解三角形学案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解三角形知识点

1、三角形三角关系:A+B+C=180°;C=180°—(A+B);

2、三角形三边关系:a+b>c; a-b

3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-

sin

cos ,cos sin ,tan cot 222222

A B C A B C A B C +++=== 4.正弦定理:2sin sin sin a b c R A B C === 5、正弦定理的变形公式:

①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R

=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 6、三角形面积公式:

111sin sin sin 222

C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---

7.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩ 或 222

222222

cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=

⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩

. 8.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角.

2、已知两角和其中一边的对角,求其他边角.

(2)两类余弦定理解三角形的问题:1、已知三边求三角.

2、已知两边和他们的夹角,求第三边和其他两角.

9、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式

设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:

①若222a b c +=,则90C =

②若222a b c +>,则90C < ;

③若222a b c +<,则90C > .

10、三角形的五心:

垂心——三角形的三边上的高相交于一点

重心——三角形三条中线的相交于一点

外心——三角形三边垂直平分线相交于一点

内心——三角形三内角的平分线相交于一点

旁心——三角形的一条内角平分线与其他两个角的外角平分线交于一点

已知条件定理应

一般解法

一边和两角

(如a、B、C)正弦定

由A+B+C=180˙,求角A,由正弦定理求出b与c,在有解时有一解。

两边和夹角

(如a、b、c)余弦定

由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180˙求出另一角,在有解时有一解。

三边

(如a、b、c)余弦定

由余弦定理求出角A、B,再利用A+B+C=180˙,求出角C 在有解时只有一解。

相关文档
最新文档