尺规作图(习题及答案)
新人教版尺规作图归纳 练习及答案

人教版常规作图归纳练习及答案一、尺规基本作图1、作一条线段等于已知线段;2、作一个角等于已知角;3、作角的平分线;4、作线段的中垂线;5、已知三边,两边和其夹角或两角和其夹边作三角形;6、已知底边和底边上的高作等腰三角形;7、过直线上一点作直线的垂线;8、过直线外一点作直线的垂线. 例题:1、如图,有一破残的轮片,现要制作一个与原轮片同样大小的圆形零件,请你根据所学的有关知识,设计一种方案,确定这个圆形零件的半径.2、 如图:107国道OA 和320国道OB 在某市相交于点O,在∠AOB 的内部有工厂C 和D,现要修建一个货站P,使P 到OA 、OB 的距离相等且PC=PD,用尺规作出货站P 的位置(不写作法,保留作图痕迹,写出结论)3、 三条公路两两相交,交点分别为A ,B ,C ,现计划建一个加油站,要求到三条公路的距离相等,问满足要求的加油站地址有几种情况?CBACBACBAA4、过点C 作一条线平行于AB ;5、过不在同一直线上的三点A 、B 、C 作圆O ;6、过直线外一点A 作圆O 的切线。
二、几何画图:1、只利用一把有刻度的直尺,用度量的方法,按下列要求画图: 1)画等腰三角形ABC 的对称轴: 2)画∠AOB 的对称轴2、有一个未知圆心的圆形工件.现只允许用一块三角板(注:不允许用三角板上的刻度)画出该工件表面上的一条直径并定出圆心.要求在图上保留画图痕迹,写出画法.3、某校有一个正方形的花坛,现要将它分成形状和面积都相同的四块种上不同颜色的花卉,请你帮助设计至少三种不同的方案,分别画在下面正方形图形上(用尺规作图或画图均可,但要尽可能准确些、美观些).4、某村一块若干亩土地的图形是ΔABC ,现决定把这块土地平均分给四位“花农”种植,请你帮他们分一分,提供至少两种分法。
要求:画出图形,并简要说明分法。
5、如图所示,在正方形网格上有一个三角形ABC. ①作△ABC 关于直线MN 的对称图形(不写作法); ②若网格上的最小正方形的边长为1.求△ABC 的面积.DCBA6题7题6、如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”.如图(一)中四边形ABCD 就是一个“格点四边形”. ①求图中四边形ABCD 的面积;②在图中方格纸上画一个格点△EFG ,使△EFG 的面积等于四边形ABCD 的面积且为轴对称图形.7、如图,若A 、B 、C 、P 、Q 、甲、乙、丙、丁都是方格纸中的格点,为使△ABC ∽△PQR ,则点R 应是甲、乙、丙、丁四点中的( ) A. 甲 B. 乙 C. 丙 D. 丁8、某新建小区要在一块等边三角形的公共区域内修建一个圆形花坛。
尺规作图(习题及答案)

尺规作图(习题)巩固练习1.下列作图语言描述正确的是()A.延长线段AB至点C,使AB=ACB.过∠AOB内部一点P,作∠AOB的平分线C.以点O为圆心,AC长为半径作弧D.在射线OA上截取OB=a,BC=b,则有OC=a+b2.已知边长作等边三角形.已知:线段a.求作:等边△ABC,使△ABC的三边长均为a.a作法:(1)作线段_____________;(2)分别以______,______为圆心,_______为半径作弧,两弧交于________;(3)连接________,_________.____________________.3.按下列要求作图,保留作图痕迹,不写作法.已知:如图,∠ABC.求作:∠DEF,使∠DEF=32∠ABC.A4.已知∠AOB=45°,点P在边OA上.请以点P为顶点,射线P A为一边作∠APC=∠O(作出所有可能的图形).5.如图,分别过A,B两个加油站的公路l1,l2相交于点O,现准备在∠AOB内建一个油库,要求油库的位置点P满足在两个加油站的连线上,且到两条公路l1,l2的距离相等.请用尺规作图作出点P(保留作图痕迹).6.请画出草图,并根据图形完成下列各题:(1)在△ABC中,AD平分∠BAC交BC于点D,过点B作BF∥AD交CA 的延长线于点F,则AF和AB的数量关系是_________________.(2)在△ABC中,点D是BC上的一点,过D作DE∥AC交AB于点E,DF∥AB交AC于点F,则∠EDF与∠A的数量关系是__________________.(3)已知,在锐角△ABC中,AD⊥BC于点D,CE⊥AB于点E,若AD与CE所夹的锐角是58°,则∠ABC=______.(4)已知,在锐角△ABC中,∠BAC=50°,AD平分∠BAC交BC于点D,BE⊥AC于点E,若∠EBC=20°,则∠ADC=_______.思考小结阅读材料:尺规作图是起源于古希腊的数学课题.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.古希腊的安那萨哥拉斯首先提出作图要有次数限制.他因政治上的纠葛,被关进监狱,并被判处死刑.在监狱里,他思考改圆成方以及其他有关问题,用来打发令人苦恼的无所事事的生活.他不可能有规范的作图工具,只能用一根绳子画圆,用随便找来的破木棍作直尺,当然这些尺子上不可能有刻度.另外,对他来说,时间是不多了,因此他很自然地想到要有限次地使用尺规解决问题.尺规作图三大难题:①化圆为方问题求一个正方形的边长,使其面积与一已知圆的面积相等;②三等分角问题求一角,使其角度是一已知角度的三分之一;③倍立方问题求一立方体的棱长,使其体积是一已知立方体的二倍.【参考答案】1. C2.作法:(1)作线段AB使AB=a;(2)分别以点A,点B为圆心,a长为半径作弧,两弧交于点C;(3)连接AC,BC.△ABC即为所求.3.略4.略(有两种情况)5.略6.(1)AF=AB(2)∠EDF=∠A(3)58°(4)85°。
19.3 尺规作图单元练习及答案

19.3 尺规作图单元练习一.理解运用:1.用尺规作图,不能作出唯一三角形的( )A.已知两角和夹边;B.已知两边和其中一边的对角C.已知两边和夹角;D.已知两角和其中一角的对边2.用尺规作图,不能作出惟一直角三角形的是( )A.已知两条直角边B.已知两个锐角C.已知一直角边和一锐角D.已知斜边和一直角边3.下列画图语言表述正确的是( )A.延长线段AB至点C,使AB=BCB.以点O为圆心作弧C.以点O为圆心,以AC长为半径画弧D.在射线OA上截取OB=a,BC=b,则有OC=a+b正确]4.利用基本作图不能唯一作出三角形的是()A.已知三边B.已知两边及夹角C.已知夹角及两边D.已知两边及其中一边对角5.利用基本作图不可作的等腰三角形是()A.已知底边及底边上的高B.已知底边上的高及腰C.已知底边及顶角D.已知两底角6.根据图形填空。
(1)连接两点;(2)延长线段到点,使BC=(3)在AM上截取=(4)以点O为,以m为画交OA,OB分别于C,D.7.如图,已知ABC边BC上有一点P,过P作平行于AB的直线。
8.如图,EFGH是一长方形的台球桌面,有黑白两球分别位于A、B两点的位置,试问:怎样使白球B先碰到台边EF反弹再击中黑球,作出白球的入射点O(用尺规作图,不写作法,保留痕迹)9.如图所示,已知线段a,求作:(1)△ABC,使AB=BC=CA=a;(2)⊙O,使它内切于△ABC.(说明:保留作图痕迹,并写出作法)a二.拓展提高:10.任一个角用尺规是不能三等分的,但对一个直角可以将其三等分,请你试一试.11.已知:如图,菱形ABCD的AB边在射线AM上,AC为它的对角线,请用尺规把这个菱形补充完整(保留作图痕迹,写出画法)12.如图所示,已知线段a,b,m,求作△ABC,使BC=a,CA=b,AB边上的中线CD=m..三.综合运用13. 如图,RtΔABC中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形的等腰三角形。
中考数学试题分类汇总《尺规作图》练习题

中考数学试题分类汇总《尺规作图》练习题(含答案)作角平分线1.如图,在△ABC中,∠B=30°,∠C=50°,通过观察尺规作图的痕迹,∠DAE的度数是35°.【分析】由线段垂直平分线的性质和等腰三角形的性质求得∠BAD=30°,结合三角形内角和定理求出∠CAD,根据角平分线的定义即可求出∠DAE的度数.【解答】解:∵DF垂直平分线段AB,∴DA=DB,∴∠BAD=∠B=30°,∵∠B=30°,∠C=50°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣30°﹣50°=100°,∴∠CAD=∠BAC﹣∠BAD=100°﹣30°=70°,∵AE平分∠CAD,∴∠DAE=∠CAD=×70°=35°,2.如图,在△ABC中,∠ABC>∠ACB.(1)尺规作图:在∠ABC的内部作射线BD,交AC于E,使得∠ABE=∠ACB;(不写作法,保留作图痕迹)(2)若(1)中AB=7,AC=13,求AE的长.【解答】解:(1)如图,射线BE即为所求作.(2)∵∠A=∠A,∠ABE=∠C,∴△ABE∽△ACB,∴=,∴=,∴AE=.3.如图,在△ABC中,∠C=90°.(1)求作:射线AD,使它平分∠BAC交BC于点D(请用尺规作图,保留作图痕迹,不写作法);(2)若BD:DC=2:1,BC=7.8cm,求点D到AB的距离.【分析】(1)是基本作图,利用直尺和圆规即可作出;(2)过点D作DE⊥AB于E.根据BD:DC=2:1,BC=7.8cm,可得DC,进而即可求点D到边AB的距离.【解答】解:(1)如图所示:(2)过点D作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴CD=DE,∵BD:DC=2:1,BC=7.8cm,∴DC=7.8÷(2+1)=7.8÷3=2.6cm.∴DE=DC=2.6cm.∴点D到AB的距离为2.6cm.4.如图,在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD.(1)尺规作图:作∠CAD的平分线AF,交CD于点F,连接EF,BF(保留作图痕迹,不写作法);(2)在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,AC=2.判断△BEF的形状,并说明理由,再求出其面积.【解答】解:(1)如图所示:∠CAD的平分线AF即为所求;(2)△BEF是等边三角形;理由如下:∵∠BAD=45°,且∠CAD=2∠BAC,∴∠BAC=∠F AC=∠DAF=15°,∴∠BAF=30°,∵AC=AD,AF是∠CAD的平分线,∴AF⊥CD,∵点E是AC的中点,∴EF=AC=1,∵∠ABC=90°,∴BE=AC=1,∴BE=EF,∠BEC=∠BAE+∠ABE=2∠BAE=30°,∠FEC=∠F AE+∠AFE=2∠F AE=30°,∴∠BEF=60°,∴△BEF是等边三角形;S△BEF=×12=.5.如图,在Rt△ABC中,∠C=90°.(1)尺规作图:作∠A的角平分线AP交BC于点P;(保留作图痕迹,不写作法)(2)在(1)所作的图中,若AC=5,BC=12,求CP的长.【解答】解:(1)如图,AP即为所求;(2)在Rt△ABC中,∠C=90°.∵AC=5,BC=12,∴AB==13,过点P作PD⊥AB于点D,∵AP是∠CAB的平分线,PC⊥AC,PD⊥AB,∴PC=PD,在Rt△APC和Rt△APD中,,∴Rt△APC≌Rt△APD(HL),∴AC=AD=5,∴BD=AB﹣AD=13﹣5=8,∵BP=BC﹣CP=12﹣CP,在Rt△PBD中,根据勾股定理得PB2=PD2+BD2,∴(12﹣CP)2=CP2+82,∴CP=.作一个角等于另一个角6.如图,在△ABC中,∠ABC>∠C.(1)用直尺和圆规在∠ABC的内部作射线BM,使∠ABM=∠ACB(不要求写作法,保留作图痕迹);(2)若(1)中的射线BM交AC于D,AB=4,AC=6,求CD长.【分析】(1)利用基本作图(作一个角等于已知角)作∠ABM=∠ACB即可;(2)先证明△ABD∽△ACB,利用相似比求出AD,然后计算AC﹣AD即可.【解答】解:(1)如图,BM为所作;(2)∵∠ABD=∠C,∠BAD=∠CAB,∴△ABD∽△ACB,∴AB:AC=AD:AB,即4:6=AD:4,∴AD=,∴CD=AC﹣AD=6﹣=.7.观察用直尺和圆规作一个角等于已知角的示意图,能得出∠CPD=∠AOB的依据是()A.由“等边对等角”可得∠CPD=∠AOBB.由SSS可得△OGH≌△PMN,进而可证∠CPD=∠AOBC.由SAS可得△OGH≌△PMN,进而可证∠CPD=∠AOBD.由ASA可得△OGH≌△PMN,进而可证∠CPD=∠AOB【解答】解:由作法得OG=OH=PM=PN,GH=MN,根据“SSS”可判断△OGH≌△PMN,所以∠CPD=∠AOB.尺规作高、作垂线8.如图,已知钝角△ABC.(1)过钝角顶点B作BD⊥AC,交AC于点D(使用直尺和圆规,不写作法,保留作图痕迹);(2)若BC=8,∠C=30°,,求AB的长.【分析】(1)利用尺规作出BD⊥AC,垂足为D即可.(2)在Rt△BCD中求出BD,再在Rt△ABD中,求出AB即可.【解答】解:(1)如图,线段BD即为所求.(2)解:在Rt△BCD中,∵BC=8,∠C=30°∴BD=BC•sin30°=4,在Rt△ABD中,AB===10.作线段的垂直平分线9.如图,在▱ABCD中,AD>AB.(1)尺规作图:作DC边的中垂线MN,交AD边于点E(要求:保留作图痕迹,不写作法);(2)连接EC,若∠BAD=130°,求∠AEC的度数.【解答】解:(1)如图,直线MN,点E即为所求;(2)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A+∠D=180°,∵∠A=130°,∴∠D=50°∵MN垂直平分线段CD,∴ED=EC,∴∠D=∠ECD=50°,∴∠AEC=∠D+∠ECD=100°.10.(2022·广州从化区一摸)已知,如图,在Rt△ABC中,∠C=90°,AD平分∠CAB.(1)按要求尺规作图:作AD的垂直平分线(保留作图痕迹);【解答】解:(1)如图:分别以A、D为圆心,大于AD的长为半径作弧,两弧交于M、N,作直线MN,则直线MN即为AD的垂直平分线;11.如图,在△ABC中,AB=9,BC=6.(1)在AB上求作点E,使得EA=EC;(不写作法,保留作图痕迹)(2)若∠ACB=2∠A,求AE的长.【分析】(1)作线段AC的垂直平分线交AB于点E,连接EC即可;(2)证明△BCE∽△BAC,推出BC2=BE•BA,求出BE,可得结论.【解答】解:(1)如图,点E即为所求;(2)∵EA=EC,∴∠A=∠ECA,∵∠ACB=2∠A,∴∠BCE=∠A,∵∠B=∠B,∴△BCE∽△BAC,∴BC2=BE•BA,∴BE==4,∴AE=AB=EB=9﹣4=5.12.如图,在△ABC中,按以下步骤作图:①分别以点A,B为圆心,大于AB长为半径作弧,两弧交于M,N两点;②作直线MN交AC于点D,连接BD.若BD=BC,∠A=36°,则∠C的度数为()A.72°B.68°C.75°D.80°【解答】解:由作法可得MN垂直平分AB,∴DA=DB,∴∠DBA=∠A=36°,∵∠BDC=∠A+∠DBC,∴∠BDC=72°,∵BD=BC,∴∠C=∠BDC=72°,即∠C的度数为72°.13.如图,在△ABC中,分别以A、B为圆心,大于AB的长为半径画弧,两弧交于P、Q两点,直线PQ 交BC于点D,连接AD;再分别以A、C为圆心,大于AC的长为半径画弧,两弧交于M,N两点,直线MN交BC于点E,连接AE.若CD=11,△ADE的周长为17,则BD的长为6.【解答】解:由作法得PQ垂直平分AB,MN垂直平分AC,∴DA=DB,EA=EC,∵△ADE的周长为17,∴DA+EA+DE=17,∴DB+DE+EC=17,即BC=17,∴BD=BC﹣CD=17﹣11=6.14.如图,已知∠BAC=60°,AD是角平分线且AD=10,作AD的垂直平分线交AC于点F,作DE⊥AC,则△DEF周长为5+5.【解答】解:∵AD的垂直平分线交AC于点F,∴F A=FD,∵AD平分∠BAC,∠BAC=60°,∴∠DAE=30°,∴DE=AD=5,∴AE===5,∴△DEF周长=DE+DF+EF=DE+F A+EF=DE+AE=5+5,复杂作图15.如图,在△ABC中,AB=AC,点P在BC上.(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若∠APC=2∠ABC.求证:PD∥AB.【分析】(1)尺规作图作出∠APD=∠ABP,即可得到∠DPC=∠P AB,从而得到△PCD∽△ABP;(2)根据题意得到∠DPC=∠ABC,根据平行线的判定即可证得结论.【解答】解:(1)如图:作出∠APD=∠ABP,即可得到△PCD∽△ABP;(2)证明:如图,∵∠APC=2∠ABC,∠APD=∠ABC,∴∠DPC=∠ABC,∴PD∥AB.16.如图1,在△ABC中,D是AB边上的一点,小明用尺规作图,做法如下:如图2,①以B为圆心,任意长为半径作弧,交BA于F、交BC于G;②以D为圆心,BF为半径作弧,交DA于M;③以M为圆心,FG为半径作弧,两弧相交于N;④过点D作射线DN交AC于点E.若∠ADE=52°,∠C=78°,则∠A 的度数是50度.【解答】解:由作图可知DE∥BC,∴∠AED=∠C=78°,∴∠A=180°﹣∠ADE﹣∠AED=180°﹣52°﹣78°=50°,。
初三尺规作图练习题及答案

初三尺规作图练习题及答案一、作图题:1. 作图:在空白平面上画一条长为5cm的线段AB;2. 作图:在平面上任意选择一点O,画一条长为3cm的线段OA,并作出∠AOB为45°的角;3. 作图:在空白平面上画一条长为4cm的线段OA,再在OA上作一点B,且OB=2cm;4. 作图:已知三条线段AB、BC、AC的长度分别为3cm、4cm、5cm,画出三角形ABC;5. 作图:已知四边形ABCD,其中AB=3cm,BC=4cm,∠C=90°,CD=5cm,画出该四边形;6. 作图:在平面上画一条直线,再取一点P,使得P到该直线的距离为4cm;7. 作图:在空白平面上画一条长为6cm的线段AB,然后以B为圆心,AB为半径作弧线;8. 作图:一个正方形边长为8cm,画出该正方形;9. 作图:在空白平面上任意选择一点O,以O为圆心,3cm为半径画出一个圆;10. 作图:在平面上给定一条线段AB和一点O,作出以线段AB为一边,点O为顶点的角。
二、答案及解析:1. 题目要求画一条长为5cm的线段AB,可以任意选择一个点作为起点,然后使用尺规在平面上作一条长为5cm的线段。
最终得到的线段即为所求的AB线段。
2. 题目要求画一条长为3cm的线段OA,并作出∠AOB为45°的角。
先在平面上选取一个点O,再利用尺规作出线段OA。
接着,以O为圆心,半径为3cm作一个圆,并选择圆上任意一点B。
最后,使用尺规作出∠AOB为45°的角。
3. 题目要求画一条长为4cm的线段OA,再在OA上任意选择一点B,且OB=2cm。
首先,利用尺规作出长度为4cm的线段OA。
然后,在OA上以O为起点,用尺子量取2cm并在该位置上作一点B。
最终得到的OB线段长度为2cm。
4. 题目要求已知三条线段AB、BC、AC的长度分别为3cm、4cm、5cm,画出三角形ABC。
首先,利用尺规作出线段AB的长度为3cm。
初二数学尺规作图练习题

初二数学尺规作图练习题尺规作图是数学中的重要内容,通过使用尺规来解决几何问题。
在初二数学中,尺规作图是一项基础技能,帮助学生理解几何概念并锻炼解决问题的能力。
本文将介绍一些初二数学尺规作图的练习题,并提供相应的解答。
【练习题一】已知正方形ABCD的边长为2cm,E为边AB上的一点,连接DE并延长至与边BC相交于点F,请使用尺规作图的方法求出DF的长度。
解答:1. 作辅助线:过点D作DE的垂线,交边BC于点G。
2. 以尺规的一点放在点D上,另一点固定在边DE上,画弧与边BC相交于点G。
3. 以尺规的一点放在点G上,另一点放在点F上,画弧与边DC相交于点H。
4. 连接DH,DH即为所求的DF的长度。
【练习题二】已知直角三角形ABC,其中∠ABC=90°,AB=3cm,BC=4cm,请使用尺规作图的方法求出三角形ABC的内切圆的半径。
解答:1. 作辅助线:连接AB和AC,延长AC至点D。
2. 以尺规的一点放在点A上,另一点固定在边AC上,画弧与边AB相交于点E。
3. 以尺规的一点放在点E上,另一点放在点C上,画弧与边BC相交于点F。
4. 连接AF,AF即为三角形ABC的内切圆的半径。
【练习题三】已知正方形ABCD的边长为6cm,E为边AB上的一点,连接DE 并延长至与边BC相交于点F,连接CF,请使用尺规作图的方法求出三角形CEF的周长。
解答:1. 作辅助线:过点D作DE的垂线,交边BC于点G。
2. 以尺规的一点放在点D上,另一点固定在边DE上,画弧与边BC相交于点G。
3. 以尺规的一点放在点G上,另一点放在点F上,画弧与边FC相交于点H。
4. 连接CF和FH,CHFH即为三角形CEF。
5. 使用尺规测量边CH、HF和FC的长度,计算出三角形CEF的周长。
通过以上三个练习题,我们了解了尺规作图的基本方法和步骤。
在实际操作中,我们需要准确使用尺规,并且要仔细观察图形的性质和特点,以便选择合适的作图方法。
初中数学尺规作图经典练习题

初中数学尺规作图经典练习题班级:XXX 姓名:XXX尺规作图练题尺规作图是指在几何中,用无刻度的直尺和圆规来画图。
以下是几个练题:1.画一条与已知线段等长的线段;解答:假设已知线段为AB,用圆规在任意一点O处画一个圆,使得圆的半径等于AB的长度。
然后再用直尺连接A和B,就得到了一条与AB等长的线段。
2.画一个与已知角相等的角;解答:假设已知角为∠ABC,用圆规在顶点B处画一个圆,使得圆的半径与BC的长度相等。
然后再用直尺连接A和圆上的某一点D,就得到了一个与∠XXX相等的角。
3.画一个角的平分线;解答:假设要平分的角为∠ABC,用圆规在顶点B处画一个圆,使得圆的半径与BC的长度相等。
然后用圆规在A点和C点上分别画一个圆弧,使得两个圆弧相交于点D。
最后用直尺连接B和D,就得到了∠ABC的平分线。
4.画线段的垂直平分线;解答:假设要垂直平分的线段为AB,用圆规在A点和B点上分别画一个圆弧,使得两个圆弧相交于点C。
然后用圆规以C为圆心,AB的长度为半径画一个圆。
最后用直尺连接C和圆上的某一点D,就得到了AB的垂直平分线。
5.已知线段AB和CD,如图,求作一条线段,使它的长度等于AB+2CD。
解答:用圆规在A点和B点上分别画一个圆弧,使得两个圆弧相交于点E。
然后用圆规在E点和D点上分别画一个圆弧,使得两个圆弧相交于点F。
最后用直尺连接A和F,就得到了一条长度为AB+2CD的线段。
6.如图,已知∠A、∠B,求作一个角,使它等于∠A-∠B。
解答:用圆规在顶点B处画一个圆,使得圆的半径与BC的长度相等。
然后用圆规在顶点A处画一个圆,使得圆的半径与AB的长度相等。
最后用直尺连接圆上的两个交点C和D,就得到了一个角,它的度数等于∠A-∠B。
7.如图,已知∠AOB及M、N两点,求作:点P,使点P到∠AOB的两边距离相等,且到M、N的两点也距离相等。
解答:用圆规在顶点O处画一个圆,使得圆的半径与OM的长度相等。
然后用圆规在顶点B处画一个圆,使得圆的半径与BN的长度相等。
尺规作图(画草图计算一)(人教版)(含答案)

学生做题前请先回答以下问题问题1:三角形的内角和等于______;直角三角形两锐角______;三角形的外角定理:三角形的一个外角等于__________________________.问题2:看到平行想什么?问题3:看到垂直想什么?问题4:看到三角形的外角想什么?问题5:看到三角形的内角想什么?以下是问题及答案,请对比参考:问题1:三角形的内角和等于;直角三角形两锐角;三角形的外角定理:三角形的一个外角等于.答:180°;互余;和它不相邻的两个内角的和.问题2:看到平行想什么?答:同位角、内错角、同旁内角.问题3:看到垂直想什么?答:直角三角形两锐角互余,同角或等角的余角相等.问题4:看到三角形的外角想什么?答:三角形的一个外角等于和它不相邻的两个内角的和.问题5:看到三角形的内角想什么?答:三角形的内角和等于180°,直角三角形两锐角互余.尺规作图(画草图计算一)(人教版)一、单选题(共7道,每道14分)1.在△ABC中,AD是△ABC的中线,若AB=2,AD=3,CD=4,请根据题意画出草图,并计算△ABD的周长为( )A.7B.9C.10D.11答案:B解题思路:试题难度:三颗星知识点:画草图求线段长2.在△ABC中,∠ABC=90°,BD⊥AC,垂足为D,若∠CBD=37°,请根据题意画出草图,并计算∠A=( )A.37°B.43°C.53°D.74°答案:A解题思路:试题难度:三颗星知识点:画草图求角度3.在△ABC中,BD平分∠ABC交AC于点D,过D作DE∥BC交AB于点E,若∠AED=70°,请根据题意画出草图,并计算∠EDB=( )A.35°B.55°C.45°D.70°答案:A解题思路:试题难度:三颗星知识点:画草图求角度4.在△ABC中,BD平分∠ABC交AC于D,过点D作DE⊥BC,垂足为E,若∠A=50°,∠C=60°,请根据题意画出草图,并计算∠BDE=( )A.50°B.35°C.60°D.55°答案:D解题思路:试题难度:三颗星知识点:画草图计算角度5.在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,过点D作DE⊥AB,垂足为E,若∠EDB=65°,请根据题意画出草图,并计算∠A=( )A.60°B.50°C.40°D.65°答案:C解题思路:试题难度:三颗星知识点:画草图计算角度6.在△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作EF∥BC交AB于E,交AC于F,若BE=3,CF=2,请根据题意画出草图,并计算EF=( )A.1B.2C.3D.5答案:D解题思路:试题难度:三颗星知识点:画草图求线段长7.在△ABC中,∠B=60°,P为BC边上一点,D为AC边上一点,且∠BAP=∠DPC,请根据题意画出草图,并计算∠APD=( )A.30°B.45°C.60°D.90°答案:C解题思路:试题难度:三颗星知识点:画草图计算角度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
尺规作图(习题)
➢巩固练习
1.下列作图语言描述准确的是()
A.延长线段AB至点C,使AB=AC
B.过∠AOB内部一点P,作∠AOB的平分线
C.以点O为圆心,AC长为半径作弧
D.在射线OA上截取OB=a,BC=b,则有OC=a+b
2.已知边长作等边三角形.
已知:线段a.
求作:等边△ABC,使△ABC的三边长均为a.
a
作法:(1)作线段_____________;
(2)分别以______,______为圆心,_______为半径作弧,两弧交于________;
(3)连接________,_________.
____________________.
3.按下列要求作图,保留作图痕迹,不写作法.
已知:如图,∠ABC.
求作:∠DEF,使∠DEF=3
2
∠ABC.
A
C
B
4.已知∠AOB=45°,点P在边OA上.请以点P为顶点,射线P A为一边作∠
APC=∠O(作出所有可能的图形).
5.如图,分别过A,B两个加油站的公路l1,l2相交于点O,现准备在∠AOB
内建一个油库,要求油库的位置点P满足在两个加油站的连线上,且到两条公路l1,l2的距离相等.请用尺规作图作出点P(保留作图痕迹).
6.请画出草图,并根据图形完成下列各题:
(1)在△ABC中,AD平分∠BAC交BC于点D,过点B作BF∥AD交CA 的延长线于点F,则AF和AB的数量关系是_________________.
(2)在△ABC中,点D是BC上的一点,过D作DE∥AC交AB于点E,DF∥AB交AC于点F,则∠EDF与∠A的数量关系是__________________.
(3)已知,在锐角△ABC中,AD⊥BC于点D,CE⊥AB于点E,若AD与CE所夹的锐角是58°,则∠ABC=______.
(4)已知,在锐角△ABC中,∠BAC=50°,AD平分∠BAC交BC于点D,BE⊥AC于点E,若∠EBC=20°,则∠ADC=
_______.
➢思考小结
阅读材料:
尺规作图是起源于古希腊的数学课题.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.古希腊的安那萨哥拉斯首先提出作图要有次数限制.他因政治上的纠葛,被关进监狱,并被判处死刑.在监狱里,他思考改圆成方以及其他相关问题,用来打发令人苦恼的无所事事的生活.他不可能有规范的作图工具,只能用一根绳子画圆,用随便找来的破木棍作直尺,当然这些尺子上不可能有刻度.另外,对他来说,时间是不多了,所以他很自然地想到要有限次地使用尺规解决问题.
尺规作图三大难题:
①化圆为方问题
求一个正方形的边长,使其面积与一已知圆的面积相等;
②三等分角问题
求一角,使其角度是一已知角度的三分之一;
③倍立方问题
求一立方体的棱长,使其体积是一已知立方体的二倍.
【参考答案】
1. C
2.作法:(1)作线段AB使AB=a;
(2)分别以点A,点B为圆心,a长为半径作弧,两弧交于点C;
(3)连接AC,BC.
△ABC即为所求.
3.略
4.略(有两种情况)
5.略
6.(1)AF=AB(2)∠EDF=∠A(3)58°(4)85°。