一次函数知识要点详解

合集下载

数学一次函数知识点总结

数学一次函数知识点总结

数学一次函数知识点总结一次函数也叫线性函数,是指函数的最高次数为1的函数。

一次函数的一般形式为:f(x) = kx + b,其中k和b为常数。

1. 斜率:斜率是一次函数的一个重要属性,表示函数曲线的倾斜程度。

对于一次函数f(x) = kx + b,k即为斜率。

当k大于0时,函数递增;当k小于0时,函数递减;当k等于0时,函数水平。

2. 截距:截距是一次函数的另一个重要属性,表示函数曲线与坐标轴的交点。

对于一次函数f(x) = kx + b,b即为y轴截距,也是函数曲线与y轴的交点的纵坐标。

3. 零点:一次函数的零点是指函数曲线与x轴的交点。

对于一次函数f(x) = kx + b,可以通过x = -b/k计算出零点。

4. 图像特征:一次函数的图像是一条直线。

当斜率k大于0时,图像从左下方向右上方倾斜;当斜率k小于0时,图像从左上方向右下方倾斜;当斜率k等于0时,图像为一条水平直线。

5. 平行与垂直性:如果两个一次函数的斜率相等,则它们是平行的;如果两个一次函数的斜率互为倒数(即乘积等于-1),则它们是垂直的。

6. 函数的增减性:一次函数的增减性由斜率决定。

当斜率k大于0时,函数递增;当斜率k小于0时,函数递减;当斜率k等于0时,函数保持不变。

7. 解一次方程:一次函数可以用来解决一次方程的问题。

例如,给定一个一次函数f(x) = kx + b,若要求出f(x) = 0的解,则可将f(x) = kx + b = 0转化为kx = -b,再求出x的值。

总结起来,一次函数的关键是斜率和截距,通过它们可以确定函数的图像和特征。

一次函数可用于解决一次方程的问题,并能与其他一次函数进行比较和判断相互关系。

一次函数的知识点

一次函数的知识点

一次函数的知识点一、函数基本概念一次函数的定义:形如y = kx + b(其中k和b是常数,且k ≠ 0)的函数称为一次函数。

二、一次函数的性质1、斜率(k):当k > 0时,函数图像从左到右上升,即函数是增函数。

当k < 0时,函数图像从左到右下降,即函数是减函数。

斜率k表示函数图像与x轴正方向的夹角大小。

2、截距(b):当x = 0时,y = b,即点(0, b)为一次函数与y轴的交点,b称为y轴截距。

3、图象:一次函数的图象是一条直线。

当k > 0时,直线从左到右上升;当k < 0时,直线从左到右下降。

三、一次函数的表达式1、点斜式:y - y1 = k(x - x1),其中(x1, y1)是直线上的一点。

2、斜截式:y = kx + b,其中k是斜率,b是y轴截距。

3、两点式:当已知直线上的两点(x1, y1)和(x2, y2)时,可以使用两点式(y - y1) / (y2 - y1) = (x - x1) / (x2 - x1)。

四、一次函数的应用1、线性方程:一次函数常用于表示线性方程,如ax + by = c(其中a和b不全为0)可以转化为斜截式y = (-a/b)x + (c/b)。

2、实际问题建模:一次函数常用于建模实际问题中的线性关系,如物价增长、距离速度时间的关系等。

五、一次函数的平移和对称1、平移:2、上下平移:上加下减,即y = kx + b向上平移m个单位变为y = kx + (b + m),向下平移m个单位变为y = kx + (b - m)。

3、左右平移:左加右减,即y = kx + b向左平移m个单位变为y = k(x + m) + b,向右平移m个单位变为y = k(x - m) + b。

4、对称:一次函数图像关于x轴对称时,其解析式中的y变为-y,即y = -kx - b。

一次函数图像关于y轴对称时,其解析式中的x变为-x,即y = -kx + b。

一次函数主要知识点总结

一次函数主要知识点总结

一、常量与变量在一个变化过程中,数值保持不变的量叫常量,数值发生改变的量叫变量。

实际上,常量就是具体的数,变量就是表示数的字母。

(注意“π”是常量) 二、自变量与函数在一个变化过程中,有两个变量x 和y ,如果x 每取一个值,y 都有唯一确定的值与它对应,那么,把x 叫自变量,y 叫x 的函数。

判断两个变量是否有函数关系就是“看对于自变量的每一个确定的值,函数值是否有唯一确定的值和它对应。

” 三、函数值如果x=a 时,y=b ,那么把“y=b 叫做x=a 时的函数值”。

四、表示函数的方法解析式法、列表法、图像法五、自变量取值范围的求法在一个变化过程中,自变量允许取值的区域,叫自变量的取值范围 1、当解析式是整式。

自变量取一切实数。

2、当自变量在分母。

取使分母不等于0的实数。

3、当自变量在根号内:在内,取被开方数为非负数的实数。

在内,自变量取一切实数。

4、在一个函数解析式中,同时有分式和根式时,自变量的取值范围应是分式和根式都有意义条件的公共部分例:求函数中自变量x 的取值范围。

解:要使有意义, 必须且即。

所以中自变量x 的取值范围是。

5、对于实际问题,自变量的取值要符合实际意义。

六、函数图象的画法步骤 1、列表。

2、描点。

以对应的x 、y 作为点(x ,y ),把每个点描在平面直角坐标系中。

3、连线。

把描出的点按照自变量由小到大的顺序,用平滑的线....连结起来。

七、正比例函数1、定义:形如(k 是常数,)的函数叫做正比例函数。

2、图象:是经过(0,0)与(1,k )的直线。

X … -2 -1 0 2 2 …Y3、性质: (1)(2)八、一次函数 (一)定义:形如b的函数叫做一次函数。

因为当b=0时,y=kx ,所以“正比例函数是特殊的一次函数”。

(二)图象:是经过(,0)与(0,b )两点的直线。

因此一次函数y=kx +b 的图象也称为直线y=kx +b.其中,(,0)是直线与x 轴的交点坐标,(0,b )是直线与y 轴的交点坐标。

(完整版)一次函数知识点总结

(完整版)一次函数知识点总结

一次函数(一)函数1、变量:在一个变化过程中可以取不同数值的量. 常量:在一个变化过程中只能取同一数值的量。

2、函数:一般的,在一个变化过程中,如果有两个变量x 和y,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。

*判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义.5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式6、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

(二)一次函数 1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。

一次函数知识点总结

一次函数知识点总结

一次函数知识点总结一次函数是数学中非常重要的一个概念,它在解决实际问题和数学理论中都有着广泛的应用。

下面我们就来详细总结一下一次函数的相关知识点。

一、一次函数的定义一般地,形如 y = kx + b(k,b 是常数,k ≠ 0)的函数,叫做一次函数。

当 b = 0 时,即 y = kx(k 为常数,k ≠ 0),这时称 y 是 x的正比例函数。

这里要注意的是,一次函数的表达式中,x 的次数为 1,且系数 k不能为 0。

如果 x 的次数不是 1 或者 k 为 0,那就不是一次函数。

二、一次函数的图像一次函数 y = kx + b 的图像是一条直线。

当 k > 0 时,直线从左到右上升;当 k < 0 时,直线从左到右下降。

b 的值决定了直线与 y 轴的交点。

当 b > 0 时,直线与 y 轴交于正半轴;当 b < 0 时,直线与 y 轴交于负半轴;当 b = 0 时,直线经过原点。

例如,函数 y = 2x + 1,k = 2 > 0,直线上升,b = 1 > 0,与 y 轴交于正半轴。

三、一次函数的性质1、当 k > 0 时,y 随 x 的增大而增大;当 k < 0 时,y 随 x 的增大而减小。

2、直线 y = kx + b 与 x 轴的交点坐标为( b / k ,0 )。

四、一次函数的解析式的确定通常我们可以使用待定系数法来确定一次函数的解析式。

具体步骤如下:1、设出一次函数的解析式 y = kx + b 。

2、根据已知条件列出关于 k、b 的方程组。

3、解方程组,求出 k、b 的值。

例如,已知一次函数经过点(1,3)和( 1, 1),设解析式为 y = kx + b,将两点坐标代入可得:\\begin{cases}k + b = 3 \\k + b = 1\end{cases}\解这个方程组,可得 k = 2,b = 1,所以解析式为 y = 2x + 1 。

五、一次函数与方程、不等式的关系1、一次函数 y = kx + b 的图像与 x 轴的交点的横坐标,就是方程kx + b = 0 的解。

一次函数的知识点总结

一次函数的知识点总结

一次函数的知识点总结一、一次函数的基本概念一次函数是数学中最基础的函数之一,它的表达式为y = ax + b,其中a和b是常数,a不等于0。

在这个函数中,x称为自变量,y称为因变量,a称为斜率,b称为截距。

斜率表示了函数图象的倾斜程度,而截距表示了函数图象与y轴的交点位置。

从函数的表达式中可以看出,一次函数的图象是一条直线,即直线函数。

一次函数的定义域为实数集R,值域也为实数集R。

它的图象可以延伸到整个坐标平面上。

当a大于0时,函数图象是上升的直线;当a小于0时,函数图象是下降的直线。

二、一次函数的性质1. 斜率和截距一次函数的斜率a表示了函数图象的倾斜程度,它的绝对值越大,直线的斜率越大。

当a大于0时,函数图象向右上方倾斜;当a小于0时,函数图象向右下方倾斜。

而截距b表示了函数图象与y轴的交点位置,当b大于0时,函数图象在y轴上方;当b小于0时,函数图象在y轴下方。

2. 函数值对于一次函数y = ax + b,当给定x的值时,我们可以通过代入x的值得到对应的函数值y。

一次函数的函数值可以用来描述一根直线上的点的位置。

3. 函数的奇偶性一次函数是一个奇函数,它的图象关于原点对称。

这意味着,如果(x, y)在函数的图象上,则(-x, -y)也在函数的图象上。

4. 函数的单调性当a大于0时,一次函数是递增的;当a小于0时,一次函数是递减的。

递增意味着函数图象自左向右是上升的,递减意味着函数图象自左向右是下降的。

三、一次函数的图象一次函数的图象是一条直线,在坐标平面上呈现出一种特定的形状。

它的位置、斜率、倾斜方向和截距等特征可以通过图象来直观地展现。

1. 斜率和截距斜率a决定了函数图象的倾斜程度,它的绝对值越大,直线的斜率越大。

当a大于0时,函数图象是上升的直线;当a小于0时,函数图象是下降的直线。

而截距b决定了函数图象与y轴的交点位置,它是函数图象与y轴的交点的纵坐标。

2. 基本图象y = x + 1是一次函数的基本图象,它是一条经过原点,斜率为1的直线。

一次函数知识点

一次函数知识点

一次函数知识点一次函数,也叫线性函数,是数学中最简单的函数之一。

它的函数表达式为 y = kx + b,其中 k 和 b 分别是函数的斜率和截距。

一、函数的斜率斜率是一次函数的重要特征,它代表了函数图像的倾斜程度。

一次函数的斜率可以通过以下方法求取:1.1 斜率的定义一次函数的斜率定义为函数图像上两点的纵坐标之差与横坐标之差的比值。

设一次函数上的两点为 P(x₁, y₁) 和 Q(x₂, y₂),则斜率的计算公式如下:k = (y₂ - y₁) / (x₂ - x₁)1.2 点斜式点斜式是一种表示一次函数的常用形式。

给定一次函数的一点P(x₁, y₁) 和斜率 k,点斜式的表达式为:y - y₁ = k(x - x₁)该表达式可以方便地确定函数图像。

1.3 截距式截距式是另一种表示一次函数的常用形式。

给定一次函数的截距 b 和斜率 k,截距式的表达式为:y = kx + b截距式使得我们更容易理解和计算函数的特征。

二、函数的图像一次函数的图像具有线性的特点,是一条直线。

通过斜率和截距的取值,我们可以推断并绘制出函数的图像:2.1 斜率的影响斜率 k 的正负决定了图像的斜向,即线的倾斜方向。

当 k > 0 时,函数图像向上增长;当 k < 0 时,函数图像向下增长;当 k = 0 时,函数图像平行于 x 轴。

2.2 截距的影响截距 b 决定了图像与 y 轴的交点,即函数的纵截距。

当 b > 0 时,函数图像与 y 轴交于正半轴;当 b < 0 时,函数图像与 y 轴交于负半轴;当 b = 0 时,函数图像经过原点。

三、函数的性质一次函数具有许多特性,我们需要了解并掌握这些特性来更好地理解和使用函数:3.1 函数值和自变量的关系对于一次函数 y = kx + b,当 x 取不同的值时,相应的 y 值也会随之变化。

由于函数图像是一条直线,所以函数值和自变量呈线性关系。

3.2 函数的增减性一次函数的增减性由斜率 k 的正负决定。

一次函数所有知识点初中

一次函数所有知识点初中

一次函数所有知识点初中一、什么是一次函数一次函数,也叫线性函数,是数学中的一种基本函数类型。

它的特点是函数的表达式中只有一次幂,没有二次、三次幂等高次幂。

一次函数的一般形式可以表示为y = kx + b,其中k和b分别是函数的斜率和截距。

一次函数的图像是一条直线,斜率决定了直线的倾斜程度,而截距决定了直线与y轴的交点位置。

二、一次函数的特点和性质1. 斜率:斜率是一次函数最重要的性质之一,它表示了函数图像的倾斜程度。

当斜率为正数时,函数图像向右上方倾斜;当斜率为负数时,函数图像向右下方倾斜;当斜率为零时,函数图像是水平的直线。

2. 截距:截距是一次函数与y轴的交点位置。

当截距为正数时,函数图像在y轴的上方;当截距为负数时,函数图像在y轴的下方;当截距为零时,函数图像经过原点。

3. 函数图像:一次函数的图像是一条直线,通过两个点可以确定一条直线。

当已知两个点的坐标时,可以通过求斜率和截距来确定一次函数的表达式。

4. 增减性:当斜率为正数时,一次函数随着自变量的增大而增大;当斜率为负数时,一次函数随着自变量的增大而减小。

5. 零点:一次函数的零点是函数图像与x轴的交点,即使函数的值为0的点。

可以通过解一元一次方程来求得一次函数的零点。

6. 定义域和值域:一次函数的定义域是所有实数集,值域是所有实数集。

三、一次函数的应用1. 直线运动:一次函数可以描述物体在匀速直线运动中的位置与时间的关系。

斜率表示速度,截距表示初始位置。

2. 成本与收益关系:一次函数可以描述成本与收益之间的关系。

斜率表示单位成本或单位收益,截距表示固定成本或固定收益。

3. 资产折旧:一次函数可以描述资产价值随时间的变化情况。

斜率表示折旧速度,截距表示初始价值。

4. 比例关系:一次函数可以描述两个变量之间的比例关系。

斜率表示比例系数,截距表示零点。

四、总结一次函数是数学中的一种基本函数类型,具有斜率和截距等特点和性质。

它可以用来描述直线运动、成本与收益关系、资产折旧等实际问题。

一次函数所有知识点讲解

一次函数所有知识点讲解

一次函数所有知识点讲解一次函数是初中数学中的重要内容,也是高中数学的基础。

在学习一次函数时,我们需要掌握以下知识点:一、函数的概念函数是一种数学关系,它将一个自变量的值映射到一个因变量的值。

一般地,我们用f(x)表示函数,其中x是自变量,f(x)是因变量。

函数的定义域是自变量的取值范围,值域是因变量的取值范围。

二、一次函数的定义一次函数是指函数f(x) = kx + b,其中k和b是常数,且k不等于0。

一次函数的图像是一条直线,斜率k表示直线的倾斜程度,截距b表示直线与y轴的交点。

三、一次函数的图像一次函数的图像是一条直线,可以通过斜率k和截距b来确定。

当k>0时,直线向上倾斜;当k<0时,直线向下倾斜;当k=0时,直线水平。

当b>0时,直线与y轴正向平移;当b<0时,直线与y轴负向平移。

四、一次函数的性质1. 斜率k表示函数的变化率,即函数值的增量与自变量增量的比值。

当k>0时,函数单调递增;当k<0时,函数单调递减;当k=0时,函数为常函数。

2. 截距b表示函数与y轴的交点,当x=0时,函数的值为b。

因此,截距b可以用来确定函数的位置。

3. 一次函数的定义域为全体实数,值域为全体实数。

五、一次函数的应用1. 一次函数可以用来描述直线运动的速度和位置关系。

例如,当一辆车以匀速v行驶时,它的位置与时间的关系可以表示为f(t) = vt + b,其中b为初始位置。

2. 一次函数可以用来描述经济问题中的成本和收益关系。

例如,当一家公司生产x件产品时,它的成本和收益可以表示为f(x) = kx + b,其中k为单位成本或单位收益,b为固定成本或固定收益。

3. 一次函数可以用来描述物理问题中的速度和加速度关系。

例如,当一个物体以初速度v0加速a时,它的速度与时间的关系可以表示为f(t) = v0 + at。

一次函数是数学中的重要内容,它不仅具有理论意义,还有广泛的应用价值。

一次函数高一数学知识点

一次函数高一数学知识点

一次函数高一数学知识点一次函数是高中数学中的基础知识点之一,也是日常生活中经常使用的数学概念之一。

它在数学中有着广泛的应用,而且对于高中学生来说,掌握一次函数的相关知识点是非常重要的。

本文将围绕一次函数的定义、性质、图像及应用等方面进行详细的介绍。

1. 一次函数的定义一次函数又称线性函数,它的定义如下:f(x) = kx + b其中,k和b分别是常数,k称为一次函数的斜率,b称为一次函数的截距。

一次函数的定义域是整个实数集,值域也是整个实数集。

2. 一次函数的性质(1)斜率:一次函数的斜率表示了函数图像的倾斜程度。

当斜率k>0时,函数图像向上倾斜;当斜率k<0时,函数图像向下倾斜;当斜率k=0时,函数图像为水平的。

(2)截距:一次函数的截距表示了函数图像与y轴的交点位置。

当截距b>0时,函数图像与y轴的交点在原点上方;当截距b<0时,函数图像与y轴的交点在原点下方;当截距b=0时,函数图像与y轴的交点在原点上。

(3)单调性:一次函数的单调性表示了函数图像的变化趋势。

当斜率k>0时,函数图像单调递增;当斜率k<0时,函数图像单调递减。

3. 一次函数的图像一次函数的图像是一条直线,其特点取决于斜率和截距的值。

当斜率k>0时,函数图像从左下方向右上方倾斜;当斜率k<0时,函数图像从左上方向右下方倾斜;当斜率k=0时,函数图像平行于x轴。

4. 一次函数的应用一次函数在实际问题中有着广泛应用,以下列举几个常见的应用场景:(1)速度与时间关系:当物体以匀速运动时,速度与时间之间的关系可以用一次函数来表示。

其中,斜率代表了速度的大小,截距代表了起始位置。

(2)物品价格与销量关系:在市场经济中,物品的价格和销量之间存在着一种关系,一次函数可以用来描述价格与销量的变化规律。

(3)工资与工作时长关系:在职场中,工资与工作时长之间通常存在着一种线性关系,一次函数可以用来表示工资与工作时长的变化趋势。

一次函数知识点(全)

一次函数知识点(全)

一次函数知识点一、函数与变量常量与变量的概念:我们在现实生活中所遇到的一些实际问题,存在一些数量关系,其中有的量永远不变,同时也出现了一些数值会发生变化的两个量,且这两个量之间相互依赖、密切相关.在某一变化过程中,可以取不同数值的量,叫做变量.在某一变化过程中,有两个量,例如x 和y ,对于x 的每一个值,y 都有惟一的值与之对应,其中x 是自变量,y 是因变量,此时也称y 是x 的函数.在一些变化过程中,还有一种量,它的取值始终保持不变,我们称之为常量.例如:圆的面积S 与圆的半径r 存在相应的关系:2πS r =,这里π表示圆周率;它的数值不会变化,是常量,S 随着r 的变化而变化,r 是自变量,S 是因变量;◆ “y 有唯一值与x 对应”是指在自变量的取值范围内,x 每取一个确定值,y 都唯一的值与之相对应,否则y 不是x 的函数.◆ 判断两个变量是否有函数关系,不仅要有关系式,还要满足上述确定的对应关系.x 取不同的值,y 的取值可以相同. 例如:函数2(3)y x =-中,2x =时,1y =;4x =时,1y =.◆ 函数不是数,它是指在一个变化过程中两个变量之间的关系,函数本质就是变量间的对应关系.数学上表示函数关系的方法通常有三种:⑴解析法:用数学式子表示函数的方法叫做解析法.譬如:30S t =,2S R π=. ⑵列表法:通过列表表示函数的方法.⑶图象法:用图象直观、形象地表示一个函数的方法.关于函数的关系式(即解析式)的理解:● 函数关系式是等式. 例如4y x =就是一个函数关系式. ● 函数关系式中指明了那个是自变量,哪个是函数.通常等式右边代数式中的变量是自变量,等式左边的一个字母表示函数. 例如:y x =是自变量,y 是x 的函数.● 函数关系式在书写时有顺序性.例如:31y x =-+是表示y 是x 的函数,若写成13yx -=就表示x 是y 的函数. ● 求y 与x 的函数关系时,必须是只用变量x 的代数式表示y ,得到的等式右边只含x 的代数式.自变量的取值范围:很多函数中,自变量由于受到很多条件的限制,有自己的取值范围,例如y =自变量x 受到开平方运算的限制,有10x -≥即1x ≥;当汽车行进的速度为每小时80公里时,它行进的路程s 与时间t 的关系式为80s t =;这里t 的实际意义影响t 的取值范围t 应该为非负数,即0t ≥. 在初中阶段,自变量的取值范围考虑下面几个方面: ⑴根式:当根指数为偶数时,被开方数为非负数. ⑵分母中含有自变量:分母不为0. ⑶实际问题:符合实际意义.函数图象:函数的图象是由平面直角中的一系列点组成的.描点法画函数图象的步骤:⑴列表; ⑵描点; ⑶连线.函数解析式与函数图象的关系:⑴满足函数解析式的有序实数对为坐标的点一定在函数图象上; ⑵函数图象上点的坐标满足函数解析式.二、一次函数及其性质● 知识点一 一次函数的定义一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,当0b =时,即y kx =,这时即是前一节所学过的正比例函数.⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.● 知识点二 一次函数的图象及其画法 ⑴一次函数y kx b =+(0k ≠,k ,b 为常数)的图象是一条直线.⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.①如果这个函数是正比例函数,通常取()00,,()1k ,两点;②如果这个函数是一般的一次函数(0b ≠),通常取()0b ,,0b k ⎛⎫- ⎪⎝⎭,,即直线与两坐标轴的交点.⑶由函数图象的意义知,满足函数关系式y kx b =+的点()x y ,在其对应的图象上,这个图象就是一条直线l ,反之,直线l 上的点的坐标()x y ,满足y kx b =+,也就是说,直线l 与y kx b =+是一一对应的,所以通常把一次函数y kx b =+的图象叫做直线l :y kx b =+,有时直接称为直线y kx b =+.● 知识点三 一次函数的性质⑴当0k >时,一次函数y kx b =+的图象从左到右上升,y 随x 的增大而增大;⑵当0k <时,一次函数y kx b =+的图象从左到右下降,y 随x 的增大而减小.● 知识点四 一次函数y kx b =+的图象、性质与k 、b 的符号⑵一次函数y kx b =+中,当0k >时,其图象一定经过一、三象限;当0k <时,其图象一定经过二、四象限.当0b >时,图象与y 轴交点在x 轴上方,所以其图象一定经过一、二象限;当0b <时,图象与y 轴交点在x 轴下方,所以其图象一定经过三、四象限.反之,由一次函数y kx b =+的图象的位置也可以确定其系数k 、b 的符号.● 知识点五 用待定系数法求一次函数的解析式 ⑴定义:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待字系数法.⑵用待定系数法求函数解析式的一般步骤: ①根据已知条件写出含有待定系数的解析式;②将x y ,的几对值,或图象上的几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程(组),得到待定系数的值;④将求出的待定系数代回所求的函数解析式中,得到所求的函数解析式.1.一次函数与一元一次方程的关系:直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解。

一次函数考点知识梳理

一次函数考点知识梳理

一次函数考点知识梳理1.一次函数定义:o一次函数的一般形式为y=kx+b(k≠0),其中k是斜率,b 是y轴截距。

o理解并掌握一次函数的图像特征:直线、方向(上升或下降)、位置(与坐标轴的交点)。

2.斜率的理解和应用:o斜率的意义:表示直线的倾斜程度,斜率为正时,直线从左向右上升;斜率为负时,直线从左向右下降。

o计算斜率的方法:两点式斜率公式k=(y2-y1)/(x2-x1)。

o判断两条直线平行或垂直的关系:若两直线斜率相等,则两线平行;若一直线斜率为另一直线斜率的相反数且绝对值相等,则两线垂直。

3.一次函数图像平移变换:o水平平移:原函数y=kx+b平移h个单位后变为y=k(x-h)+ b,其中h>0向右平移,h<0向左平移。

o垂直平移:原函数y=kx+b向上平移k个单位后变为y=kx+b +k,向下平移则减去相应的单位。

4.一次函数的实际应用问题:o表示实际生活中的增长、减少、路程与时间关系等问题,理解“速度”即斜率的概念。

o解决与一次函数相关的面积计算、行程问题、利润问题等。

5.一次函数与方程、不等式的联系:o一次函数解析式可以转化为一元一次方程和一元一次不等式,通过求解方程或不等式来确定图像上的点或区域。

6.一次函数与坐标轴的交点坐标:o求解一次函数与x轴和y轴的交点坐标,从而确定函数图形的具体位置。

7.线性关系与一次函数模型:o在实际问题中建立一次函数模型,通过观察数据、分析趋势确定变量之间的线性关系,并用一次函数的形式表示出来。

o学会从表格、图象或具体情境中提取信息,构建并验证一次函数模型。

8.一次函数图像特征与性质:o根据k和b的符号及绝对值大小,判断一次函数图像经过的象限(一、二、三、四象限)以及单调性(增函数还是减函数)。

o了解两点决定一条直线的原理,并能利用两个点坐标画出一次函数图像。

9.一次函数与反比例函数、二次函数的区别与联系:o明确一次函数是一次项系数不为零的多项式函数,而反比例函数是y=k/x形式,二次函数是y=ax²+bx+c形式,理解它们在图形、性质上的差异与共同点。

一次函数总结

一次函数总结

一次函数总结一次函数是高中数学中的基础知识之一,也是最简单的一种函数类型。

它的表达式可以写成y = kx + b的形式,其中k和b 是常数,x和y是变量。

在本文中,我将对一次函数的定义、图像、性质和应用进行详细的总结和介绍。

一、一次函数的定义一次函数又称为线性函数,它满足以下两个条件:1)函数的自变量和因变量都是一次的;2)函数的图像是一条直线。

一次函数的一般形式是y = kx + b,其中k称为斜率,b称为截距。

二、一次函数的图像一次函数的图像是一条直线,可以通过两个点确定。

其中,截距b是函数图像与y轴交点的纵坐标,斜率k代表图像的倾斜程度。

当k为正数时,表示函数图像是从左下到右上的,斜率越大图像越陡峭;当k为负数时,表示函数图像是从左上到右下的,斜率越小图像越陡峭。

三、一次函数的性质1)斜率k:斜率表示函数图像的倾斜程度,可以通过两个点的坐标计算得到。

当斜率为正数时,函数图像是递增的;当斜率为负数时,函数图像是递减的;斜率为0时,函数图像是水平的。

2)截距b:截距表示函数图像与y轴的交点的纵坐标。

通过设定x=0,可以得到截距b的值。

3)增减性:当斜率k为正数时,函数图像是递增的;当斜率k为负数时,函数图像是递减的;4)单调性:当斜率k为正数时,函数图像是单调递增的;当斜率k为负数时,函数图像是单调递减的;5)零点:一次函数的零点是使得函数值等于0的自变量值x。

通过设定y=0,可以求得零点的值。

四、一次函数的应用一次函数在现实生活中具有广泛的应用。

以下是一些常见的应用场景:1)速度与时间的关系:在物理学中,一次函数可以用来描述物体的速度与时间的关系。

斜率代表速度的变化率,截距代表初始速度。

2)销售收益的关系:在经济学中,一次函数可以用来描述销售收益与销售数量的关系。

斜率代表每增加一个单位的销售数量所带来的收益变化,截距代表固定成本。

3)成绩与学习时间的关系:在教育领域中,一次函数可以用来描述学生的成绩与学习时间的关系。

一次函数知识点(全)

一次函数知识点(全)

一次函数知识点(全)一次函数,也称为线性函数,是数学中最简单的一类函数之一,其定义域为全体实数,函数的表达式为f(x) = ax + b,其中a和b为常数。

一次函数以一条直线表示,具有线性关系,其图像是一条直线,斜率为a,截距为b。

一次函数的基本性质及应用:1. 斜率:一次函数的斜率a代表了直线的倾斜程度,也称为直线的导数或变化率。

斜率的计算方法为:a = (y2 - y1) / (x2 - x1),其中(x1,y1)和(x2,y2)为直线上的两个点。

斜率可正可负,若a > 0,表示直线向右上方倾斜;若a < 0,表示直线向右下方倾斜;若a = 0,表示直线水平。

2. 截距:一次函数的截距b代表了直线与y轴的交点,即x = 0时对应的y值。

截距可为正、负或零,当b > 0时,直线在y轴上方与之交点在正半轴;当b < 0时,直线在y轴下方与之交点在负半轴;当b = 0时,直线通过原点。

3. 表示方式:一次函数可以通过函数表达式、函数关系式、函数图像、函数性质等多种方式进行表示和描述。

4. 对称性:一次函数的图像关于直线y = x具有对称性,即将图像沿y = x对称后,两者完全重合。

5. 平行和垂直:两条直线平行的情况是它们的斜率相等,即a1 = a2;两条直线垂直的情况是它们的斜率之积等于-1,即a1 * a2 = -1。

6. 定义域和值域:一次函数的定义域为全体实数,即(-∞, +∞);值域为全体实数,即(-∞, +∞)。

7. 函数运算:一次函数可以进行相加、相减、相乘、相除等运算,运算结果仍为一次函数。

8. 应用:一次函数广泛应用于经济学、物理学、工程学等领域。

在经济学中,一次函数常用来描述成本、收入、利润等与产量的关系。

在物理学中,一次函数可以描述速度、位移与时间的关系。

在工程学中,一次函数可用于线性规划、线性回归等问题的建模与解决。

综上所述,一次函数是数学中基础的一类函数,具有简单明了的性质和应用。

一次函数主要知识点

一次函数主要知识点

一次函数主要知识点一、一次函数的定义。

1. 一般地,形如y = kx + b(k,b是常数,k≠0)的函数,叫做一次函数。

- 当b = 0时,y=kx(k为常数,k≠0),y = kx叫做正比例函数,它是一种特殊的一次函数。

2. 自变量x的取值范围。

- 自变量x的取值范围是全体实数。

但在实际问题中,要根据具体情况确定自变量的取值范围。

例如,在计算长方形周长C = 2(x + y),如果把y用含x的一次函数表示,且x、y表示长方形的长和宽,那么x>0,y>0,这就限制了x的取值范围。

二、一次函数的图象。

1. 一次函数y = kx + b(k,b是常数,k≠0)的图象是一条直线。

- y = kx(k为常数,k≠0)的图象是经过原点(0,0)的一条直线。

2. 画一次函数图象的方法:两点法。

- 通常取直线与y轴的交点(0,b)和直线与x轴的交点(-(b)/(k),0)(k≠0)。

例如,对于一次函数y = 2x+3,与y轴交点为(0,3),令y = 0,则0 = 2x+3,解得x=-(3)/(2),与x轴交点为(-(3)/(2),0),然后过这两点画直线即可。

3. 一次函数图象的性质。

- 当k>0时,y随x的增大而增大,图象从左到右上升。

例如y = 3x+1,k = 3>0,随着x的值增大,y的值也增大,其图象是上升的直线。

- 当k<0时,y随x的增大而减小,图象从左到右下降。

例如y=-2x + 4,k=-2<0,随着x的值增大,y的值减小,其图象是下降的直线。

- 对于y = kx + b,b决定直线与y轴交点的位置。

当b>0时,直线与y轴交于正半轴;当b = 0时,直线过原点;当b<0时,直线与y轴交于负半轴。

三、一次函数的解析式确定。

1. 待定系数法。

- 如果知道一次函数图象上的两个点的坐标(x_1,y_1),(x_2,y_2),将其代入y = kx + b中,得到方程组y_1=kx_1 + b y_2=kx_2 + b,解这个方程组求出k和b的值,就可以确定一次函数的解析式。

一次函数知识点全

一次函数知识点全

一次函数知识点全一次函数作为初中数学中最基础的函数之一,在我们的学习中扮演着非常重要的角色。

它是一个线性函数,表达式为y = kx + b,其中k和b为常数,x和y分别表示自变量和因变量。

在本文中,我们将全面介绍一次函数的各个知识点。

一、函数的定义和性质1. 函数的定义:一次函数是指自变量和因变量之间的关系能够用线性方程y = kx + b表示的函数。

其中k和b为常数,x和y分别表示自变量和因变量。

2. 定义域和值域:一次函数的定义域是所有实数集,值域也是所有实数集。

3. 单调性和增减性:一次函数的单调性取决于斜率k的正负。

当k > 0时,函数是递增的;当k < 0时,函数是递减的。

4. 零点和斜率:一次函数的零点是使得函数值为0的x值。

斜率表示函数图像的斜率,它等于函数的斜率系数k。

二、图像和性质1. 直线图像:一次函数的图像是一条直线。

当斜率k为正时,图像向上倾斜;当斜率k为负时,图像向下倾斜。

2. 截距:截距表示函数图像与坐标轴的交点。

一次函数有两个截距,分别为x轴截距和y轴截距。

x轴截距等于使得y = 0的x值,即-x轴的坐标;y轴截距等于使得x = 0的y值,即-y轴的坐标。

3. 平行和垂直:两条一次函数图像平行的条件是它们的斜率相等;两条一次函数图像垂直的条件是它们的斜率的乘积等于-1。

4. 点斜式和截距式:一次函数的点斜式表示为y - y₁ = k(x - x ₁),其中(x₁, y₁)为已知点,k为斜率;一次函数的截距式表示为y = kx + b,其中b为y轴截距。

三、应用1. 直线方程:一次函数在实际中常常用于解决直线方程的问题。

通过已知条件,可以确定一个点和斜率,从而写出一次函数的方程。

2. 性质推导:一次函数的各种性质可以通过代入特定的值来推导得出。

例如,已知两个点,可以求出斜率和截距;已知斜率和一个点,也可以确定该一次函数的方程。

3. 解方程:一次函数常用于解决实际问题中的方程。

八年级数学一-次函数知识点总结

八年级数学一-次函数知识点总结

一、一次函数的定义一次函数是指形如 $y = ax + b$ 的函数,其中 $a$ 和 $b$ 是常数,且 $a \neq 0$。

这个函数的图像是一条直线,其斜率由$a$ 决定,截距由 $b$ 决定。

二、一次函数的性质1. 斜率:一次函数的斜率 $a$ 表示函数图像的倾斜程度。

当$a > 0$ 时,直线向上倾斜;当 $a < 0$ 时,直线向下倾斜。

2. 截距:一次函数的截距 $b$ 表示直线与 y 轴的交点。

当 $b > 0$ 时,直线与 y 轴的交点在 y 轴的正半轴;当 $b < 0$ 时,直线与 y 轴的交点在 y 轴的负半轴。

3. 增减性:一次函数在其定义域内是单调的。

当 $a > 0$ 时,函数随着 $x$ 的增大而增大;当 $a < 0$ 时,函数随着 $x$ 的增大而减小。

4. 奇偶性:一次函数既不是奇函数也不是偶函数,因为它的图像不是关于原点对称的,也不是关于 y 轴对称的。

三、一次函数的图像1. 确定函数的一般形式 $y = ax + b$。

2. 确定直线的斜率 $a$ 和截距 $b$。

3. 在坐标系中绘制直线,使其通过点 $(0, b)$(即 y 轴上的截距点)。

4. 利用斜率 $a$,从截距点出发,绘制一条直线,使其与 x 轴和 y 轴的交点满足函数的方程。

四、一次函数的应用1. 在日常生活中,一次函数可以用来描述物体的线性变化,如温度随时间的变化、速度随距离的变化等。

2. 在物理学中,一次函数可以用来描述物体的直线运动,如自由落体运动。

3. 在经济学中,一次函数可以用来描述线性成本、线性收益等经济变量之间的关系。

4. 在计算机科学中,一次函数可以用来直线和折线图。

5. 在工程设计中,一次函数可以用来优化设计方案,如桥梁、建筑等。

一次函数是数学中的一个基本概念,它具有简单的形式和丰富的性质。

通过深入理解一次函数的定义、性质和图像,我们可以更好地掌握数学和物理学的相关知识,从而为解决实际问题提供有力的工具。

一次函数知识点总结讲解

一次函数知识点总结讲解

一次函数知识点总结讲解1.一次函数的性质一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.2.一次函数图象与系数的关系由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.①k>0,b>0⇔y=kx+b的图象在一、二、三象限;②k>0,b<0⇔y=kx+b的图象在一、三、四象限;③k<0,b>0⇔y=kx+b的图象在一、二、四象限;④k<0,b<0⇔y=kx+b的图象在二、三、四象限.3.一次函数图象上点的坐标特征一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.4.一次函数图象与几何变换直线y=kx+b,(k≠0,且k,b为常数)①关于x轴对称,就是x不变,y变成﹣y:﹣y=kx+b,即y=﹣kx﹣b;(关于X轴对称,横坐标不变,纵坐标是原来的相反数)②关于y轴对称,就是y不变,x变成﹣x:y=k(﹣x)+b,即y=﹣kx+b;(关于y轴对称,纵坐标不变,横坐标是原来的相反数)③关于原点对称,就是x和y都变成相反数:﹣y=k(﹣x)+b,即y=kx﹣b.(关于原点轴对称,横、纵坐标都变为原来的相反数)5.待定系数法求一次函数解析式待定系数法求一次函数解析式一般步骤是:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.注意:求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y的值.6.一次函数与一元一次不等式(1)一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.(2)用画函数图象的方法解不等式kx+b>0(或<0)对应一次函数y=kx+b,它与x轴交点为(﹣,0).当k>0时,不等式kx+b>0的解为:x>,不等式kx+b<0的解为:x<;当k<0,不等式kx+b>0的解为:x<,不等式kx+b<0的解为:x>.7.一次函数的应用1、分段函数问题分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.2、函数的多变量问题解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数.3、概括整合(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用.(2)理清题意是采用分段函数解决问题的关键.8.一次函数综合题(1)一次函数与几何图形的面积问题首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.(2)一次函数的优化问题通常一次函数的最值问题首先由不等式找到x的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.(3)用函数图象解决实际问题从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.。

初中数学一次函数要点概括

初中数学一次函数要点概括

初中数学一次函数要点概括一、概念与概念式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比率函数。

即:y=kx(k为常数,k0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比率,比值为k即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像一条直线。

因此,作一次函数的图像仅需知晓2点,并连成直线即可。

(一般找函数图像与x 轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标一直(0,b),与x轴一直交于(-b/k,0)正比率函数的图像一直过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比率函数的图像。

这个时候,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫分析式)为y=kx+b。

(2)由于在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b①和y2=kx2+b②(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

五、一次函数在日常的应用:1.当时间t肯定,距离s是速度v的一次函数。

s=vt。

2.当水池抽水速度f肯定,水池中水量g是抽水时间t的一次函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数知识要点详解1 一次函数和正比例函数的概念若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数.说明: (1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,b≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数.(3)当b=0,k≠0时,y=b 仍是一次函数.(4)当b=0,k=0时,它不是一次函数.2 确定一次函数的关系式根据实际问题中的条件正确地列出一次函数及正比例函数的表达式,实质是先列出一个方程,再用含x 的代数式表示y .3 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.4 一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b .由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-k b,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.5 一次函数y=kx+b (k ,b 为常数,k≠0)的性质(1)k 的正负决定直线的倾斜方向;①k >0时,y 的值随x 值的增大而增大; ②k﹤O 时,y 的值随x 值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置;①当b >0时,直线与y 轴交于正半轴上;②当b <0时,直线与y 轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k ,b 的符号不同,直线所经过的象限也不同;①如图11-18(l )所示,当k >0,b >0时,直线经过第一、二、三象限(直线不经过第四象限);②如图11-18(2)所示,当k>0,b﹥O时,直线经过第一、三、四象限(直线不经过第二象限);③如图11-18(3)所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);④如图11-18(4)所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x +1可以看作是正比例函数y=x向上平移一个单位得到的.6 正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.7 点P(x0,y)与直线y=kx+b的图象的关系(1)如果点P(x0,y)在直线y=kx+b的图象上,那么x,y的值必满足解析式y=kx+b;(2)如果x0,y是满足函数解析式的一对对应值,那么以x,y为坐标的点P(1,2)必在函数的图象上.如点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.8 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.9 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.10 用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为y=kx+b ;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k 与b 的值,得到函数表达式.如已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式.解:设一次函数的关系式为y =kx+b (k≠0),由题意可知,⎩⎨⎧+-=-+=,3,21b k b k 解⎪⎪⎩⎪⎪⎨⎧-==.35,34b k ∴此函数的关系式为y=3534-x .说明: 本题是用待定系数法求一次函数的关系式,具体步骤如下:第一步,设(根据题中要求的函数“设”关系式y=kx+b ,其中k ,b 是未知的常量,且k≠0);第二步,代(根据题目中的已知条件,列出方程(或方程组),解这个方程(或方程组),求出待定系数k ,b );第三步,求(把求得的k ,b 的值代回到“设”的关系式y=kx+b 中);第四步,写(写出函数关系式).11。

思想方法 (1)函数方法.函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.(2)数形结合法.数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.例1 下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=-21x ; (2)y=-x 2; (3)y=-3-5x ;(4)y=-5x 2; (5)y=6x-21(6)y=x(x-4)-x 2.分析: 本题主要考查对一次函数及正比例函数的概念的理解.解:(1)(3)(5)(6)是一次函数,(l )(6)是正比例函数.例2 当m 为何值时,函数y=-(m-2)x32-m +(m-4)是一次函数? 分析: 某函数是一次函数,除应符合y=kx+b 外,还要注意条件k≠0.解:因为函数y=(m-2)x 32-m +(m-4)是一次函数,所以⎩⎨⎧≠--=-,0)2(,132m m ∴m=-2.故当m=-2时,函数y=(m-2)x 32-m +(m-4)是一次函数. 说明: 某函数是一次函数应满足的条件是:一次项(或自变量)的指数为1,系数不为0.而某函数若是正比例函数,则还需添加一个条件:常数项为0.例3 一根弹簧长15cm ,它所挂物体的质量不能超过18kg ,并且每挂1kg 的物体,弹簧就伸长0.5cm ,写出挂上物体后,弹簧的长度y (cm )与所挂物体的质量x(kg )之间的函数关系式,写出自变量x 的取值范围,并判断y 是否是x 的一次函数.分析:(1)弹簧每挂1kg 的物体后,伸长0.5cm ,则挂xkg 的物体后,弹簧的长度y 为(l5+0.5x )cm ,即y=15+0.5x .(2)自变量x 的取值范围就是使函数关系式有意义的x 的值,即0≤x≤18.(3)由y=15+0.5x 可知,y 是x 的一次函数.解:(l )y=15+0.5x .(2)自变量x 的取值范围是0≤x≤18.(3)y 是x 的一次函数.例4 (2003·厦门)某物体从上午7时至下午4时的温度M (℃)是时间t (时)的函数:M=t 2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为 ℃.分析: 本题给出了函数关系式,欲求函数值,但没有直接给出t 的具体值.从题中可以知道,t=0表示中午12时,t=1表示下午1时,则上午10时应表示成t=-2,当t=-2时,M=(-2)3-5×(-2)+100=102(℃).答案:102例5 已知y-3与x 成正比例,且x=2时,y=7.(1)写出y 与x 之间的函数关系式;(2)当x=4时,求y 的值;(3)当y=4时,求x 的值.分析: 由y-3与x 成正比例,则可设y-3=kx ,由x=2,y=7,可求出k ,则可以写出关系式.解:(1)由于y-3与x 成正比例,所以设y-3=kx .把x=2,y=7代入y-3=kx 中,得7-3=2k ,则k =2.故y 与x 之间的函数关系式为y-3=2x ,即y=2x+3.(2)当x=4时,y=2×4+3=11.(3)当y =4时,4=2x+3,∴x=21.例6 求直线y=-2x-3与x 轴和y 轴的交点,并画出这条直线.分析: 要注意x 轴和y 轴上点的特征,x 轴上所有点的纵坐标为0,y 轴上所有点的横坐标为0,两个交点的坐标求出后,利用这两点就可以画直线了.解:令x=0,则y=-3;令y=0,则x=-23.所以该直线与x 的交点为(-23,0),与y 轴的交点为(0,-3)图象如图11-20所示.例7 (哈尔滨)若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1﹤x 2时,y 1>y 2,则m 的取值范围是( )A .m ﹤OB .m >0C .m ﹤21D .m >M 分析: 本题考查正比例函数的图象和性质,因为当x 1<x 2时,y 1>y 2,说明y 随x 的增大而减小,所以1-2m ﹤O,∴m>21,故正确答案为D 项.例8 已知y+a 与x+b (a ,b 为是常数)成正比例.(1)y 是x 的一次函数吗?请说明理由;(2)在什么条件下,y 是x 的正比例函数?分析: 判断某函数是一次函数,只要符合y=kx+b (k ,b 中为常数,且k≠0)即可;判断某函数是正比例函数,只要符合y=kx(k 为常数,且k≠0)即可.解:(1)y 是x 的一次函数.因为y+a 与x+b 是正比例函数,所以设y+a=k(x+b)(k 为常数,且k≠0)整理得y=kx+(kb-a ).又k≠0,k ,a ,b 为常数,所以y=kx+(kb-a)是一次函数.(2)当kb-a=0,即a=kb 时,y 是x 的正比例函数.例9。

已知y+2与x 成正比例,且x=-2时,y=0.(1)求y 与x 之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x 取何值时,y≥0?(4)若点(m ,6)在该函数的图象上,求m 的值;(5)设点P 在y 轴负半轴上,(2)中的图象与x 轴、y 轴分别交于A ,B 两点,且S △ABP =4,求P 点的坐标.分析: 由已知y+2与x 成正比例,可设y+2=kx ,把x=-2,y=0代入,可求出k ,这样即可得到y 与x 之间的函数关系式,再根据函数图象及其性质进行分析,点(m ,6)在该函数的图象上,把x=m ,y=6代入即可求出m 的值.解:(1)因为y+2与x 成正比例,所以设y+2=kx (k 是常数,且k≠0)因为当x=-2时,y=0.所以0+2=k·(-2),∴k=-1.所以函数关系式为x+2=-x ,即y=-x-2.(2)列表;描点、连线,图象如图11-23所示.(3)由函数图象可知,当x≤-2时,y≥0.所以当x≤-2时,y≥0.(4)因为点(m ,6)在该函数的图象上,所以6=-m-2,则m =-8.(5)函数y=-x-2分别交x 轴、y 轴于A ,B 两点,所以A (-2,0),B (0,-2).又S △ABP =21·|AP|·|OA|=4,所以|BP|=428||8==OA . 则点P 与点B 的距离为4.又B 点坐标为(0,-2),且P 在y 轴负半轴上,所以P 点坐标为(0,-6).例10 已知一次函数y=(3-k )x-2k 2+18.(1)k 为何值时,它的图象经过原点? (2)k 为何值时,它的图象经过点(0,-2)?(3)k 为何值时,它的图象与y 轴的交点在x 轴的上方?(4)k 为何值时,它的图象平行于直线y=-x ?(5)k 为何值时,y 随x 的增大而减小?分析: 函数图象经过某点,说明该点坐标适合方程;图象与y 轴的交点在y 轴上方,说明常数项b >O ;两函数图象平行,说明一次项系数相等;y 随x 的增大而减小,说明一次项系数小于0.解:(1)图象经过原点,则它是正比例函数.所以⎩⎨⎧≠-=+-,03,01822k k 则k =-2.故当k=-3时,它的图象经过原点.(2)该一次函数的图象经过点(0,-2).所以-2=-2k 2+18,且3-k≠0,所以k=±10,故当k=±10时,它的图象经过点(0,-2)(3)因为图象与y 轴的交点在x 轴上方,即b >0.所以-2k 2+18>0,所以-3<k <3,故当-3﹤k ﹤3时,它的图象与y 轴的交点在x 轴的上方.(4)函数图象平行于直线y=-x ,所以3-k=-1,则k =4.所以当k =4时,它的图象平行于直线x=-x .(5)因为随x 的增大而减小,所以3-k ﹤O .则k >3.故当k >3时,y 随x 的增大而减小.例11 某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案.甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y (元)与所购买的水果量x (千克)之间的函数关系式,并写出自变量X 的取值范围;(2)当购买量在什么范围时,选择哪种购买方案付款少?并说明理由.分析: 先求出两种购买方案的付款y (元)与所购买的水果量x (千克)之间的函数关系式,再通过比较,探索出结论.解法1:①当y 甲=y 乙时,有9x=8x+5000,所以x=5000.所以当x=5000时,两种方案付款一样,按哪种方案都可以.②当y 甲﹤y 乙时,有9x ﹤8x+5000,所以x <5000.又x≥3000,所以当3000≤x≤5000时,甲方案付款少,故采用甲方案.③当y 甲>y 乙时,有9x >8x+5000,所以x >5000.所以当x >500O 时,乙方案付款少,故采用乙方案.解法2:图象法,作出y 甲=9x 和y 乙=8x+5000的函数图象,如图11-24所示,由图象可得:当购买量大于或等于3000千克且小于5000千克时,y 甲﹤y 乙,即选择甲方案付款少;当购买量为5000千克时,y 甲﹥y 乙即两种方案付款一样;当购买量大于5000千克时,y 甲>y 乙,即选择乙方案付款最少.说明: 图象法是解决问题的重要方法,也是考查学生读图能力的有效途径.例12。

相关文档
最新文档