展开与折叠导学案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
展开与折叠导学案
知识与技能:学生通过动手实验,发挥讨论等方法,认识多面体与它们展开图的关系。
过程与方法:、能正确判断展开图是哪个几何体的展开图。
情感目标:经历和体验图形的变化过程,发展空间概念,养成研究性学习的良好习惯
学习重点:
将几何体展开成展开图,利用模型将展开图折叠成几何体是重点。
学习难点:
不用模型,展开想象,由展开图怎样叠成几何体。展开图中,多个面在几何体中的对应位置的判断是难点。
一、学前准备:
1、下列第二行的哪种几何体的表面能展开成第一行的平面图形?请对应连线。(可以折一折)
2、表面展开图是扇形的是()
A、圆柱
B、棱柱
C、圆锥
D、棱锥
5、预习疑难摘要:
。
二、探究活动:
1、将一个包装纸盒沿棱剪开成平面图形,观察展开图的形状.再将展开的平面图形复原为包装纸盒,体会立体图形与平面图形的关系.(动手做)
2、想一想
⑴下列图形中,哪些图形通过折叠可以围成一个棱柱?
(请把这些图形用纸复制下来,然后沿虚线折叠,验证你的想法)
2、观察制成的棱柱,共有多少条棱,哪些棱的长度相等?共有多少个面,它们分别是什么形状?哪些面的形状、大小完全相同?
3、不能围成棱柱的,如何变化图形使得它能围成四棱柱?
(二)、师生探究·合作交流
4、马小虎同学准备制作一个有盖的正方体纸盒,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中拼接图形上再接一个正方形(用实线在图中画出来),使得接成的图形经过折叠后能成为一个封闭的正方体盒子,再用纸复制下来,然后折叠验证你的想法。
5、练一练:
(1)下面图形分别是哪种多面体的展开图?若不能确定,做一做再回答。
(2)
三
1
2、下列平面图经过折叠后不能围成正方体的是()