轴心受力构件(五)

合集下载

轴心受力构件

轴心受力构件
失稳现象发生在构成构件旳板件
18
第6章 轴心受力构件 第三节 轴心受压构件旳受力性能
2 承载力极限状态旳计算内容 (1)截面强度破坏
(2)构件整体失稳(屈曲)
(3)板件局部失稳(屈曲) 限制受压板件旳宽厚比
19
第6章 轴心受力构件 第三节 轴心受压构件旳受力性能
3 稳定问题旳某些概念 (1)应力刚化效应 拉力提升构件旳弯曲刚度 压力降低 (2)只要构件旳截面中存在受压区域,就可能存在稳定问题 (3)强度问题是应力问题,针正确是构件最单薄旳截面,加大截面 积即可提升构件旳强度,计算以净截面为准 (4)稳定问题是刚度(变形)问题,针正确是构件整体,减小变形 (提升刚度)旳措施都能够提升构件旳稳定性,计算以毛截面为准
➢ 根据截面残余应力旳峰值大小和分布,弯曲屈曲旳方向,将截面 分为a、b、c三类,相应地得到a、b、c三条柱子曲线
44
第6章 轴心受力构件 第七节 规范中实腹式轴压构件弯曲屈曲时整体稳定计算
➢ a类截面临界应力最高,残余应力对临界应力起有利作用或影响 很小,只涉及两种截面: ✓ 绕强(x)轴屈曲时旳热轧工字钢和热轧中翼缘、窄翼缘H型钢 ✓ 热轧无缝钢管
(1)发生弯扭屈曲旳条件 ✓ 截面形式:单轴对称截面 ✓ 失稳方向:绕对称轴失稳。绕非对称轴失稳必然是弯曲失稳 ✓ 原因:形心和剪心不重叠,弯曲时截面绕剪心转动
51
第6章 轴心受力构件 第八节 实腹式轴压构件弯扭屈曲时整体稳定计算
(2)单角钢截面、双角钢组合截面弯扭屈曲旳规范计算措施 ➢ 用换算长细比 (考虑扭转效应)替代弯曲屈曲时旳长细比 查得稳定系数 ,再按下列公式验算杆件旳稳定
42
第6章 轴心受力构件 第七节 规范中实腹式轴压构件弯曲屈曲时整体稳定计算

钢结构第四章轴心受力构件

钢结构第四章轴心受力构件
以极限承载力Nu为依据。规范以初弯曲v0 =l/1000来综合考
虑初弯曲和初偏心的影响,再考虑不同的截面形状和尺寸、不 同的加工条件和残余应力分布及大小及不同的屈曲方向后,采
用数值分析方法来计算构件的Nu值。
令 n/( E/ fy) Nu /(Afy)
绘出~λn曲线(算了200多条),它们形成了相当宽的
三、轴心受力构件的工程应用 平面桁架、空间桁架(包括网架和塔架)
结构、工作平台和其它结构的支柱等。 四、截面选型的原则
用料经济;形状简单,便于制做;便于与 其它构件连接。 五、设计要求
满足强度和刚度要求、轴心受压构件还应 满足整体稳定和局部稳定要求。
★思考问题:强度破坏和整体失稳有何异同??
第二节 轴心受力构件的强度和刚度计算
h ix /1
b iy /2
根据所需A、h、b 并考虑局部稳定要求 和构造要
求(h≥b),初选截面尺寸A、h、b 、t、tw。通常取h0 和b为10mm的倍数。对初选截面进行验算调整。由
于假定的不一定恰当,一般需多次调整才能获得较
满意的截面尺寸。
三、格构式轴心受压构件设计
1. 格构式轴心受压构件的整体稳定承载力 (1) 绕实轴的整体稳定承载力
h0/tw(2 50.5m)ax 23 /fy 5
式中λmax为两方向 长细比的较大值
当构件的承载力有富 裕时,板件的宽厚比可适 当放宽。
第五节 轴心受压构件设计
一、设计原则 1.设计要求 应满足强度、刚度、整体稳定和局部稳定要求。 2.截面选择原则 (1)尽量加大截面轮廓尺寸而减小板厚,以获得
也板称的作局局部部稳与定整计体算等,稳《定规准范则》。采用了σcr板σcr整体的设计准则, σcr板—板的临界应力,主要与板件的宽厚比有关。 《规范》采用限制板件宽厚比的方法来满足局部稳定。根据设 计准则分析并简化后得到的局部稳定计算公式为:

第5章轴心受压构

第5章轴心受压构

φ--稳定系数,按附录表4-3、4-4、4-5、5-6采用。

5.6实腹式轴心受压构件的局部稳定
5.6.1概述 组成构件的板件出现鼓曲 称为板件失稳,即局部失 稳。 板件的局部失稳并不一定 导致整个构件丧失承载能 力,但由于失稳板件退出 工作,将使能承受力的截 面(称为有效截面)面积 减少,同时还可能使原本 对称的截面变得不对称, 促使构件整体破坏。
N
2 cr , x 1 cr , y

I e, x Ix

2 (k b) t (h / 2) k 2 2 b t ( h / 2)
2
N N
I e, y Iy
2 cr , y
t (k b) 3 / 12 k3 t b 3 / 12
焊接工字钢残余应力分布

由于k小于1,对这样的残余应力分布,其对y轴稳定承 载力的影响比对x轴要大的多。

对板件的稳定目前有两种处理方法,一是不容许出现 板件失稳,二是板件可以失稳,利用其屈曲后强度, 但要求板件受到的轴力小于板件发挥屈曲后强度的极 限承载力。考虑屈曲后强度的轴压杆设计目前用于薄 壁型钢轴压杆。 5.6.2实腹轴心压杆中板件的临界应力 1、板件的分类 根据板件两边支承情况将其分为加劲板件、部分加劲 板件和非加劲板件三种。 加劲板件为两纵边均与其他板件相连接的板件; 部分加劲板件即为一纵边与其他板件相连,另一纵边 为卷边加劲的板件,在薄壁型钢中普片存在;

5.4.1格构式轴心受压构件绕实轴(y-y轴)的整体稳定
格构式轴心受压构件绕实轴(y-y轴)的整体稳定承载力 计算和实腹式轴心受压构件完全相同。 5.4.2格构式轴心受压构件绕虚轴(x-x轴)的整体稳定 构式轴心受压构件绕虚轴发生弯曲失稳时,所产生的 剪力由缀材承担,缀材抵抗剪变形的能力小,剪力产 生的剪切变形大,对整体稳定承载力的不利影响必须 予以考虑。 2 EI 1 即 N

(整理)轴心受力构件五

(整理)轴心受力构件五

第四章轴心受力构件一、轴心受力构件的特点和截面形式轴心受力构件包括轴心受压杆和轴心受拉杆。

轴心受力构件广泛应用于各种钢结构之中,如网架与桁架的杆件、钢塔的主体结构构件、双跨轻钢厂房的铰接中柱、带支撑体系的钢平台柱等等。

实际上,纯粹的轴心受力构件是很少的,大部分轴心受力构件在不同程度上也受偏心力的作用,如网架弦杆受自重作用、塔架杆件受局部风力作用等。

但只要这些偏心力作用非常小(一般认为偏心力作用产生的应力仅占总体应力的3%以下。

)就可以将其作为轴心受力构件。

轴心受力的构件可采用图中的各种形式。

其中a)类为单个型钢实腹型截面,一般用于受力较小的杆件。

其中圆钢回转半径最小,多用作拉杆,作压杆时用于格构式压杆的弦杆。

钢管的回转半径较大、对称性好、材料利用率高,拉、压均可。

大口径钢管一般用作压杆。

型钢的回转半径存在各向异性,作压杆时有强轴和弱轴之分,材料利用率不高,但连接较为方便,单价低。

b) 类为多型钢实腹型截面,改善了单型钢截面的稳定各向异性特征,受力较好,连接也较方便。

c) 类为格构式截面,其回转半径大且各向均匀,用于较长、受力较大的轴心受力构件,特别是压杆。

但其制作复杂,辅助材料用量多。

二、轴心受拉杆件轴心受拉杆件应满足强度和刚度要求。

并从经济出发,选择适当的截面形式,处理好构造与连接。

1、强度计算轴心拉杆的强度计算公式为:(6-1)式中:N——轴心拉力;A n——拉杆的净截面面积;f ——钢材抗拉强度设计值。

当轴心拉杆与其它构件采用螺栓或高强螺栓连接时,连接处的净截面强度计算如连接这一章所述。

公式(6-1)适用于截面上应力均匀分布的拉杆。

当拉杆的截面有局部削弱时,截面上的应力分布就不均匀,在孔边或削弱处边缘就会出现应力集中。

但当应力集中部分进入塑性后,内部的应力重分布会使最终拉应力分布趋于均匀。

因而须保证两点:(1)选用的钢材要达到规定的塑性(延伸率)。

(2)截面开孔和消弱应有圆滑和缓的过渡,改变截面、厚度时坡度不得大于1:4。

混凝土结构设计原理轴心受力构件-精选文档

混凝土结构设计原理轴心受力构件-精选文档

104
111 118 125 132 139 146 153 160 167
0.52
0.48 0.44 0.4 0.36 0.32 0.29 0.26 0.23 0.21
28
24
97
0.56
50
43
174
0.19
3.1
轴心受压构件承载力计算
第3章 轴心受力构件
4 普通箍筋柱受压承载力的计算
N
计算简图
3.1
轴心受压构件承载力计算
第3章 轴心受力构件
轴心受压长柱稳定系数φ 主要与柱的长细比 l0 / b 有关, 稳定系数的定义如下:
N ul N us 《规范》给出的稳定系数与长细比的关系
l0/b l0/d l0/i φ l0/b l0/d l0/i φ
≤8
10 12 14 16 18 20 22 24 26

压碎。
柱子发生破坏时, 混凝土的应变达到 其抗压极限应变, 而钢筋的应力一般 小于其屈服强度。

3.1 轴心受压构件承载力计算
第3章 轴心受力构件 什么是长柱(Slender Columns) 我们通常将截面尺寸与柱长之比较大的柱定义为长柱。在实 际结构中,一般的框架柱、门厅柱等都属于长柱。轴心受压长柱 与短柱的主要受力区别在于:由于偏心所产生的附加弯矩和失稳 破坏在长柱计算中必须考虑。

钢筋应力增 长
随着荷载的增加,混凝 土应力的增加愈来愈慢,而 钢筋的应力基本上与其应变 成正比增加,柱子变形增加 的速度就快于外荷增加的速 度。随着荷载的继续增加, 柱中开始出现微小的纵向裂 缝。

应 力
混凝土的 应力增长
轴力
3.1
轴心受压构件承载力计算

钢结构第五章_轴心受力构件详解

钢结构第五章_轴心受力构件详解

得欧拉临界力和临界应力:
Ncr
NE
2 EI l2
2 EA
2
cr
E
2E 2
(4 7) (4 8)
上式中,假定材料满足虎克定律,E为常量,因此当
截面应力超过钢材的比例极限 fp 后,欧拉临界力公式不 再适用。
第五章 钢柱与钢压杆
3、初始缺陷、加工条件和截面形式对压杆稳定都有影响

力学缺陷:残余应力、材料不均匀等
钢结构中理想的轴心受压构件的失稳,也叫发生屈 曲。理想的轴心受压构件有三种屈曲形式,即:弯曲屈 曲,扭转屈曲,弯扭屈曲。
第五章 钢柱与钢压杆
(1)弯曲屈曲——只发生弯曲变形,截面只绕一个 主轴旋转,杆纵轴由直线变为曲线,是双轴对称截面常 见的失稳形式。
图14
第五章 钢柱与钢压杆
图15整体弯曲屈曲实例
图1桁架
第五章 钢柱与钢压杆
图2 网架
图3 塔架
第五章 钢柱与钢压杆
图4 临时天桥
第五章 钢柱与钢压杆
图5 固定天桥
第五章 钢柱与钢压杆
图6 脚手架
第五章 钢柱与钢压杆
图7 桥
第五章 钢柱与钢压杆
5.1.2 轴心受力构件类型 轴心受力构件包括轴心受压杆和轴心受拉杆。 轴心受拉 :桁架、拉杆、网架、塔架(二力杆) 轴心受压 :桁架压杆、工作平台柱、各种结构柱
第五章 钢柱与钢压杆
5.1钢柱与钢压杆的应用和构造形式
本节目录
1. 轴心受力构件的应用 2. 轴心受力构件类型 3. 轴心受力构件的截面形式 4. 轴心受力构件的计算内容
基本要求
了解轴心受力构件的类型、应用。
掌握计算内容
第五章 钢柱与钢压杆
5.1.1 轴心受力构件的应用

轴心受力构件的正常使用极限状态

轴心受力构件的正常使用极限状态

轴心受力构件的正常使用极限状态一、引言轴心受力构件是机械工程中常见的零部件,用于承载受力和传递动力。

在实际工程应用中,轴心受力构件的正常使用极限状态是一个重要的设计考虑因素。

本文将从多个方面探讨轴心受力构件的正常使用极限状态,包括载荷和变形极限、强度极限、疲劳极限等。

二、载荷和变形极限2.1 受力分析对于轴心受力构件,在正常使用过程中会承受各种静载荷和动载荷。

静载荷包括静态拉力、静态压力等,动载荷包括冲击载荷、振动载荷等。

在设计中,需要对使用过程中可能出现的最大载荷进行分析和计算。

2.2 变形极限在受到不同载荷的作用下,轴心受力构件会发生一定程度的变形。

变形极限是指构件在正常使用过程中允许承受的最大变形量。

为了确保构件的正常工作,设计时应对变形极限进行合理估计,并保证构件的刚度足够以满足要求。

三、强度极限3.1 强度分析强度是指轴心受力构件抵抗形变和破坏的能力。

在设计中,需要分析构件各个部分的受力情况,计算应力和应变分布,从而评估其强度。

常见的强度分析方法包括静力学方法、材料力学方法等。

3.2 材料强度材料强度是指材料本身的抗拉强度、抗压强度等基本强度指标。

在设计过程中,需要根据实际材料的强度参数进行选择,以保证构件在正常使用过程中不会发生破坏。

3.3 构件强度构件强度是指轴心受力构件在整体受力下的破坏问题。

在设计过程中,需要对构件的各个部分进行强度计算,包括连接部位、受力集中部位等。

通过合理的强度设计,可以确保构件在正常使用过程中不会出现破坏问题。

四、疲劳极限4.1 疲劳损伤在频繁变载条件下,轴心受力构件可能会出现疲劳损伤问题。

疲劳损伤是由于构件在受到周期性载荷作用下发生的循环应力累积造成的。

在设计中,需要考虑疲劳问题,使用寿命需要满足一定的要求。

4.2 疲劳极限疲劳极限是指轴心受力构件在正常使用过程中能够承受的最大疲劳载荷。

通过对材料疲劳性能、载荷频率、载荷幅度等进行分析和计算,可以确定构件的疲劳极限。

中南大学《钢结构原理》课件第五章 轴心受力构件

中南大学《钢结构原理》课件第五章 轴心受力构件
☆措施(确保长细比不是很小,不扭转失稳)
y (x ) 5.07b / t
☆长细较大时,弯曲失稳起控制作用,作弯曲失稳验算。
中南大学桥梁工程系
第五章 轴心受力构件
5.5 轴心受压构件局部稳定性
1、局部稳定的概念
轴心受压柱局部屈曲变形
轴心受压构件翼缘的凸曲现象
中南大学桥梁工程系
第五章 轴心受力构件
1916年因施工问题又发生一次倒塌事故。

前苏联在1951~1977年间共发生59起重大钢结构事故,有17起 属稳定问题。
(设计、制作、安装或使用不当都可能引发稳定事故)
例如:
1957年前苏联古比雪夫列宁冶金厂锻压车间,7榀1200m2屋盖塌落。 起因是一对尺寸相同的拉压杆装配颠倒。 1974年,苏联一个俱乐部观众厅24×39m钢屋盖倒塌。起因是受力 较大的钢屋架端斜杆失稳。
中南大学桥梁工程系
第五章 轴心受力构件
•荷载初始偏心降低稳定承载力
vm e0 (sec

2
N 1) NE
中南大学桥梁工程系
第五章 轴心受力构件
•残余应力降低稳定承载力
中南大学桥梁工程系
第五章 轴心受力构件
(1)使部分截面提前进入塑性状态,截面的弹性区域减少, 干扰后只有弹性区产生抗力增量,故降低了稳定承载力。
N 1 fy A Ry
N 1 fu An Ru
偏安全简化处理
N 1 fy f An Ry
中南大学桥梁工程系
第五章 轴心受力构件
2、刚度计算
•刚度计算的目的:保证在安装、使用过程中正常使用要求
•实例1:九江桥主拱吊杆涡振现象
中南大学桥梁工程系
第五章 轴心受力构件

第五章轴心受力构件_钢结构

第五章轴心受力构件_钢结构
12 250 8 250 12
21. 焊接组合工字形截面轴心受压柱,如图所示,轴心压力设计值 N= 2000 kN 。 柱 计 算 长 度 l 0 x 6m , l 0 y 3m , 钢 材 为 Q345 钢 , f 315 N/mm 2 ,翼缘为焰切边,截面无削弱。试验算该柱的安全性。
1
20.9
[28a
1
300
20.9
300
图 5-2
12. 设某工业平台承受轴心压力设计值N=5000KN,柱高 8m,两端铰接。要求设计焊接工字形截
面组合柱。
l1
13. 试设计一桁架的轴心压杆,拟采用两等肢角钢相拼的T型截面,角钢间距为 12mm,轴心压
力设计值为 380KN,杆长 lox 3.0m , loy 2.47 m ,Q235 钢材。
- 10 × 160
I18
b 94mm , A=30.6 cm
, I x 1660cm
, I y 122cm
,
上、下翼缘焊接钢板
rx 7.36 cm, ry 2.0 cm)
附表 1 长细比 f y / 235 稳定系 数
a 类截面 b 类截面 c 类截面
轴心受压构件稳定系数 40 0.941 0.899 0.839 110 0.563 0.493 0.419 50 0.916 0.856 0.775 115 0.527 0.464 0.399 60 0.883 0.807 0.709 120 0.494 0.437 0.379 70 0.839 0.751 0.643 130 0.434 0.387 0.342 80 0.783 0.688 0.578 140 0.383 0.345 0.309 85 0.750 0.655 0.547 150 0.339 0.308 0.280

轴心受力构件

轴心受力构件

λmax≤[λ]
三、相关设计计算
在进行轴心受力构件的设计时,对于承载能力的极 限状态,受拉构件一般以强度控制,而受压构件则需要 考虑同时满足强度和稳定的要求。对于正常使用的极限 状态,是通过保证构件的刚度——即限制其长细比来满 足。 因此,按照其受力性质的不同,轴心受拉构件的设 计需要分别进行强度和刚度验算;而轴心受压构件的设 计需分别进行强度、稳定和刚度的验算。
第三节 轴心受压构件的整体稳定
一、概述
1.定义 轴心压力超过某一值后,构件突然产生很大的变形 而丧失承载能力,称为轴心受压构件丧失整体稳定性或屈 曲。轴心受压构件通常是由整体稳定条件决定承载力。 2. 分类 依变形分为弯曲屈曲、扭转屈曲、弯扭屈曲。双轴对称 截面轴心受压构件的一般为弯曲屈曲,当截面的扭转刚度 较小时(如十字形截面),也可能发生扭转屈曲。单轴对 称截面轴心受压构件绕非对称轴屈曲时,为弯曲屈曲;若 绕对称轴屈曲时,由于轴心压力所通过的截面形心与截面 的扭转中心不重合,此时发生的弯曲变形总伴随着扭转变 形,属于弯扭屈曲。截面无对称轴的轴心受压构件,其屈 曲形式都属于弯扭屈曲。
3. 缀材设计 (1) 格构式轴心受压构件的剪力 规范以中高处截面边缘最大应力达屈服强 度为条件,导出的构件最大剪力V的简化算 fy Af 式为 V
85 235
设计缀材及连接时取剪力沿杆长不变。
(2) 缀条的设计 每个缀材面如同一平行弦桁架,缀条按桁架的 腹杆进行设计。一根斜缀条承受的轴向力Nt为 Nt =V1 / (n cos) 构件失稳时的变形方向不确定,斜缀条可能 受压或受拉。设计时按轴心受压构件设计。单系缀 条体系的横缀条,其截面尺寸一般取与斜缀条相同, 也可按容许长细比确定。 (3) 缀板的设计 缀板柱可视为一多层刚架。假定整体失稳时各 层分肢中点和缀板中点为反弯点。

钢结构基本原理第五章轴心受力构件

钢结构基本原理第五章轴心受力构件

y
缀板柱
x
y (实轴)
l01 =l1
柱肢
l0 l 1
格构式柱
缀条柱
实腹式截面
格构式截面
5.1.4 轴心受力构件的计算内容 轴 心 受 力 构 件 强度 (承载能力极限状态) 轴心受拉构件 刚度 (正常使用极限状态) 强度 (承载能力极限状态) 轴心受压构件 稳定 刚度 (正常使用极限状态)
第5.2节 轴心受力构件的设计 本节目录
I
并列布置
II I N
An
II I
错列布置
例: 一块—400×20的钢板用两块拼接板—400×12进 行拼接.螺栓孔径为22mm,排列如图所示钢板轴心受拉, N=1350 kN(设计值)。钢材为Q235钢,解答下列问题: (1)钢板1—1截面的强度够否? (2)假定N力在13个螺栓中平均分配,2—2截面应如何验算? (3)拼接板的强度是否足够?
I N
I
截面无削弱
N —轴心力设计值; A—构件的毛截面面积; f —钢材抗拉或抗压强度设计值。
截面有削弱
计算准则:轴心受力构件以截面上的平均应
力达到钢材的屈服强度。
N
s0
sm = s0
ax
N
N
N
I N
3
fy
(a)弹性状态应力
有孔洞拉杆的截面应力分布
(b)极限状态应力
I
截面有削弱
计算准则:轴心受力构件以截面上的平均应
第5.1节
5.1.1 轴心受力构件类型
概述
概念 轴心受力构件是指承受通过截面形心轴线的轴向力作 用的构件。 轴心受力构件包括: 轴心受拉构件和轴心受压构件
轴心受拉 :桁架、拉杆、网架、塔架(二力杆)

轴心受力构件

轴心受力构件

轴心受力构件设计轴心受拉构件时需进行强度和刚度的验算,设计轴心受压构件时需进行强度、整体稳定、局部稳定和刚度的验算。

一、轴心受力构件的强度和刚度1.轴心受力构件的强度计算轴心受力构件的强度是以截面的平均应力达到钢材的屈服点为承载力极限状态f A N n ≤=σ (1) 式中 N ——构件的轴心拉力或压力设计值;n A ——构件的净截面面积;f ——钢材的抗拉强度设计值。

采用高强度螺栓摩擦型连接的构件,验算最外列螺栓处危险截面的强度时,按下式计算:f A N n≤='σ (2) 'N =)5.01(1n n N - (3)式中 n ——连接一侧的高强度螺栓总数;1n ——计算截面(最外列螺栓处)上的高强度螺栓数;0.5——孔前传力系数。

采用高强度螺栓摩擦型连接的拉杆,除按式(2)验算净截面强度外,还应按下式验算毛截面强度f A N ≤=σ (4)2.轴心受力构件的刚度计算轴心受力构件的刚度是以限制其长细比保证][λλ≤ (5) 式中 λ——构件的最大长细比;[λ]——构件的容许长细比。

二、 轴心受压构件的整体稳定1.理想轴心受压构件的屈曲形式理想轴心受压构件可能以三种屈曲形式丧失稳定:①弯曲屈曲 双轴对称截面构件最常见的屈曲形式。

②扭转屈曲 长度较小的十字形截面构件可能发生的扭转屈曲。

③弯扭屈曲 单轴对称截面杆件绕对称轴屈曲时发生弯扭屈曲。

2.理想轴心受压构件的弯曲屈曲临界力若只考虑弯曲变形,临界力公式即为著名的欧拉临界力公式,表达式为N E =22l EI π=22λπEA (6) 3.初始缺陷对轴心受压构件承载力的影响实际工程中的构件不可避免地存在初弯曲、荷载初偏心和残余应力等初始缺陷,这些缺陷会降低轴心受压构件的稳定承载力。

1)残余应力的影响当轴心受压构件截面的平均应力p f >σ时,杆件截面内将出现部分塑性区和部分弹性区。

由于截面塑性区应力不可能再增加,能够产生抵抗力矩的只是截面的弹性区,此时的临界力和临界应力应为:N cr =22l EI e π=22lEI π·I I e (7) cr σ=22λπE ·I I e (8) 式中 I e ——弹性区的截面惯性矩(或有效惯性矩);I ——全截面的惯性矩。

《钢结构设计原理》苏州科技学院教材配套第5章轴心受力构件

《钢结构设计原理》苏州科技学院教材配套第5章轴心受力构件
绕非对称轴: x lox ix
Suzhou University of Science & Technology
y
x
x
绕对称轴y轴: 一般为弯扭屈曲,其临界力低
y
于弯曲屈曲,以换算长细比λyz代替λy
1
yz
1 2
2y
2z
2y 2z 2 4 1 e02
i02
2y 2z
2
2021/8/30
19
第5章 轴心受力构件
3. 初偏心的影响
Suzhou University of Science & Technology
由于构造、杆件截面尺寸、加工、安装等原因,作用于杆端的 轴心压力实际上不可避免的会偏离截面的形心而造成初偏心。
2021/8/30
20
第5章 轴心受力构件
4. 杆端约束的影响
Suzhou University of Science & Technology
四边简支板单向均匀受压时的临界力为:
σ cr
χkπ 2 12(1
E υ2
)(
t b
)2
四边简支单向均匀受压薄板的屈曲
式中:k 屈曲系数,k mb
a
2
a mb
v 0.3 —材料的泊松比
χ — 嵌固系数或弹性约束系数,大于1.0
2021/8/30
31
第5章 轴心受力构件
箱形截面:
h0
tw
Suzhou University of Science & Technology
(c)
tw
b0 tw
(d)
D
tt
b0 /t或h0 /tw 40 235 /f y

5 轴向受力构件 课件

5 轴向受力构件 课件
轴心受压构件的计算长度系数 表5.1.1
表中建议值系实际工程和理想条件间的差距而提出的
5 轴向受力构件
压杆失稳时临界应力cr 与长细比之间的关系曲线 称为柱子曲线。可以作为设 计轴心受压构件的依据。
短粗杆
细长杆
欧拉及切线模量临界应力 与长细比的关系曲线
Euler公式从提出到轴心加载试验证实花了约100年时间, 说明轴心加载的不易。因此目前世界各国在研究钢结构轴心 受压构件的整体稳定时,基本上都摒弃了理想轴心受压构件 的假定,而以具有初始缺陷的实际轴心受压构件(多曲线关 系、弹性微分方程、数值法)作为研究的力学模型。
柱头 柱头
支承屋盖、楼盖或工作平台的竖向 受压构件通常称为柱。柱由柱头、 柱身和柱脚三部分组成。
缀板
l =l
传力方式: 上部结构→柱头→柱身→柱脚→基础
实腹式构件和格构式构件
柱身
l l
柱身


实腹式构件具有整体连通的截面。
柱脚 柱脚
x y x y y
1
x (虚轴) y
(实轴)
1 y 1
x (虚轴) y
5 轴向受力构件
5.1.2 轴心受力构件的截面形式
型 钢 截 面
型钢截面
组 合 截 面
实腹式组合截面
型钢截面制造方 便,省时省工; 组合截面尺寸不 受限制;而格构 式构件容易实现 两主轴方向的等 稳定性,刚度较 大,抗扭性能较 好,用料较省。
格构式组合截面
5.1.2 轴心受力构件的截面形式
5 轴向受力构件
临界状态平衡方程
2
EIy Ny 0
2
y
弹性 临界力
弹塑性 临界力
式中: EI EI Ncr N cr 2 (5.1.3) Ncr ——欧拉临界力, 2 l0 cr ——欧拉临界应力, l M=Ncr·y E ——材料的弹性模量 2 N cr E N (5.1.4) t ——切线模量临界力 z cr 2 t ——切线模量临界应力 A Et ——压杆屈曲时材料的切线模 2 2 Et I Et A A ——压杆的截面面积 N tcr Ncr 2 l0 2 —— 构件的计算长度系数 ——杆件长细比( = l0/i) 2 Et i ——回转半径( i2=I/A)

轴心受力构件

轴心受力构件

轴心受力构件第4章轴心受力构件4.1 概述轴心受力构件广泛地应用于钢结构承重构件中,如钢屋架、网架、网壳、塔架等杆系结构的杆件,平台结构的支柱等。

这类构件,在节点处往往做成铰接连接,节点的转动刚度在确定杆件计算长度时予以适当考虑,一般只承受节点荷载。

根据杆件承受的轴心力的性质可分为轴心受拉构件和轴心受压构件。

一些非承重构件,如支撑、缀条等,也常常由轴心受力构件组成。

轴心受力构件的截面形式有三种:第一种是热轧型钢截面,如图4-1(a )中的工字钢、H 型钢、槽钢、角钢、T 型钢、圆钢、圆管、方管等;第二种是冷弯薄壁型钢截面,如图4-1(b )中冷弯角钢、槽钢和冷弯方管等;第三种是用型钢和钢板或钢板和钢板连接而成的组合截面,如图4-1(c )所示的实腹式组合截面和图4-1(d ) 所示的格构式组合截面。

轴心受力构件的截面必须满足强度、刚度要求,且制作简单、便于连接、施工方便。

因此,一般要求截面宽大而壁厚较薄,能提供较大的刚度,尤其对于轴心受压构件,承载力一般由整体稳定控制,宽大的截面因稳定性能好从而用料经济,但此时应注意板件的局部屈曲问题,板件的局部屈曲势必影响构件的承载力。

4.2 轴心受力构件的强度轴心受力构件的强度计算是以构件的净截面达到屈服应力为限ynf A N ==σ根据概率极限状态设计法,N 取设计值(标准值乘以荷载分项系数),yf 也去设计值(除以抗力分项系数087.1=Rγ)即f,钢材设计强度见附表1.1,P313。

表达式为fA N n≤ (4.1)nA 为轴心受力构件的净截面面积。

在螺栓连接轴心受力构件中,需要特别注意。

4.3 轴心受力构件的刚度为满足正常使用要求,受拉构件(包括轴心受拉、拉弯构件)、受压构件(轴心受压构件、压弯构件)不宜过分细长,否则刚度过小,制作、运输、安装过程中易弯曲(P118列出四种不利影响)。

受拉和受压构件的刚度通过长细比λ控制][),max(max λλλλ≤=y x (4.4)式中x x x i l /0=λ,yy y i l /0=λ;][λ为容许长细比,见表4.1,4.2。

轴心受力构件

轴心受力构件

只发生弯曲变形,截面只绕一个主轴旋转,杆纵轴 由直线变为曲线,是双轴对称截面常见的失稳形式;
(2)扭转失稳失稳时除杆件的支撑端外,各截面均绕 纵轴扭转,是某些双轴对称截面可能发生的失稳形式;
(3)弯扭失稳单轴对称截面绕对称轴屈曲时,杆件发 生弯曲变形的同时必然伴随着扭转。
二、理想轴心受压构件的屈曲
假定: A、达到临界力Ncr时杆件挺直; B、杆微弯时,轴心力增加△N,其产生的平均压应力 与弯曲拉应力相等。
临界力和临界应力:
Ncr
2Et I
l2 0
cr
2Et 2
初始缺陷对压杆稳定的影响
如前所述,如果将钢材视为理想的弹塑性材料, 则压杆的临界力与长细比的关系曲线(柱子曲线)应为:
初 始
轴心受压构件的承载能力大多由其稳定条件 决定,截面强度计算一般不起控制作用。若构件截 面没有孔洞削弱,可不必计算其截面强度。当有孔 洞削弱时,若孔洞压实(实孔,如螺栓孔或铆钉孔),截 面无削弱,则可仅按毛截面式(5.2.1)计算;若孔洞为 没有紧固件的虚孔,则还应对孔心所在截面按净截 面式(5.2.2)计算。
长而细的轴心受压构件主要是失去整体 稳定性而破坏。
§6.3 轴心受压构件的整体稳定
6.3.1 轴心受压构件的整体失稳现象
(1)弯曲失稳
N较小,直线平衡状态。 N渐增,有干扰力使构件微弯,当干扰力移 去后,构件仍保持微弯状态而不能恢复到原来直 线平衡状态 N再稍微增加,弯曲变形迅速增大构件丧失 承载能力,称为构件弯曲屈曲或弯曲失稳。
EIy N( y0 y) 0
2)最大弯矩
中点挠度
v v0 v1
v0
Nv0 NE N
NEv0 NE N
v0 1 N NE
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章轴心受力构件一、轴心受力构件的特点和截面形式轴心受力构件包括轴心受压杆和轴心受拉杆。

轴心受力构件广泛应用于各种钢结构之中,如网架与桁架的杆件、钢塔的主体结构构件、双跨轻钢厂房的铰接中柱、带支撑体系的钢平台柱等等。

实际上,纯粹的轴心受力构件是很少的,大部分轴心受力构件在不同程度上也受偏心力的作用,如网架弦杆受自重作用、塔架杆件受局部风力作用等。

但只要这些偏心力作用非常小(一般认为偏心力作用产生的应力仅占总体应力的3%以下。

)就可以将其作为轴心受力构件。

轴心受力的构件可采用图中的各种形式。

其中a)类为单个型钢实腹型截面,一般用于受力较小的杆件。

其中圆钢回转半径最小,多用作拉杆,作压杆时用于格构式压杆的弦杆。

钢管的回转半径较大、对称性好、材料利用率高,拉、压均可。

大口径钢管一般用作压杆。

型钢的回转半径存在各向异性,作压杆时有强轴和弱轴之分,材料利用率不高,但连接较为方便,单价低。

b) 类为多型钢实腹型截面,改善了单型钢截面的稳定各向异性特征,受力较好,连接也较方便。

c) 类为格构式截面,其回转半径大且各向均匀,用于较长、受力较大的轴心受力构件,特别是压杆。

但其制作复杂,辅助材料用量多。

二、轴心受拉杆件轴心受拉杆件应满足强度和刚度要求。

并从经济出发,选择适当的截面形式,处理好构造与连接。

1、强度计算轴心拉杆的强度计算公式为:(6-1)式中:N——轴心拉力;A n——拉杆的净截面面积;f ——钢材抗拉强度设计值。

当轴心拉杆与其它构件采用螺栓或高强螺栓连接时,连接处的净截面强度计算如连接这一章所述。

公式(6-1)适用于截面上应力均匀分布的拉杆。

当拉杆的截面有局部削弱时,截面上的应力分布就不均匀,在孔边或削弱处边缘就会出现应力集中。

但当应力集中部分进入塑性后,内部的应力重分布会使最终拉应力分布趋于均匀。

因而须保证两点:(1)选用的钢材要达到规定的塑性(延伸率)。

(2)截面开孔和消弱应有圆滑和缓的过渡,改变截面、厚度时坡度不得大于1:4。

2、刚度计算为了避免拉杆在使用条件下出现刚度不足、横向振动以造成过大的附加应力,拉杆设计时应保证具有一定的刚度。

普通拉杆的刚度按下式用长细比来控制。

(6-2)式中:——拉杆按各方向计算得的最大长细比;l0——计算拉杆长细比时的计算长度;i ——截面的回转半径(与l0相对应);——容许长细比。

按规范采用。

对于施加预拉力的拉杆,其容许长细比可放宽到1000。

三、轴心受压杆件轴心压杆的破坏形式有强度破坏、整体失稳破坏和局部失稳破坏三种。

(一)强度破坏轴心压杆的截面若无削弱,就不会发生强度破坏。

截面削弱的程度较整体失稳对承载力的影响小,也不会发生强度破坏。

如截面削弱的程度较整体失稳对承载力的影响大,则会发生强度破坏。

轴心压杆的强度计算方法同轴心拉杆。

(二)整体失稳破坏●轴心受压杆的整体稳定概述●轴心压杆的弹性微分方程●弯曲失稳的极限承载力●实腹式轴心压杆整体稳定的实用计算公式●格构式轴心压杆整体稳定的实用计算公式1、轴心受压杆的整体稳定概述整体失稳破坏是轴心受压构件的主要破坏形式。

有关轴心压杆的整体稳定问题的理论经历了由理想状态杆件的单曲线函数关系到实际状态杆件多曲线函数关系的沿革。

传统的理想状态压杆的单曲线稳定理论认为轴压杆是理想状态的,它在达到临界压力之前没有横向位移,达到临界压力之后曲线出现分枝。

此理论先由欧拉(Euler)提出,后由香莱(Shanley)用切线模量理论完善了分枝后的曲线。

其图如图。

由传统的理论得出的杆件长细比与临界压应力之关系图为单曲线,如图。

这种理论在世界各国一直被沿用到20世纪60年代。

20世纪60年代以后,新的压杆整体稳定理论在大量的试验基础上提出。

实际情况说明压杆不可能完全处于理想状态,有初弯曲、初偏心、残余应力等多种不利因素的影响。

试验曲线表明,压杆在承受轴压力的整个过程中都有侧向位移,只是开始侧向位移较小而接近极限承载力时侧向位移较大,到最后甚至不能收敛。

如图。

大量试验结果还表明:压杆的—关系并非象传统理论那样可以用一根曲线概括,试验点有相当大的分布范围,如图。

经分析,轴压构件的稳定极限承载力受到以下多方面因素的影响:•构件不同方向的长细比.•截面的形状和尺寸•材料的力学性能•残余应力的分布和大小•构件的初弯曲和初扭曲•荷载作用点的初偏心•支座并非理想状态的弹性约束力•构件失稳的方向等等由此提出以具有初始缺陷的实际轴心压杆作为力学模型,用开口薄壁轴心压杆的弹性微分方程来研究轴压杆的稳定问题。

2、轴心压杆的弹性微分方程轴压杆件的弹性微分方程为:(6-3a)(6-3b)(6-3c)式中:N ——轴心压力;I x、I y——对主轴x-x和y-y的惯性矩;——扇性惯性矩;,其中为以扭转中心为极的扇性坐标;——截面的抗扭常数;u、v、——构件剪力中心轴的三个初始位移分量,即考虑初弯曲和初扭曲等初始缺陷;x0、y0——剪力中心坐标;(6-4)(6-5)——截面上的残余应力,以拉应力为正。

对于杆件的对称与否可分为:•双轴对称截面的弯曲失稳和扭转失稳•单轴对称截面的弯曲失稳和扭转失稳•不对称截面的弯曲失稳和扭转失稳•轴压杆整体失稳的三种形式3、弯曲失稳的极限承载力1)弯曲失稳极限承载力的准则按弹性微分方程求解轴压杆的弯曲失稳极限承载力,目前常用的准则有二种。

一种采用边缘纤维屈服准则,即当截面边缘纤维的应力达到屈服点时就认为轴心受压构件达到弯曲失稳极限承载力。

另一种则采用稳定极限承载力理论,即当轴心受压构件的压力达到图6.4所示极值型失稳的顶点时,才达到了弯曲失稳极限承载力。

2)界应力σcr按边缘纤维屈服准则的计算方法弯曲变形的微分方程为(6-6a),即(a)假定压杆为两端简支,杆轴具有正弦曲线的初弯曲,即,式中为压杆中点的最大初挠度。

由上式可解得压杆中点的最大挠度为(6-14)——绕轴x-x的欧拉临界力。

式中:NEx由边缘纤维屈服准则可得(6-15)将式(6-14)代入上式,并解出平均应力后,即得佩利(perry)公式(6-16)式中:——初始偏心率;(6-17)——欧拉应力。

给定即可由式求得关系。

我国冷弯薄壁型钢结构技术规范采用了这个方法,并用下式计算,称为轴心压杆稳定系数。

(6-18)式中:——轴心压杆稳定系数;——相对长细比;(6-19)——按表6-2取用。

(相关知识2)初偏心率表6-2钢材牌号Q235Q3453)界应力σcr按稳定极限承载力理论的计算方法轴心受压构件考虑初始缺陷后的受力属于压弯状态,用数值积分法求解微分方程,可以考虑影响轴心压杆稳定极限承载力的许多因素,如截面的形状和尺寸、材料的力学性能、残余应力的分布和大小、构件的初弯曲和初扭曲、荷载作用点的初偏心、构件的失稳方向等等,因此是比较精确的方法。

我国钢结构设计规范采用了这个方法。

图是12种不同截面尺寸,不同残余应力值和分布以及不同钢材牌号的轴心受压构件用上述方法计算得到的曲线。

从图中可以看出,由于截面形式以及初始缺陷等因素的影响,轴心受压构件的柱子曲线分布在一个相当宽的带状范围内。

轴心受压构件的试验结果也说明了这一点,见图。

因此,用单一柱子曲线,即用一个变量(长细比)来反映显然是不够合理的。

现在已有不少国家包括我国在内已经采用多条柱子曲线。

我国钢结构设计规范采用的方法为:考虑l/1000 的初弯曲,选用不同的截面形式、不同的残余应力模式计算出近200条柱子曲线,这些曲线呈相当宽的带状分布。

然后根据数理统计原理,将这些柱子曲线分成a、b、c三组。

这三条平均曲线以其95%的信赖度全部覆盖了这些曲线所组成的分布带。

具体见柱子曲线。

(相关知识如下)轴压构件柱子曲线和截面分类钢结构设计规定采用将各种截面分成a、b、c三组,各柱子曲线为:当时(6-20)当时式中:、、——系数,根据不同曲线类别按6-3取用。

系数、、表6-3曲线类别a 0.41 0.986 0.152b 0.65 0.965 0.300c0.730.906 0.5951.216 0.302这一方法及以上参数可用于计算机编程计算,而实际计算则是用更简便的查表法。

对于弯扭失稳的稳定极限承载力,经过大量的计算和比较,规范认定可以按c曲线计算。

这是轴压杆弯扭失稳的简化计算方法。

轴心受压构件的截面分类(板厚t f<40mm)表6-4(a)截面形式和对应轴类别a类b类c类无任何对称轴的截面,对任意轴板件厚大于40mm的焊接实腹截面,对任意轴4、实腹式轴心压杆整体稳定的实用计算公式根据上面所述并考虑安全度后,实腹式轴心压杆可按下式计算其整体稳定性(6-22)式中:――压杆的毛截面面积;――轴心压杆稳定系数,根据压杆的长细比和截面分类查表确定。

5、格构式轴心压杆整体稳定的实用计算公式图所示为两种不同的格构式构件。

左侧两个为缀条构件,构件的两个肢用缀条连系;右侧为缀板构件,构件的两个肢用缀板连系。

双肢格构截面有两个轴,一个轴横穿缀条或缀板平面(如图中的轴x-x)称为虚轴,另一个轴横穿两个肢(如图中的轴y-y)称为实轴。

工程上也用到三肢柱和四肢柱。

这类柱截面的两个轴都是虚轴。

格构式压杆绕实轴失稳时,它的整体稳定性与实腹式压杆相同,因此其整体稳定的实用计算公式可同样采用式(6-22)。

格构式压杆绕虚轴失稳时,其整体稳定性与实腹式压杆不同,应该考虑在剪力作用下,柱肢和缀条或缀板变形的影响。

根据近似的理论分析,两端铰接的缀条压杆在弹性阶段绕虚轴屈曲的临界应力为(6-23)式中:A――杆肢截面面积之和;A1x――压杆截面中垂直于x轴的各斜缀条毛截面面积之和;――斜缀条对压杆横截面的倾角;――两柱肢作为整体对轴x-x(虚轴)的长细比。

上式等号右边分母的第二项表示在剪力作用下,柱肢和缀条变形的影响。

由于一般在45°左右,代入上式可得其中对于缀板式压杆,用同样原理可得缀板式压杆的换算长细比式中:――单肢对平行于x轴的自身形心轴(即上图中的1-1轴)的长细比。

综上所述,格构式轴心压杆整体稳定的实用计算公式为式中:――轴心压杆稳定系数,对于实轴由长细比按实腹截面采用,对于虚轴,按相关知识4求得换算长细比,再查表(b类)求。

(两种不同的格构式构件图)格构式构件的换算长细比计算公式 5-2 项次 构件截面形式缀材类别 计算公式符号意义 1缀板——整个构件对 x 和 y 轴的长细比。

——单肢对最小刚度轴1-1的长细比,其计算长度取:焊接时,为相邻两缀板间的净距离;螺栓连接时,为相邻两缀板边缘螺栓的最近距 离。

——构件横截面中,垂直2 缀条3缀板4缀条5 缀条于x和y轴的各斜缀条毛截面面积之和。

A1——构件横截面中各斜缀条毛截面面积之和。

——构件横截面内缀条所在平面与x轴的夹角。

(三)局部失稳破坏●概述●轴心压杆翼缘和腹板的局部稳定●轴心受力圆管截面压杆的局部稳定1、概述实腹式轴心压杆的受压翼缘和腹板与受弯构件的受压翼缘和腹板一样,有局部稳定问题。

相关文档
最新文档