7学年上学期高二9月月考试卷数学(文)(附答案)

合集下载

浙江省温州市鹿城区南浦实验学校2023-2024学年七年级上学期月考数学试卷(9月份)+

浙江省温州市鹿城区南浦实验学校2023-2024学年七年级上学期月考数学试卷(9月份)+

2023-2024学年浙江省温州市鹿城区南浦实验学校七年级(上)月考数学试卷(9月份)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

1.−5的绝对值是( )A. 15B. 5C. −5D. −152.下面四个数中比−2小的数是( )A. 1B. 0C. −1D. −33.如图,比数轴上点AA表示的数大3的数是( )A. −1B. 0C. 1D. 24.光盘的质量标准中规定:厚度为(1.2±0.1)mmmm的光盘是合格品,则下列经测量得到的数据中,不合格的是( )A. 1.12mmmmB. 1.22mmmmC. 1.28mmmmD. 1.32mmmm5.下列叙述中,不正确的是( )A. 一个正数的相反数是负数,一个负数的相反数是正数B. 在数轴上与原点距离相等但不重合的两个点,所表示的数一定互为相反数C. 符号不同的两个数互为相反数D. 两个数互为相反数,这两个数有可能相等6.在−2,−3,0,1中,绝对值最小的数是( )A. −2B. −3C. 0D. 17.绝对值大于3.5且小于6.5的整数个数是( )A. 3B. 4C. 6D. 88.如图,AA,BB,CC,DD,EE分别是数轴上五个连续整数所对应的点,其中有一点是原点,数aa对应的点在BB与CC之间,数bb对应的点在DD与EE之间,若|aa|+|bb|=3则原点可能是( )A. AA或EEB. AA或BBC. BB或CCD. BB或EE9.2023的相反数是______ .10.某次体育课测试立定跳远,以2.00mm为标准,若小南跳出了2.25mm,可记作+0.25mm,则小浦跳出了1.85mm,应记作______ .11.一个数aa在数轴上表示的点是AA,当点AA在数轴上向左移动了6个单位长度后到点BB,点AA与点BB表示的数恰好互为相反数,则数aa是______ .12.比较大小:−53______ −2(填“>”“=”“<”).13.aa是最大的负整数,bb是最小的正整数,cc是绝对值最小的数,则aa−bb+cc=______.14.思考下面各对量:①气温下降2℃与气温为−2℃;②小南向东走25mm与小南向西走25mm;③收入2000元与亏损2000元;④胜三局与负六局.其中具有相反意义的量有______ .(填序号)15.纸片上有一数轴,折叠纸片,当表示−1的点与表示5的点重合时,与表示2023的点重合的点在数轴上对应的数是______ .16.在如图所示的运算程序中,若开始输入xx的值为48,我们发现第一次输出的结果为24,第二次输出的结果为12…,则第2023次输出的结果为______ .17.计算:(1)|−5|−|+3|;(2)|+52|×|−625|.18.把下列各数的序号分别填在相应的横线上:①+26;②0;③−8;④−4.8;⑤17;⑥−227;⑦0.6;⑧−58;⑨5%.(1)正数:{______ …};(2)整数:{______ …};(3)负分数:{______ …}.19.如图,在数轴上表示出以下5个数:−3.5,2,0,1.5,−1,并比较它们的大小,将它们按从小到大的顺序用“<”连接.20.已知|aa|=10,|bb|=20,且aa>bb,试求出所有可能的aa和bb的值.21.今年第6号台风“卡努”给我市带来极端风雨天气,有一个水库8月3日8:00的水位为−0.5mm(以10mm为警戒线,记高于警戒线的水位为正)在以后的6个时刻测得的水位升降情况如下(记上升为正,单位:mm).(1)根据记录的数据,求第2个时刻该水库的实际水位;(2)在这6个时刻中,该水库最高实际水位是多少?(3)经过6次水位升降后,水库的水位超过警戒线了吗?22.正方形AABBCCDD在数轴上的位置如图所示,点DD,AA对应的数分别为0,1,若正方形AABBCCDD用绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点BB所对应的数为2,则翻转2023次后,数轴上数2023所对应的点是( )A. AAB. BBC. CCD. DD23.已知数轴上点AA,BB,CC所表示的数分别是4,xx,10,其中点BB为AACC的三等分点,则xx的值是______.24.长方形纸片上有一数轴,剪下10个单位长度(从−3到7)的一条线段,并把这条线段沿某点折叠,然后在重叠部分某处剪一刀得到三条线段(如图所示).若这三条线段的长度之比为1:2:2,则折痕处对应的点所表示的数可能是______.25.如图,在一条数轴上从左到右依次取AA,BB,CC三个点,且使得点AA,BB到原点OO的距离均为1个单位长度,点CC到点AA的距离为7个单位长度.(1)在数轴上点AA所表示的数是______ ,点CC所表示的数是______ .(2)若点PP、QQ分别从点AA、CC处出发,沿数轴以每秒3个单位长度和每秒1个单位长度的速度同时向右运动,经过几秒,PP、QQ两点相距4个单位长度?答案和解析1.【答案】BB【解析】解:−5的绝对值是5,故选:BB.利用绝对值的定义求解即可.本题主要考查了绝对值,解题的关键是熟记绝对值的定义.2.【答案】DD【解析】解:∵正数和0大于负数,∴排除AA与BB,即只需和CC、DD比较即可求得正确结果.∵|−2|=2,|−1|=1,|−3|=3,∴3>2>1,即|−3|>|−2|>|−1|,∴−3<−2<−1.故选D.根据有理数大小比较的法则直接求得结果,再判定正确选项.考查了有理数大小比较法则.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.3.【答案】DD【解析】解:由数轴可得:AA表示,则比数轴上点AA表示的数大3的数是:−1+3=2.故选:DD.结合数轴得出AA对应的数,再利用有理数的加法计算得出答案.此题主要考查了有理数的加法以及数轴,正确掌握有理数的加法是解题关键.4.【答案】DD【解析】解:1.2+0.1=1.3(mmmm),1.2−0.1=1.1(mmmm),∴当1.1mmmm≤光盘厚度≤1.3mmmm时,是合格品,∵1.32mmmm>1.3mmmm,∴1.32mmmm的光盘不合格.故选:DD.根据正负的意义,即可解答.本题考查了正负数的实际意义,解决本题的关键是理解正负数的意义.5.【答案】CC【解析】解:AA、∵只有符号不同的两个数叫互为相反数,∴正数的相反数是负数,负数的相反数是正数,故本选项不符合题意;B、在数轴上与原点距离相等但不重合的两个点,所表示的数一定互为相反数,故本选项不符合题意;C、1是正数,−2是负数,1与−2不是互为相反数,故本选项符合题意,故本选项符合题意;D、两个数互为相反数,这两个数有可能相等,故本选项不符合题意.故选:CC.根据相反数的定义对各选项进行逐一分析即可.本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.6.【答案】CC【解析】解:|−2|=2,|−3|=3,|0|=0,|1|=1,∵3>2>1>0,故选:CC.根据绝对值的意义,可得各数的绝对值,根据有理数的大小比较,可得答案.本题考查了有理数的大小比较,利用绝对值的意义得出各数的绝对值是解题关键.7.【答案】CC【解析】解:绝对值大于3.5且小于6.5的所有整数是:±4,±5,±6共6个.故选:CC.大于3.5且小于6.5的整数绝对值是4或5,因为互为相反数的两个数的绝对值相等,所以绝对值大于3.5且小于6.5的所有整数有±4,±5,±6.本题考查了对绝对值、相反数的意义的应用,主要考查学生的理解能力和计算能力.8.【答案】DD【解析】本题主要考查的是数轴的定义和绝对值的意义,理解绝对值的几何意义是解题的关键.根据数轴的定义以及绝对值的几何意义,分别讨论不同原点时|aa|、|bb|的范围,从而得到|aa|+|bb|的范围,即可判断出答案.解:由题意得,当AA为原点时,1<|aa|<2,3<|bb|<4,则4<|aa|+|bb|<6,所以AA点是原点时不合题意;当BB为原点时,0<|aa|<1,2<|bb|<3,则2<|aa|+|bb|<4,即|aa|+|bb|有可能等于3,所以BB点是原点时符合题意;当CC为原点时,0<|aa|<1,1<|bb|<2,则1<|aa|+|bb|<3,所以CC点是原点时不合题意;当DD为原点时,1<|aa|<2,0<|bb|<1,则1<|aa|+|bb|<3,所以DD点是原点时不合题意;当EE为原点时,2<|aa|<3,0<|bb|<1,则2<|aa|+|bb|<4,即|aa|+|bb|有可能等于3,所以EE点是原点时符合题意;综上,若|aa|+|bb|=3,则原点可能是BB或EE,故选:DD.9.【答案】−2023【解析】解:2023的相反数是−2023.故答案为:−2023.由相反数的概念即可解答.本题考查相反数的概念,关键是掌握:只有符号不同的两个数叫做互为相反数,求一个数的相反数的方法就是在这个数的前边添加“−”.10.【答案】−0.15mm【解析】解:1.85−2.00=−0.15(mm),故答案为:−0.15mm.明确具有相反意义的量的表示方法即可.本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是具有相反意义的量.11.【答案】3【解析】解:由题意可得:BB点对应的数是:aa−6,∵点AA和点BB表示的数恰好互为相反数,∴aa+aa−6=0,解得:aa=3.故答案为:3.根据题意表示出点BB对应的数,再利用互为相反数的性质分析得出答案.此题主要考查了数轴以及相反数,正确表示出点BB对应的数是解题关键.12.【答案】<【解析】解:∵2>53,∴−53<−2.故答案为:<.按照两个负数比较大小的法则进行比较即可.本题考查了实数的大小比较法则,能选择适当的方法比较两个实数的大小是解此题的关键.13.【答案】−2【解析】解:∵aa是最大的负整数,bb是最小的正整数,cc是绝对值最小的数,∴aa=−1,bb=1,cc=0,∴aa−bb+cc=−1−1+0=−2.故答案为:−2.根据aa是最大的负整数,bb是最小的正整数,cc是绝对值最小的数,可以得到aa、bb、cc的值,从而可以求得所求式子的值.本题考查有理数的加减混合运算,解答本题的关键是明确有理数加减混合运算的计算方法.14.【答案】②④【解析】解:①气温下降与气温上升意义相反,而气温下降2℃与气温为−2℃不具有相反意义,故不符合题意;②小南向东走25mm与小南向西走25mm具有相反意义,故符合题意;③收入与支出,盈利与亏损是相反意义的量,而收入2000元与亏损2000元不具有相反意义,故不符合题意;④胜三局与负六局具有相反意义,故符合题意.故答案为:②④.明确具有相反意义的量,对选项逐一分析,排除错误选项.本题考查了正数和负数,明确什么是一对具有相反意义的量是解题的关键.15.【答案】2020【解析】解:折叠纸片,当表示−1的点与表示5的点重合时,折痕和数轴交点表示的数是(−1+5)÷2=2,∴表示2023的点与折痕和数轴交点的距离是2023−2=2021,∴表示2023的点与表示数2021−1=2020的点重合,故答案为:2020.先求出折痕和数轴交点表示的数,再由所求数表示的点与表示2023的点关于折痕和数轴交点对称,即可得答案.本题考查了数轴的知识,注意根据轴对称的性质,可以求得使两个点重合的折痕经过的点所表示的数即是两个数的平均数.16.【答案】6【解析】解:将48输入后会发现输出结果依次为24,12,6,3,6,3,6,…的规律依次出现,且当结果输出的次数大于2时,第奇数次结果为6,第偶数次结果为3,∴第2023次输出的结果为6.故答案为:6.将48输入后会发现输出结果依次为24,12,6,3,6,3,6,…的规律依次出现,且当结果输出的次数大于2时,第奇数次结果为6,第偶数次结果为3,所以结果为6.本题考查了数字规律的归纳能力,掌握输出结果依次出现的规律是关键.17.【答案】解:(1)原式=5−3=2;(2)原式=52×625=35.【解析】(1)先去绝对值符号,再算加减即可;(2)先去绝对值符号,再算乘法即可.本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解题的关键.18.【答案】①⑤⑦⑨①②③⑤④⑥⑧【解析】解:(1)正数:{①⑤⑦⑨…};(2)整数:{①②③⑤…};(3)负分数:{④⑥⑧…}.故答案为:(1)①⑤⑦⑨;(2)①②③⑤;(3)④⑥⑧.根据有理数的分类解答即可.此题考查了有理数,掌握相关定义是解答本题的关键.19.【答案】解:如图所示:∴从小到大的顺序为:−3.5<−1<0<1.5<2.【解析】根据所给数据在数轴上表示即可.本题考查了实数与数轴上点的对应关系,以及实数的大小比较,属于基础题.20.【答案】解:∵|aa|=10,|bb|=20,∴aa=±10,bb=±20,∵aa>bb,∴aa=10,bb=−20或aa=−10,bb=−20.【解析】根据绝对值的定义即可得到结论.退款处理绝对值的定义,熟练掌握绝对值的定义是解题的关键.21.【答案】解:(1)10−0.2+0.8=10.6,答:第2个时刻该水库的实际水位是10.6mm;(2)8:00的水位为−0.5(mm),9:00的水位为−0.5+0.8=0.3(mm),10:00的水位为0.3−0.2=0.1(mm),11:00的水位为0.1+0.6=0.7(mm),12:00的水位为0.6+0.5=1.1(mm),13:00的水位为1.1−0.2=0.9(mm),14:00的水位为0.9−0.8=−0.1(mm),10+1.1=11.1(mm),答:在这6个时刻中,该水库最高实际水位是11.mm;(3)−0.1<0,答:经过6次水位升降后,水库的水位没超过警戒线.【解析】(1)根据有理数的加法运算即可求出答案;(2)根据表格的数据,将6个时刻的水位计算并比较即可求解;(3)最后的值为−0.5,表示没超过警戒线.本题考查正数与负数,解题的关键是正确理解正数与负数的定义,本题属于基础题型.22.【答案】CC【解析】解:由题意可知,DD初始位置对应的数字为0,DD下一个对应得到数字是4,再下一个对应的数字是8,∴4个数为一个循环,旋转2020次后,2020÷4=505,∴数轴上数2020所对应的点是DD,∴数轴上数2021所对应的点是AA.∴数轴上数2022所对应的点是BB.∴数轴上数2023所对应的点是CC.故选:CC.通过题意得到4个数为一个循环,由2023÷4=505……3.本题考查实数数轴,能够确定多少个数为一个循环是解答本题的关键.23.【答案】6或8【解析】解:①若AACC=13AACC时,即:xx−4=13(10−4),解得,xx=6;②若BBCC=13AACC时,即:10−xx=13(10−4),解得,xx=8;故答案为:6或8.分①AACC=13AACC时和②BBCC=13AACC两种情况,分别进行解答即可.考查数轴表示数的意义和方法,数轴上两点之间的距离的计算方法是列方程求解的关键.24.【答案】1或2或3【解析】解:根据题意可设这三条线段的长度分别为xx、2xx、2xx个单位长度,则可列方程得:xx+2xx+2xx=10,解得:xx=2,则这三条线段长分别为2、4、4个单位长度,若剪下的第一条线段长为2个单位长度,则折痕处对应的点所表示的数为:−3+2+2=1;若剪下的第一条线段长为4个单位长度,第二条线段为2个单位长度,则折痕处对应的点所表示的数为:−3+4+1=2;若剪下的第一条线段长为4个单位长度,第二条线段也为4个单位长度,则折痕处对应的点所表示的数为:−3+4+2=3;综上所述:折痕处对应的点所表示的数为:1或2或3;故答案为:1或2或3.先根据题意求出这三条线段的长度,列出所有可能的情况,即可求出折痕处所对应的数.本题主要考查了数轴与线段结合的题型,解题关键是列出这三段线段所有可能排列的顺序.25.【答案】−16【解析】解:(1)由题意可知:AA表示的数为−1,BB表示的数为1,由于点CC到点AA的距离为7个单位长度,∴CC表示的数为6,(2)设点PP、QQ所表示的数为pp,qq,由题意可知:pp=−1−3tt,qq=6−tt,∵PPQQ=4,∴|−1−3tt−6+tt|=4,∴|−2tt−7|=4,∴tt=−112(舍去)或tt=32.故答案为:(1)−1,6(1)根据题意即可判断AA、BB、CC三点所表示的数.(2)设点PP、QQ所表示的数为pp,qq,根据两点之间的距离可表示出pp、qq,然后根据题意列出方程即可求出答案.本题考查一元一次方程,解题的关键是正确找出题中的等量关系,本题属于基础题型.。

重庆市巴蜀2024-2025学年高三上学期9月月考数学试题含解析

重庆市巴蜀2024-2025学年高三上学期9月月考数学试题含解析

数学试卷(答案在最后)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“x ∀∈R ,2210x x ++≥”的否定是()A.x ∃∈R ,2210x x ++≥B.x ∃∈R ,2210x x ++<C.x ∀∈R ,2210x x ++>D.x ∀∈R ,2210x x ++<【答案】B 【解析】【分析】利用全称量词命题的否定即可解答.【详解】命题“x ∀∈R ,2210x x ++≥”为全称量词命题,它的否定是存在量词命题,即x ∃∈R ,2210x x ++<,故选:B.2.今年高二(1)班的同学参加语文和数学两个学科的结业水平考试,每科满分为100分.考试成绩非常优秀,每个同学都至少有一科成绩在90分以上,其中语文90分以上的有45人,数学90分以上的有48人,这两科均在90分以上的有40人,高二(1)班共有()个同学.A.45B.48C.53D.43【答案】C 【解析】【分析】由题意设出集合,A B 得到集合,A B 以及A B ⋂中元素的个数,即可得出A B 中元素的个数.【详解】设集合A 表示语文在90分以上的学生,则集合中有45个元素,集合B 表示数学在90分以上的学生,则集合中有48个元素,A B ⋂表示两科均在90分以上的学生,则集合A B ⋂中有40个元素,A B 表示至少有一科成绩在90分以上的学生,由题意可知A B 中有个45484053+-=元素,又因为每个同学都至少有一科成绩在90分以上,所以高二(1)班共有53人,故选:C .3.关于x 的不等式lg lg lg 10k x x k x ⋅+-<对一切x +∈R 恒成立,则k 的取值范围是()A.(,4]-∞-B.(,4][0,)-∞-+∞C.(4,0)-D.(4,0]-【答案】D 【解析】【分析】当0k =时,可知不等式恒成立;当0k ≠时,由二次函数图象和性质可得不等式组,解不等式组求得结果.【详解】x 的不等式2lg lg lg 1lg lg 10k x x k x k x k x ⋅+-=+-<对一切x +∈R 恒成立,当0k =时,不等式对一切x +∈R 恒成立,当0k ≠时,x +∈R 时lg x ∈R ,则有2Δ40k k k <⎧⎨=+<⎩,解得40k -<<,所以k 的取值范围是(4,0]-.故选:D4.19世纪美国天文学家西蒙·纽康和物理学家本·福特从实际生活得出的大量数据中发现了个现象,以1开头的数出现的频数约为总数的三成,并提出本·福特定律,即在大量10进制随机数据中,以()n n +∈N 开头的数出现的概率为1()lgn P n n+=,如斐波那契数、阶乘数、素数等都比较符合该定律.后来常有数学爱好者用此定律来检验某些经济数据、选举数据等大数据的真实性.若()193333log 8log 2(),19log 2log 5n k P n k k +=-=∈≤+∑N (说明符号()1,,jk i i j k i a a a a k i j ++==+++∈∑N ),则k 的值为()A.3B.5C.7D.9【答案】B 【解析】【分析】根据题意利用对数的运算法则可得19()lg 4n kP n ==∑,再由符号说明表达式即可求得5k =.【详解】易知19333333log 8log 2log ()lg 4log o 4102log 5l g n kP n =-===+∑,由1()lg n P n n +=可得191212()lg l 19g lg lg l 2020201119g n kk k k k k k k k k P n =++++⎛⎫=++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯= ⎭++⎪⎝∑;所以lglg 420k=,解得5k =.故选:B5.某机器上有相互啮合的大小两个齿轮(如图所示),大轮有25个齿,小轮有15个齿,大轮每分钟转3圈,若小轮的半径为2cm ,则小轮每秒转过的弧长是()cm.A.10πB.5πC.π3D.π6【答案】C 【解析】【分析】根据给定条件,求出小轮每分钟转的圈数,再借助弧长公式计算即得.【详解】由大轮有25个齿,小轮有15个齿,大轮每分钟转3圈,得小轮每分钟转的圈数为325515⨯=,因此小轮每秒钟转的弧度数为52ππ606⨯=,所以小轮每秒转过的弧长是2cm cm ππ63⨯=.故选:C6.已知函数32()6f x x x =-,若()()g x f x a b =+-为奇函数,则()A.2a =,16b =B.2a =-,16b =-C .2a =-,16b = D.2a =,16b =-【答案】D 【解析】【分析】根据奇函数定义可得()()0f x a b f x a b +-+-+-=恒成立,化简可求,a b .【详解】因为()()g x f x a b =+-为奇函数,32()6f x x x =-,所以()()0f x a b f x a b +-+-+-=,所以()()()()3232660x a x a b x a x a b +-+-+-+--+-=,所以()()()()3232660x a x a b x a x a b +-+------=,所以()23261221220a x a a b -+--=,所以6120a -=,3221220a a b --=,所以2a =,16b =-,故选:D.7.若函数32()(1)(5)2f x x k x k x =+-+++在区间(0,3)上不单调,则k 的取值范围是()A.(4,3)--B.(5,2)-- C.(5,3)-- D.(4,2)--【答案】B 【解析】【分析】求出函数()f x 的导数()f x ',利用()f x '在(0,3)上有变号零点列式求解即得.【详解】函数32()(1)(5)2f x x k x k x =+-+++,求导得2()32(1)5f x x k x k '=+-++,由函数()f x 在区间(0,3)上不单调,得()f x '在(0,3)上有变号零点,由()0f x '=,得2232(1)50(21)325x k x k k x x x +-++=⇔-+=-+,则24(21)3(2)4220k x x x -+=-⋅+,令21(1,7)x t +=∈,于是2243(1)4(1)2031027kt t t t t -=--⋅-+=-+,即有943(10k t t-=+-,令9()3()10,17g t t t t=+-<<,函数()g t 在(1,3]上单调递减,函数值从20减小到8,在[3,7)上单调递增,函数值从8增大到1047,由()f x '在(0,3)上有变号零点,得直线4y k =-与函数(),17y g t t =<<的图象有交点,且当有两个交点时,两个交点不重合,因此8420k <-<,解得52k -<<-,所以k 的取值范围是(5,2)--.故选:B8.已知函数()e e x x f x -=+,若关于x 的方程()2f x x k +=有4个不同的实数根,则k 的取值范围是()A.11442,e e -⎛⎫+ ⎪⎝⎭B.()222,e e -+ C.11222,e e -⎛⎫+ ⎪⎝⎭ D.11114422e e ,e e --⎛⎫++ ⎪⎝⎭【答案】A 【解析】【分析】先得到()e e x x f x -=+的奇偶性和单调性,从而令2x x t +=,若()f t k =仅有一个实数根0t ,则00t =,2k =,此时推出只有两个根,不合要求,若()f t k =有两个实数根12,t t ,由对称性可知21t t =-,故210x x t +-=和210x x t ++=均有两个解,有根的判别式得到11144t -<<且10t ≠,结合函数单调性和奇偶性得到11441()2,e e k f t -⎛⎫=∈+ ⎪⎝⎭.【详解】()e e x x f x -=+的定义域为R ,且()e e ()x x f x f x --=+=,故()e e x x f x -=+为偶函数,且当0x >时,0()e e x x f x -=->'恒成立,故()e e x x f x -=+在0,+∞上单调递增,由对称性可知()f x 在(),0∞-上单调递减,()min ()02f x f ==,令2x x t +=,若()f t k =仅有一个实数根0t ,则00t =,2k =,此时20x x +=,解得10x =或1-,仅有2个实数根,不合要求,舍去;若()f t k =有两个实数根12,t t ,由对称性可知21t t =-,需要满足21x x t +=和21x x t +=-均有两个解,即210x x t +-=和210x x t ++=均有两个解,由11140,140t t ∆=+>∆=->,解得11144t -<<,又10t ≠,故11144t -<<且10t ≠,即1111441()e e 2,e e t t k f t --⎛⎫==+∈+ ⎪⎝⎭.故选:A【点睛】方法点睛:复合函数零点个数问题处理思路:①利用换元思想,设出内层函数;②分别作出内层函数与外层函数的图象,分别探讨内外函数的零点个数或范围;③内外层函数相结合确定函数交点个数,即可得到复合函数在不同范围下的零点个数.二、多项选择题(本大题共3个小题,每小题6分,共18分,在每个给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.若tan α=,则下列与角α的终边可能相同的角是()A.4π3B.5π3C.ππ3k +,k ∈Z D.2π2π3k -,k ∈Z 【答案】ACD 【解析】【分析】通过正切函数值相等,分析判断对应角的终边是否相同.【详解】对于A ,4πtan 3=,因此A 正确;对于B ,5πtan3=B 不正确;对于C ,πtan π3k ⎛⎫+=⎪⎝⎭,因此C 正确;对于D ,2πtan 2π3k ⎛⎫-= ⎪⎝⎭,因此D 正确。

重庆市壁山区来凤高级中学校高二上学期9月月考语文试题(含答案)

重庆市壁山区来凤高级中学校高二上学期9月月考语文试题(含答案)

重庆市壁山区来凤高级中学校高二上学期9月月考语文试题(含答案)来凤高级中学校2023-2024学年高二上学期9月月考语文试卷时间:150分钟总分:150分一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,17分)阅读下面的文字,完成下面1~5小题。

材料一:首先,中国传统文化蕴含着一种伟大的民族精神。

在五千多年的发展中,中华民族形成了以爱国主义为核心的团结统一、爱好和平、勤劳勇敢、自强不息的伟大民族精神。

中华传统文化,始终把爱国主义精种作为首要的价值标准,一向主张先爱国,后立家,信奉无国便无家,“家"为小家,“国”是大家。

不管是国泰民安,还是国难当头,都要先大家而后小家。

中华民族历来反对涣散分裂,追求团结统一,强调群体优势,崇尚众志成城。

爱好和平,更是中华民族的优良传统。

我们的传统文化一向主张“和为贵",追求天下大国的太平盛世,奉行“仁义礼智信”,修身齐家治国平天下,以“仁"为本,反对战争与暴力,反对冤冤相报,主张以德报怨。

勤劳勇敢,自强不息,是中华民族世代相传的传统美德和生命意志。

传统文化歌颂“富贵不能淫,贫贱不能移,威武不能屈”,信奉“天道酬勤",勉励人们“天行健,君子以自强不息”。

以上独特的民族精神,是中华民族传统文化的风骨,是中华民族赖以生存和发展的精种支撑。

其次,中国传统文化蕴含着一种深刻的哲学智慧。

中华民族传统文化充满着深刻的大智慧,是东方哲学的杰出代表。

这大智慧集中体现在“儒、道、释互补"之中。

儒家思想以孔孟之道为代表,其核心是“仁”,以仁、义、礼、智、信为主要内容,以“中庸之道"为哲学理念。

“仁爱”与“中庸",均极富智慧。

道家思想以老庄之道为代表,其核心是“道”,以太极八卦、阴阳五行、天人合一等为主要内容。

其代表性著作《易经》,是中国学问之根据,《易经》中的智慧渗透在传统文化和社会生活的诸多方面,而《道德经》和《庄子》,亦为两部智慧奇书,其中的奥妙哲思尤为士人与士文化所推崇。

山东省济宁市实验中学2024-2025学年高二上学期9月月考数学试题

山东省济宁市实验中学2024-2025学年高二上学期9月月考数学试题

山东省济宁市实验中学2024-2025学年高二上学期9月月考数学试题一、单选题1.以下事件是随机事件的是( )A .标准大气压下,水加热到100C ︒,必会沸腾B .走到十字路口,遇到红灯C .长和宽分别为,a b 的矩形,其面积为abD .实系数一元一次方程必有一实根2.抽查10件产品,设事件A :至少有两件次品,则A 的对立事件为 A .至多两件次品 B .至多一件次品 C .至多两件正品D .至少两件正品3.两名同学分3本不同的书,其中一人没有分到书,另一人分得3本书的概率为( )A .12B .14C .13D .164.掷一个骰子的试验,事件A 表示“小于5的偶数点出现”,事件B 表示“小于5的点数出现”,则一次试验中事件A B +发生的概率为( )A .13B .12C .23D .565.直三棱柱111ABC A B C -中,若1,,CA a CB b CC c ===u u u r u u u r u u u u r r r r ,则1A B =u u u r( )A .a b c +-r r rB .a b c -+r r rC .a b c -++r r rD .a b c -+-r r r6.已知空间向量0a b c ++=r r r r,2a =r ,3b =r ,4c =r ,则cos ,a b =r r ( ) A .12B .13C .12-D .147.端午节放假,甲回老家过节的概率为13,乙,丙回老家过节的概率分别为11,45.假定三人的行动相互之间没有影响,那么这段时间内至少1人回老家过节的概率为( ) A .5960B .35C .12D .1608.在调查运动员是否服用过兴奋剂的时候,给出两个问题作答,无关紧要的问题是:“你的身份证号码的尾数是奇数吗?”敏感的问题是:“你服用过兴奋剂吗?”然后要求被调查的运动员掷一枚硬币,如果出现正面,就回答第一个问题,否则回答第二个问题.由于回答哪一个问题只有被测试者自己知道,所以应答者一般乐意如实地回答问题.如我们把这种方法用于300个被调查的运动员,得到80个“是”的回答,则这群人中服用过兴奋剂的百分率大约为( ) A .4.33%B .3.33%C .3.44%D .4.44%二、多选题9.在平行六面体ABCD A B C D -''''中,若AB 所在直线的方向向量为(2,1,3)-,则C D ''所在直线的方向向量可能为( ) A .(2,1,3) B .(2,1,3)-- C .(4,2,6)-D .(4,2,6)-10.下列各组事件中,是互斥事件的是( )A .一个射手进行一次射击,命中环数大于8与命中环数小于6B .统计一个班的数学成绩,平均分不低于90分与平均分不高于90分C .播种100粒菜籽,发芽90粒与发芽80粒D .检验某种产品,合格率高于70%与合格率低于70%11.已知点P 为三棱锥O ABC -的底面ABC 所在平面内的一点,且12OP OA mOB nOC =+-u u u ru u ur u u u ru u u r(m ,n R ∈),则m ,n 的值可能为( )A .1m =,12n =-B .12m =,1n = C .12m =-,1n =- D .32m =,1n =三、填空题12.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是.13.已知事件A ,B ,C 两两互斥,且()0.3P A =,()0.6P B =,()0.2P C =,则()P A B C ⋃⋃=.14.在长方体1111ABCD A B C D -中,122AB AA AD ===,以D 为原点,DA u u u r ,DC u u ur ,1DD u u u u r 方向分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,则1AC =u u u u r,若点P 为线段AB 的中点,则P 到平面11A BC 距离为.四、解答题15.(1)已知2,3a b ==r r ,且a b ⊥r r求2a b a b +⋅r r r r ()(-) (2)已知a b a b +=-r r r r ,求a b ⋅r r16.已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动. (Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i )试用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率.17.甲、乙二人进行一次围棋比赛,采用5局3胜制,约定先胜3局者获得这次比赛的胜利,同时比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局. (1)求再赛2局结束这次比赛的概率; (2)求甲获得这次比赛胜利的概率.18.如图所示,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB AF =1,M 是线段EF 的中点.求证:(1)AM ∥平面BDE ;(2)AM ⊥平面BDF.19.在长方体1111ABCD A B C D -中,11AA AD ==,E 为线段CD 中点.(1)求直线1B E 与直线1AD 所成的角的余弦值;(2)在棱1AA 上是否存在一点P ,使得//DP 平面1B AE ?若存在,求AP 的长;若不存在,说明理由.。

广东东莞某校2024-2025学年七年级上学期9月月考数学试题(解析版)

广东东莞某校2024-2025学年七年级上学期9月月考数学试题(解析版)

2024年秋七年级数学9月份综合练习(时间:120分钟满分:120分)一、选择题(本大题10小题,每小题3分,共30分)1. 计算:(2)3−+的结果是()A. 5−B. 1−C. 1D. 5【答案】C【解析】【分析】直接利用有理数的加法运算法则计算得出答案.【详解】解:(2)31.故选:C.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.2. 计算24−−的结果是()A. 6−B. 2−C. 2D. 6【答案】A【解析】【分析】根据有理数的减法法则计算即可【详解】解:-2-4=-(2+4)=-6故选:A【点睛】本题考查了有理数的减法,熟练掌握法则是解题的关键3. 一个有理数的倒数是它本身,这个数是()A. 0B. 1C. 1−D. 1或1−【答案】D【解析】【分析】本题考查了倒数,根据倒数的定义:乘积是1的两个数互为倒数,即可求解,掌握倒数的定义是解题的关键.【详解】解:一个数的倒数是它本身,这个数是1或1−,故选:D.4. 计算:2×|﹣3|=()A. 6B. ﹣6C. ±6D. ﹣1【答案】A【分析】根据有理数的乘法法则和绝对值的性质解答.【详解】解:2×|﹣3|=2×3=6.故选A .【点睛】一个负数绝对值是它的相反数.两数相乘,同号得正,异号得负,并把绝对值相乘. 5. 若ab <0,则a b 的值( ) A. 是正数B. 是负数C. 是非正数D. 是非负数 【答案】B【解析】【详解】 ab <0, 0a b ∴<.选B.6. 下列计算正确的是( )A. 443(3)−=−B. 21(7)77 −×−=C. 5151777+−+=−D. 20232024(1)(1)0−+−=【答案】D【解析】【分析】本题考查了有理数的运算,解题的关键是掌握有理数的相关运算法则.根据有理数得到加法法则、有理数的乘法和有理数的乘方,逐一判断即可.【详解】解:A 、443(3)−≠−,故选项A 不符合题意;B 、21(7)497177 −=−××−=− ,故选项B 不符合题意; C 、515147777−+−+==−,故选项C 不符合题意; D 、20232024(1)(1)110−+−=−+=,故选项D 符合题意;故选:D .7. 如图,数轴的单位长度是1,若点B 表示的数是1,则点A 表示的数是( )A. 1−B. 2−C. 3−D. 4−【答案】D的【分析】本题主要考查了数轴上两点之间的距离,用数轴上的点表示有理数,直接利用数轴结合A ,B 点位置进而得出答案.【详解】解:∵数轴的单位长度为1,点B 表示的数是1,∴点A 表示的数是:154−=−,故D 正确.故选:D .8. -10相反数是( ).A. 10B. -10C. 110− D. 110【答案】A【解析】【分析】根据相反数的定义即可求解.【详解】-10的相反数是10故选A .【点睛】此题主要考查相反数的求解,解题的关键是熟知a 的相反数为-a .9. 已知120x y −+−=,且()222m x y =+,则m 的值为( )A. 6B. 7C. 8D. 9【答案】C【解析】【分析】本题考查了绝对值的非负性,有理数的乘方等知识,先利用绝对值的非负性求出1x =,2y =,然后代入计算即可. 【详解】解:∵120x y −+−=,∴10x −=,20y −=,∴1x =,2y =,∴()222m x y =+()22212=×+8=,故选:C .的10. 定义一种新的运算:2a b a b a +=☆,如22122+×==2☆1,则(2☆3)☆1=( ) A. 52 B. 32 C. 94 D. 198【答案】B【解析】【分析】根据新定义先算2☆3=2232+×=4,再算4☆1即可. 【详解】解:(2☆3)☆1=2232+×☆1=4☆1=4214+×=32 故选B. 【点睛】本题主要考查了新定义运算,根据题目所给的规律(或运算方法),利用有理数的混合运算正确计算是关键.二、填空题(本大题5小题,每小题3分,共15分)11. 小东用天平秤得一个核桃的质量为15.47g ,用四舍五入法将15.47精确到0.1的近似值为_________;【答案】15.5【解析】【分析】根据四舍五入的法则处理.【详解】解:15.4715.5≈,故答案为:15.5【点睛】本题考查四舍五入取近似值;理解四舍五入的法则是解题的关键.12. 若12368000 1.236810n =×,则n =__.【答案】7【解析】【分析】本题考查科学记数法,根据科学记数法的表示方法求解即可.科学记数法的表示形式为10n a ×的形式,其中1<10a ≤,n 为整数.解题关键是正确确定a 的值以及n 的值.【详解】∵712368000 1.236810 1.236810n ×==×,∴7n =.故答案为:7.13. 已知a ,b 互为相反数,则a b +=______.【答案】0【解析】【分析】本题主要考查了相反数的定义,只有符号不同的两个数互为相反数,0的相反数是0,据此求解即可.【详解】解:∵a ,b 互为相反数,∴0a b +=,故答案为:0.14. 若7x =,则x =__.【答案】7±【解析】 【分析】本题主要考查了绝对值的性质,根据若()0x a a =>,则x a =±的性质判断即可,解答本题的关键是掌握绝对值的性质. 【详解】∵7x =,∴7x =±,故答案:7±.15. 已知3210a b −+−=,则a b +的值为______. 【答案】53【解析】【分析】根据绝对值非负性的性质可知320−=a ,10b −=,求出a 、b 的值代入即可得出答案 【详解】 3210a b −+−=320a ∴−=,10b −=23a ∴=,1b = 25133a b ∴+=+= 故答案为:53. 【点睛】本题考查了非负数的性质:有限个非负数的和为零,则每一个加数都为零.三、解答题(一)(本大题3小题,每小题7分,共21分)(1)()()()11786−−+−−−;(2)21133838 −−−+−. 【答案】(1)20−(2)12【解析】【分析】本题考查了有理数的混合运算,解题的关键是掌握运算法则和运算顺序.(1)根据有理数的加减混合运算法则求解即可;(2)根据有理数的加减混合运算法则求解即可.【小问1详解】()()()11786−−+−−−1886=−−+266=−+20=−;【小问2详解】21133838 −−−+− 21133388 =+−+− 112=− 12=. 17. 将下列有理数填入适当的集合中:2.5−,154,0,8, 2.7−,0.8,32−,74,0.0105−. 正有理数集合:负有理数集合:整数集合:【答案】见解析【分析】本题考查了有理数的分类;根据正有理数,负有理数和整数的定义进行分类即可. 【详解】解:正有理数集合:154,8,0.8,74; 负有理数集合: 2.5−, 2.7−,32−,0.0105−; 整数集合:0,8.18. 化简符号:(1)173−−; (2)233−+; (3)-(-3);(4)-(+9).【答案】(1)173−(2)233− (3)3 (4)-9【解析】【分析】(1)(2(3)(4)直接根据相反数的意义得出答案.小问1详解】 解:173−−=173−; 【小问2详解】 解:233−+=233−; 【小问3详解】解:-(-3)=3;【小问4详解】解:-(+9)=-9.【点睛】本题考查了绝对值以及相反数的知识,属于基础题,注意掌握去括号时,若括号前面是“-”则【括号里面各项需变号.四、解答题(二)(本大题3小题,每小题9分,共27分)19. 比较下列两个有理数的大小.(1) 6.26−与254−; (2) 2.7−−和223−+. 【答案】(1)256.264−<−(2) 2.7−−<223 −+【解析】 【分析】本题考查了有理数的大小比较,化简绝对值;(1)根据两个负数比较大小,绝对值大的反而小,可得答案;(2)根据化简各数,再比较大小即可.【小问1详解】 解:因为256.264>, 所以256.264−<−; 【小问2详解】 因为 2.7 2.7−−=−,222233 −+=− ,2.7223>, 所以32.722−−<, 所以 2.7−−<223 −+. 20. 综合与实践某超市以同样的价格购进电风扇20台,由于在不同时间销售,因此销售价格也会变化,若以每台利润50元为标准,超过的金额记为正数,不足的金额记为负数,具体情况如下表: 电风扇(台)5 2 5 3 5 利润相对于标准利润20− 10− 5− 30+ 40+(元)(1)最高售价的一台比最低售价的一台高出多少元?(2)售完这20台电风扇,该超市销售这些电风扇的总利润是多少?请通过计算说明.【答案】(1)最高售价的一台比最低售价的一台高出60元(2)售完这20台电风扇,该超市获得的总利润为1145元【解析】【分析】(1)用最高售价减去最低售价列式计算即可;(2)先求出利润相对于标准利润的和,然后再加上标准利润即可【小问1详解】解:40(20)60−−=(元). 答:最高售价一台比最低售价的一台高出60元.【小问2详解】解:5(20)2(10)5(5)33054020501145×−+×−+×−+×+×+×=(元). 答:售完这20台电风扇,该超市获得的总利润为1145元.【点睛】本题主要考查了正负数的应用、有理数的运算等知识点,认真审题、根据题意正确列式是解答本题的关键.21. 已知a 、b是互为相反数,c 、d 是互为倒数,m 的绝对值等于3.求:m 2+(cd +a +b )m +(cd )2021的值.【答案】7或13【解析】【分析】根据相反数的性质,倒数的性质,绝对值的意义,分别求得,,a b cd m +的值,进而代入式子求解即可【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,m 的绝对值等于3,的∴a +b =0,cd =1,|m |=3,当m =-3时,原式=(-3)2+(1+0)×(-3)+12 021=9+1×(-3)+1=9+(-3)+1=7;当m =3时,原式=32+(1+0)×3+12 02193113=++=综上所述,m 2+(cd +a +b )m +(cd )2 020的值为7或13.【点睛】本题考查了相反数的性质,倒数的性质,绝对值的意义,有理数的混合运算,求得,,a b cd m +的值是解题的关键.五、解答题(三)(本大题2小题,第22题13分,第23题14分,共27分)22. 有理数a ,b 在数轴上的位置如图所示:(1)在数轴上表示a −,b −;(2)把a ,b ,0,a −,b −这五个数用“<”连接起来;(3)a __________a ,b ___________b .(填“>”,“<”或“=”) 【答案】(1)见解析;(2)0b a a b −<<<−<;(3)>,=【解析】【分析】本题考查了数轴,绝对值和有理数的大小比较,能熟记有理数的大小比较法则是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.(1)根据已知a ,b 的位置在数轴上把a −,b −表示出来即可;(2)根据数轴上右边的数总比左边的数大比较即可;(3)a 是一个正数,a 是一个负数,比较即可,b 是一个正数,正数的绝对值等于它本身比较即可.【小问1详解】解:在数轴上表示为:【小问2详解】0b a a b −<<<−<;【小问3详解】a a>,b b=,故答案为:>,=.23. 根据绝对值的概念,我们在一些情况下,不需要计算出结果也能把绝对值符号去掉,例如:6767+=+;6776−=−;7676−=−;6767−−=+.请根据以上规律解答:(1)比较大小:150151;(填“>”“<”或“=”)(2)填空:1110099−=________(3)计算:112−+1132−+1143−++1110099−.【答案】(1)>(2)11 99100−(3)99 100【解析】【分析】本题主要考查有理数大小的比较、绝对值的化简以及有理数加减混合运算,正确化简绝对值是解答本题的关键.(1)根据“作差比较”即可得出结论;(2)先判断1110099−<,再去绝对值符号即可;(3)先根据绝对值的性质,求出绝对值,再根据前后两项的和为0,计算即可.【小问1详解】解:∵11515010 505150512550−−==>×,∴11 5051>,故答案:>【小问2详解】解:∵119910010 1009999009900−−==−<,∴111111 100991009999100−=−−=−,为故答案为:1199100−; 【小问3详解】 解:112−+1132−+1143−++ 1110099− 111111112233499100=−+−+−++− 11100=−99100=。

福建省厦门市一中2023-2024学年高二上学期9月第一次月考语文试卷及答案

福建省厦门市一中2023-2024学年高二上学期9月第一次月考语文试卷及答案

福建省厦门市一中2023-2024学年高二上学期9月第一次月考语文试卷一、现代文阅读(28分)(一)现代文阅读I(本题共4小题,12分)阅读下面的文字,完成1—4题。

材料一:仁是孔子所宣扬的最高道德原则。

《吕氏春秋·不二》云:“孔子贵仁。

”这是符合事实的。

但在春秋时代,孔子以前,仁已经是一个公认的道德准则了。

《左传·僖公三十年》记载,晋大夫臼季云:“臣闻之,出门如宾,承事如祭,仁之则也。

”又《左传·定公四年》记载,楚郧辛曰:“《诗》曰:‘柔亦不茹,刚亦不吐,不侮矜寡,不畏强御。

’唯仁者能之。

”又《左传·昭公十二年》记载孔子对于楚灵王的评论说:“仲尼曰:‘古也有志:克己复礼,仁也。

’信善哉!”孔子以“克己复礼”为仁,乃是引述“古志”之言。

过去多数学者认为,孔子并没有给出仁的完整界说。

我不同意此种观点,我认为孔子确实曾经给出关于仁的明确界说。

《论语》记载:“子贡曰:‘如有博施于民而能济众,何如?可谓仁乎?’子曰:‘何事于仁,必也圣乎!尧舜其犹病诸!夫仁者,己欲立而立人,己欲达而达人。

能近取譬,可谓仁之方也已。

’”(《雍也》)这里,孔子区别了圣与仁的不同层次。

子贡误以圣为仁,混淆了圣与仁的不同层次。

孔子区别圣与仁,因而必须讲明仁的完整含义,必须如此才能揭示圣与仁的不同意指。

而且这里“夫仁者”三字也正是确立界说的格式。

所以我认为,“夫仁者,己欲立而立人,己欲达而达人”乃是孔子所讲关于仁的界说。

(节选自张岱年《仁和仁义》,有删改)材料二:孔子“贵仁”,同时也宣扬“义”。

据《论语》所记,孔子尝说:“君子义以为上。

”(《阳货》)“君子义以为质,礼以行之。

”(《卫灵公》)“见义不为,无勇也。

”(《为政》)“务民之义,敬鬼神而远之,可谓知矣。

”(《雍也》)“见得思义。

”(《季氏》)孔子所谓义即道德原则之义。

仁是最高的道德原则,义则泛指道德的原则。

值得注意的是,孔子讲仁,又讲义,但据《论语》所载,孔子未尝以仁义相连并举。

山东省济宁市2024-2025学年高二上学期9月月考数学试题含答案

山东省济宁市2024-2025学年高二上学期9月月考数学试题含答案

济宁市高二年级第一学期九月模块测试数学试题(答案在最后)注意事项:1.答卷前,先将自己的考生号等信息填写在试卷和答题纸上,并在答题纸规定位置贴条形码. 2.本试卷满分150分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第2页,第Ⅱ卷为第3页至第4页.3.选择题的作答:每小题选出答案后,用28铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.4.非选择题的作答:用0.5mm黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.第Ⅰ卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.以下事件是随机事件的是()A.标准大气压下,水加热到100C ,必会沸腾B.走到十字路口,遇到红灯C.长和宽分别为,a b的矩形,其面积为abD.实系数一元一次方程必有一实根【答案】B【解析】【分析】根据随机事件的概念判断即可【详解】解:A.标准大气压下,水加热到100℃必会沸腾,是必然事件;故本选项不符合题意;B.走到十字路口,遇到红灯,是随机事件;故本选项符合题意;C.长和宽分别为,a b的矩形,其面积为ab是必然事件;故本选项不符合题意;D.实系数一元一次方程必有一实根,是必然事件.故本选项不符合题意.故选:B.2.抽查10件产品,设事件A:至少有两件次品,则A的对立事件为A.至多两件次品B.至多一件次品C.至多两件正品D.至少两件正品【答案】B【解析】【详解】试题分析:事件A 不包含没有次品或只有一件次品,即都是正品或一件次品9件正品,所以事件A 的对立事件为至多一件次品.故B 正确.考点:对立事件.3.两名同学分3本不同的书,其中一人没有分到书,另一人分得3本书的概率为()A.12B.14C.13D.16【答案】B 【解析】【分析】列举出所有的可能事件,结合古典概型概率计算公式,计算出所求概率.【详解】两名同学分3本不同的书,记为,,a b c ,基本事件有(0,3),(1a ,2),(1b ,2),(1c ,2),(2,1a ),(2,1b ),(2,1c ),(3,0),共8个,其中一人没有分到书,另一人分到3本书的基本事件有2个,∴一人没有分到书,另一人分得3本书的概率p =28=14.故选:B4.掷一个骰子的试验,事件A 表示“小于5的偶数点出现”,事件B 表示“小于5的点数出现”,则一次试验中事件A B +发生的概率为()A.13B.12C.23D.56【答案】C 【解析】【分析】由互斥事件的概率可知(()(1())P A B P A P B +=+-,从而得解.【详解】由已知得:1()3P A =,2()3P B =,事件B 表示“小于5的点数出现”,则事件B 表示“出现5点或6点”故事件A 与事件B 互斥,122()()(1())(1)333P A B P A P B ∴+=+-=+-=故选:C5.直三棱柱111ABC A B C -中,若1,,CA a CB b CC c ===,则1A B = ()A.a b c+-r r r B.a b c-+r r r C.a b c -++D.a b c-+- 【答案】D 【解析】【分析】由空间向量线性运算法则即可求解.【详解】()11111A A B B a b B A B c CC C CB =+=-+=-+--+.故选:D .6.已知空间向量0a b c ++=,2a = ,3b = ,4c = ,则cos ,a b = ()A.12B.13C.12-D.14【答案】D 【解析】【分析】设,,AB a BC b CA c ===,在ABC V 中由余弦定理求解.【详解】空间向量0a b c ++= ,2a = ,3b = ,4c =,则,,a b c三向量可能构成三角形的三边.如图,设,,AB a BC b CA c === 2a = ,则ABC V 中,||2,||3,||4AB BC CA === 2a =,222||||cos ,cos 2AB BC CA a b ABC AB BC+-∴=-∠=-⨯⨯ 491612234+-=-=⨯⨯.故选:D7.端午节放假,甲回老家过节的概率为13,乙,丙回老家过节的概率分别为11,45.假定三人的行动相互之间没有影响,那么这段时间内至少1人回老家过节的概率为()A.5960 B.35 C.12 D.160【答案】B【解析】【分析】这段时间内至少1人回老家过节的对立事件是这段时间没有人回老家过节,由此能求出这段时间内至少1人回老家过节的概率.【详解】端午节放假,甲回老家过节的概率为13,乙,丙回老家过节的概率分别为11,45.假定三人的行动相互之间没有影响,这段时间内至少1人回老家过节的对立事件是这段时间没有人回老家过节,∴这段时间内至少1人回老家过节的概率为:1113 11113455 p⎛⎫⎛⎫⎛⎫=----=⎪⎪⎪⎝⎭⎝⎭⎝⎭.故选:B.8.在调查运动员是否服用过兴奋剂的时候,给出两个问题作答,无关紧要的问题是:“你的身份证号码的尾数是奇数吗?”敏感的问题是:“你服用过兴奋剂吗?”然后要求被调查的运动员掷一枚硬币,如果出现正面,就回答第一个问题,否则回答第二个问题.由于回答哪一个问题只有被测试者自己知道,所以应答者一般乐意如实地回答问题.如我们把这种方法用于300个被调查的运动员,得到80个“是”的回答,则这群人中服用过兴奋剂的百分率大约为()A.4.33%B.3.33%C.3.44%D.4.44%【答案】B【解析】【分析】推理出回答第一个问题的150人中大约有一半人,即75人回答了“是”,故回答服用过兴奋剂的人有5人,从而得到答案.【详解】因为抛硬币出现正面朝上的概率为12,大约有150人回答第一个问题,又身份证号码的尾数是奇数或偶数是等可能的,在回答第一个问题的150人中大约有一半人,即75人回答了“是”,共有80个“是”的回答,故回答服用过兴奋剂的人有5人,因此我们估计这群人中,服用过兴奋剂的百分率大约为5150≈3.33%.故选:B二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,选对但不全的得部分分,有选错的得0分.9.在平行六面体ABCD A B C D -''''中,若AB 所在直线的方向向量为(2,1,3)-,则C D ''所在直线的方向向量可能为()A.(2,1,3)B.(2,1,3)--C.(4,2,6)-D.(4,2,6)-【答案】BC 【解析】【分析】由已知可得//AB C D '',所以它们的方向向量共线,利用向量共线的坐标关系,即可判断各个选项.【详解】由已知可得//AB C D '',故它们的方向向量共线,对于B 选项,(2,1,3)(2,1,3)--=--,满足题意;对于C 选项,(4,2,6)2(2,1,3)-=-,满足题意;由于A 、D 选项不满足题意.故选:BC.10.下列各组事件中,是互斥事件的是()A.一个射手进行一次射击,命中环数大于8与命中环数小于6B.统计一个班的数学成绩,平均分不低于90分与平均分不高于90分C.播种100粒菜籽,发芽90粒与发芽80粒D.检验某种产品,合格率高于70%与合格率低于70%【答案】ACD 【解析】【分析】根据互斥事件的定义,两个事件不会同时发生,命中环数大于8与命中环数小于6,发芽90粒与发芽80粒,合格率高于0070与合格率为0070均为互斥事件,而平均分数不低于90分与平均分数不高于90分,当平均分为90分时可同时发生,即得解.【详解】根据互斥事件的定义,两个事件不会同时发生,对于A ,一个射手进行一次射击,命中环数大于8与命中环数小于6,为互斥事件;对于B ,统计一个班级数学期中考试成绩,平均分数不低于90分与平均分数不高于90分当平均分为90分时可同时发生,不为互斥事件;对于C ,播种菜籽100粒,发芽90粒与发芽80粒,为互斥事件;对于D ,检查某种产品,合格率高于0070与合格率为0070,为互斥事件;故选:ACD.11.已知点P 为三棱锥O ABC -的底面ABC 所在平面内的一点,且12OP OA mOB nOC =+-(m ,n R ∈),则m ,n 的值可能为()A.1m =,12n =- B.12m =,1n = C.12m =-,1n =- D.32m =,1n =【答案】CD 【解析】【分析】根据平面向量基本定理,结合空间向量加法的几何意义进行求解即可.【详解】因为点P 为三棱锥O ABC -的底面ABC 所在平面内的一点,所以由平面向量基本定理可知:()()AP y AC z AB AO OP y AO OC z AO OB =+⇒+=+++ ,化简得:(1)OP y z OA yOC zOB =--++,显然有11y z y z --++=,而12OP OA mOB nOC =+- ,所以有11122m n m n +-=⇒-=,当1m =,12n =-时,32m n -=,所以选项A 不可能;当12m =,1n =时,12m n -=-,所以选项B 不可能;当12m =-,1n =-时,12m n -=,所以选项C 可能;当32m =,1n =时,12m n -=,所以选项D 可能,故选:CD第Ⅱ卷(非选择题)三.填空题:本题共3小题,每小题5分,共15分.12.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.【答案】34【解析】【详解】从长度分别为2,3,4,5的四条线段中任意取出三条这一事件共有4种,而不能构成三角形的情形为2,3,5.所以这三条线段为边可以构成三角形的概率是P =34.13.已知事件A ,B ,C 两两互斥,且()0.3P A =,()0.6P B =,()0.2P C =,则()P A B C ⋃⋃=______.【答案】0.9##910【解析】【分析】由互斥事件与对立事件的相关公式求解【详解】由题意得()1()0.4P B P B =-=,则()()()()0.9P A P P A B C B P C ⋃⋃=++=.故答案为:0.914.在长方体1111ABCD A B C D -中,122AB AA AD ===,以D 为原点,DA ,DC ,1DD方向分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,则1AC =______,若点P 为线段AB 的中点,则P 到平面11A BC 距离为______.【答案】①.(1,2,2)-②.6【解析】【分析】第一空,根据向量的坐标运算可得答案;第二空,求出平面11A BC 的法向量,利用向量法求点到平面的距离即可得解.【详解】如图,建立空间直角坐标系,因为122AB AA AD ===,则(1,0,0)A ,1(0,2,2)C ,1(1,0,2)A ,(1,2,0)B ,(1,1,0)P ,所以1(1,2,2)AC =- ,11(1,2,0)A C =- ,1(0,2,2)A B =- ,(0,1,0)PB =,设平面11A BC 的法向量为(,,)n x y z = ,则11100A B n A C n ⎧⋅=⎪⎨⋅=⎪⎩,即22020y z x y -=⎧⎨-+=⎩,令1y =,则2,1x z ==,故(2,1,1)n =,则P 到平面11A BC距离为66n PB d n⋅== .故答案为:(1,2,2)-;66.四.解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(1)已知2,3a b == ,且a b ⊥ 求2a b a b +⋅()(-)(2)已知a b a b +=- ,求a b⋅ 【答案】(1)1-(2)0【解析】【分析】(1)由已知,利用向量数量积运算,结合向量垂直的向量表示即可求解;(2)由a b a b +=-,两边平方,展开运算即可.【详解】(1)因为2,3a b == ,且a b ⊥ ,所以22222222031a b a b a a b b +⋅+⋅-=⨯+-=- ()(-)=.(2)因为a b a b +=- ,则22a b a b +=- ,所以222222a a b b a a b b +⋅+=-⋅+ ,化简得22a b a b ⋅=-⋅ ,所以0a b ⋅=.16.已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i )试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.【答案】(1)3,2,2(2)(i)见解析(ii)5 21【解析】【详解】分析:(Ⅰ)结合人数的比值可知应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i)由题意列出所有可能的结果即可,共有21种.(ii)由题意结合(i)中的结果和古典概型计算公式可得事件M发生的概率为P(M)=5 21.详解:(Ⅰ)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i)从抽出的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.(ii)由(Ⅰ),不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共5种.所以,事件M发生的概率为P(M)=5 21.点睛:本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识.考查运用概率知识解决简单实际问题的能力.17.甲、乙二人进行一次围棋比赛,采用5局3胜制,约定先胜3局者获得这次比赛的胜利,同时比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(1)求再赛2局结束这次比赛的概率;(2)求甲获得这次比赛胜利的概率.【答案】(1)0.52(2)0.648【解析】【分析】(1)再赛2局结束这次比赛分“第三、四局甲胜”与“第三、四局乙胜”两类情况,根据根据互斥事件的概率和及独立事件同时发生的概率求解可得;(2)由题意,甲获得这次比赛胜利只需后续比赛中甲先胜两局即可,根据互斥事件的概率和及独立事件同时发生的概率求解即可.【小问1详解】用i A 表示事件“第i 局甲胜”,j B 表示事件“第j 局乙胜”(,3,4,5i j =),设“再赛2局结束这次比赛”为事件A ,则3434A A A B B =+,由于各局比赛结果相互独立,且事件34A A 与事件34B B 互斥.所以()()()()()()()()343434343434P A P A A B B P A A P B B P A P A P B P B =+=+=+0.60.60.40.40.52=⨯+⨯=.故再赛2局结束这次比赛的概率为0.52.【小问2详解】记“甲获得这次比赛胜利”为事件B ,因前两局中,甲、乙各胜一局,故甲成为胜方当且仅当在后面的比赛中,甲先胜2局,从而34345345B A A B A A A B A =++,由于各局比赛结果相互独立,且事件34A A ,345B A A ,345A B A 两两互斥,所以()0.60.60.40.60.60.60.40.60.648P B =⨯+⨯⨯+⨯⨯=.故甲获得这次比赛胜利的概率为0.648.18.如图所示,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,ABAF =1,M 是线段EF 的中点.求证:(1)AM ∥平面BDE ;(2)AM ⊥平面BDF.【答案】(1)见解析(2)见解析【解析】【详解】(1)建立如图所示的空间直角坐标系,设AC∩BD =N ,连结NE.则N 22,,022⎛⎫ ⎪ ⎪⎝⎭,E(0,0,1),220),M 22,,122⎛⎫ ⎪ ⎪⎝⎭.∴NE =22,,122⎛⎫-- ⎪ ⎪⎝⎭,AM =22,,122⎛⎫-- ⎪ ⎪⎝⎭.∴NE =AM 且NE 与AM 不共线.∴NE ∥AM.∵NE ⊂平面BDE ,AM ⊄平面BDE ,∴AM ∥平面BDE.(2)由(1)知AM =22,,122⎛⎫-- ⎪ ⎪⎝⎭,∵2,0,0),22,1),∴DF =(02,1),∴AM ·DF=0,∴AM ⊥DF.同理AM ⊥BF.又DF∩BF =F ,∴AM ⊥平面BDF.19.在长方体1111ABCD A B C D -中,11AA AD ==,E 为线段CD 中点.(1)求直线1B E 与直线1AD 所成的角的余弦值;(2)在棱1AA 上是否存在一点P ,使得//DP 平面1B AE ?若存在,求AP 的长;若不存在,说明理由.【答案】(1)0(2)存在,12AP =【解析】【分析】(1)建立空间直角坐标系,设AB a =,写出点的坐标,求出110B E AD ⋅= ,得到异面直线夹角余弦值为0;(2)设()00,0,P z ,求出平面1B AE 的一个法向量1,,2a n a ⎛⎫=-- ⎪⎝⎭,根据0DP n ⋅= 得到方程,求出12z =,故存在点P ,使得//DP 平面1B AE ,此时12AP =.【小问1详解】以A 为坐标原点,1,,AB AD AA 所在直线分别为,,x y z轴,建立空间直角坐标系,设AB a =,则()()()11,0,1,,1,0,0,0,0,0,1,12a B a E A D ⎛⎫ ⎪⎝⎭,故()()()()11,1,0,0,1,1,1,0,1,10,0,00,1,122a a B E a AD ⎛⎫⎛⎫=-=--=-= ⎪ ⎪⎝⎭⎝⎭ ,则()11,1,10,1,11102a B E AD ⎛⎫⋅=--⋅=-= ⎪⎝⎭,故直线1B E 与直线1AD 所成的角的余弦值为0;【小问2详解】存在满足要求的点P ,理由如下:设棱1AA 上存在点()00,0,P z ,使得//DP 平面1B AE ,0,1,0,则()00,1,DP z =- ,设平面1B AE 的一个法向量为(),,n x y z =,则()()()1,,,0,10,,,1,0022n AB x y z a ax z a a n AE x y z x y ⎧⋅=⋅=+=⎪⎨⎛⎫⋅=⋅=+= ⎪⎪⎝⎭⎩,取1x =得,2a y z a =-=-,故1,,2a n a ⎛⎫=-- ⎪⎝⎭,要使//DP 平面1B AE ,则n DP ⊥,即()00,1,1,,02a DP n z a ⎛⎫⋅=-⋅--= ⎪⎝⎭ ,所以002a az -=,解得012z =,故存在点P ,使得//DP 平面1B AE ,此时12AP =.。

吉林省四校联考2024-2025学年高二上学期9月月考数学试卷(含解析)

吉林省四校联考2024-2025学年高二上学期9月月考数学试卷(含解析)

2024~2025(上)高二年级第一次月考数 学全卷满分150分,考试时间120分钟.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线的倾斜角为( )A.B .C .D .2.若与是两条不同的直线,则“”是“”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件3.已知直线l 的一个方向向量,且直线l 经过和两点,则( )A .B .C .1D .24.已知空间向量,,则在上的投影向量为( )A .B .C .D .5.下列关于空间向量的说法中错误的是( )A .平行于同一个平面的向量叫做共面向量B .空间任意三个向量都可以构成空间的一个基底C .直线可以由其上一点和它的方向向量确定D .任意两个空间向量都可以通过平移转化为同一平面内的向量6.在平行六面体中,点P 是线段BD 上的一点,且,设,,,则( )A .B .C .D .7.如图,直线交x 轴于点A ,将一块等腰直角三角形纸板的直角顶点置于原点O ,另两个顶点M 、N 恰好落在直线上.若点N 在第二象限内,则的值为( )20x +-=π6π4π35π61:10l x my --=2:(2)310l m x y --+=1m =-12//l l (3,2,1)m =-(,2,1)A a -(2,3,)B b -a b +=2-1-(2,3,1)a =(1,2,2)b =-- a b 2b 2b - 23b 23b- 1111ABCD A B C D -3PD PB =1A A a =11A B b = 11A D c = 1PC =1324a b c++ 113444a b c-+1344a b c-++ 131444a b c-+ 334y x =+334y x =+tan AON ∠A.B .C .D .8.在棱长为2的正方体中,EF 是正方体外接球的直径,点P 是正方体表面上的一点,则的取值范围是( )A .B .C .D .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.给出下列命题,其中正确的命题是()A .若空间向量,满足,则B .空间任意两个单位向量必相等C .在正方体中,必有D .空间向量10.已知两条平行直线和,则实数m 的值可能为( )A .0B .1C .2D .11.如图,在棱长为2的正方体中,E 为的中点,F 为的中点,如图所示建立空间直角坐标系,则下列说法正确的有()A .171615181111ABCD A B C D -1111ABCD A B C D -1111ABCD A B C D -PE PF ⋅[2,0]-[1,0]-[0,1][0,2]a b a b =a b= 1111ABCD A B C D -11BD B D =(1,1,0)a =1:10l x y -+=2:0l x y m -+=1-1111ABCD A B C D -1BB 11A D 1DB =B .向量与C .平面AEF 的一个法向量是D .点D 到平面AEF三、填空题:本题共3小题,每小题5分,共15分.12.直线,的斜率,是关于k 的方程的两根,若,则实数__________.13.在通用技术课程上,老师教大家利用现有工具研究动态问题.如图,老师事先给学生准备了一张坐标纸及一个三角板,三角板的三个顶点记为A 、B 、C ,,,.现移动边AC ,使得点A 、C 分别在x 轴、y 轴的正半轴上运动,则(点O 为坐标原点)的最大值为__________.14.已知空间向量,,则最大值为__________.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.(本小题满分13分)已知直线,,.(1)若这三条直线交于一点,求实数m 的值;(2)若三条直线能构成三角形,求实数m 满足的条件.16.(本小题满分15分)如图,在直三棱柱中,,,,,点d 是棱AB 的中点AE 1AC (4,1,2)-1l 2l 1k 2k 2280k k n ++=12l l ⊥n =||2AC =||AB =||4BC =OB (1,1,1)a =(0,,1)(01)b y y =≤≤ cos ,a b 1:10l x my ++=2:240l x y --=3:310l x y +-=111ABC A B C -AC BC ⊥1AC =2BC =13CC =(1)证明:平面;(2)求直线与平面所成角的正弦值.17.(本小题满分15分)已知直线.(1)m 为何值时,点到直线l 的距离最大,并求出最大值;(2)若直线l 分别与x 轴,y 轴的负半轴交于A ,B 两点,求(O 为坐标原点)面积的最小值及此时直线l 的方程.18.(本小题满分17分)如图,在棱长为3的正方体中,点E 是棱上的一点,且,点F 是棱上的一点,且.(1)求异面直线与CF 所成角的余弦值;(2)求直线BD 到平面CEF 的距离.19.(本小题满分17分)如图,在四棱锥中,四边形ABCD 是边长为3的正方形,平面ABCD ,,点E 是棱PB 的中点,点F 是棱PC 上的一点,且.(1)证明:平面平面PBC ;(2)求平面AEF 和平面AFC夹角的大小.1//AC 1B CD 1A B 1B CD :(21)(3)70l m x m y m +-++-=(3,4)Q AOB △1111ABCD A B C D -11A B 112A E EB =11A D 112A F FD =1AD P ABCD -PA⊥PC =2PF FC =AEC ⊥第一次月考·数学参考答案、提示及评分细则1.D ,其倾斜角为.故选D .2.C 若,则,解得或,则“”是“”的充分不必要条件,故选C .3.A 因为,所以,解得,,所以,故选A .4.D ,故在上的投影向量为.故选D .5.B 平行于平面的向量,可平移至一个平行于的平面,故为共面向量,A 正确;空间任意三个向量都共面时,则不能构成空间的基底,B 错误;直线的方向向量是直线任取一点,向其两个方向的任意方向作出一个向量即可得,故直线上一点和方向向量确定直线,C 正确;由向量的位置的任意性,将空间两个向量某一端点移至重合位置,它们即可构成一个平面,即可为同一平面的向量,D 正确.故选B .6.C .故选C .7.A 设直线与y 轴的交点为B ,过O 作于C ,过N 作于D .因为N 在直线上且在第二象限内,设,则,.又,,即,,所以.在中,由三角形的面积公式得,,所以.y x = ∴5π612//l l 1(3)(2)()m m ⨯-=--1m =-3m =1m =-12//l l (2,1,1)AB a b =--+ 211321a b --+==-12a =-32b =-2a b +=-2222(2,3,1)(1,2,2)26221(2)(2)93a b b⋅⋅----===-+-+-a b ()223a b b b b⋅⋅=-αα11111111111111111114PC A C A P A B A D A B BP A B A D A B A A B D =-=+--=+---()11111111111111111311344444A B A D A B A A A D A B A D A B A A a b c =+----=+-=-++OC AB ⊥ND OA ⊥334y x =+3,34N x x ⎛⎫+ ⎪⎝⎭3||34DN x =+||OD x =-(4,0)A -(0,3)B ||4OA =||3OB =||5AB =AOB △11||||||||22OB OA AB OC =12||5OC =在中,,,所以,即.在中,,即,解得,.因为点N 在第二象限内,所以,所以,,所以,故选A .8.A 记正方体的外接球的球心为O ,易得,且,所以,故选A .9.CD两个向量相等需要方向相同,模长相等,所以不能得到,A 错误;空间任意两个单位向量的模长均为1,但是方向不一定相同,故B 错误,正方体中,,的方向相同,长度相等,故,故C 正确;空间向量,故D 正确.故选CD .10.AC 直线和平行,则,解得且,故0和2符合要求.故选AC .11.BCD 对于A ,正方体中,,故A 错误;对于B ,,,故向量夹角余弦值为B 正确;Rt NOM △||||OM ON =45MNO ∠=︒12||5sin 45||||OC ON ON ︒==||ON =Rt NDO △222||||||ND DO ON +=22233()4x x ⎛⎫++-= ⎪⎝⎭18425x =-21225x =8425x =-12||25ND =84||25OD =||1tan ||7ND AON OD ∠==1111ABCD A B C D -OE ==PO ⎡∈⎣()()()()2223[2,0]PE PF PO OE PO OF PO OE PO OE PO OE PO ⋅=+⋅+=+⋅-=-=-∈- a b =a b = 1111ABCD A B C D -BD 11B D11BD B D = (1,1,0)a ==1:10l x y -+=2:0l x y m -+=1m ≠<13m -<<1m ≠1DB =(0,2,1)AE = 1(2,2,2)AC =- 11cos AE AC AE AC θ⋅==对于C ,,,,.故是平面AEF 的一个法向量,故C 正确;对于D ,,则点D 到平面AEF 的距离为D 正确.故选BCD .12. 因为,而且斜率存在,所以,又,是关于k 的方程的两根,,解得.13.由已知,,.如图,取AC 的中点E .因为为直角三角形,故.由于为直角三角形,故,显然,当且仅当O 、B 、E三点共线时等号成立,故的最大值为.14,当时,,由,所以,当且仅当,即时等号成立,故,(0,2,1)AE = (1,0,2)AF =-(0,2,1)(4,1,2)0⋅-=(1,0,2)(4,1,2)0-⋅-=(4,1,2)-(2,0,0)DA = DA n d n ⋅=== 2-12l l ⊥121k k ⋅=-1k 2k 2280k k n ++=1212nk k ⋅==-2n =-||2AC =||AB =||4BC =OAC △1||||12OE AC ==ABC △||BE ==||||||OB OE BE ≤+OB 1cos ,b a b a a b ⋅== 10y ≥>cos ,a b a b a b ⋅=====0y >12y y +≥1y y=1y =cos ,a b =≤=当时,,故的最大值为.15.解:(1)由解得代入的方程,得.(2)当三条直线相交于一点或其中两直线平行时,三条直线不能构成三角形.①联立解得代入,得;②当与平行时,,当与平行时,.综上所述,当且且时,三条直线能构成三角形.(且写成或扣1分).16.解:如图,以C 为坐标原点,CA ,CB ,所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,所以,,,,,,所以,,,设平面的一个法向量为,则即令,解得,,所以平面的一个法向量为.(1)证明:,因为,0y =cos ,a b =cos ,a b 240,310,x y x y --=⎧⎨+-=⎩1,2,x y =⎧⎨=-⎩1l 1m =240,310,x y x y --=⎧⎨+-=⎩1,2,x y =⎧⎨=-⎩10x my ++=1m =1:10l x my ++=2:240l x y --=12m =-1:10l x my ++=3:310l x y +-=13m =1m ≠13m ≠12m ≠-1CC (1,0,0)A (0,2,0)B (0,0,0)C 1(0,0,3)C 1(0,2,3)B 1(1,0,3)A 1,1,02D ⎛⎫ ⎪⎝⎭1,1,02CD ⎛⎫= ⎪⎝⎭1(0,2,3)CB =1B CD (,,)n x y z = 10,0,n CD n CB ⎧⋅=⎪⎨⋅=⎪⎩ 10,2230,x y y z ⎧+=⎪⎨⎪+=⎩1x =12y =-13z =1B CD 111,,23n ⎛⎫=- ⎪⎝⎭ 1(1,0,3)AC =- 10AC n ⋅=平面,所以平面;(2)解:因为,所以,所以直线与平面.17.解:(1)已知直线,整理得,由故直线l 过定点,点到直线l 的距离最大,可知点Q 与定点的连线的距离就是所求最大值,,的斜率为,可得,解得;(2)若直线l 分别与x 轴,y 轴的负半轴交于A ,B 两点,则可设直线l 的方程为,,则,,.(当且仅当时,取“=”),故面积的最小值为12,此时直线l 的方程为.18.解:(1)如图所示,以D 为坐标原点,DA ,DC ,所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,所以,,,,所以,,所以,所以异面直线与CF1AC ⊂/1B CD 1//AC 1B CD 1(1,2,3)A B =-- 111cos ,A B n A B n A B n⋅==1A B 1B CD :(21)(3)70l m x m y m +-++-=(21)370x y m x y -++--=210,2,3703,x y x x y y ⎧-+==-⎧⇒⎨⎨--==-⎩⎩(2,3)--(3,4)Q (2,3)P --=437325PQ k +==+ (21)(3)70m x m y m ∴+-++-=57-52173m m +-=+2219m =-3(2)y k x +=+0k <32,0A k ⎛⎫-⎪⎝⎭(0,23)B k -13131912|23|2(32)12(4)(1212)122222AOB S k k k kk k ⎡⎤⎛⎫⎛⎫=-⋅-=--=+-+-≥⨯+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦△32k =-AOB △32120x y ++=1DD (3,0,0)A 1(0,0,3)D (1,0,3)F (0,3,0)C 1(3,0,3)AD =- (1,3,3)CF =-111cos ,AD CF AD CF AD CF⋅===1AD(2)因为,,,所以,,所以,所以,又平面CEF ,平面CEF ,所以平面CEF ,所以点D 到平面CEF 的距离即为直线BD 到平面CEF 的距离.设平面CEF 的一个法向量为,则即令,解得,,所以平面CEF 的一个法向量为.因为,所以点D 到平面CEF 的距离,即直线BD 到平面CEF 的距离为19.(1)证明:如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,所以,,,设,则,解得,即.则,,,设平面AEC 的一个法向量为,则即令,解得,,所以平面AEC 的一个法向量为.因为,,设平面PBC 的一个法向量为,(0,0,0)D (3,2,3)E (3,3,0)B (2,2,0)FE = (3,3,0)DB =23FE DB =//FE DB DB ⊂/EF ⊂//DB (,,)n x y z = 0,0,n FE n CF ⎧⋅=⎪⎨⋅=⎪⎩220,330,x y x y z +=⎧⎨-+=⎩1x =1y =-43z =-41,1,3n ⎛⎫=-- ⎪⎝⎭ (0,3,0)DC =DC n d n ⋅==(0,0,0)A (3,0,0)B (3,3,0)C (0,0,)(0)P t t >PC ==3t =(0,0,3)P 33,0,22E ⎛⎫ ⎪⎝⎭33,0,22AE ⎛⎫= ⎪⎝⎭(3,3,0)AC = (,,)n x y z = 0,0,n AE n AC ⎧⋅=⎪⎨⋅=⎪⎩ 330,22330,x z x y ⎧+=⎪⎨⎪+=⎩1x =1y =-1z =-(1,1,1)n =--(0,3,0)BC = (3,0,3)BP =- ()111,,m x y z =所以即令,解得,,所以平面PBC 的一个法向量为,又,所以平面平面PBC ;(2)解:,所以.设平面EAF 的一个法向量为,所以即令,解得,,所以平面EAF 的一个法向量为.设平面CAF 的一个法向量为,则即令,解得,,所以平面CAF 的一个法向量为.因为,所以平面AEF 和平面AFC夹角的大小为.0,0,m BC m BP ⎧⋅=⎪⎨⋅=⎪⎩ 11130,330,y x z =⎧⎨-+=⎩11x =10y =11z =(1,0,1)m = 0m n ⋅=AEC ⊥11(3,3,3)(1,1,1)33CF CP ==⨯--=-- (2,2,1)AF AC CF =+= ()1222,,n x y z = 110,0,n AE n AF ⎧⋅=⎪⎨⋅=⎪⎩ 22222330,22220,x z x y z ⎧+=⎪⎨⎪++=⎩21x =212y =-21z =-111,,12n ⎛⎫=-- ⎪⎝⎭()2333,,n x y z =220,0,n AC n AF ⎧⋅=⎪⎨⋅=⎪⎩ 33333330,220,x y x y z +=⎧⎨++=⎩31x =31y =-30z =2(1,1,0)n =-121212cos ,n n n n n n ⋅=== π4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吉林一中2016-2017学年度上学期月考(9月份)
高二数学(文科)试卷
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.如果a <0,b >0,那么,下列不等式中正确的是
A .a 2<b 2
B .-a <b
C .1a <1
b D .|a |>|b |
2.不等式220x x +-≤的解集是
A .{}|2,1x x x ≤-≥或
B .{}
|2,1x x x <->或 C .{}|21x x -≤≤ D .{}|21x x -<< 3.在正项等比数列{}n a 中,32a =,478a a =,则9a =
A .
1256 B . 1
128
C .164
D .132
4.n S 为等差数列{}n a 的前n 项和,若12113=+a a ,则=13S
A .60
B .78
C .156
D .不确定
5.已知{}n a 为正项等比数列,n S 是它的前n 项和.若3a 与5a 的等比中项是2,且4a 与7
2a 的等差中项为
5
4
,则5S = A .35 B .33 C .31 D .29 6.已知{}n a 的前n 项和为()
()1
159131721143n n S n -=-+-+-++--…,则17S 的值是
A .-32
B .33
C .97
D .-97
7.若变量x ,y 满足约束条件1020y x y x y ≤⎧⎪
+≥⎨⎪--≤⎩
则2z x y =-的最大值为
A .4
B .3
C .2
D .1 8.各项都是正数的等比数列{}n a 的公比1q ≠,且2311,
,2a a a 成等差数列,则4534
a a
a a ++的值为 A

B
. C

D

12+
或12
9.已知1
02x <<
,则函数(12)y x x =-的最大值是 A .18 B .14 C .1
2
D .没有最大值
10.已知关于x 的不等式22430(0)x ax a a -+<>的解集为),(21x x ,则2
121x x a
x x +
+的最大值是 A .
36 B .332 C . 33
4
D . 3
3
4-
11.已知不等式
11
ax
x <-的解集为{}|1,3x x x <>或,则a = A .1 B .3
2 C .1
2
D .4
12.在数列{}n a 中,11=a ,)
1(1
1-=
--n n a a n n ,则n a =
A .n 11-
B .n 12-
C .n 1
D .1
1
2--n
二、填空题:本大题共6个小题,每小题5分,共30分. 13.已知n a n =,1n b n =+,则数列1n n a b ⎧⎫

⎬⎩⎭
的前n 项和为
n S = .
14.不等式组03434x x y x y ≥⎧⎪
+≥⎨⎪+≤⎩
,所表示的平面区域的面积等于 .
15.不等式
1
3x x
+≤的解集是 . 16.已知数列{}n a 是递增的等比数列,149a a +=,238a a =,则数列{}n a 的前n 项和等
于 .
17.不等式(a -2)x 2+4(a -2)x -4<0的解集为R ,则实数a 的取值范围是 .
18.若不等式组⎪⎩⎪⎨⎧<+++>--0
7)72(20
222k x k x x x 的整数解只有3-和2-,则k 的取值范围
是 .
三、解答题:本大题共5个小题,每小题12分,共60分.解答应写出文字说明、证明过程或演算步骤.
19.已知数列{}n a 的通项公式112n a n =-.
(1)求数列{}n a 的前n 项和n S ; (2)若设12n n T a a a =+++,求n T .
20.已知等差数列{}n a 中,4a =14,前10项和18510=S .
(1)求数列{}n a 的通项公式n a ;
(2)设{}n b 是首项为1,公比为2的等比数列,求数列{}n n a b +的前n 项和n S .
21.解关于x 的不等式2
(21)10ax a x a --+-<()a R ∈.
22.已知数列{}n a 的前n 项和n S 满足12n n S a a =-,且1a ,21a +,3a 成等差数列.
(1)求数列{}n a 的通项公式;
(2)若2n n b n a =⋅,求数列{}n b 的前n 项和n T .
23.已知数列{}n a 满足11a =,11
14n n
a a +=-
,其中*n N ∈. (1)设221
n n b a =
-,求证:数列{}n b 是等差数列,并求出{}n a 的通项公式;
(2)设41n n a c n =
+,数列{}1n n c c +的前n 项和为n T ,是否存在正整数m ,使得1
1
n n n T c c +<对于*n N ∈恒成立?若存在,求出m 的最小值;若不存在,请说明理由.
吉林一中2016-2017学年度上学期月考(9月份)
高二数学(文科)试卷 答案
一、选择题:本大题共12题,每小题5分,共60分.
二、填空题:本大题共6个小题,每小题5分,共30分. 13.
1n n + 14. 43
15. 1
(,0)[,)2-∞+∞ 16. 21n
- 17. (1,2] 18. [3,2)- 三、解答题:本大题共5个小题,每小题12分,共60分. 19.(1)n n S n 102+-=
(2)⎪⎩⎪⎨⎧≥+-≤+-=)
6(5010)
5(1022
n n n n n n S n
20.解(1)由410
14
185a S =⎧⎨=⎩ ∴
11314,
1101099185,2
a d a d +=⎧⎪⎨+⋅⋅⋅=⎪⎩ 15
3a d =⎧⎨=⎩
23+=∴n a n
(2)122
72-++=
n n n
n S 21.解 原不等式可化为(x -1)[ax -(a -1)]<0, (1)当a =0时,原不等式为x -1<0,即x <1.
(2)当a ≠0时,方程(x -1)[ax -(a -1)]=0的两根为x 1=1,x 2=a -1a ,所以1-a -1a =1
a .
①当a >0时,1
a >0,所以1>a -1a .
此时不等式的解集为{x |a -1
a <x <1};
②当a <0时,1
a <0,所以1<a -1a
.
此时原不等式化为(x -1)[-ax +(a -1)]>0,不等式的解集为{x |x >a -1
a
,或x <1}. 综上所述,当a >0时,不等式的解集为{x |a -1
a <x <1};
当a =0时,不等式的解集为{x |x <1};
当a <0时,不等式的解集为{x |x >
a -1
a
,或x <1}. 22.解:(1)由已知S n =2a n -a 1,有a n =S n -S n -1=2a n -2a n -1(n ≥2)即a n =2a n -1(n ≥2) 从而a 2=2a 1,a 3=2a 2=4a 1,又因为a 1,a 2+1,a 3成等差数列即a 1+a 3=2(a 2+1) 所以a 1+4a 1=2(2a 1+1),解得a 1=2
所以,数列{a n }是首项为2,公比为2的等比数列,故a n =2n . (2)12+⋅=n n n b 4)1(22+-=+n T n n 23.解:(1)∵b n +1-b n =2
2a n +1-1-2
2a n -1

22⎝⎛⎭⎫1-14a n -1
-2
2a n -1 =
4a n 2a n -1-22a n -1
=2(常数), ∴数列{b n }是等差数列. ∵a 1=1,∴b 1=2,
因此b n =2+(n -1)×2=2n , 由b n =2
2a n -1
得a n =n +12n .
(2)由c n =4a n n +1,a n =n +12n 得c n =2
n ,
∴c n c n +2=
4
n
n +2
=2⎝⎛⎭⎫1n -1n +2, ∴T n =2⎝⎛⎭⎫1-13+12-14+13-15+…+1n -1n +2=2⎝⎛⎭
⎫1+12-1n +1-1
n +2<3,
依题意要使T n <1c m c m +1对于n ∈N *恒成立,只需1
c m c m +1≥3,即m m +14≥3,
解得m ≥3或m ≤-4,又m 为正整数,所以m 的最小值为3.。

相关文档
最新文档