4.1柱面、锥面
解析几何第四版知识题目解析第四章
第四章 柱面、锥面、旋转曲面与二次曲面§ 4.1柱面1、已知柱面的准线为:⎩⎨⎧=+-+=-+++-0225)2()3()1(222z y x z y x 且(1)母线平行于x 轴;(2)母线平行于直线c z y x ==,,试求这些柱面的方程。
解:(1)从方程⎩⎨⎧=+-+=-+++-0225)2()3()1(222z y x z y x 中消去x ,得到:25)2()3()3(222=-+++--z y y z即:0235622=----+z y yz z y 此即为要求的柱面方程。
(2)取准线上一点),,(0000z y x M ,过0M 且平行于直线⎩⎨⎧==cz yx 的直线方程为:⎪⎩⎪⎨⎧=-=-=⇒⎪⎩⎪⎨⎧=+=+=z z t y y tx x zz t y y t x x 000000 而0M 在准线上,所以⎩⎨⎧=+--+=-++-+--02225)2()3()1(222t z y x z t y t x 上式中消去t 后得到:02688823222=--+--++z y x xy z y x此即为要求的柱面方程。
2而0M 在准线上,所以:⎩⎨⎧+=-++=-)2(2)2(22t z t x t z y t x消去t ,得到:010*******22=--+++z x xz z y x此即为所求的方程。
3、求过三条平行直线211,11,-=+=--==+==z y x z y x z y x 与的圆柱面方程。
解:过又过准线上一点),,(1111z y x M ,且方向为{}1,1,1的直线方程为: ⎪⎩⎪⎨⎧-=-=-=⇒⎪⎩⎪⎨⎧+=+=+=t z z t y y tx x tz z t y y tx x 111111 将此式代入准线方程,并消去t 得到:013112)(5222=-++---++z y x zx yz xy z y x此即为所求的圆柱面的方程。
4.1柱面
0 4 4 1 1 0 1 2 2 2 2 1
2 2
2
2 2 (1) 2 22
117 . 3
现设 P( x, y, z ) 为圆柱面上的任意点,那么 即
y 1 z 3 z 3 x 1 x 1 y 1 1 2 2 2 2 1
.
圆柱面的参数方程:
与上一节介绍的球面的参数方程一样,母线平行于轴 的圆柱面的参数方程在计算机绘图及数学分析课中 的重积分计算等应用上也是非常有效的. 在圆柱面的轴上任取一点作为坐标原点,轴的方向平 行于z轴建立直角坐标系. 设圆柱面上任一点到轴线 的距离为常数r, P( x, y, z )是圆柱面上任意一点,过P的 母线与准线圆交于M,那么 OP OM MP (r cos )i (r sin ) j uk .
故得圆柱面的参数方程是:
x r cos , y r sin , z u.
z
x
P u O r M
y
其中 , u 为参数, 0 , u
f ( x, y ) 0, z 0.
设 P( x, y, z ) 是柱面上的任意一点,过点P的母线与准线的交点为 M ( x1 , y1 , z1 ).那么 x x1 0,
y y 0, 1 z z1 u , f ( x , y ) 0, 1 1 z1 0.
2 2 2
AP d.
2 2 (1) 2 22
117 . 3
化简得所求圆柱面的方程为:
柱面和锥面PPT演示课件
3.例 求半径为2,对称轴为 x y z 的圆柱面
的方程.
23
解:直线l0过点M0 (0, 0, 0), 其方向向量为 v(1, 2,3)
设M(x,y,z)为柱面上任一点,则柱面方程为:
M0M v 2 v
化简得:13x2 10 y2 5z2 4xy 12 yz 6zx 56 0
M0 ( x0 , y0 , z0 ),准线C的方程为
F ( x, y, z) 0, G( x, y, z) 0.
求这个锥面的方程.
点 M(x, y, z) 在此锥面上的充分必要条件是:M
在一条母线上,即,准线上有一点 M1(x1 , y1 , z1 ) 使得 NhomakorabeaM1
在直线
M
0
M
上.
F
方程为
F ( x, y, z) 0, G( x, y, z) 0.
求这个柱面的方程.
点 M(x, y, z)在此柱面上的充分必要条件是 M在某
一条母线上,即,有准线C 上一点 M0 (x0 , y0 , z0 )使得 M 在过 M0 且方向为 v 的直线上(如图3.7).
因此,有
F (x0 , y0 , z0 ) 0,
y0 y0
( (
y y
(
x1,
y1
,
z1
)
0,
因此,有
Gx1(x1x, 0y1,
z1) 0, (x x0 )u,
y1
y0
(y
y0 )u,
消去 x1 , y1 , z1 得 z1 z0 (z z0 )u.
解析几何第四版复习重点第四章柱面锥面旋转面与二次曲面
第四章柱面、锥面、旋转曲面与二次曲面§ 4.1柱面2、设柱面的准线为⎩⎨⎧=+=z x z y x 222,母线垂直于准线所在的平面,求这柱面的方程。
解:由题意知:母线平行于矢量{}2,0,1- 任取准线上一点),,(0000z y x M ,过0M 的母线方程为:⎪⎩⎪⎨⎧+==-=⇒⎪⎩⎪⎨⎧-==+=t z z yy tx x tz z y y t x x 22000000 而0M 在准线上,所以:⎩⎨⎧+=-++=-)2(2)2(22t z t x t z y t x 消去t ,得到:010*******22=--+++z x xz z y x 此即为所求的方程。
3、求过三条平行直线211,11,-=+=--==+==z y x z y x z y x 与的圆柱面方程。
解:过原点且垂直于已知三直线的平面为0=++z y x :它与已知直线的交点为())34,31,31(),1,0,1(,0,0,0--,这三点所定的在平面0=++z y x 上的圆的圆心为)1513,1511,152(0--M ,圆的方程为: ⎪⎩⎪⎨⎧=++=-++++07598)1513()1511()152(222z y x z y x 此即为欲求的圆柱面的准线。
又过准线上一点),,(1111z y x M ,且方向为{}1,1,1的直线方程为: ⎪⎩⎪⎨⎧-=-=-=⇒⎪⎩⎪⎨⎧+=+=+=t z z t y y tx x tz z t y y t x x 111111 将此式代入准线方程,并消去t 得到:013112)(5222=-++---++z y x zx yz xy z y x§ 4.2锥面2、已知锥面的顶点为)2,1,3(--,准线为0,1222=+-=-+z y x z y x ,试求它的方程。
解:设),,(z y x M 为要求的锥面上任一点,它与顶点的连线为:221133++=++=--z Z y Y x X 令它与准线交于),,(000Z Y X ,即存在t ,使⎪⎩⎪⎨⎧++-=++-=-+=t z Z t y Y t x X )2(2)!(1)3(3000 将它们代入准线方程,并消去t 得:044441026753222=+-+-+--+-z y x xz yz xy z y x此为要求的锥面方程。
《解释几何-第四版》第四章 柱面、锥面、旋转曲面与二次曲面 讲解与习题柱面、锥面、旋转曲面与二次曲面
F1 ( x, y ) 0 F2 ( x, z ) 0
(2)
那么(2)与(1)是两个等价的方程组,也就 是(2)表示的曲线与(1)是同一条曲线。从而 曲面 F1 ( x, y) 0 与曲面 F2 ( x, z) 0 都通过已知曲线(1) 同理方程 F3 ( y, z) 0 也通过已知曲线(1)。 我们把曲面 F1 ( x, y) 0 称为空间曲线(1)对xOy坐 标面的射影柱面,而曲线
F ( x, y) 0 (1) z0 作准线,z轴的方向 0, 0,1 为母线的方向,来建立 柱面方程。 任取准线上的一点 M1 ( x1, y1, z1 ) ,过 M1 的母线 方程为 xx y y zz
1
0
1
0
1
1
即
x x1 y y1
(2)
又因为点
第四章
柱面、锥面、旋转曲面与二次曲面
主要内容
1、柱面 2、锥面 3、旋转曲面 4、椭球面 5、双曲面 6、抛物面 7、单叶双曲面与双曲抛物面的直母线
第一节
柱面
定义 平行于定直线并沿定曲线 C 移动的直线 L 所形成的曲面称为柱面. 这条定曲线 C 叫柱面的准线,动直线 L 叫 柱面的母线. F1 ( x, y, z ) 0 设柱面的准线为 F ( x, y, z ) 0 (1) 2 母线的方向数为X,Y,Z。如果M1(x1,y1,z1)为准线 上一点,则过点M1的母线方程为 x x1 y y1 z z1 (2) X Y Z
f ( x 2 y 2 , z ) 0
yoz 坐标面上的已知曲线 f ( y , z ) 0绕 z 轴旋
转一周的旋转曲面方程.
土木工程制图4-1第四章建筑形体的投影
一、 组合体的组合形式
(a)叠加型组合体
(b)切割型组合体
(c)叠加及切割型组合体 •14
二、形体分析法
•15
三、 组合体投影图的作图步骤
•16
三、 组合体投影图的作图步骤
•17
三、 组合体投影图的作图步骤小结
(a) 画出V、H投影的中心线和投影的底边, 布置好三个投影的位置
(b) 画出竖立的大长方体的三投影
c'
a'1 b'1
c'1
a(a1) b(b1) c(c1)
a" b"(c") a"1 b"1 (c"1)
•6
3. 正三棱锥的三面投影图
棱面 底面
锥顶 棱线
s'
s'
s"
s"
a'
b' c'
(c")
a'
b' c' a"
b"
a
c
a"(c")
s
b"
a
c s
b
b
•7
三、曲面体的投影图
1. 回转面的常用术语 2. 圆柱体投影的画法 3. 圆锥体投影的画法 4. 圆球体投影的画法
b'
d(f')
a'(c') a"(d
底面
b
a
e'
b"(e")
d(f') c"(f") f
a"(d")
e
d
•5
2. 正六棱柱的三面投影图
柱面、锥面、旋转曲面与二次曲面
第四章柱面·锥面·旋转曲面与二次曲线教学目的:1.掌握消去参数法,能运用此法熟练地求出一般柱面、锥面、旋转曲面的方程.2.能识别母线平行于坐标轴的柱面方程,顶点在坐标原点的锥面方程,旋转轴为坐标轴的旋转曲面的方程.掌握求这些特殊位置的特殊曲面方程的方法,并能识别曲面的大致形状.3.掌握平行截线法,能运用此法讨论二次曲面的方程,认识曲面的形状.4.掌握椭球面、双曲面与抛物面的标准方程与主要性质.5.了解单叶双曲面与双曲抛物面的直纹性,并能掌握求直母线的方法.6.能根据给定条件,较准确地作出空间区域的简图.重点难点:1.柱面、锥面、旋转曲面的定义和一般方程的求法是重点,寻找柱面、锥面、旋转曲面的准线是难点.2.椭球面、双曲面与抛物面的标准方程、性质与形状是重点,一般二次曲面方程的灵活多样是难点.3.二次直纹面的性质及直母线方程求法是重点,证明单叶双曲面与双曲抛物面的一些性质难点.4.空间区域的作图是重点,其中在作空间区域时,分析并作出几个曲面的交线是难点.§4.1柱面一.柱面的定义空间中由平行于定方向且与定曲线相交的一族平行直线所产生的曲面叫柱面.柱面的方向:定方向;准线:定曲线;母线:一族平行线中的每一条直线.柱面由其准线和定方向唯一确定,但对于一柱面,准线不唯一.二.柱面的方程在空间直角坐标系下,柱面准线Γ方程 ⎩⎨⎧==0),,(0),,(21z y x F z y x F(1)母线的方向数X,Y,Z.即 {}Z Y X v ,,=(2)任取柱面准线Γ上一点),,(1111z y x M 则过此点的母线方程为Zz z Y y y X x x 111-=-=- 且有0),,(1111=z y x F ,0),,(1112=z y x F .从而消去参数111,,z y x 最后得到一个三元方程0),,(=z y x F ,这就是以⎩⎨⎧==0),,(0),,(21z y x F z y x F 为准线, 母线的方向数X,Y,Z 的柱面方程.三.例题讲解例1.柱面的准线方程为⎪⎩⎪⎨⎧=++=++2221222222z y x z y x 母线的方向数为-1,0,1.求这柱面的方程.解 设),,(1111z y x M 是准线上的点,那么过),,(1111z y x M 的母线为101111z z y y x x -=-=--, 且 ⎪⎩⎪⎨⎧=++=++2221212121212121z y x z y x (1) 设t z z y y x x =-=-=--101111,那么 ,1t x x +=y y =1,t z z -=1, 代入(1)得⎪⎩⎪⎨⎧=-+++=-+++2)(2)(21)()(222222t z y t x t z y t x 可得 0)(2=-t z ,即 z t = 求得柱面方程为 1)(22=++y t x . 例 2. 已知圆柱面的轴为 21211-+=--=z y x ,点(-1,-2,1)在此圆柱上, 求这柱面的方程.解法一 因为圆柱面的母线平行于其轴,所以母线的方向数即为轴的方向数-1,-2,-2.若能求出圆柱面的准线圆,问题即解决了.空间的圆总可以看成是某一球面与一平面的交线, 此圆柱面的准线圆可以看成是以轴上的点(0,-1,-1)为中心, 点(0,-1,-1)到已知点(-1,-2,1)的距离14=d 为半径的球面14)1()1(222=++-+z y x 与过知点(-1,-2,1)且垂直于轴的平面0322=---z y x 的交线,即准线圆的方程为⎩⎨⎧=---=-+-+032214)1()1(222z y x z y x设),,(111z y x 为准线圆上的点,那么14)1()1(212121=++-+z y x ,0322111=---z y x 且过的),,(111z y x 母线为221111--=--=-z z y y x x .消去参数111,,z y x 即得所求的圆柱面方程 0991818844558222=-+--++++z y yz xz xy z y x .解法二 将圆柱面看成是动点到轴线等距离的点的轨迹,这里的距离就是圆柱面的半径.轴的方向矢量为{}2,2,1--=v ,轴上的定点为)1,1,0(0-M ,而圆柱面上的点为)1,2,1(1-M ,所以{}2,3,110-=M M ,因此)1,2,1(1-M 到轴的距离为3117==d 再设),,(z y x M 为圆柱上任意点,那么有3117==d 即 3117)2()2(1211121221122222=-+-+--+-++--+-y x x x z y 化简整理得 0991818844558222=-+--++++z y yz xz xy z y x .定理4.1.1 在空间直角坐标系中,只含两个元(坐标)的三元方程所表示的曲面是一个柱面,它的母线平行于所缺元(坐标)的同名坐标轴。
解析几何第四版吕林根期末复习课后习题重点详解
解析几何第四版吕林根-期末复习-课后习题(重点)详解第一章 矢量与坐标§1.3 数量乘矢量4、 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B、D 三点共线.证明 ∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382 ∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B、D 三点共线.6、 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量, , CN 可 以构成一个三角形.证明: )(21AC AB AL += )(21BM +=)(21CB CA CN +=)(21=+++++=++∴BM7.、设L 、M 、N 是△ABC 的三边的中点,O 是任意一点,证明OB OA ++OC =OL ++.[证明] LA OL OA += MB OM OB += +=)(NC MB LA ON OM OL OC OB OA +++++=++∴ =)(CN BM AL ON OM OL ++-++由上题结论知:0=++ ON OM OL OC OB OA ++=++∴从而三中线矢量,,构成一个三角形。
8.、如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明OA +OB +OC +=4.[证明]:因为=21(OA +OC ), =21(OB +OD ), 所以 2OM =21(OA +OB +OC +) 所以OA +OB +OC +=4. 10、 用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半.证明 已知梯形ABCD ,两腰中点分别为M 、N ,连接AN 、BN .→→→→→→++=+=DN AD MA AN MA MN ,→→→→→→++=+=CN BC MB BN MB MN ,∴ →→→+=BC AD MN ,即§1.4 矢量的线性关系与矢量的分解 3.、设一直线上三点A , B , P 满足AP =λ(λ≠-1),O 是空间任意一点,求证:OP =λλ++1 [证明]:如图1-7,因为图1-5=OP -, =-OP ,所以 OP -=λ (-OP ), (1+λ)OP =+λ,从而 OP =λλ++1OB. 4.、在ABC ∆中,设,1e =2e =.(1) 设E D 、是边BC 三等分点,将矢量,分解为21,e e 的线性组合;(2)设AT 是角A 的平分线(它与BC 交于T 点),将AT 分解为21,e e 的线性组合解:(1)()12123131,e e e e -==-=-= ,2111231323131e e e e e +=-+=+=,同理123132e e +=(2)因为 ||||TC ||11e 且 BT 与方向相同,所以 BT ||21e e . 由上题结论有AT||||1||212211e e e e e +||||21e e +.5.在四面体OABC 中,设点G 是ABC ∆的重心(三中线之交点),求矢量对于矢量,,,的分解式。
解析几何版吕林根课后习题答案
x1 y1 z1
解:( 1)设 M 1( x1, y1 , z1) 是母线 1
1
2 上任一点,过 M 1 的纬圆为:
Байду номын сангаас
( x x1) ( y y1) 2(z z1) 0
(1)
x2 y2 (z 1)2 x12 y12 ( z1 1)2
(2)
又 M 1 在母线上。
x1 1 y1 1 z1 1
1
1
2
从( 1)——( 3)消去 x1, y1, z1 ,得到:
(2)
又 M 1 在母线上,所以
z1 x12
(1)
x12 y12 1
(2)
从( 1)——( 3)消去 x1, y1, z1 ,得到:
x2 y 2 1
z z1 x12 1 0 z 1
即旋转面的方程为: x2 y 2 1 ( 0 z 1 )
xy
2、将直线
0
z 绕 z 轴旋转,求这旋转面的方程,并就
1
么曲面?
3 / 24
将它们代入准线方程,并消去
X0 Y0 Z0
t 得:
3 ( x 3)t 1 (y !)t 2 ( z 2)t
3x2 5y2 7 z2 6xy 2 yz 10xz 4x 4 y 4 z 4 0
此为要求的锥面方程。 4、求以三坐标轴为母线的圆锥面的方程。 解:(这里仅求Ⅰ、Ⅶ卦限内的圆锥面,其余类推)
AM // AM ,且 AM 0 (顶点不在准线上)
AM vAM
即
0 v( (u) 0 )
亦即 v (u) (1 v) 0
5 / 24
此为锥面的矢量式参数方程。 若将矢量式参数方程用分量表示,即:
{ x, y, z} v{ x(u), y(u), z(u)} (1 v){ x0, y0, z0}
旋转面、柱面和锥面)
M
M
而 M 与 M 到 l 的距离相等 |M0M | = |M0M| .
于是 M S
M , MM u0 = 0,
|M0M| = |M0M| .
上页 下页 结束
方程
上页 下页 结束
上页 下页 结束
例
求直线
x2 0
y 1 0
z 1
绕直线
x 0
y 0
z 1
旋转一周所得旋转曲面的方程。
b2
1
z 0
绕 y 轴一周
.
z
y
o
a
x
3 旋转单叶双曲面
上题双曲线
x2 y2
a
2
b2
1
z 0
绕 y 轴一周
得单叶旋转双曲面 . .
x2 z2 y2
1
a2
b2
z
y
o
a
x
.
4 旋转锥面
两条相交直线
x 2 y 2 = 0 a2 b2 z = 0
绕 x 轴一周
x
o
y
4 旋转锥面
两条相交直线
z1 z
| y1 | MP x 2 y 2
Sz
z1 C
o
y1
y
.
S:f ( x 2 y 2 , z) 0.
x
上页 下页 结束
建立旋转曲面的方程:
如图 设 M ( x, y, z),
(1) z z1
(2)点M 到z 轴的距离
z
d M1(0, y1, z1)
M f ( y,z) 0
o
y
双
曲
线
x a
y b
z
绕 x 轴一周
4.1,4.2柱面和锥面
(6) 直线的射影式方程
X X z ( x0 z0 ) 表示的平面平行于oy轴 Z Z 在直角坐标系下又垂直 与坐标面xoz Y Y 方程 y z ( y0 z0 ) 表示的平面平行于ox轴 Z Z 在直角坐标系下又垂直 与坐标面 yoz
直线向坐标面所引的射影平面
x y a ① 例 画出 C : 2 2 x y 2 z 2 2a 2 ②
首先证: 以原点为顶点的锥面方程是 x , y , z 的齐次方程. 设锥面的准线为 C
D0
z
推论 关于 x x0 , y y0 , z z0 的齐次方程表示顶点在 ( x0 , y0 , z0 )的锥面.
F ( x, y, z ) 0 C : Ax By Cz D 0 O M ( x, y, z ) x y z 1 x1 y1 z1 t F ( x1 , y1 , z1 ) 0
为所求柱面方程
4 x 2z y 2 2 x z 5 5
2
M0 ( x0 , y0 , z0 )
C
l 考虑方程 F ( x , y ) 0 在 x y 平面上 它一般表示一条曲线C.
z
M ( x, y, z )
在空间直角坐标系中,以C为准线, 作母线平行于z轴的柱面Σ. 空间中任一点 M ( x , y , z ) M 在 x y平面上的投影为M1 ( x , y ,0)
三元方程中,如果不含z: F ( x , y ) 0 则它一定表示一个 母线平行于z轴的柱面. 反之,任何一个母线平行于z 轴的柱面, 它的方程中 一定不含z.
z
o x
y
证 设Σ是一个母线平行于z轴的柱面,
柱面锥面二次曲线
(a
x2 1 h2
y2
c2 )2 (b 1 h2
zh
1 c2 )2
无论h取何值,此方程组总表示在平面: z h
上的椭圆,它的两半轴为:a 1 h2 c2 与b 1 h2 c2
此时椭圆的两轴端点(± a 1 h2 c2 ,0, h)与
(0, ±b 1 h2 c2 , h)分别在两条主截线(双
曲线)上,且所在平面与腰椭圆平行.
所表示的曲面,叫做单叶双曲面, 做单叶双曲面的标准方程.
此方程叫
方程
x2 y2 z2 1 a2 b2 c2
与
x2 y2 z2 1 a2 b2 c2
表示的曲面也是单叶双曲面.
二、性质
1. 对称性
x2 y2 z2 1(a,b, c 0) a2 b2 c2
中心 :坐标原点(1个);
主轴 :x轴、y轴和z轴(3条);
§4.1 柱面
定义4.1.1 平行于定直线并沿定曲线移动 的直线所形成的曲面称为柱面.
这条定曲线叫
柱面的准线,
母线
动直线叫柱面
的母线.
观察柱面的形
成过程:
准
线
柱面举例:
z
M(x, y, z)
M1( x, y,0)
z
•
• x2 2y
平面
o
y
o
y
x
抛物柱面 x
y x
抛物柱面方程:
x2 2y
平面方程:
相应地平面被称为一次曲面. 讨论二次曲面形状的截痕法:
用坐标面和平行于坐标面的平面与曲面 相截,考察其交线(即截痕)的形状,然后 加以综合,从而了解曲面的全貌. 以下用截痕法讨论几种特殊的二次曲面.
柱面的方程
M1
C
代人椭圆方程,整理得锥 x2 y 2 z 2 面方程: 2 2 2 0。 a b c
0
x
y
17
例2
例 2:已知圆锥面的顶点为A (1, 2,3),轴垂直于平面 2x 2y z 1 0,母线与轴组成 30的夹角,求圆锥面的方程。
解1: 设M ( x, y, z)为任一母线上的点,则过M 的母线的方向为
解析几何
第四章 柱面锥面旋转曲面与二次曲面
§4.1 柱面
§4.2 锥面 §4.3 旋转曲面 §4.4 椭球面 §4.5 双曲面 §4.6 抛物面 §4.7 单叶双曲面与双曲抛物面的直母线
1
第四章 柱面 锥面 旋转曲面 及二次曲面 教学安排说明
教学时数: 14课时 本章教学目标及要求:1.掌握球面、空间圆等特殊曲面、曲 线的方程及求法; 2.熟悉母线平行于坐标轴的柱面、顶点在某一 点的锥面和特殊的旋转面的方程,并能从方程判断曲面的形状; 3.能识别椭球面、双曲面、抛物面、单叶双曲面、双曲抛物面的 几何特征及方程,并能从方程中判断曲面的形状。 本章教学重点:1. 常见二次曲面的定义及标准方程; 2. 坐标面上曲线绕坐标轴旋转, 所产生的旋转曲面的方程及求法。 本章教学难点: 1.锥面方程的特征及其论证;2. 单叶双曲面的 几何性质及分析; 3. 二次曲面的直纹性及相关证明。
2 2 2
M1
过点M1且垂直于轴的平面方程为:
M0
x2 y 2 z 3 0; 它们的交线即柱面 x 2 ( y 1)2 ( z 1)2 14 的准线方程: ,轴线的方向就是 x 2 y 2z 3 0 柱面的方向,再按例1的解法即可求出柱面的方程。
7
解法2
特殊曲面及其方程--柱面、锥面、旋转面知识讲解
特殊曲面及其方程--柱面、锥面、旋转面引言空间解析几何所研究的曲面主要是二次曲面。
但是也可以研究一些非二次特殊曲面。
本论文中将利用直线或曲线适合某几何特征来建立一些曲面的方程。
主要讨论由直线产生的柱面和锥面,曲线产生的旋转曲面这三大类。
1.柱面定义1:一直线平行于一个定方向且与一条定曲线Γ相交而移动时所产生的曲面叫做柱面(图1),曲线Γ作叫做准线。
构成柱面的每一条直线叫做母线。
显然,柱面的准线不是唯一的,任何一条与柱面所有母线都相交的曲线都可以取做柱面的准线,通常取一条平面曲线作为准线。
特别地,若取准线Γ为一条直线,则柱面为一平面,可见平面是柱面的特例。
下面分几种情形讨论柱面的方程。
1.1 母线平行于坐标轴的柱面方程选取合适的坐标系,研究对象的方程可以大为化简。
设柱面的母线平行于z 轴,准线为Oxy 面上的一条曲线,其方程为:(),00f x y z =⎧⎪⎨=⎪⎩图1u v又设(),,P x y z 为柱面上一动点(图2),则过点P 与z 轴平行的直线是柱面的一条母线,该母线与准线Γ的交点记为(),,0M x y ,因点M 在准线上,故其坐标应满足准线方程,这表明柱面上任一点(),,P x y z 的坐标满足方程(),0f x y =反过来,若一点(),,P x y z 的坐标满足方程(),0f x y =,过P 作z 轴的平行线交Oxy 面于点M ,则点M 的坐标(),,0x y 满足准线Γ的方程(),0,0f x y z ==,这表明点M 在准线Γ上,因此直线MP 是柱面的母线 (因为直线MP 的方向向量为{}{}0,0,||0,0,1z ),所以点P 在柱面上。
综上所述,我们有如下结论:母线平行上于z 轴,且与Oxy 面的交线为(),0,0f x y z ==的柱面方程为:(),0f x y = (1)它表示一个无限柱面。
若加上限制条件a z b ≤≤,变得它的一平截段面。
同理,母线平行于x 轴,且与Oyz 面的交线为(),0,0g y z x ==的柱面方程为(),0g y z =;母线平行于y 轴,且与Ozx 面的交线为(),0,0h x z y ==的柱面方程为(),0h x z =。
第二章第五节 旋转面、柱面和锥面
一、旋转面 二、柱面 三、和锥面
在右手直角坐标系下讨论
§5
旋转面、柱面和锥面
一、球面的普通方程 二、球面的参数方程,点的球面方程 三、曲面和曲线的普通方程 四、旋转面
5.1 旋转曲面 定义3.1 一条 曲线Γ 绕一条直 线l 旋转一周所 成的曲面称为旋 转曲面. 这条定直线l 叫旋转 曲面的轴, Γ 称为 旋转面的母线。.
0
0
0
0
满足的方程,即为所求 旋转曲面的方程。
任取l 上的点 M1 , | MM1 || M 0 M1 |
例2. 设旋转面的轴线 l 过点M 0 (1,3, 1) , 平行于向量 u0 (1,1,1) ,准线 是过点 M1 (0, 2,1) 平行于向量 u1 (1, 1,1) 的直线 求此旋转面方程。 x y 2 z 1 解: 先写出准线 方程: 1 1 1 旋转轴 l : x 1 y 3 z 1 设旋转面上点 M ( x, y, z ) 由准线上点 M ( t , 2 t , 1 t ) 旋转而得。 M M u0 M M u0=0
u (1,1,1) 或( 1,1,1), (1, 1,1), (1,1, 1)
设点 M ( x , y, z ) 在圆锥面上
cos OM , u cos e1 , u
P91 例2.16
2 2 2 2 | e1 u |( x y z ) x y z | OM v | | e v | | OM | 1 | u | xy yz 2 zx 2 0 | OM || u | | OM u | | OM |
柱面:(准线为坐标面上的线, 母线平行于坐标轴)
曲面及其方程 柱面、锥面、旋转曲面
机动
目录
上页
下页
返回
结束
二、柱面
定义 平行于定直线并沿定曲线 C移动的直线 L 所形成的曲面称为柱面. 这条定曲线 C 叫柱面的准线 ,动直线 L 叫 柱面的母线. 观察柱面的形 成过程:
播放
机动
目录
上页
下页
返回
结束
考察方程 F(x,y)=0 F(x,y)=0表示母线平行于z轴的柱面
(不含z)
z
0 2
过原点和椭圆上任一点的直线的方向向量为 v {a cos , b sin , c }
机动
目录
上页
下页
返回
结束
过原点和椭圆上任一点的直线族方程为:
x0 y0 z0 t a cos b sin c
即
x (a cos )t y (b sin )t z ct
y
x G ( y , z ) 0 准线 是 yoz 面上的曲线 z x 0 方程 H ( z , x ) 0 表示 柱面, l3 母线 平行于 y 轴; H ( z, x) 0 x 准线是 xoz 面上的曲线 y 0
机动 目录 上页 下页 返回 结束
y
椭圆柱面
第六节
第七章
曲面及其方程
一、基本概念 二、柱面、锥面、旋转曲面 三、二次曲面
机动
目录
上页
下页
返回
结束
一、基本内容
曲面方程的定义:
如果曲面S 与三元方程 F ( x , y , z ) 0 有下述关系:
(1) 曲面S 上任一点的坐标都满足方程;
(2) 不在曲面S 上的点的坐标都不满足方程;
那么,方程 F ( x , y , z ) 0 就叫做曲面 S 的 方程,而曲面 S 就叫做方程的图形.
解析几何版第四章《柱面、锥面、旋转曲面与二次曲面》课后习题答案
第四章 柱面、锥面、旋转曲面与二次曲面§ 4.1柱面1、已知柱面的准线为:⎩⎨⎧=+-+=-+++-0225)2()3()1(222z y x z y x 且(1)母线平行于轴;(2)母线平行于直线,试求这些柱面的方程。
x c z y x ==,解:(1)从方程⎩⎨⎧=+-+=-+++-0225)2()3()1(222z y x z y x 中消去,得到:x 25)2()3()3(222=-+++--z y y z 即:0235622=----+z y yz z y 此即为要求的柱面方程。
(2)取准线上一点,过且平行于直线的直线方程为:),,(0000z y x M 0M ⎩⎨⎧==c z yx ⎪⎩⎪⎨⎧=-=-=⇒⎪⎩⎪⎨⎧=+=+=z z t y y tx x zz t y y tx x 000000而在准线上,所以0M ⎩⎨⎧=+--+=-++-+--02225)2()3()1(222t z y x z t y t x 上式中消去后得到:t 02688823222=--+--++z y x xy z y x 此即为要求的柱面方程。
2、设柱面的准线为,母线垂直于准线所在的平面,求这柱面的方程。
⎩⎨⎧=+=zx z y x 222解:由题意知:母线平行于矢量{}2,0,1-任取准线上一点,过的母线方程为:),,(0000z y x M 0M ⎪⎩⎪⎨⎧+==-=⇒⎪⎩⎪⎨⎧-==+=t z z y y tx x tz z y y t x x 2200000而在准线上,所以:0M ⎩⎨⎧+=-++=-)2(2)2(22t z t x t z y t x 消去,得到:t 010*******22=--+++z x xz z y x 此即为所求的方程。
3、求过三条平行直线的圆柱面方程。
211,11,-=+=--==+==z y x z y x z y x 与解:过原点且垂直于已知三直线的平面为:它与已知直线的交点为0=++z y x ,这三点所定的在平面上的圆的圆心为())34,31,31(),1,0,1(,0,0,0--0=++z y x ,圆的方程为:1513,1511,152(0--M ⎪⎩⎪⎨⎧=++=-++++075981513(1511(152(222z y x z y x 此即为欲求的圆柱面的准线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本节重点:掌握柱面与锥面的直角坐标方程的建立。 掌握柱面与锥面的特点:均是有直线构成的曲面。
(一)柱面
4.1.1定义 直线沿一定曲线C平行移动所产生的曲面叫做柱面。 C叫做柱面的导线(或准线),这族平行直线中的每一条都叫做柱面的 母线(图4-1)。
图4-1
圆柱面是特殊的柱面。
的柱面。它们依次叫做椭圆柱面(a=b时,即圆柱面),双曲柱面与抛
物柱面(图4-2)
图4-2 由二次方程表示的柱面叫做二次柱面。此例中的三种柱面都是二次 柱面。 在§3.5中,我们建立了空间直线的射影式方程,把空间直线看作 是它对两个坐标的投影平面的交线。推广到空间曲线,可看作是它对两 个坐标面的投影柱面(即以此曲线为导线,母线垂直于该坐标面的柱 面)的交线。 由4.1.2定理可知,这两个投影柱面的方程可从曲线方程分别消去 一个坐标变量而得。 但要根据曲线的范围对所得柱面方程给出相应的 限制(否则只能说明得到的柱面是通过曲线的,从而包含其投影柱面, 但不一定恰好是其投影柱面)。 例3、求曲线
虚锥面。例如表示以原点为顶点的虚锥面。 4.1.7定理 关于,,的齐次方程总表示顶点在原点的锥面(可能顶 点除外)。 证:设是关于,,的次齐次方程。若它表示的曲面不是虚锥面,则 曲面上就存在与原点不同的点。设 是除原点外坐标满足此方程的任一点,则直线的参数方程为
利用方程的齐次性,得到 0
这就表明直线上任意点(=0时不含原点) 都在曲面上,即曲面是由过原 点的直线(可能不含原点)构成的, 这动直线可看作是原点与曲面上 一曲线(导线)的点的连线, 因而它是以原点为顶点的锥面(可能顶 点除外)。 利用坐标系的平移公式[注]容易看出
2、锥面方程的齐次性 例4、例5中的锥面方程都有一个重要的特点:对于任意实数,若 用,,分别代替其左边的,,后,等于其左边乘,这种方程叫做关 于,,的二次齐次方程。
一般的有 4.1.5定义 若方程对任意实数满足
其中是非负整数(当=0时,≠0),则此方程叫做关于,,的次齐次 方程。 由于N次方程的左边函数是N次多项式,因此只要它的每一项都是N 次的,它就是一个N 次齐次方程。
第四章 常见的曲面与曲线
本章主要研究比平面与直线销复杂的常见的曲面与曲线。此外,也 粗略介绍由若干曲面围成的空间区域的解析表示及其直观简图的画法, 它在数学分析中要用到。 前面已经看到,在选定坐标系之后,曲面作为动点轨迹如何用点的 向径或坐标的方程来表出,例如夹面和球面等。但是某些曲面也可以看 作是曲线依某种规律运动所生成的。 例如,平面也可以看成是过定点且与定直线垂直的动直线的轨迹; 球面也可以看作是一个圆绕其一直径旋转所产生的等等。在§3.1、 §3.2、及§3.6中,我们将按这种观点分别介绍柱面与锥面、旋转曲面 及螺旋面等几种常见曲面,并且建立它们的方程。
此,从(2)与(3)两组式子中的四个等式,消去三个参数后所得一个三元
方程
(4)
就是以(1)为导线,母线的方向系数为的柱面方程。
为了消参数的方便,常把母线方程(2)改写成参数式:
, , (2)'
从而解出
,,
代入(3)消去参数,得到
(4.1.1)
再由此消去参数,即得所求的柱面方程(4)
例1、已知一柱面的导线是球面与平面的交线,母线平行于直线,
求这柱面的方程。
解:因为柱面母线平行于直线,所以母线的方向系数即为这直线的
方向系数1,1,1。设()是导线上的任一点,则过这点的母线的参数
方程为
, ,
(1)
且有
,
(2)
由(1)解出 ,,代入(2),得
再从第二式得,代入第一式即得所求柱面方程为
可化简成
现在再来考察当母线平行于一个坐标轴时,柱面方程所具有的特殊
形式。设柱面的母线平行于轴,则母线的方向系数为0,0,1,且每一
条母线必与坐标面相交,从而柱面与面的交线可以作为导线,如果它的
方程为
=0
那么这时(3.1.1)就是
=0
消去参数,即得柱面方程为
(4.1.2)
柱面的母线平行于轴或轴的情形,可类似地讨论,因此得到
4.1.2定理 柱面的母线平行于某个坐标轴的特征是其方程中不含
[注]见§6.3,此公式的推导只用到第一章知识。 推论 关于,,的齐次方程总表示以为顶点的锥面(可能顶点除 外)。
习题 4-1
1、求下列柱面的方程:
(1) 导线为
母线的方向系数为L,M,N (N≠0)
(2)导线为 母线平行于Y轴
(3) 导线为 母线垂直于导线所在的平面
2、求曲线 到X O Z 面的投影柱面及其在这坐标面上的投
相应的坐标。
必须注意,在空间中方程(3.1.2)代表母线平行于轴(或垂直于
面)的一个柱面;而在面上却代表一条平面曲线,这是这个柱面的一条
导线(这时,应补充一个方程=0。)
例2、讨论下列各方程所代表的曲面:
(1)
(2)
(3)
解:在坐标面上,这三个方程分别代表椭圆,双曲线与抛物线。由
上述可知,在空间中它们分别代表以这三种曲线为导线,母线平行于轴
, 再利用(2)消去参数,即得所求锥面扣除了顶点的轨迹方程为 两边乘以并整理得方程 则补上了顶点,因而(4)就是所求的锥面方程。 由二次方程表示的锥面叫做二次锥面。(4)表示的锥面是二次锥 面。特别地,当a=b时,即为圆锥面。 例5、 求从原点向球面引切线所成锥面的方程。 解:显然所求锥面的顶点为原点,且所引切线的切点轨迹(圆), 是这锥面的一条导线, 它可看作是已知球面与另一球面的交线,其方 程为 经过同解变形可以化成 由此可见,上述导线(圆)也可看作是球面与平面的交线。这样,按照 前面介绍的方法容易求得锥面方程为
显然,柱面被它的导线及母线方向完全确定。但反对来,对于一个
柱面,它的导线并不是唯一的,这是因为柱面上与其每一条母线都相交
的曲线都可以作为它的导线。
1.柱面方程
设柱面的导线C的方程为
(1)
母线的方向系数为。如果为导线C上的任意点,那么过点的母线方
程为Leabharlann (2)且有,
(3)
当点跑遍C时,就得出柱面上的所有母线,这族母线构成的柱面。因
对坐标面和的投影柱面 解:从曲线方程分别消去,到同解方程
即 由此可知曲线上的点应满足││≤6,所以曲线对面的投影柱面是 椭圆柱面;而对面的投影柱面只是抛物柱面满足││≤6的部分。 在§4.7中将要看到,利用曲线对两个坐标面的投影柱面常便于了 解曲线的形状和画出曲线。 曲线对于一般平面的投影柱面,有 4.1.3定义 以曲线C为导线, 而母线垂直于平面π的柱面叫做曲线C 对平面π的投影柱面,这投影柱面与平面π的交线叫做曲线C在平面π 上的投影。
(二)锥面
4.1.4定义 直线通过定点且沿一定曲线(不含点)移动所产生的曲 面叫做锥面。叫做锥面的导线(或准线);叫做锥面的顶点;动直线叫 做锥面的母线。
圆锥面是特殊的锥面。显然,锥面被它的导线及顶点完全确定。但
反过来,对于一个锥面,它的导线并不是唯一的。与柱面情形一样,锥
面上与其每一条母线都相交的曲线都可以作为它的导线。
影。
3、求以原点为顶点,椭圆 为导线的锥面方程。
4、求以(3,-1,-2)为顶点,曲线 为导线的锥面方程,并将它
写成关于 X-3,Y+1,Z+2的齐次方程。
5、判定下列方程所代表的曲面类型:
(1)
(2)
(3)
(4)
6、证明 3.1.6定理。
1、锥面方程
设锥面的导线的方程为
顶点的坐标为(),如果上任一点为(),那么与建立柱面方程的
方法一样, 所求的锥面方程可由过的母线方程
及()所满足的条件
()=0 ()=0
(2)
消去参数得到。 例4、求顶点在原点,导线为 的锥面方程。 解:过导线上任一点()的母线方程为 且有 当≠0时,由(1)得
又例4中的方程(3)是零次齐次方程。 必须注意:锥面方程不一定都是齐次的,但有如下事实: 4.1.6定理 顶点在原点的锥面总可用,,的齐次方程表示(可能顶 点除外)。 这个定理的证明留作习题。
下面考虑反过来的问题。为此,先将锥面概念加以扩充。 关于,,的齐次方程表示的图形,若只含有点则它叫做以为顶点的