 的大小关系是_________.(用“>”连接) 16.下列式子2x ,2x y x y -+,0p <,ab ,2S r π=,5-,262a b ++.其中是代数式的有__________个. 知识点五、代数式的书写方法17.下列代数式中,符合代数式书写要求的有______________.(1)2ab c ÷; (2)3m n ; (3)2135x y ; (4)3()m n ⨯+; (5)235a b -; (6)3ab ⋅. 18.下列各式:2ab ⋅,2m n ÷;53xy ,113a ,4ab -其符合代数式书写规范的有______个. 19.带有字母的和式,如果后接单位,则和式要加____________.20.进入初中后学习数学,对于代数式书写规范,教材中指出:“在含有字母的式子中如果出现乘号‘⨯’ ,通常将乘号写作‘• ’或者省略不写”.其实还有一些书写规范,比如,在代数式中如果出现除号“÷”,通常用分数线“—”来取代;数字与字母相乘时,一般数字写在前面,根据以上书写要求,将代数式2(4)4ac b ⨯-÷简写为__________. 知识点六、代数式表示的实际意义21.赋予式子“ab”一个实际意义:_____.22.体育委员带了500元钱去买体育用品,若2个足球a 元,1个篮球b 元,则代数式50032a b --表示________.23.明明带了a 元去书店买了一套《四大名著》,每本名著售价b 元,一套有4本,还剩_______元.如果150a =,36.45b =元,还剩_______元.24.两艘船从同一港口出发,甲船顺水而下,乙船逆水而上,已知两船在静水中的速度都是50km/h ,水流速度是a km/h . 则2h 后两船相距____千米.知识点七、单项式的判定25.下列各式中,3a+4b ,0,﹣a ,am+1,﹣xy , 1x ,x a ﹣1, 2x y +单项式有______个,多项式有_______个 26.在代数式2-12a ,-3xy 3,0,4ab,3x 2-4,7xy ,n 中,单项式有____个. 27.将下列代数式的序号填入相应的横线上.①223a b ab b ++;①2a b +;①23xy -;①0;①3y x -+;①2xy a ;①223x y +;①2x ;①2x . (1)单项式:_______________;(2)多项式:_______________;(3)整式:_________________;(4)二项式:_______________.28.在①xy ,①5x -,①75ab -,①2a b -+①0,①2415x -+,①2x y +-,①4x -,①2b π中,单项式有:________,多项式有:________,整式有:________ (填序号)知识点八、单项式的次数、系数29.单项式2335x yz -的系数是___________,次数是___________. 30.代数式213x π-的系数是________,次数是________.31.单项式−2x 2y 3的系数与次数之积为___________.32.单项式327a b π的系数是__________次数是__________.知识点九、写出满足单项式的一些特征33.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________34.如果单项式的字母因数是a 3b 2c ,且a=1,b=2,c=3时,这个单项式的值为4,则这个单项式为_____. 35.请写一个系数为-1,且只含有字母a ,b ,c 的四次单项式为__________.36.单项式235x y 的系数是a ,次数是b ,则ab=______. 知识点十、单项式的规律题37.观察一列单项式:a ,﹣2a 2,4a 3,﹣8a 4,…,根据你发现的规律,第10个单项式为_____.38.观察下列单项式:x ,24x -,39x ,416x -,…写出第10个式子是__________.39.观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.3 2x,254x-,376x,498x-,….按照排列规律,第n个单项式是______.40.观察一组关于x的单项式:参考答案1.10a+11【分析】先表示出十位上的数字,然后再表达出这个两位数的大小【详解】①个位数是1,十位数比个位数大a①十位数是1+a①这个两位数为:10(a+1)+1=10a+11故答案为:10a+11【点拨】本题考查用字母表示数字,解题关键是:若十位数字为a ,则应表示为10a2.0.9a【分析】因为原来鸡肉价格为a 元/千克,现在下降了10%,所以现在的价格为(1-10%)a ,即0.9a 元/千克.【详解】①原来鸡肉价格为a 元/千克,现在下降了10%,①五月份的价格为a -10%a=(1-10%)a=0.9a ,故答案为0.9a .-3.0.17am【分析】根据题意可以用含a 的代数式表示出超市获得的利润,本题得以解决.【详解】由题意可得,超市获得的利润是:a (1+30%)×[m (1﹣10%)]﹣am =0.17am (元),故答案为0.17am .【点拨】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.4.21n 或21n - 5n 43n【分析】能被2整除的数是偶数,因此偶数通常可以表示为2n ,偶数2n 的前一位或后一位都是奇数,则奇数可以表示为21n 或21n -;同理,能被5整除的数必含5这个因数;能被4除余3的数,应为4的倍数且加上3. 【详解】因为偶数中含有2这个因数,则偶数可以表示为2n ,偶数2n 的前一位或后一位都是奇数,则奇数可以表示为21n 或21n -;能被5整除的数必含5这个因数,则能被5整除的数可表示为5n ;能被4除余3的数可表示为4n +3.故答案为21n 或21n -;5n ;4n +3. 【点拨】本题考查了列代数式的知识点,熟练掌握所求的数的特征是解决本题的关键,属于基础题.注意:能被某数整除的数中必含有除数的因数.5.0.15m .【分析】根据题意,上衣打八五折出售,也就是按原价的85%出售,那么便宜了原价的1-85%=15%,然后再进一步解答.【详解】解:根据题意得:m•(1﹣85%)=0.15m (元),答:便宜了0.15m 元.故答案为:0.15m .【点拨】此题考查百分数的实际应用,解题关键在于根据题意列出式子计算.6.1.1a【分析】今年产值=(1+10%)×去年产值,根据关系列式即可.【详解】解:根据题意可得今年产值=(1+10%)a =1.1a 万元,故答案为1.1a .7.39.5【详解】根据题意可得:10×2.2+(2.2+1.3)×(15-10)=22+3.5×5=39.5,故答案为39.5.8.212ab b π- 【解析】阴影部分的面积等于长方形的面积减去两个小扇形的面积差.长方形的面积是ab ,两个扇形的圆心角是90①,①这两个扇形是分别是半径为b 的圆面积的四分之一. ①2211242ab b ab b ππ-⨯=- . 【点拨】本题考查了列代数式, 由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式.理解图意得到阴影部分的面积长方形的面积-2个14圆的面积是解题的关键. 9.(2n+1)21n a +【分析】先找出前3项的规律,然后通过后面的几项进行验证,找到规律得到答案即可.【详解】3a 2=(2×1+1)211a +,5a 5=(2×2+1)221a +,7a 10=(2×3+1)231a +,… 第n 个单项式是:(2n+1)21na +, 故答案为(2n+1)21n a +.【点拨】本题考查了规律题——数字的变化类,根据前几项发现规律,通过观察发现每一项的系数与次数都与该项的序数有关是解题的关键.10.1010【分析】根据题意分析可得:第1幅图中有1个,第2幅图中有2×2﹣1=3个,第3幅图中有2×3﹣1=5个,…,可以发现,每个图形都比前一个图形多2个,继而即可得出答案.【详解】解:根据题意分析可得:第1幅图中有1个.第2幅图中有2×2﹣1=3个.第3幅图中有2×3﹣1=5个.第4幅图中有2×4﹣1=7个.….可以发现,每个图形都比前一个图形多2个.故第n 幅图中共有(2n ﹣1)个.当图中有2019个菱形时,2n ﹣1=2019n =1010,故答案为1010【点拨】本题考查规律型中的图形变化问题,难度适中,要求学生通过观察,分析、归纳并发现其中的规律. 11.120.【详解】寻找规律:不难发现,第1个图形有3=22-1个小五角星;第2个图形有8=32-1个小五角星;第3个图形有15=42-1个小五角星;…第n 个图形有(n +1)2-1个小五角星.①第10个图形有112-1=120个小五角星.12.-122.【分析】观察规律即可解题.【详解】解:由已知等式知第n 行左起第1个数为-(n 2+1),当n=11时,-(n 2+1)=-(121+1)=-122,故答案为:-122.【点拨】本题是一道规律题,属于简单题,认真审题找到规律是解题关键.13.2y ,5a -,2y ,24a b ,6-,223a ab b ++,a ,3π,x -,0; 2y ,4a 2b ,-6,a ,3π,-x ,0; 2y ,a -5,4a 2b ,-6,a 2+3ab+b 2,a ,3π,-x ,0; 5a -,223a ab b ++【分析】根据代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式;单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式;几个单项式的和叫做多项式;单项式和多项式统称为整式进行分析即可. 【详解】解:代数式2y ,5a -,2y ,24a b ,6-,223a ab b ++,a ,3π,x -,0; 单项式2y ,4a 2b ,-6,a ,3π,-x ,0;整式2y ,a -5,4a 2b ,-6,a 2+3ab+b 2,a ,3π,-x ,0; 多项式a -5,a 2+3ab+b 2. 故答案为:2y ,5a -,2y ,24a b ,6-,223a ab b ++,a ,3π,x -,0; 2y ,4a 2b ,-6,a ,3π,-x ,0;2y ,a -5,4a 2b ,-6,a 2+3ab+b 2,a ,3π,-x ,0;a -5,a 2+3ab+b 2.【点拨】此题主要考查了整式、代数式、单项式、多项式,关键是掌握整式、代数式、单项式、多项式的定义. 14.3【分析】代数式是指把数或表示数的字母用+、-、×、÷连接起来的式子,而对于带有=、>、<等数量关系的式子则不是代数式.【详解】解:21>是不等式,不是代数式;210x +=是方程,不是代数式;x y +,0,,2a b -,是代数式,共3个.故答案是:3.【点拨】本题考查了代数式的定义,理解定义是关键.15.1a >a >-a >-1a【分析】先由0<a <1求出- a 的范围,1a 范围,-1a 的范围,再根据范围按要求排序,用“>”连接即可. 【详解】若0<a <1,-1<-a <0,11a >,1a -<-1 则a ,-a ,1a ,-1a 的大小关系1a >a >-a >-1a . 故答案为:1a >a >-a >-1a. 【点拨】本题考查有理数的大小比较问题,掌握相反数,倒数与倒数的相反数概念,会求倒数,能比较它们的大小,会利用a 的范围确定相反数与倒数的范围,及倒数的相反数的范围是解题关键.16.5【分析】根据代数式的概念,用运算符号把数字与字母连接而成的式子叫做代数式.单独的一个数或一个字母也是代数式.【详解】解:①0p <,2S r π=中含有<、=,则它们不是代数式,①2x ,2x y x y -+,ab ,5-,262a b ++是代数式, ①代数式有5个,故答案为:5.【点拨】此题考查代数式的判断,注意掌握代数式的定义.17.(2)(5).【分析】根据代数式的书写要求判断各项.【详解】解:(1)的书写格式是2ab c ,故错误; (2)、(5)的书写格式正确,故正确;(3)的正确书写格式是2165x y ,故错误; (4)的正确书写格式是3(m +n ),故错误;(6)的正确书写格式是3ab ,故错误;故答案是:(2)(5).【点拨】本题考查了代数式.代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“·”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.18.2【分析】根据书写规则直接解答即可. 【详解】解:符合代数式书写规范的是;53xy ,4a b -, 一共有2个符合书写规则.故答案为:2.【点拨】本题考查代数式书写规则 ,掌握书写规则①两字母相乘、数字与字母相乘、字母与括号相乘以及括号与括号相乘时,乘号都可以省略不写.如:“x 与y 的积”可以写成“xy”;“a 与2的积”应写成“2a”,“m 、n 的和的2倍”应写成“2(m+n)”. ①带分数112作为因数,要先把它化为假分数,再写乘“a”的形式,写成“32a”. ①代数式中不能出现除号,相除关系要写成分数的形式 ①数字与数字相乘时,乘号仍应保留不能省略,或直接计算出结果.例如“3×71xy”不能写成“3·71xy”更不能写成“371xy”直接写成“213xy”最好. ①代数式出现和或差后面有单位时要用括号.19.括号【分析】由代数式的书写方法,即可得到答案.【详解】解:根据代数式的书写方法,则带有字母的和式,如果后接单位,则和式要加括号;故答案为:括号.【点拨】本题考查了代数式的书写问题,解题的关键是熟练掌握代数式的书写方法进行解题.20.244ac b - 【分析】根据题意即可写出答案.【详解】解:简写为:244ac b -, 故答案为:244ac b -. 【点拨】本题考查代数式的写法,解题的关键是正确理解题意给出的方法,本题属于基础题型.21.边长分别为a ,b 的矩形面积【分析】赋予单项式实际意义,结合实际情境作答,答案不唯一.【详解】一个长为a ,宽为b 的长方形的面积是ab .故答案为边长分别为a ,b 的矩形面积.【点拨】赋予单项式实际意义,此类问题应结合实际,根据代数式的特点解答.22.体育委员买了6个足球,2个篮球后剩余的经费【分析】本题需先根据买两个足球a 元,一个篮球b 元的条件,表示出3a 和2b 的意义,最后得出正确答案即可.【详解】解:①买两个足球a 元,一个篮球b 元,①3a 表示买了6个足球,2b 表示买了2个篮球,①代数式500﹣3a ﹣2b :表示体育委员买了6个足球、2个篮球后剩余的经费.故答案为体育委员买了6个足球、2个篮球后剩余的经费.【点拨】本题主要考查了列代数式,在解题时要根据题意表示出各项的意义是本题的关键.23.4a b - 4.2【分析】用总钱数减去买名著的钱数就是剩下的钱数,然后把a=150,b=36.45,代入含有字母的式子,即可求出还剩下的钱数.【详解】解:根据题意,则买完一套名著剩下的钱为:4a b -;当150a =,36.45b =元时,①4150436.45 4.2a b -=-⨯=(元);故答案为:4a b -;4.2;【点拨】做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.24.200【分析】先表示出甲船顺水速度,乙船逆水速度,再根据路程=速度⨯时间,即可得出结果.【详解】①两船在静水中的速度都是50km/h ,水流速度是a km/h①=v 甲(50+a )km/h ,=v 乙(50a -)km/h①两船背向而行①2h 后两船距离为:2(50+a )+2(50a -)=200(km )故答案为:200.【点拨】熟练掌握顺水速度,逆水速度的表示,及路程=速度⨯时间,是解题的关键.25.3 3【分析】根据单项式、多项式的定义解答即可.【详解】①0 ,-a ,-xy 是由数或字母的积组成的式子,①0 ,-a ,-xy 是单项式,共3个, ①2x y +=22x y +, ①2x y +是多项式, ①3a 2+4b 和am+1是几个单项式的和组成的,①3a 2+4b 和am+1是多项式,①3a 2+4b ,am+1,2x y +是多项式,共3个, 故答案为3;3;【点拨】本题考查多项式和多项式的定义,由数或字母的积组成的式子叫做单项式;几个单项式的和叫做多项式.熟练掌握定义是解题关键.26.5【解析】【分析】根据单项式的概念找出单项式的个数.【详解】单项式有:-3xy 3,0,4ab ,xy 7,n ,共5个. 故答案为:5.【点拨】本题主要考查单项式的概念,熟悉掌握是关键.27.①①① ①①① ①①①①①① ①①【分析】根据单项式,多项式,整式,二项式的定义即可求解. 【详解】(1)单项式有:①23xy -,①0,①2x ; (2)多项式有:①223a b ab b ++,①2a b +,①3y x -+; (3)整式有:①223a b ab b ++,①2a b +,①23xy -,①0,①3y x -+,①2x ; (4)二项式有:①2a b +,①3y x -+; 故答案为:(1)①①①;(2)①①①;(3)①①①①①①;(4)①①【点拨】本题考查了整式,关键是熟练掌握单项式,多项式,整式,二项式的定义.28.①①①① ①①① ①①①①①①①【分析】根据单项式和多项式的定义、整式的定义求解.【详解】解:由定义可知:在①xy ,①5x -,①7ab ﹣5,①2a b -+①0,①45-x 2+1,①2x y +-,①,4x -,①2b π中,单项式有:①①①①,多项式有:①①①,整式有:①①①①①①①(填序号).故答案为①①①①;①①①;①①①①①①①.【点拨】本题重点考查了整式、单项式、单项式定义.29.35六 【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】2335x yz -的系数是35-,次数是6, 故答案为35-,六. 【点拨】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键. 30.13π- 2【分析】根据单项式的次数、系数的定义解答.【详解】代数式213x π-的系数是13π-,次数是2. 故答案是:13π-;2【点拨】本题考查单项式,解题关键是熟练掌握单项式的定义.31.-2【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.求出次数和系数,再将其相乘即可.【详解】解:根据单项式定义得:单项式的系数是﹣23,次数是3;其系数与次数之积为﹣23×3=﹣2.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键. 32.7π 5【分析】根据单项式的基本性质得到答案.【详解】单项式327a b 的系数是7π,次数是3+2=5,故答案为7π,5.【点拨】本题主要考查了单项式的基本性质,解本题的要点在于熟知单项式的基本性质.33.-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点拨】此题考查单项式,多项式,解题关键在于掌握其定义.34.13a 3b 2c . 【解析】【分析】设这个单项式的数字因数为M ,则原单项式为Ma 3b 2c ,代入其字母的值求解M 即可.【详解】解:设这个单项式的数字因数为M ,则原单项式为Ma 3b 2c ,由题意得,M×13×22×3=4,解得:M=13, 所以原单项式为:13a 3b 2c . 故答案为:13a 3b 2c . 【点拨】理解单项式是由数字因数和字母因数两部分组成的是解题关键.35.-ab 2c (答案不唯一)【解析】分析:根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.详解:先构造系数为﹣1,即数字因数为﹣1,然后使a 、b 、c 的指数和是4即可.如﹣ab 2c 、﹣abc 2、﹣a 2bc (答案不唯一).故答案为﹣a 2bc (答案不唯一).点拨:本题考查了单项式的定义,解答此题关键是构造单项式的系数和次数,把一个单项式分成数字因数和字母因式的积,是找准单项式的系数和次数的关键.36.95【分析】单项式中的数字因式是其系数,字母因式中各字母指数之和为其次数.【详解】解:由单项式系数和次数定义可知,a=35,b=2+1=3,则ab=39355⨯=, 故答案为:95. 【点拨】本题考查了单项式系数和次数的定义.37.-512 a 10【解析】【分析】本题须先通过观察已知条件,找出这列单项式的规律即可求出结果.【详解】根据观察可得:第n 个单项式为 (-2)n -1a n .所以,第10个单项式为(-2)10-1a 10=-512 a 10故答案为-512 a 10【点拨】本题考核知识点:观察单项式的规律. 解题关键点:运用乘方知识总结规律.38.10100x -【分析】系数按照1,−4,9,−16,25,…(−1)n+1n 2进行变化,x 的指数按照1,2,3,4,5进行变化,所以按这个规律即可写出第10个式子.【详解】解:由题意可得:写出第10个式子是1121010(1)10100x x -=-,故答案为:10100x -.【点拨】本题考查数字规律问题,需要注意观察数字的变化规律.39.8128a【分析】根据题意给出的规律即可求出答案.【详解】由题意可知:第n 个式子为2n -1a n ,①第8个式子为:27a 8=128a 8,故答案为:128a 8.【点拨】本题考查单项式,解题的关键是正确找出题中的规律,本题属于基础题型.40.()12112n n n++-⨯n x 【分析】通过观察发现单项式的系数和次数的变化规律, 即可求解. 【详解】观察发现单项式的系数可以用通式()12112n n n ++-⨯来表示,次数可以用n x 来表示,则第n 个单项式为()12112n n n++-⨯n x . 故答案为()12112n n n ++-⨯n x . 【点拨】本题考查了单项式的规律探索,解答的关键是仔细观察前几项单项式系数及次数的变化规律,总结出一般的规律.。
人教版数学七年级上册。第二章测试题含答案
人教版数学七年级上册。
第二章测试题含答案人教版数学七年级上册第二章测试题含答案2.1 整式一.选择题1.下列说法正确的是(B)。
A。
是单项式B。
x2+2x-1的常数项为1C。
的系数是2D。
xy的次数是2次2.在下面四个式子中,为单项式的是(A)。
A。
y=x2B。
C。
2D。
23.x3+x2(b+1)+1是关于x的二次多项式,则a,b的值可以是(C)。
A。
B。
C。
2,-1D。
4.下列说法中,正确的为(D)。
A。
单项式-的系数是-2,次数是3B。
单项式a的系数是,次数是1C。
是二次单项式D。
单项式-的系数是-,次数是35.多项式有(B)个。
A。
4B。
3C。
2D。
16.多项式2x5+4xy3-5x2-1的次数和常数项分别是(B)。
A。
5,-1B。
4,-1C。
10,-1D。
4,17.关于整式的概念,下列说法正确的是(B)。
A。
的系数是B。
32x3y的次数是6C。
的常数项是D。
-x2y+xy-7是5次三项式8.下列说法正确的是(D)。
A。
单项式的系数是B。
m的系数和次数都是1C。
m+n+1是一次单项式D。
多项式2m3+3m2-4的项数是49.下列式子:x2+2,+4,5x,中,整式的个数是(C)。
A。
3B。
4C。
5D。
610.下列说法正确的是(①,②,④)。
①-的相反数是-3;②a3b的次数是3;③多项式-5x+6x2-1是二次三项式;④-6.1是负分数;⑤的系数是-。
二.填空题11.多项式2x+3x2y-4的次数是3,次数最高的项是3x2y2,常数项是-4.12.若x2y3-πx4yn+xy2是关于x,y的六次多项式,则正整数n的值为4.13.同时符合下列条件:①同时含有字母a,b;②常数项是-1,且最高次项的系数是2的一个4次2项式,请你写出满足以上条件的一个整式。
答案:2a2b-1.14.已知(b-3)x2y|b|+(a+2)是关于x,y的五次单项式,a2-3ab+b2的值为-1.15.把多项式2x3y-4y2x+5x2-1重新排列:则按x降幂排列:5x2-4y2x+2x3y-1.三.解答题16.若关于x,y的多项式3x2-nxmy-x是一个三次三项式,且最高次项的系数是-3,求m-n的值。
人教版七年级数学上册单元测试题全套(含答案)
人教版七年级数学上册单元测试题全套(含答案)(含期中期末试题,共6套)第一章检测卷一、选择题(每小题3分,共30分)1.如果将“收入100元”记作“+100元”,那么“支出50元”应记作()A.+50元B.-50元C.+150元D.-150元2.在有理数-4,0,-1,3中,最小的数是()A.-4 B.0 C.-1 D.33.如图,数轴上有A,B,C,D四个点,其中表示2的相反数的点是()A.点A B.点B C.点C D.点D4.2016年第一季度,某市“蓝天白云、繁星闪烁”天数持续增加,获得省环境空气质量生态补偿资金408万元.408万用科学记数法表示正确的是()A.408×104B.4.08×104C.4.08×105D.4.08×1065.下列算式正确的是()A.(-14)-5=-9 B.0-(-3)=3C.(-3)-(-3)=-6 D.|5-3|=-(5-3)6.有理数(-1)2,(-1)3,-12,|-1|,-(-1),-1-1中,化简结果等于1的个数是() A.3个B.4个C.5个D.6个7.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“8cm”分别对应数轴上的-3.6和x,则x的值为()A.4.2 B.4.3 C.4.4 D.4.58.有理数a,b在数轴上的位置如图所示,下列各式成立的是()A.b>0 B.|a|>-b C.a+b>0 D.ab<09.若|a |=5,b =-3,则a -b 的值为( )A .2或8B .-2或8C .2或-8D .-2或-810.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…用你所发现的规律得出22016的末位数字是( )A .2B .4C .6D .8 二、填空题(每小题3分,共24分)11.-3的相反数是________,-2018的倒数是________.12.在数+8.3,-4,-0.8,-15,0,90,-343,-|-24|中,负数有___ _______,分数有___________________.13.绝对值大于4而小于7的所有整数之和是________.14.点A ,B 表示数轴上互为相反数的两个数,且点A 向左平移8个单位到达点B ,则这两点所表示的数分别是________和________.15.如图是一个简单的数值运算程序.当输入x 的值为-1时,则输出的数值为________.输入x ―→×(-3)―→-2―→输出16.太阳的半径为696000千米,用科学记数法表示为________千米;把210400精确到万位是________. 17.已知(a -3)2与|b -1|互为相反数,则式子a 2+b 2的值为________.18.填在下面各正方形中的四个数之间都有一定的规律,据此规律得出a +b +c =________.三、解答题(共66分)19.(8分)将下列各数在如图所示的数轴上表示出来,并用“>”把这些数连接起来. -112,0,2,-|-3|,-(-3.5).20.(16分)计算:(1)5×(-2)+(-8)÷(-2); (2)⎣⎢⎡⎦⎥⎤2-5×⎝⎛⎭⎫-122÷⎝⎛⎭⎫-14;(3)(-24)×⎝⎛⎭⎫12-123-38; (4)-14-(1-0×4)÷13×[(-2)2-6].21.(10分)小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东,跑回到自己家.(1)以小明家为原点,向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250m/min ,那么小明跑步一共用了多长时间?22.(8分)某人用400元购买了8套儿童服装,准备以一定的价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录如下(单位:元):+2,-3,+2,+1,-2,-1,0,-2.当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)多少?23.(12分)某校七(1)班学生的平均身高是160厘米,下表给出了该班6名学生的身高情况(单位:厘米).学 生 A B C D E F 身 高157162159154163165身高与平均身高的差值-3 +2 -1 a +3 b(1)列式计算表中的数据a 和b ;(2)这6名学生中谁最高?谁最矮?最高与最矮学生的身高相差多少?(3)这6名学生的平均身高与全班学生的平均身高相比,在数值上有什么关系?(通过计算回答)24.(12分)下面是按规律排列的一列数: 第1个数:1-⎝⎛⎭⎫1+-12;第2个数:2-⎝⎛⎭⎫1+-12⎣⎡⎦⎤1+(-1)23⎣⎡⎦⎤1+(-1)34;第3个数:3-⎝⎛⎭⎫1+-12⎣⎡⎦⎤1+(-1)23⎣⎡⎦⎤1+(-1)34⎣⎡⎦⎤1+(-1)45⎣⎡⎦⎤1+(-1)56. (1)分别计算这三个数的结果(直接写答案);(2)写出第2017个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.参考答案与解析1.B 2.A 3.A 4.D 5.B 6.B 7.C 8.D 9.B 10.C 11.3 -1201812.-4,-0.8,-15,-343,-|-24|+8.3,-0.8,-15,-34313.0 14.4 -4 15.1 16.6.96×105 21万 17.1018.110 解析:找规律可得c =6+3=9,a =6+4=10,b =ac +1=91,∴a +b +c =110.19.解:数轴表示如图所示,(5分)由数轴可知-(-3.5)>2>0>-112>-|-3|.(8分)20.解:(1)原式=-10+4=-6.(4分) (2)原式=⎝⎛⎭⎫2-54×(-4)=-8+5=-3.(8分) (3)原式=-12+40+9=37.(12分)(4)原式=-1-1×3×(-2)=-1+6=5.(16分) 21.解:(1)如图所示:(3分)(2)2-(-1)=3(km).答:小彬家与学校之间的距离是3km.(6分)(3)(2+1.5+1)×2=9(km)=9000m ,9000÷250=36(min). 答:小明跑步一共用了36min.(10分)22.解:由题意,得55×8+2+(-3)+2+1+(-2)+(-1)+0+(-2)-400=37(元),(5分)所以他卖完这8套儿童服装后是盈利,盈利37元.(8分)23.解:(1)a =154-160=-6,b =165-160=+5.(4分)(2)学生F 最高,学生D 最矮,最高与最矮学生的身高相差11厘米.(8分)(3)-3+2+(-1)+(-6)+3+5=0,所以这6名学生的平均身高与全班学生的平均身高相同,都是160厘米.(12分)24.解:(1)第1个数:12;第2个数:32;第3个数:52.(6分)(2)第2017个数:2017-⎝⎛⎭⎫1+-12⎣⎡⎦⎤1+(-1)23⎣⎡⎦⎤1+(-1)34…⎣⎡⎦⎤1+(-1)40324033⎣⎡⎦⎤1+(-1)40334034=2017-12×43×34×…×40344033×40334034=2017-12=201612.(12分)第二章检测卷一、选择题(每小题3分,共30分) 1.下列式子是单项式的是( )A.x +y 2B.-12x 3yz 2C.5xD.x -y2.在下列单项式与2xy 是同类项的是( ) A.2x 2y 2 B.3y C.xy D.4x3.多项式4xy 2-3xy 3+12的次数为( ) A.3 B.4 C.6 D.74.下面计算正确的是( ) A.6a -5a =1 B.a +2a 2=3a 2C.-(a -b )=-a +bD.2(a +b )=2a +b 5.如图所示,三角尺的面积为( ) A.ab -r 2 B.12ab -r 2C.12ab -πr 2 D.ab6.已知一个三角形的周长是3m -n ,其中两边长的和为m +n -4,则这个三角形的第三边的长为( ) A.2m -4 B.2m -2n -4 C.2m -2n +4 D.4m -2n +47.已知P =-2a -1,Q =a +1且2P -Q =0,则a 的值为( ) A.2 B.1 C.-0.6 D.-18.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( )A.甲B.乙C.丙D.一样9.当1<a <2时,代数式|a -2|+|1-a |的值是( ) A.-1 B.1 C.3 D.-310.下列图形都是由同样大小的长方形按一定的规律组成的,其中第∴个图形的面积为2cm 2,第∴个图形的面积为8cm 2,第∴个图形的面积为18cm 2……则第∴个图形的面积为( )A.196cm 2B.200cm 2C.216cm 2D.256cm 2 二、填空题(每小题3分,共24分)11.单项式-2x 2y5的系数是 ,次数是 W.12.如果手机通话每分钟收费m 元,那么通话n 分钟收费 元.13.若多项式的一次项系数是-5,二次项系数是8,常数项是-2,且只含一个字母x ,请写出这个多项式 .14.减去-2m 等于m 2+3m +2的多项式是m 2+m +2. 15.如果3x 2y 3与x m +1y n-1的和仍是单项式,则(n -3m )2016的值为 .16.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含二次项,则m 等于4. 17.若a -2b =3,则9-2a +4b 的值为 W.18.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2016个格子中的整数是-2.-4a b c 6 b -2 …三、解答题(共66分) 19.(12分)化简:(1)3a 2+5b -2a 2-2a +3a -8b ; (2)(8x -7y )-2(4x -5y );(3)-(3a 2-4ab )+[a 2-2(2a 2+2ab )].20.(8分)先化简再求值:(1)-9y +6x 2+3⎝⎛⎭⎫y -23x 2,其中x =2,y =-1; (2)2a 2b -[2a 2+2(a 2b +2ab 2)],其中a =12,b =1.21.(10分)已知A =2x 2+xy +3y -1,B =x 2-xy .(1)若(x+2)2+|y-3|=0,求A-2B的值;(2)若A-2B的值与y的值无关,求x的值.22.(10分)暑假期间2名教师带8名学生外出旅游,教师旅游费每人a元,学生每人b元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,则共需交旅游费多少元(用含字母的式子表示)?并计算当a=300,b=200时的旅游费用.23.(12分)如图是某种窗户的形状,其上部是半圆形,下部是边长相同的四个小正方形,已知下部的小正方形的边长为a m,计算:(1)窗户的面积;(2)窗框的总长;(3)若a=1,窗户上安装的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不计,求制作这种窗户需要的费用是多少元(π取3.14,结果保留整数).参考答案与解析1.B 2.C 3.B 4.C 5.C 6.C 7.C 8.C 9.B 10.B 11.-25 3 12.mn 13.8x 2-5x -2 14.m 2+m +215.1 16.4 17.3 18.-219.解:(1)原式=3a 2-2a 2-2a +3a +5b -8b =a 2+a -3b .(4分) (2)原式=8x -7y -8x +10y =3y .(8分)(3)原式=-3a 2+4ab +a 2-4a 2-4ab =-6a 2.(12分)20.解:(1)原式=-9y +6x 2+3y -2x 2=4x 2-6y .(2分)当x =2,y =-1时,原式=4×22-6×(-1)=22.(4分) (2)原式=2a 2b -(2a 2+2a 2b +4ab 2)=2a 2b -2a 2-2a 2b -4ab 2=-2a 2-4ab 2.(6分)当a =12,b =1时,原式=-2×⎝⎛⎭⎫122-4×12×1=-52.(8分)21.解:(1)∴A =2x 2+xy +3y -1,B =x 2-xy ,∴A -2B =2x 2+xy +3y -1-2x 2+2xy =3xy +3y -1.∴(x +2)2+|y -3|=0,∴x =-2,y =3,则A -2B =-18+9-1=-10.(5分)(2)∴A -2B =y (3x +3)-1,A -2B 的值与y 值无关,∴3x +3=0,解得x =-1.(10分)22.解:共需交旅游费为0.8a ×2+0.65b ×8=(1.6a +5.2b )(元).(5分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(10分)23.解:(1)窗户的面积为⎝⎛⎭⎫4+π2a 2m 2.(4分) (2)窗框的总长为(15+π)a m.(8分)(3)⎝⎛⎭⎫4+π2a 2×25+(15+π)a ×20=⎝⎛⎭⎫100+252π×12+(300+20π)×1=400+652π≈502(元). 答:制作这种窗户需要的费用约是502元.(12分) 24.解:(1)11 14 32(6分)(2)第n 个“T”字形图案共有棋子(3n +2)个.(8分)(3)当n =20时,3n +2=3×20+2=62(个).即第20个“T”字形图案共有棋子62个.(10分)(4)这20个数据是有规律的,第1个与第20个数据的和、第2个与第19个数据的和、第3个与第18个数据的和……都是67,共有10个67.所以前20个“T ”字形图案中,棋子的总个数为67×10=670(个).(14分)期中检测卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.a 的相反数是( )A .|a | B.1a C .-a D .以上都不对2.计算-3+(-1)的结果是( )A .2B .-2C .4D .-4 3.在1,-2,0,53这四个数中,最大的数是( )A .-2B .0 C.53 D .14.若2x 2m y 3与-5xy 2n 是同类项,则|m -n |的值是( ) A .0 B .1 C .7 D .-15.长方形窗户上的装饰物如图所示,它是由半径均为b 的两个四分之一圆组成,则能射进阳光部分的面积是( ) A .2a 2-πb 2 B .2a 2-π2b 2C .2ab -πb 2D .2ab -π2b 2第5题图 第6题图6.如图,将一张等边三角形纸片沿各边中点剪成4个小三角形,称为第一次操作;然后将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;……,根据以上操作,若要得到100个小三角形,则需要操作的次数是( )A .25B .33C .34D .50 二、填空题(本大题共6小题,每小题3分,共18分)7.-0.5的绝对值是________,相反数是________,倒数是________.8.请你写出一个只含有字母m 、n ,且它的系数为-2、次数为3的单项式________.9.秋收起义广场是为纪念秋收起义而建设的纪念性广场,位于萍乡城北新区,占地面积约为109000平方米,将数据109000用科学记数法表示为________.10.若关于a ,b 的多项式3(a 2-2ab -b 2)-(a 2+mab +2b 2)中不含有ab 项,则m =________.11.已知|x |=2,|y |=5,且x >y ,则x +y =________.12.已知两个完全相同的大长方形,长为a ,各放入四个完全一样的白色小长方形后,得到图∴、图∴,那么,图∴中阴影部分的周长与图∴中阴影部分的周长的差是________(用含a 的代数式表示).三、(本大题共5小题,每小题6分,共30分) 13.计算:(1)-20-(-14)-|-18|-13; (2)-23-(1+0.5)÷13×(-3).14.化简:(1)3a 2+2a -4a 2-7a; (2)13(9x -3)+2(x +1).15.已知a 、b 互为相反数,c 、d 互为倒数,|m |=2,求代数式2m -(a +b -1)+3cd 的值.16.先化简,再求值:-a 2b +(3ab 2-a 2b )-2(2ab 2-a 2b ),其中a =-1,b =-2.17.有理数a,b,c在数轴上的位置如图所示,化简:|b-a|-|c-b|+|a+b|.四、(本大题共3小题,每小题8分,共24分)18.如果两个关于x、y的单项式2mx a y3与-4nx3a-6y3是同类项(其中xy≠0).(1)求a的值;(2)如果它们的和为零,求(m-2n-1)2017的值.19.如图所示,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b>a>0).(1)用a、b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.20.邮递员骑车从邮局O出发,先向西骑行2km到达A村,继续向西骑行3km到达B村,然后向东骑行8km,到达C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1cm表示2km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村距离A村有多远?(3)邮递员共骑行了多少km?五、(本大题共2小题,每小题9分,共18分)21.操作探究:已知在纸面上有一数轴(如图所示).操作一:(1)折叠纸面,使1表示的点与-1表示的点重合,则-3表示的点与________表示的点重合;操作二:(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:∴5表示的点与数________表示的点重合;∴若数轴上A、B两点之间距离为11(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.22.“十一”黄金周期间,淮安动物园在7天假期中每天接待的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数),把9月30日的游客人数记为a万人.日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日人数变化(单位:万人)+1.6+0.8+0.4-0.4-0.8+0.2-1.2(1)请用含a的代数式表示10月2日的游客人数;(2)请判断七天内游客人数最多的是哪天,有多少人?(3)若9月30日的游客人数为2万人,门票每人10元,问黄金周期间淮安动物园门票收入是多少元?六、(本大题共12分)23.探索规律,观察下面算式,解答问题.1+3=4=22;1+3+5=9=32; 1+3+5+7=16=42; 1+3+5+7+9=25=52; …(1)请猜想:1+3+5+7+9+…+19=________;(2)请猜想:1+3+5+7+9+…+(2n -1)+(2n +1)+(2n +3)=________; (3)试计算:101+103+…+197+199.参考答案与解析1.C 2.D 3.C 4.B 5.D6.B 解析:∴第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7(个);第三次操作后,三角形共有4+3+3=10(个)……∴第n 次操作后,三角形共有4+3(n -1)=(3n +1)(个).当3n +1=100时,解得n =33.故选B.7.0.5 0.5 -2 8.-2m 2n (答案不唯一) 9.1.09×105 10.-6 11.-3或-712.a 解析:由图∴知小长方形的长为宽的2倍,设大长方形的宽为b ,小长方形的宽为x ,长为2x ,由图∴得2x +x +x =a ,则4x =a .图∴中阴影部分的周长为2b +2(a -2x )+2x ×2=2a +2b ,图∴中阴影部分的周长为2(a +b -2x )=2a +2b -4x ,∴图∴中阴影部分的周长与图∴中阴影部分的周长之差为(2a +2b )-(2a +2b -4x )=4x =a .13.解:(1)原式=-6-18-13=-37.(3分)(2)原式=-8-1.5÷13×(-3)=-8-4.5×(-3)=-8+13.5=5.5.(6分)14.解:(1)原式=-a 2-5a .(3分)(2)原式=5x +1.(6分)15.解:根据题意得a +b =0,cd =1,m =2或-2.(2分)当m =2时,原式=4-(-1)+3=4+1+3=8;(4分)当m =-2时,原式=-4-(-1)+3=-4+1+3=0.(6分)16.解:原式=-a 2b +3ab 2-a 2b -4ab 2+2a 2b =-ab 2,(3分)当a =-1,b =-2时,原式=4.(6分)17.解:由数轴可知:c <b <0<a ,|a |>|b |,∴b -a <0,c -b <0,a +b >0,(2分)∴原式=-(b -a )+(c -b )+(a +b )=-b +a +c -b +a +b =2a -b +c .(6分)18.解:(1)依题意,得a =3a -6,解得a =3.(4分)(2)∴2mx 3y 3+(-4nx 3y 3)=0,故m -2n =0,∴(m -2n -1)2017=(-1)2017=-1.(8分) 19.解:(1)阴影部分的面积为12b 2+12a (a +b ).(4分)(2)当a =3,b =5时,12b 2+12a (a +b )=12×25+12×3×(3+5)=492,即阴影部分的面积为492.(8分)20.解:(1)如图所示:(3分)(2)C 、A 两村的距离为3-(-2)=5(km). 答:C 村距离A 村5km.(5分) (3)|-2|+|-3|+|+8|+|-3|=16(km). 答:邮递员共骑行了16km.(8分) 21.解:(1)3(3分) (2)∴-3(6分)∴由题意可得,A 、B 两点距离对称点的距离为11÷2=5.5.∴对称点是表示1的点,∴A 、B 两点表示的数分别是-4.5,6.5.(9分)22.解:(1)10月2日的游客人数为(a +2.4)万人.(2分) (2)10月3日游客人数最多,人数为(a +2.8)万人.(4分)(3)(a +1.6)+(a +2.4)+(a +2.8)+(a +2.4)+(a +1.6)+(a +1.8)+(a +0.6)=7a +13.2.(6分)当a =2时,(7×2+13.2)×10=272(万元).(8分)答:黄金周期间淮安动物园门票收入是272万元.(9分) 23.解:(1)102(3分) (2)(n +2)2(6分)(3)原式=(1+3+5+…+197+199)-(1+3+…+97+99)=1002-502=7500.(12分)第三章检测卷一、选择题(每小题3分,共30分) 1.下列方程是一元一次方程的是( )A.x -2=3B.1+5=6C.x 2+x =1D.x -3y =02.方程2x +3=7的解是( )A.x =5B.x =4C.x =3.5D.x =2 3.下列等式变形正确的是( )A.若a =b ,则a -3=3-bB.若x =y ,则x a =yaC.若a =b ,则ac =bcD.若b a =dc ,则b =d4.把方程3x +2x -13=3-x +12去分母正确的是( )A.18x +2(2x -1)=18-3(x +1)B.3x +(2x -1)=3-(x +1)C.18x +(2x -1)=18-(x +1)D.3x +2(2x -1)=3-3(x +1)5.若关于x 的方程x m -1+2m +1=0是一元一次方程,则这个方程的解是( ) A.-5 B.-3 C.-1 D.56.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为( )A.518=2(106+x )B.518-x =2×106C.518-x =2(106+x )D.518+x =2(106-x )7.小马虎在做作业,不小心将方程中的一个常数污染了,被污染的方程是2(x -3)-■=x +1,怎么办呢?他想了想便翻看书后的答案,方程的解是x =9,请问这个被污染的常数是( )A.1B.2C.3D.48.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为( )A.562.5元B.875元C.550元D.750元9.两地相距600千米,甲、乙两车分别从两地同时出发相向而行,甲比乙每小时多行10千米,4小时后两车相遇,则乙的速度是( )A.70千米/时B.75千米/时C.80千米/时D.85千米/时10.图∴为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图∴所示.若图∴中白色与灰色区域的面积比为8∴3,图∴纸片的面积为33,则图∴纸片的面积为( )A.2314B.3638C.42D.44二、填空题(每小题3分,共24分) 11.方程3x -3=0的解是 . 12.若-x n+1与2x 2n-1是同类项,则n = .13.已知多项式9a +20与4a -10的差等于5,则a 的值为 . 14.若方程x +2m =8与方程2x -13=x +16的解相同,则m = . 15.在有理数范围内定义一种新运算“∴”,其运算规则为:a ∴b =-2a +3b ,如:1∴5=-2×1+3×5=13,则方程x ∴4=0的解为 .16.七年级三班发作业本,若每人发4本,则剩余12本;若每人发5本,则少18本,那么该班有 名学生.17.某商场有一款春季大衣,如果打八折出售,每件可盈利200元,如果打七折出售,每件还可以盈利50元,那么这款大衣每件的标价是 元.18.图∴是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图∴所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm 3.三、解答题(共66分) 19.(15分)解下列方程:(1)4x -3(12-x )=6x -2(8-x ); (2)2x -13-2x -34=1;(3)12x +2⎝⎛⎭⎫54x +1=8+x .20.(8分)已知3+a 2与-13(2a -1)-1互为相反数,求a 的值.21.(9分)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?22.(10分)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图∴所示).使用时,可将鱼竿的每一节套管都完全拉伸(如图∴所示).图∴是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm ,第2节套管长46cm ,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为x cm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm ,求x 的值.23.(12分)为举办校园文化艺术节,甲、乙两班准备给合唱同学购买演出服装(一人一套),两班共92人(其中甲班比乙班人多,且甲班不到90人),下面是供货商给出的演出服装的价格表:购买服装的套数 1套至45套 46套至90套91套以上 每套服装的价格60元50元40元如果两班单独给每位同学购买一套服装,那么一共应付5020元.(1)甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省多少钱? (2)甲、乙两班各有多少名同学?24.(12分)把正整数1,2,3,4,…,2017排列成如图所示的一个数表.(1)用一正方形在表中随意框住4个数,把其中最小的数记为x ,另三个数用含x 的式子表示出来,从大到小依次是 , , ;(2)当被框住的4个数之和等于416时,x 的值是多少?(3)被框住的4个数之和能否等于622?如果能,请求出此时x 的值;如果不能,请说明理由.参考答案与解析1.A 2.D 3.C 4.A 5.A 6.C 7.B 8.B 9.A10.C 解析:设图∴中白色区域的面积为8x ,灰色区域的面积为3x ,由题意,得8x +3x =33,解得x =3.∴灰色部分面积为3×3=9,图∴的面积为33+9=42.故选C.11.x =1 12.2 13.-5 14.72 15.x =616.30 17.1500 18.100019.解:(1)x =-20.(5分)(2)x =72.(10分)(3)x =3.(15分)20.解:由题意,得3+a 2+⎣⎡⎦⎤-13(2a -1)-1=0,(4分)解得a =5.(8分) 21.解:设甲种票买了x 张,则乙种票买了(35-x )张,(2分)依题意有24x +18(35-x )=750,(6分)解得x =20.则35-x =15.(8分)答:甲种票买了20张,乙种票买了15张.(9分)22.解:(1)第5节套管的长度为50-4×(5-1)=34(cm).(2分)(2)第10节套管的长度为50-4×(10-1)=14(cm),(4分)因为每相邻两节套管间重叠的长度为x cm ,根据题意得(50+46+42+…+14)-9x =311,(7分)即320-9x =311,解得x =1.(9分)答:每相邻两节套管间重叠的长度为1cm.(10分) 23.解:(1)由题意,得5020-92×40=1340(元).(4分)答:甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省1340元.(5分)(2)设甲班有x 名同学准备参加演出(依题意46<x <90),则乙班有(92-x )名.依题意得50x +60(92-x )=5020,解得x =50,92-x =42(名).(11分)答:甲班有50名同学,乙班有42名同学.(12分) 24.解:(1)x +8 x +7 x +1(3分)(2)由题意,得x +x +1+x +7+x +8=416,解得x =100.(7分) (3)不能,(8分)因为当4x +16=622,解得x =15112,不为整数.(12分)第四章检测卷一、选择题(每小题3分,共30分) 1.生活中的实物可以抽象出各种各样的几何图形,如图,蛋糕的形状类似于( ) A.圆柱 B.球 C.圆 D.圆锥第1题图2.下列说法正确的是( )A.两点确定一条直线B.两条射线组成的图形叫作角C.两点之间直线最短D.若AB =BC ,则点B 为AC 的中点 3.若∴1=40.4°,∴2=40°4′,则∴1与∴2的关系是( ) A.∴1=∴2 B.∴1>∴2 C.∴1<∴2 D.以上都不对4.如图,长度为18cm 的线段AB 的中点为M ,点C 是线段MB 的一个三等分点,则线段AC 的长为( ) A.3cm B.6cm C.9cm D.12cm第4题图 第5题图5.如图,∴AOB 为平角,且∴AOC =27∴BOC ,则∴BOC 的度数是( )A.140°B.135°C.120°D.40°6.如图,有一个正方体纸巾盒,它的平面展开图是( )7.若一个角的补角的余角是28°,则这个角的度数为( ) A.62° B.72° C.118° D.128°8.把一副三角尺ABC 与BDE 按如图所示那样拼在一起,其中A ,D ,B 三点在同一直线上,BM 为∴ABC 的平分线,BN 为∴CBE 的平分线,则∴MBN 的度数是( )A.30°B.45°C.55°D.60°9.两根木条,一根长20cm ,一根长24cm ,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为( )A.2cmB.4cmC.2cm 或22cmD.4cm 或44cm10.如图,C 、D 在线段BE 上,下列说法:∴直线CD 上以B 、C 、D 、E 为端点的线段共有6条;∴图中有2对互补的角;∴若∴BAE =100°,∴DAC =40°,则以A 为顶点的所有小于平角的角的度数和为360°;∴若BC =2,CD =DE =3,点F 是线段BE 上任意一点,则点F 到点B ,C ,D ,E 的距离之和的最大值为15,最小值为11.其中说法正确的个数有( )A.1个B.2个C.3个D.4个 二、填空题(每小题3分,共24分)11.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出现这一现象的原因 .第11题图第12题图12.如图所示的图形中,柱体为(请填写你认为正确物体的序号).13.如图,直线AB,CD交于点O,我们知道∴1=∴2,那么其理由是.第13题图14.已知BD=4,延长BD到A,使BA=6,点C是线段AB的中点,则CD=.15.往返于甲、乙两地的客车,中途停靠3个车站(来回票价一样),且任意两站间的票价都不同,共有种不同的票价,需准备种车票.16.如图∴所示的∴AOB纸片,OC平分∴AOB,如图∴,把∴AOB沿OC对折成∴COB(OA与OB重合),从O点引一条射线OE,使∴BOE=12∴EOC,再沿OE把角剪开,若剪开后得到的3个角中最大的一个角为80°,则∴AOB=°.第16题图第18题图17.已知A、B、C三点都在数轴上,点A在数轴上对应的数为2,且AB=5,BC=3,则点C在数轴上对应的数为.18.用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是cm2.三、解答题(共66分)19.(10分)观察下面由7个小正方体组成的图形,请你画出从正面、上面、左面看到的平面图形.20.(10分)如图,B是线段AD上一点,C是线段BD的中点.(1)若AD=8,BC=3.求线段CD,AB的长;(2)试说明:AD+AB=2AC.21.(10分)如图,将两块直角三角尺的顶点叠放在一起.(1)若∴DCE=35°,求∴ACB的度数;(2)若∴ACB=140°,求∴DCE的度数;(3)猜想∴ACB与∴DCE的关系,并说明理由.22.(12分)已知线段AB=20cm,M是线段AB的中点,C是线段AB延长线上的点,AC:BC=3:1,点D是线段BA延长线上的点,AD=AB.求:(1)线段BC的长;(2)线段DC的长;(3)线段MD的长.23.(12分)如图,甲、乙两船同时从小岛A出发,甲船沿北偏西20°的方向以40海里/时的速度航行;乙船沿南偏西80°的方向以30海里/时的速度航行.半小时后,两船分别到达B,C两处.(1)以1cm表示10海里,在图中画出B,C的位置;(2)求A处看B,C两处的张角∴BAC的度数;(3)测出B,C两处的图距,并换算成实际距离(精确到1海里).24.(12分)已知O是直线AB上的一点,∴COD是直角,OE平分∴BOC.(1)如图∴,若∴AOC=30°,求∴DOE的度数;(2)在图∴中,若∴AOC=a,直接写出∴DOE的度数(用含a的代数式表示);(3)将图∴中的∴DOC绕顶点O顺时针旋转至图∴的位置.∴探究∴AOC和∴DOE的度数之间的关系,写出你的结论,并说明理由;∴在∴AOC的内部有一条射线OF,且∴AOC-4∴AOF=2∴BOE+∴AOF,试确定∴AOF与∴DOE的度数之间的关系,说明理由.参考答案与解析1.A 2.A 3.B 4.D 5.A 6.B7.C8.B9.C10.B解析:以B,C,D,E为端点的线段有BC,BD,BE,CE,CD,ED共6条,故∴正确;图中互补的角就是分别以C,D为顶点的两对角,即∴BCA和∴ACD互补,∴ADE和∴ADC互补,故∴正确;由∴BAE=100°,∴CAD =40°,根据图形可以求出∴BAC+∴CAE+∴BAE+∴BAD+∴DAE+∴DAC=100°+100°+100°+40°=340°,故∴错误;当F在线段CD上时最小,则点F到点B,C,D,E的距离之和为FB+FE+FD+FC=2+3+3+3=11,当F 和E重合时最大,则点F到点B、C、D、E的距离之和为FB+FE+FD+FC=8+0+3+6=17,故∴错误.故选B.11.两点之间,线段最短 12.∴∴∴∴ 13.同角的补角相等 14.1 15.10 20 16.120 17.-6或0或4或10 18.30 19.解:图略.(10分)20.解:(1)∴C 是线段BD 的中点,BC =3,∴CD =BC =3.又∴AB +BC +CD =AD ,AD =8,∴AB =8-3-3=2.(5分)(2)∴AD +AB =AC +CD +AB ,BC =CD ,∴AD +AB =AC +BC +AB =AC +AC =2AC .(10分)21.解:(1)由题意知∴ACD =∴ECB =90°,∴∴ACB =∴ACD +∴DCB =∴ACD +∴ECB -∴ECD =90°+90°-35°=145°.(3分)(2)由(1)知∴ACB =180°-∴ECD ,∴∴ECD =180°-∴ACB =40°.(6分)(3)∴ACB +∴DCE =180°.(7分)理由如下:∴∴ACB =∴ACD +∴DCB =90°+90°-∴DCE ,∴∴ACB +∴DCE =180°.(10分)22.解:(1)设BC =x cm ,则AC =3x cm.又∴AC =AB +BC =(20+x )cm ,∴20+x =3x ,解得x =10.即BC =10cm.(4分)(2)∴AD =AB =20cm ,∴DC =AD +AB +BC =20cm +20cm +10cm =50cm.(8分)(3)∴M 为AB 的中点,∴AM =12AB =10cm ,∴MD =AD +AM =20cm +10cm =30cm.(12分)23.解:(1)图略.(4分)(2)∴BAC =90°-80°+90°-20°=80°.(8分) (3)约2.3cm ,即实际距离约23海里.(12分)24.解:(1)由已知得∴BOC =180°-∴AOC =150°,又∴COD 是直角,OE 平分∴BOC ,∴∴DOE =∴COD -12 ∴BOC=90°-12×150°=15°.(3分)(2)∴DOE =12a .(6分) 解析:由(1)知∴DOE =∴COD -12∴BOC =90°,∴∴DOE =90°-12(180°-∴AOC )=12∴AOC=12α. (3)∴∴AOC =2∴DOE .(7分)理由如下:∴∴COD 是直角,OE 平分∴BOC ,∴∴COE =∴BOE =90°-∴DOE ,∴∴AOC =180°-∴BOC =180°-2∴COE =180°-2(90°-∴DOE ),∴∴AOC =2∴DOE .(9分)∴4∴DOE -5∴AOF =180°.(10分)理由如下:设∴DOE =x ,∴AOF =y ,∴∴AOC -4∴AOF =2∴DOE -4∴AOF =2x -4y ,2∴BOE +∴AOF =2(90°-x )+y =180°-2x +y ,∴2x -4y =180°-2x +y ,即4x -5y =180°,∴4∴DOE -5∴AOF =180°.(12分)期末检测卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.如果水库水位上升2m 记作+2m ,那么水库水位下降2m 记作( ) A .-2 B .-4 C .-2m D .-4m 2.下列式子计算正确的个数有( )∴a 2+a 2=a 4;∴3xy 2-2xy 2=1;∴3ab -2ab =ab ;∴(-2)3-(-3)2=-17. A .1个 B .2个 C .3个 D .0个3.一个几何体的表面展开图如图所示,则这个几何体是( ) A .四棱锥 B .四棱柱 C .三棱锥 D .三棱柱4.已知2016x n +7y 与-2017x 2m +3y 是同类项,则(2m -n )2的值是( ) A .16 B .4048 C .-4048 D .55.某商店换季促销,将一件标价为240元的T 恤8折售出,仍获利20%,则这件T 恤的成本为( ) A .144元 B .160元 C .192元 D .200元6.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式是CH 4,乙烷的化学式是C 2H 6,丙烷的化学式是C 3H 8,……,设C(碳原子)的数目为n (n 为正整数),则它们的化学式都可以用下列哪个式子来表示( )A .C n H 2n +2B .C n H 2n C .C n H 2n -2D .C n H n +3 二、填空题(本大题共6小题,每小题3分,共18分) 7.-12的倒数是________.8.如图,已知∴AOB =90°,若∴1=35°,则∴2的度数是________.9.若多项式2(x 2-xy -3y 2)-(3x 2-axy +y 2)中不含xy 项,则a =2,化简结果为_________. 10.若方程6x +3=0与关于y 的方程3y +m =15的解互为相反数,则m =________.11.机械加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个.已知2个大齿轮与3个小齿轮配成一套,则安排25名工人加工大齿轮,才能使每天加工的大、小齿轮刚好配套.12.在三角形ABC 中,AB =8,AC =9,BC =10.P 0为BC 边上的一点,在边AC 上取点P 1,使得CP 1=CP 0,在边AB 上取点P 2,使得AP 2=AP 1,在边BC 上取点P 3,使得BP 3=BP 2.若P 0P 3=1,则CP 0的长度为________.三、(本大题共5小题,每小题6分,共30分) 13.(1)计算:13.1+1.6-(-1.9)+(-6.6); (2)化简:5xy -x 2-xy +3x 2-2x 2.14.计算:(1)(-1)2×5+(-2)3÷4; (2)⎝⎛⎭⎫58-23×24+14÷⎝⎛⎭⎫-123+|-22|.15.化简求值:5a +3b -2(3a 2-3a 2b )+3(a 2-2a 2b -2),其中a =-1,b =2.16.解方程:(1)x -12(3x -2)=2(5-x );(2)x +24-1=2x -36.17.如图,BD 平分∴ABC ,BE 把∴ABC 分成2∴5的两部分,∴DBE =21°,求∴ABC 的度数.四、(本大题共3小题,每小题8分,共24分)18.我区期末考试一次数学阅卷中,阅B 卷第22题(简称B22)的教师人数是阅A 卷第18题(简称A18)教师人数的3倍.在阅卷过程中,由于情况变化,需要从阅B22的教师中调12人阅A18,调动后阅B22剩下的人数比原先阅A18人数的一半还多3人,求阅B22和阅A18原有教师人数各是多少.19.化简关于x 的代数式(2x 2+x )-[kx 2-(3x 2-x +1)],当k 为何值时,代数式的值是常数?20.用“∴”定义一种新运算:对于任意有理数a 和b ,规定a ∴b =ab 2+2ab +a .如:1∴3=1×32+2×1×3+1=16. (1)求(-2) ∴3的值; (2)若312a +⎛⎫⊕ ⎪⎝⎭∴⎝⎛⎭⎫-12=8,求a 的值.五、(本大题共2小题,每小题9分,共18分)21.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是________;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是________;(3)若点A、B都以每秒2个单位长度的速度沿数轴向右运动,而点O不动,t秒后有一个点是一条线段的中点,求t的值.22.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物x元(x>300).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用;(2)李明准备购买500元的商品,你认为他应该去哪家超市?请说明理由;(3)计算一下,李明购买多少元的商品时,到两家超市购物所付的费用一样?六、(本大题共12分)23.已知O是直线AB上的一点,∴COD是直角,OE平分∴BOC.(1)如图∴,若∴AOC=30°,求∴DOE的度数;(2)在图∴中,若∴AOC=α,直接写出∴DOE的度数(用含α的代数式表示);(3)将图∴中的∴COD绕顶点O顺时针旋转至图∴的位置.∴探究∴AOC和∴DOE的度数之间的关系,写出你的结论,并说明理由;∴在∴AOC的内部有一条射线OF,且∴AOC-4∴AOF=2∴BOE+∴AOF,试确定∴AOF与∴DOE的度数之间的关系,说明理由.。
人教版数学七年级上册第二单元测试试卷(含答案)
人教版数学7年级上册第2单元·时间:120分钟 满分:120分班级__________姓名__________得分__________一、选择题(共10小题,满分30分,每小题3分)1.(3分)下列代数式中,不是单项式的是( )A .a 2B .2aC .a 2D .a +22.(3分)在下列单项式23xy 2,13πrh ,5x ,1中,次数是0的是( )A .23xy 2B .13πrh C .5x D .13.(3分)多项式12x 6y 2―2x 3y 4+3的次数和项数分别为( )A .7,2B .8,3C .8,2D .7,34.(3分)多项式x 2﹣2x 2y +3y 2各项系数和是( )A .1B .2C .5D .65.(3分)下列计算正确的是( )A .2ab ﹣ab =abB .2ab +ab =2a 2b 2C .4a 3b 2﹣2a =2a 2bD .﹣2ab 2﹣a 2b =﹣3a 2b 26.(3分)对于式子a bc +b ca+c ab 的描述,正确的是( )A .该代数式的值必大于0B .该代数式的值必小于0C .该代数式的值可能为0D .该代数式的值不能为07.(3分)若3x ﹣2y ﹣7=0,则6x ﹣4y ﹣6的值为( )A .20B .8C .﹣8D .﹣208.(3分)设(x ﹣1)3=ax 3+bx 2+cx +d ,则a ﹣b +c ﹣d 的值为( )A .2B .8C .﹣2D .﹣89.(3分)下列添括号正确的是( )A .﹣b ﹣c =﹣(b ﹣c )B .﹣2x +6y =﹣2(x ﹣6y )C .a ﹣b =+(a ﹣b )D .x ﹣y ﹣1=x ﹣(y ﹣1)10.(3分)为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x 本,则购买乙种读本的费用为( )A.8x元B.10(100﹣x)元C.8(100﹣x)元D.(100﹣8x)元二、填空题(共5小题,满分15分,每小题3分)11.(3分)单项式―34πx2y的系数是 .12.(3分)若13x2y a+3与0.4x1﹣b y4是同类项,则a= ,b= .13.(3分)在春季绿化活动中,榕榕栽种了一棵小树,栽种后测得树高约2.1米,预估今后每年长0.3米,则n年后的树高为 米.14.(3分)已知两个单项式2x3y m与﹣2x n y2的和为0,则m+n的值是 .15.(3分)已知有理数x、y满足|x﹣3|+(2y+4)2=0,则代数式x+y的值为 .三、解答题(共8小题,满分75分)16.(9分)先化简,再求值:(6a2﹣2ab)﹣2(3a2+4ab),其中a=1,b=﹣2.17.(9分)已知x=12,求(2x2―12+3x)―4(x―x2+12)的值.18.(9分)已知a2﹣2a+1=0,求代数式a(a﹣4)+(a+1)(a﹣1)+1的值.19.(9分)下面是一道例题及其解答过程的一部分,其中A是关于m的多项式.请写出多项式A,并将该例题的解答过程补充完整.例:先去括号,再合并同类项:m(A)﹣6(m+1).解:m(A)﹣6(m+1)=m2+6m﹣6m﹣6= .20.(9分)某演习场中有南北两个演习区,南演习区有一个长方形方队,方队每排有(3a﹣b)名队员,共有(3a+b)排;北演习区有一个正方形方队,方队每排有(a+b)名队员,共有(a+b)排,其中a>b>0.(1)南演习区队员比北演习区多几名?(2)当a=6,b=2时,演习场上共有多少名队员?21.(10分)已知A=x3﹣x2y﹣y2(x﹣y).(1)当x=y时,求A的值.(2)当x>0,y>0,且x≠y时,试说明A的值是正数.22.(10分)近日,教育部正式印发《义务教育课程方案》,将劳动从原来的综合实践活动课程中完全独立出来,并在今年9月份开学开始正式施行.某学校率先行动,在校园开辟了劳动教育基地,培养学生劳动品质.已知该劳动教育基地有一块长方形和一块正方形实验田,长方形实验田每排种植(3a﹣b)株豌豆幼苗,种植了(3a+b)排,正方形实验田每排种植(a+b)株豌豆幼苗,种植了(a+b)排,其中a>b>0.(1)该劳动教育基地这两块实验田一共种植了多少株豌豆幼苗?(用含a、b的代数式表示并化简)(2)当a=5,b=2时,求该劳动教育基地这两块实验田一共种植了多少株豌豆幼苗?23.(10分)已知:整式A=(2x﹣3)+(3x+5).(1)化简整式A;(2)若2A+B=5x+6,①求整式B;②在“A□B”的“□”内,填入“+,﹣,×,÷”中的一个运算符号,经过计算发现,结果是不含一次项的整式,请你写出一个符合要求的算式,并计算出结果.参考答案一、选择题(共10小题,满分30分,每小题3分)1.D;2.D;3.B;4.B;5.A;6.D;7.B;8.B;9.C;10.C;二、填空题(共5小题,满分15分,每小题3分)11.―3 4π12.1;﹣113.0.3n+2.114.515.1;三、解答题(共8小题,满分75分)16.解:(6a2﹣2ab)﹣2(3a2+4ab)=6a2﹣2ab﹣6a2﹣8ab=﹣10ab.当a=1,b=﹣2时,原式=﹣10×1×(﹣2)=20.17.解:原式=2x2―12+3x―4x+4x2―2=6x2―x―5 2;∵x=1 2;∴6x2―x―52=6×14―12―52=―32.18.解:a(a﹣4)+(a+1)(a﹣1)+1=a2﹣4a+a2﹣1+1=2a2﹣4a=2(a2﹣2a),∵a2﹣2a+1=0,∴a2﹣2a=﹣1,∴原式=2×(﹣1)=﹣2.19.解:由题知,m(A)﹣6(m+1)=m2+6m﹣6m﹣6=m2﹣6,∵m2+6m=m(m+6),∴A为:m+6,故答案为:m2﹣6.20.解:(1)根据题意得:(3a﹣b)(3a+b)﹣(a+b)2=9a2﹣b2﹣a2﹣2ab﹣b2=8a2﹣2ab﹣2b2,答:南演习区队员比北演习区多(8a2﹣2ab﹣2b2)名;(2)(3a﹣b)(3a+b)+(a+b)2=9a2﹣b2+a2+2ab+b2=10a2+2ab,当a=6,b=2时,10a2+2ab=10×62+2×6×2=10×36+24=360+24=384,答:演习场上共有384名队员.21.解:(1)将x=y代入A=x3﹣x2y﹣y2(x﹣y)中得:A=x3﹣x2•x﹣x2(x﹣x)=0,则A的值为0;(2)A=x3﹣x2y﹣y2(x﹣y)=x2(x﹣y)﹣y2(x﹣y)=(x﹣y)(x2﹣y2)=(x﹣y)(x﹣y)(x+y)=(x﹣y)2(x+y);∵x>0,y>0,且x≠y,∴x+y>0,(x﹣y)2≠0,∴A的值是正数.22.解:(1)由题意得,(3a﹣b)(3a+b)+(a+b)2=9a2﹣b2+a2+2ab+b2=10a2+2ab.(2)当a=5,b=2时,原式=10×52+2×5×2=270.答:该劳动教育基地这两块实验田一共种植了270株豌豆幼苗.23.解:(1)A=(2x﹣3)+(3x+5)=2x﹣3+3x+5=5x+2;(2)①∵2A+B=5x+6,∴B=5x+6﹣2A=(5x+6)﹣2×(5x+2)=5x+6﹣10x﹣4=﹣5x+2;②∵A+B=(5x+2)+(﹣5x+2)=4,是不含一次项的整式,A﹣B=(5x+2)﹣(﹣5x+2)=10x,是含有一次项的整式,A×B=(5x+2)(﹣5x+2)=4﹣25x2,是不含一次项的整式,A÷B=(5x+2)÷(﹣5x+2)=―5x25x2是分式,不是整式,所以A和B相加或相乘时不含一次项,结果分别是:4和4﹣25x2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单项式与多项式测试题
姓名:
分数:
一、选择题(每小题 3分,共 30分)
1、卜列说法正确的是 ( )
A . x 的指数是0
B. x
的系数是0
C. 、
T 是四次三项式
..]是五次三项式
A . 3 x 2— 2x+5 的项是 3x 2, 2x ,
C . —3是一次单项式 D. —-ab 的系数是
3
2、 代数式a 2、— xyz 、 ab 2
4
—X 、 -、0、a 2 + b 2、 a —0.2中单项式的个数是( A. 4 B.5 C.6
D. 7
3、 F 列语句正确的是( A . 「厂一]:「:中一次项系数为一 2
--是二次二项式
n
4、 F 列结论正确的是(
5、
6、
A.整式是多项式 C.多项式是整式 如果一个多项式的次数是 A .都小于4 B .
F 列说法正确的是( B. D.
4次, 不是多项式就不是整式 整式是等式
那么这个多项式的任何一项的次数( 都等于4
C.
都不大于4 D.
都不小于4
2 a 3
2 / 4
B . X — y 与2 x 2— 2xy — 5都是多项式
3 3
C.多项式一2x 2+4xy 的次数是3
D. —个多项式的次数是 6,则这个多项式中只有一项的次数是 6
7、x 减去y 的平方的差,用代数式表示正确的是(
)
2 2 2 2 2
A 、(x_y )
B 、x -y
C 、x - y
D 、x_y
8某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。
已知该楼梯长
/分,下楼速度是b 米/分,则他的平均速度是(
)米/分。
2s n a b
9、若ma n b 3是关于a 、b 的五次单项式,且系数是 -3,则mn =(
)。
A 10
B -10
C 15
D -15 o
10、-5二ab 的系数是(
)
A -5 B
-5二 C 3
D 4
二、填空题 (每小题 4分,共 40分)
11、单项式 2 2 xy z 的系数是
,次数是
3
2 _ 2
18、单项式~
3
~
:xy
的系数是 ________ ,次数是 ______ 。
7
13、 多项式:4x 3,3xy 2 -5x 2y 3 y 是 ____________ 次 _______ 项式;
14、 _______________________________________________________________ 在代数式a ,-丄mn , 5,
$,空 y ,7y 中单项式有 ______________________________________________ 个。
S 米,同学上楼速度是
15、写出一个系数为—1,含字母x、y的五次单项式 ________________________ 。
16、多项式x3y2—2xy2—4xy—9是_次_项式,其中最高次项的系数是,二次项
3 ——
是__________ ,常数项是_____________ .
17、一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是_____________ .
18、如果x p 2■ 4x‘ —(q —2)x2—2x ■ 5是关于x的五次四项式,那么p+q= ___________ 。
19、若m—2n = —3,贝U 2m-4n—5 的值为_______________
三、解答题(共80分)
20、写出多项式的项,并说明是几次几项式
1、2a2b ab2 -2 , 2 、x5+4x2y—4x+ 5
21、(10分)已知(a - 3)x2y|a| + (b+2)是关于x, y的五次单项式,求a2- 3ab+b2的值.
__ - 2 3 4 5 6
22、(10 分)观察下列单项式- 2x, 4x,- 8x , 16x,- 32x , 64x,…
(1写出第10个单项式;(2)写出第n个单项式.
23、(10分)已知单项式'r■与-4x2y2的次数相同.
3
(1)求m的值;
(2)求当x= - 9, y=- 2时单项式- /1的值.
3
24、(10分)指出下列各式中哪些是单项式,哪些是多项式,哪些是整式?
2 2 a b 1〔22 2
x y,-x, ,10, 6xy 1, , mn ,2x -x-5, r
3 x 7 x 十x
单项式:________________ 多项式: ____________________
整式:____________________________________________
25、 (10分)如果8x m y4与都是关于x、y的七次单项式,求代数式m i - n2的值?
26、 (10分)当多项式-5x2-( 2m- 1) x2+ (2 - 3n) x - 1不含二次项和一次项时,求m n的值.
27 (10分)计算下列各多项式的值:
5 3 2 r r.
1. x —y + 4x y—4x + 5,其中x =—1, y= —2;
3 2
2. x —x + 1 —x ,其中x=—3;
附加题(10分)已知|a-1|+(2a+b)2 =0,求7a2b —(―4a2b+5ab2) —2(2a2b —3ab2)的值。