电力学院工程力学 第14章点的复合运动-习题
工程力学(运动学与动力学)14点的复合运动
绝对运动的分析方法
绝对运动
描述一个物体相对于绝对空间的运动, 是物体在固定参考系中的位置和速度。
VS
分析方法
通过绝对坐标系和相对坐标系之间的关系 ,分析物体的绝对运动。
复合运动的合成定理
合成定理
将相对运动和牵连运动结合起来,描述一个 物体在复合运动中的位置和速度。
应用范围
适用于分析复杂机械系统中的运动关系,如 机床、机器人等。
要点二
弹性体在振动时发生的形变
例如,振动的弦或振动的梁,在振动过程中发生的形变可 以通过动力学方程进行描述。这种形变是由于弹性体内部 分子之间的相互作用以及外力作用共同作用的结果。
感谢您的观看
THANKS
平面内两个旋转运动的复合
例如,搅拌机的搅拌叶片,既围绕中心轴做旋转运动 ,同时又围绕自身的轴线做旋转运动。这种复合运动 可以通过引入角速度和角加速度的概念进行描述。
空间内复合运动的实例分析
空间内旋转与直线运动的 复合
例如,直升机的螺旋桨,在围绕自身轴线旋 转的同时,直升机机体沿着垂直方向做直线 运动。这种运动可以通过三维坐标系进行描 述,并运用相应的运动学和动力学公式进行 分析。
空间运动
物体在三维空间中的运动,其轨迹位 于三维空间中。
定轴转动与定平台转动
定轴转动
物体绕固定轴线的转动,轴线位置固定不变。
定平台转动
物体绕固定平面上某点的转动,平面位置固定不变。
刚体运动与弹性体运动
刚体运动
物体在运动过程中形状和大小保持不 变。
弹性体运动
物体在运动过程中发生弹性形变,恢 复原状后继续运动。
工程力学(运动学与动力学 14点的复合运动
目录
• 复合运动的概述 • 复合运动的分类 • 复合运动的运动学分析 • 复合动力学的分析方法 • 复合运动的实例分析
大学《工程力学》课后习题解答-精品
大学《工程力学》课后习题解答-精品2020-12-12【关键字】情况、条件、动力、空间、主动、整体、平衡、建立、研究、合力、位置、安全、工程、方式、作用、结构、水平、关系、分析、简化、倾斜、支持、方向、协调、推动(e)(c)(d)(e)’CD2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。
解:(1) 取节点(2) AC 与BC 2-3 水平力F A 和D 处的约束力。
解:(1) 取整体(2) 2-4 在简支梁,力的大小等于20KN ,如图所示。
若解:(1)(2)求出约束反力:2-6 如图所示结构由两弯杆ABC 和DE 构成。
构件重量不计,图中的长度单位为cm 。
已知F =200 N ,试求支座A 和E 的约束力。
解:(1) 取DE (2) 取ABC2-7 在四连杆机构ABCD 试求平衡时力F 1和F 2解:(1)取铰链B (2) 取铰链C 由前二式可得:F FF ADF2-9 三根不计重量的杆AB,AC,AD在A点用铰链连接,各杆与水平面的夹角分别为450,,450和600,如图所示。
试求在与O D平行的力F作用下,各杆所受的力。
已知F=0.6 kN。
解:(1)间汇交力系;(2)解得:AB、AC3-1 已知梁AB 上作用一力偶,力偶矩为M ,梁长为l ,梁重不计。
求在图a ,b ,c 三种情况下,支座A 和B 的约束力解:(a) (b) (c) 3-2 M ,试求A 和C解:(1) 取 (2) 取 3-3 Nm ,M 2解:(1)(2) 3-5 大小为AB 。
各杆 解:(1)(2)可知:(3) 研究OA 杆,受力分析,画受力图:列平衡方程:AB A3-7 O1和O2圆盘与水平轴AB固连,O1盘垂直z轴,O2盘垂直x轴,盘面上分别作用力偶(F1,F’1),(F2,F’2)如题图所示。
工程力学-点的复合运动的矢量法求解
l
2
A
30º vAa
l
vBa vDr1 vAa vDAa
2l0 ?
3
2l0 ?
在杆AD方向的轴上投影
vBe2vBa
2l0
3
cos
30
vDr1
cos
30
2l0
cos
求出 vDr1 0
60
动系2 O
60º 即套筒D相对 于杆 BC的速度为零。 故 vDa vDe1 vDr1 vDe1 vBa
而套筒B相对于杆OA的速度由B点速度合成关系(3) 求出 vBr 2 vBe2 tan 30 l0 3 / 3 (方向如图)故 vD,OA vBr 2
即套筒D相对于杆OA的速度大小为 l0 3 / 3,方向由B指向A
O
3. 速度分析
绝对速度va:大小未知,方向沿 杆AB,设为向上
牵连速度ve:ve= v0,方向水平
向右
v0
相对速度vr:大小未知,方向沿
x'
凸轮圆周的切线
n
例题
§3 复合运动
例题1
B
应用速度合成定理
方向 ✓ 大小 ?
✓✓
v0
?
vr
φ
va
A
R
ve
v0
φ
n
()
例题
例题1
§3 复合运动
讨论一
若取凸轮 上与顶杆的重 合点A1为动点, 动系固连顶杆 AB,则相对 运动轨迹是什 么曲线?
由于杆上总有一点与槽壁接触,相当于在槽壁上C点 处安有一可绕C点定轴转动的套筒,杆穿过套筒运动。 且套筒 C的角速度与杆的角速度、角加速度相同。
动点:杆上的A点 动系:固连于套筒C 动系的牵连运动:绕C轴的定轴转动
点的复合运动
点的合成运动
y’
o’
x’
例2、直升飞机在匀速前进的军舰上降落
y
y’
o’
x’
x
o
点的合成运动
y’ x’
o’
物体的运动的描述结果与所选定的参考系有关。同一物体的运动,在不同的 参考系中看来,可以具有极为不同的运动学特征(具有不同的轨迹、速度、 加速度等)。
相对运动:未知
3、
va ve vr
大小 v1 v2
?
方向 √ √
?
vr va2 ve2 2vave cos60 3.6 m s
arcsin(ve sin 60o ) 46o12
点的合成运动
vr
求解合成运动的速度问题的一般步骤为(P180):
① 选取动点,动系和静系。
B
曲柄-滑块机构
点的合成运动
思考题 动 点:杆上A点。 动系:固连于滑块B。 定系:固连于墙面。 绝对运动? 相对运动? 牵连运动?
点的合成运动
A Bv
点的合成运动
动 点? 动参考系? 绝对运动? 相对运动? 牵连运动?
练习题1
点的合成运动
点的合成运动
点的合成运动
动 点? 动参考系? 绝对运动? 相对运动? 牵连运动?
定系的速度。
点的合成运动
基本概 念
牵连点的概念
(1)、定 义 动参考系给动点直接影响的是该动系上与动点相重合的一点,
这点称为瞬时重合点或动点的牵连点。 (2)、进一步说明
牵连运动一方面是动系的绝对运动,另一方面对动点来说起 着“牵连”作用。但是带动动点运动的只是动系上在所考察的瞬 时与动点相重合的那一点,该点称为瞬时重合点或牵连点。 (3)、注 意
工程力学(天津大学)第14章答案
第十四章 组合变形习 题14−1 截面为20a 工字钢的简支梁,受力如图所示,外力F 通过截面的形心,且与y 轴成φ角。
已知:F =10kN ,l =4m ,φ=15°,[σ]=160MPa ,试校核该梁的强度。
解:kN.m 104104141=⨯⨯==Fl M kN.m;58821510kN.m;65991510.sin φsin M M .cos φcos M M y z =⨯===⨯==查附表得:33cm 531cm 237.W ;W y z ==122.9MPa Pa 109122105311058821023710569966363=⨯=⨯⨯+⨯⨯=+=--....W M W M σy y z z max[]σσmax <,强度满足要求。
14−2 矩形截面木檩条,受力如图所示。
已知:l =4m ,q =2kN/m ,E =9GPa ,[σ]=12MPa ,4326'= α,b =110mm ,h =200mm ,1][=f。
试验算檩条的强度和刚度。
z解:kN.m 4421122=⨯⨯==ql M kN.m;789143264kN.m;578343264.sin φsin M M .cos φcos M M y z ='⨯==='⨯== m ...W ;m ...W y z 42421003341102206110333722011061--⨯=⨯⨯=⨯=⨯⨯=MPa 329Pa 1032910033410789110333710578364343......M M σy y z z max=⨯=⨯⨯+⨯⨯=+=-- []σσmax <,强度满足要求。
m...sin EI φsin ql f m...cos EI φcos ql f y y zz 339434339434109314110220121109384432641025384510034922011011093844326410253845--⨯=⨯⨯⨯⨯⨯'⨯⨯⨯⨯==⨯=⨯⨯⨯⨯⨯'⨯⨯⨯⨯==mm ..f f f y z 4517104517322=⨯=+=-20012291<=l f ,所以挠度满足要求。
工程力学第14章答案
习题14-2图习题14-3图第14章 压杆的平衡稳定性分析与压杆设计14-1 关于钢制细长压杆受力达到分叉载荷之后,还能不能继续承载,有如下四种答案,试判断哪一种是正确的。
(A )不能,因为载荷达到临界值时,屈曲位移将无限制地增加; (B )能,压杆一直到折断时为止都有承载能力;(C )能,只要横截面上的最大应力不超过一定限度; (D )不能,因为超过分叉载荷后变形不再是弹性的。
正确答案是 C 。
14-2 图示a 、b 、c 、d 四桁架的几何尺寸、杆的横截面直径、材料、加力点及加力方向均相同。
关于四桁架所能承受的最大外力F Pmax 有如下四种结论,试判断哪一种是正确的。
(A ))d ()b ()c ()a (max P max P max P max P F F F F =<=; (B ))d ()b ()c ()a (max P max P max P max P F F F F ===; (C ))c ()b ()d ()a (max P max P max P max P F F F F =<=;(D ))d ()c ()()a (max P max P max P max P F F b F F =<=。
正确答案是 A 。
14-3 图示四压杆均为圆截面直杆,杆长相同,且均为轴向加载。
关于四者分叉载荷大小有四种解答,试判断哪一种是正确的(其中弹簧的刚度较大)。
(A ))d ()c ()b ()a (Pcr Pcr Pcr Pcr F F F F <<<; (B ))d ()c ()b ()a (Pcr Pcr Pcr Pcr F F F F >>>; (C ))a ()d ()c ()b (Pcr Pcr Pcr Pcr F F F F >>>;(D ))d ()c ()a ()b (Pcr Pcr Pcr Pcr F F F F >>>。
《工程力学》课后习题与答案全集
由 ,作出速度平行四边形,如图示:
即:
7.图示平行连杆机构中, mm, 。曲柄 以匀角速度 2rad/s绕 轴转动,通过连杆AB上的套筒C带动杆CD沿垂直于 的导轨运动。试示当 时杆CD的速度和加速度。
解:取CD杆上的点C为动点,AB杆为动系。对动点作速度分析和加速度分析,如图(a)、(b)所示。图中:
解:设该力系主矢为 ,其在两坐标轴上的投影分别为 、 。由合力投影定理有:
=-1.5kN
kN
kN
;
由合力矩定理可求出主矩:
合力大小为: kN,方向
位置: m cm,位于O点的右侧。
2.火箭沿与水平面成 角的方向作匀速直线运动,如图所示。火箭的推力 kN与运动方向成 角。如火箭重 kN,求空气动力 和它与飞行方向的交角 。
(d)由于不计杆重,杆AB在A、C两处受绳索作用的拉力 和 ,在B点受到支座反力 。 和 相交于O点,
根据三力平衡汇交定理,
可以判断 必沿通过
B、O两点的连线。
见图(d).
第二章力系的简化与平衡
思考题:1.√;2.×;3.×;4.×;5.√;6.×;7.×;8.×;9.√.
1.平面力系由三个力和两个力偶组成,它们的大小和作用位置如图示,长度单位为cm,求此力系向O点简化的结果,并确定其合力位置。
则
(mm/s)
故 =100(mm/s)
又有: ,因
故:
即:
第四章刚体的平面运动
思考题
1.×;2.√; 3.√;4.√;5.×.
习题四
1.图示自行车的车速 m/s,此瞬时后轮角速度 rad/s,车轮接触点A打滑,试求点A的速度。
工程力学-复合运动
O1 e2
大小 vCD O1B·O1? vBr2?
O1 D
求出
O
E
vBe2
L
cos
O1
vCD
cos
L
O1
cos2
L
vCD
l cos2
2L
3l
8L
()
vBr 2
vCD
sin
l
4
()
8
例题
例 题 10
§3 复合运动
3.加速度分析 (1)对动点A、动系e1
aA
aA
0
aAn
ae1
ar1
22
例题
*
例 题 11
§3 复合运动
A
ω4 O
ω1
Ⅲ Ⅱ Ⅳ Ⅰ
ω1
ω423例题*例 题 11§3 复合运动
解:把动系固连于系杆OA上,则牵连角速度ωe就是待求
的角速度ω4 (设为),即ωe = ω4 ( )。
ω 3r= ω4
Ⅲ
已 知 齿 轮 Ⅰ 的 绝 对 角 速 度 ω1 () ,故如能求出它对于动系的
R A
Ш
E
h 60º
O1
图示机构,已知系杆OA=3R,AE=1.5R,系杆OA
的角速度ω0=常数,试求图示位置曲柄O1B的角速 度和角加速度。
29
例题
例 题 13(习题3.29)
§3 复合运动
解: 1.运动分析: 杆OA、O1B 定轴转动,
轮Ⅰ不动,
动系e1
r3
r2
R
R
r1 O
ІІ
A
Ш
轮Ⅱ,Ⅲ和套筒E一般平面运动。
根据轮与杆的接触特点选择适当的动点动系
理论力学《点的合成运动》答案
4
动系:固连于CBDE上的坐标系。 动系平动, v A = v CBDE = v BC 静系:固连于地面的坐标系。 绝对速度:A相对于地面的速度。 相对速度:A相对于DE的速度。 牵连速度:CBDE相对于地面的速度。
→ → →
vr
900 − ϕ A
120 0
va
ϕ
ve = vBC
ϕ O
5
相对速度:C相对于OC杆的速度。 牵连速度:OC杆相对于地面的速度。
ve = OC ⋅ ω =
→ → →
0.4 × 0.5 = 0.231( m / s ) cos 30 0
va = ve + vr va = ve 0.2 = = 0.267( m / s ) 0 cos 30 cos 2 30 0
BC作平动,故
v BC = v a = 1.155lω 0
[习题7-9] 一外形为半圆弧的凸轮A,半径r=300mm,沿水平方向向右作匀加速运动, 其加速度aA=800mm/s 。凸轮推动直杆BC沿铅直导槽上下运动。设在图所示瞬时, vA=600mm/s,求杆BC的速度及加速度。 解: 动点:B。 动系:固连于凸轮A上的坐标系。 静系:固连于地面的坐标系。 绝对速度:B相对于地面的速度。 相对速度:B相对于凸轮的速度。 牵连速度:B相对于凸轮的速度。
θ = 40.930
→ →
即 v 与 v1 之间的夹角为 θ = 40.93 。 种子走过的水平距离为:
0
s = v x t = v cos θ ⋅ t h = vyt +
1 2 gt 2 1 2 gt 2
h = v sin θt +
0.25 = 2.65 sin 40.930 t + 0.5 × 9.8t 2
工程力学学习资料 点的复合运动2
aa ae ar ak
点的合成运动2种类型的问题: 1、带有滑套的机构。
2、运动中,物体相互接触 的机构,接触点不变。
例题:已知:OA杆匀速转动 w,OA=r,该 瞬时已知,求:BC杆的加速度。
解: 动点:滑块A 动系:杆BCDE
绝对运动-
O
D w B C A
以O为圆心的圆周运动
v v v
a e
vr
va
r
ve
即在任一瞬时点的绝对速度等于其牵连速度与相对 速度的矢量和,这就是点的速度合成定理。
选择动点、动系的原则: 动点对动系有相对运动,且相对运动的轨迹是 已知的,或者能直接看出的。
(相对轨迹、
动 点
速度与加速度)
(绝对轨迹、
速度与加速度)
动 系
牵连运动 (刚体运动)
定 系 (牵连速度与加速度)
E
相对运动- 沿DE的直线运动
牵连运动-
水平直线平移
aa ae ar
大小: 方向: ?
2
?
D
ae
O
w
A
aa rw
aa
ar B
E
C
加速度向水平方向投影
aa cos=ae
ae rw cos
2
aBC w r cos()
2
作业:17-7,8
12(a)
ve v0
0=ve vr sin
v0 2 vr v0 o sin 60 3
4v v a R 3R
n r
2 r
2 0
aa ae a r ar
加速度向AC方向投影
0 0
带电粒子在复合场中的运动含知识目标五套练习详细解答
专题二:带电粒子在复合场中的运动一、复合场及其特点这里所说的复合场是指电场、磁场、重力场并存,或其中某两种场并存的场.带电粒子在这些复合场中运动时,必须同时考虑电场力、洛仑兹力和重力的作用或其中某两种力的作用,因此对粒子的运动形式的分析就显得极为重要.二、带电粒子在复合场电运动的根本分析1.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.2.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动.3.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动.4.当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理.三、电场力和洛仑兹力的比拟1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛仑兹力的作用.2.电场力的大小F=Eq,与电荷的运动的速度无关;而洛仑兹力的大小f=Bqvsinα,与电荷运动的速度大小和方向均有关.3.电场力的方向与电场的方向或一样、或相反;而洛仑兹力的方向始终既和磁场垂直,又和速度方向垂直.4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛仑兹力只能改变电荷运动的速度方向,不能改变速度大小5.电场力可以对电荷做功,能改变电荷的动能;洛仑兹力不能对电荷做功,不能改变电荷的动能.6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛仑兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧.四、对于重力的考虑重力考虑与否分三种情况.〔1)对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应当考虑其重力.〔2)在题目中有明确交待的是否要考虑重力的,这种情况比拟正规,也比拟简单.〔3)对未知名的带电粒子其重力是否忽略又没有明确时,可采用假设法判断,假设重力计或者不计,结合题给条件得出的结论假设与题意相符那么假设正确,否那么假设错误.五、复合场中的特殊物理模型1.粒子速度选择器如下图,粒子经加速电场后得到一定的速度v0,进入正交的电场和磁场,受到的电场力与洛仑兹力方向相反,假设使粒子沿直线从右边孔中出去,那么有qv0B=qE,v0=E/B,假设v= v0=E/B,粒子做直线运动,与粒子电量、电性、质量无关假设v<E/B,电场力大,粒子向电场力方向偏,电场力做正功,动能增加.假设v>E/B,洛仑兹力大,粒子向磁场力方向偏,电场力做负功,动能减少.2.磁流体发电机如下图,由燃烧室O燃烧电离成的正、负离子〔等离子体〕以高速.喷入偏转磁场B中.在洛仑兹力作用下,正、负离子分别向上、下极板偏转、积累,从而在板间形成一个向下的电场.两板间形成一定的电势差.当qvB=qU/d时电势差稳定U=dvB,这就相当于一个可以对外供电的电源.3.电磁流量计.电磁流量计原理可解释为:如下图,一圆形导管直径为d,用非磁性材料制成,其中有可以导电的液体向左流动.导电液体中的自由电荷〔正负离子〕在洛仑兹力作用下纵向偏转,a,b间出现电势差.当自由电荷所受电场力和洛仑兹力平衡时,a、b间的电势差就保持稳定.由Bqv=Eq=Uq/d,可得v=U/Bd.流量Q=Sv=πUd/4B4.质谱仪如下图组成:离子源O,加速场U,速度选择器〔E,B〕,偏转场B2,胶片.原理:加速场中qU=½mv2选择器中:v=E/B1偏转场中:d=2r,qvB2=mv2/r比荷:质量作用:主要用于测量粒子的质量、比荷、研究同位素.5.盘旋加速器如下图.组成:两个D形盒,大型电磁铁,高频振荡交变电压,两缝间可形成电压U作用:电场用来对粒子〔质子、氛核,a粒子等〕加速,磁场用来使粒子盘旋从而能反复加速.高能粒子是研究微观物理的重要手段.要求:粒子在磁场中做圆周运动的周期等于交变电源的变化周期.关于盘旋加速器的几个问题:(1)盘旋加速器中的D形盒,它的作用是静电屏蔽,使带电粒子在圆周运动过程中只处在磁场中而不受电场的干扰,以保证粒子做匀速圆周运动.(2)盘旋加速器中所加交变电压的频率f,与带电粒子做匀速圆周运动的频率相等:(3)盘旋加速器最后使粒子得到的能量,可由公式来计算,在粒子电量,、质量m和磁感应强度B一定的情况下,盘旋加速器的半径R越大,粒子的能量就越大.专题二:带电粒子在复合场中的运动(1)姓名______________ 1.如下图,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开场释放后能经过M点.如果把此粒子放在y轴上,其坐标应满足什么关系?〔重力忽略不计〕2.如下图,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子假设原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.初速为零的离子经过电势差为U的电场加速后,从离子枪T中水平射出,经过一段路程后进入水平放置的两平行金属板MN和PQ之间.离子所经空间存在一磁感强度为B的匀强磁场,如下图.〔不考虑重力作用〕,离子荷质比q/m〔q、m分别是离子的电量与质量〕在什么范围内,离子才能打在金属板上?4.如图,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c和d,外筒的半径为r0.在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B.在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场.一质量为m、带电量为+q的粒子,从紧靠内筒且正对狭缝a的s点出发,初速为零.如果该粒子经过一段时间的运动之后恰好又回到出发点S,那么两电极之间的电压U应是多少?〔不计重力,整个装置在真空中〕.a S专题二:带电粒子在复合场中的运动(2)姓名______________ 1.如下图,从正离子源发射的正离子经加速电压U加速后进入相互垂直的匀强电场E〔方向竖直向上〕和匀强磁场B〔方向垂直于纸面向外〕中,发现离子向上偏转,要使此离子沿直线穿过电场?A.增大电场强度E,减小磁感强度BB.减小加速电压U ,增大电场强度EC.适当地加大加速电压UD.适当地减小电场强度E2.汤姆生用来测定电子的比荷〔电子的电荷量与质量之比〕的实验装置如下图,真空管内加速后,穿过A'中心的小孔沿中心轴010的方向进入到两块水平正对放置的平行极板P和P/,间的区域.当极板间不加偏转电压时,电子束打在荧光屏的中心0点处,形成了一个亮点;加上偏转电压U后,亮点偏离到0'点,〔O'与0点的竖直间距为d,水平间距可忽略不计〕.此时,在P和P/间的区域,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B时,亮点重新回到0点.极板水平方向的长度为L1,极板间距为b,极板右端到荧光屏的距离为L2〔如下图〕.(1)求打在荧光屏0点的电子速度的大小.(2〕推导出电子的比荷的表达式.3.如下图,M、N为两块带等量异种电荷的平行金属板,S1、S2为板上正对的小孔,N板右侧有两个宽度均为d的匀强磁场区域,磁感应强度大小均为B,方向分别垂直于纸面向里和向外,磁场区域右侧有一个荧光屏,取屏上与S1、S2共线的O点为原点,向下为正方向建立x轴.板左侧电子枪发射出的热电子经小孔S1进入两板间,电子的质量为m,电荷量为e,初速度可以忽略.求:(1)当两板间电势差为U0时,求从小孔S2射出的电子的速度v0;(2)两金属板间电势差U在什么范围内,电子不能穿过磁场区域而打到荧光屏上;(3)电子打到荧光屏上的位置坐标x和金属板间电势差U的函数关系.专题二:带电粒子在复合场中的运动(3)姓名______________1D形金属盒,两盒相距很近,分别和高频交流电源相连接,两盒间的窄缝中形成匀强电场,使带电粒子每次通过窄缝都得到加速.两盒放在匀强磁场中,磁场方向垂直于盒底面,带电粒子在磁场中做圆周运动,通过两盒间的窄缝时反复被加速,直到到达最大圆周半径时通过特殊装置被引出.如果用同一盘旋加速器分别加速氚核〔〕和α粒子〔〕比拟它们所加的高频交流电源的周期和获得的最大动能的大小,有〔〕A.加速氚核的交流电源的周期较大,氚核获得的最大动能也较大B.加速氚核的交流电源的周期较大,氚核获得的最大动能较小C.加速氚核的交流电源的周期较小,氚核获得的最大动能也较小D.加速氚核的交流电源的周期较小,氚核获得的最大动能较大2.如下图为一种获得高能粒子的装置,环形区域内存在垂直纸面向外.大小可调节的均匀磁场,质量为m,电量+q的粒子在环中作半径为R的圆周运动,A、B为两块中心开有小孔的极板,原来电势都为零,每当粒子飞经A板时,A板电势升高为U,B板电势仍保持为零,粒子在两板间电场中得到加速,每当粒子离开B板时,A板电势又降为零,粒子在电场一次次加速下动能不断增大,而绕行半径不变.〔l〕设t=0时粒子静止在A板小孔处,在电场作用下加速,并绕行第一圈,求粒子绕行n圈回到A板时获得的总动能E n.〔2〕为使粒子始终保持在半径为R的圆轨道上运动,磁场必须周期性递增,求粒子绕行第n圈时的磁感应强度B n.〔3〕求粒子绕行n圈所需的总时间t n〔设极板间距远小于R〕.〔4〕在〔2〕图中画出A板电势U与时间t的关系〔从t=0起画到粒子第四次离开B板时即可〕.〔5〕在粒子绕行的整个过程中,A板电势是否可始终保持为+U?为什么?3.如下图,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B=5.0×10-3T的匀强磁场,方向分别垂直纸面向外和向里.质量为m=6.64×10-27㎏、电荷量为q=+3.2×10-19C的α粒子〔不计α粒子重力〕,由静止开场经加速电压为U=1205V的电场〔图中未画出〕加速后,从坐标点M〔-4,〕处平行于x轴向右运动,并先后通过两个匀强磁场区域.(1)请你求出α粒子在磁场中的运动半径;(2)你在图中画出α粒子从直线x=-4到直线x=4之间的运动轨迹,并在图中标明轨迹与直线x=4交点的坐标;B ~(3)求出α粒子在两个磁场区域偏转所用的总时间.专题二:带电粒子在复合场中的运动(4)姓名______________1.如下图,竖直平面内存在水平向右的匀强电场,场强大小E=10N /c,在y ≥、质量的小球由长的细线悬挂于点小球可视为质点,现将小球拉至水平位置A无初速释放,小球运动到悬点正下方的坐标原点时,悬线突然断裂,此后小球又恰好能通过点正下方的N点.(g=10m/s),求:(1)小球运动到点时的速度大小;(2)悬线断裂前瞬间拉力的大小;(3)间的距离2.两块平行金属板MN、PQ水平放置,两板间距为d、板长为l,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC与PQ在同一水平线上,顶点A与MN在同一水平线上,如下图.一个质量为m、电量为+q的粒子沿两板中心线以初速度v0水平射入,假设在两板间加某一恒定电压,粒子离开电场后垂直AB边从D点进入磁场,BD=AB,并垂直AC边射出(不计粒子的重力).求:(1)两极板间电压;(2)三角形区域内磁感应强度;(3)假设两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB边射出,试求所加磁场的磁感应强度最小值.3.如图甲所示,竖直挡板MN左侧空间有方向竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,电场和磁场的范围足够大,电场强度E=40N/C,磁感应强度B随时间t变化的关系图象如图乙所示,选定磁场垂直纸面向里为正方向.t=0时刻,一质量m=8×10-4kg、电荷量q=+2×10-4C的微粒在O点具有竖直向下的速度v=0.12m/s,O´是挡板MN上一点,直线OO´与挡板MN垂直,取g=10m/s2.求:〔1〕微粒再次经过直线OO´时与O点的距离;〔2〕微粒在运动过程中离开直线OO´的最大高度;〔3〕水平移动挡板,使微粒能垂直射到挡板上,挡板与O点间的距离应满足的条件.MNO O´v图甲BE图乙Ot/B/T-5152535102030专题二:带电粒子在复合场中的运动(5)姓名______________ 1.如下图,在倾角为30°的斜面OA 的左侧有一竖直档板,其上有一小孔Pm =4×10-20kg ,带电量q =+2×10-14C 的粒子,从小孔以速度v 0=3×104m/s 水平射向磁感应强度B =0.2T 、方向垂直纸面向外的一圆形磁场区域.且在飞出磁场区域后能垂直打在OA 面上,粒子重力不计.求:〔1〕粒子在磁场中做圆周运动的半径; 〔2〕粒子在磁场中运动的时间; 〔3〕圆形磁场区域的最小半径;〔4〕假设磁场区域为正三角形且磁场方向垂直向里,粒子运动过程中始终不碰到挡板,其他条件不变,求:此正三角形磁场区域的最小边长.2.如下图,在同时存在匀强电场和匀强磁场的空间中取正交坐标系Oxyz 〔x 轴正方向水平向右,y 轴正方向竖直向上〕.匀强磁场方向与Oxy 平面平行,且与x 轴的夹角为,重力加速度为g .〔1〕一质量为m 、电荷量为的带电质点沿平行于z 轴正方向以速度v 0做匀速直线运动,求满足条件的电场强度的最小值及对应的磁感应强度;〔2〕在满足〔1〕的条件下,当带电质点通过y 轴上的点时,撤去匀强磁场,求带电质点落在Oxz 平面内的位置; 〔3〕当带电质点沿平行于z 轴负方向以速度v 0通过y 轴上的点时,改变电场强度大小和方向,同时改变磁感应强度的大小,要使带点质点做匀速圆周运动且能够经过x 轴,问电场强度E 和磁感应强度B 大小满足什么条件?30OP Av专题二:带电粒子在复合场中的运动——参考答案〔1〕1、解析:由于此带电粒子是从静止开场释放的,要能经过M点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y轴上,受电场力作用而加速,以速度v进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x轴偏转.回转半周期过x轴重新进入电场,在电场中经减速、加速后仍以原速率从距O点2R处再次超过x轴,在磁场回转半周后又从距O点4R处飞越x轴如下图〔图中电场与磁场均未画出〕故有L=2R,L=2×2R,L=3×2R即 R=L/2n,〔n=1、2、3……〕……………①设粒子静止于y轴正半轴上,和原点距离为h,由能量守恒得mv2/2=qEh……②对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R=mv/qB………③解①②③式得:h=B2qL2/8n2mE 〔n=l、2、3……〕2、解析:粒子在电场中运行的时间t= l/v;加速度 a=qE/m;它作类平抛的运动.有tgθ=at/v=qEl/mv2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv2/r,所以r=mv/qB又:sinθ=l/r=lqB/mv………②由①②两式得:B=Ecosθ/v3、解析:离子在磁场中做匀速圆周运动,作出两条边界轨迹和TQ,分别作出离子在 T、P、Q三点所受的洛仑兹力,分别延长之后相交于O1、O2点,如下图,O1和O2分别是TP和TQ的圆心,设 R1和 R2分别为相应的半径.离子经电压U加速,由动能定理得.qU=½mv2………①由洛仑兹力充当向心力得qvB=mv2/R………②由①②式得q/m=2U/B2R2由图直角三角形O1CP和O2CQ可得R12=d2+〔R1一d/2〕2,R1=5d/4……④R22=〔2d〕2+〔R2一d/2〕2,R2=17d/4……⑤依题意R1≤R≤R2……⑥由③④⑤⑥可解得≤≤.4、解析:如下图,带电粒子从S出发,在两筒之间的电场力作用下加速,沿径向穿出a而进入磁场区,在洛仑兹力作用下做匀速圆周运动。
第14章点的复合运动-习题
解:以铰链为动点,杆O1A为动系。有
, ,
故 (逆钟向) [6分]
又
[10分]
由
x:
得
(逆钟向) [15分]
14.1图示半径为r的半圆形凸轮在水平面上滑动,使直杆OA可绕轴O转动。OA=r,在图示瞬时杆OA与铅垂线夹角 ,杆端A与凸轮相接触,点O与O1在同一铅直线上,凸轮的的速度为 ,加速度为 。求在图示瞬时A点的速度和加速度。并求OA杆的角速度和角加速度。
14.2图示机构中AB=CD=EF=l,设在图示位置时 ,杆EF的角速度为 ,角加速度为0,求此时杆AB的角速度与角加速度。
以滑块F为动点,动系固结于BD杆上,定系固结于地面,牵连运动为平动。动点的速度矢量合成图如图(a)所示,则有
而 ,所以
(顺时针转向)。
动点的加速度矢量合成图如图(b)所示。其中 , ,
将 向水平方向投影得
(顺时针转向)
14.3圆盘的半径 动到A、C两点位于同一铅垂线上,且 时,AB杆转动的角速度与角加速度。
高考物理带电粒子在复合场中的运动解题技巧及练习题
一、带电粒子在复合场中的运动专项训练1.两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图1、图2所示(规定垂直纸面向里为磁感应强度的正方向)。
在t=0时刻由负极板释放一个初速度为零的带负电的粒子(不计重力),若电场强度E0、磁感应强度B0、粒子的比荷qm均已知,且2mtqBπ=,两板间距2210mEhqBπ=。
(1)求粒子在0~t0时间内的位移大小与极板间距h的比值。
(2)求粒子在板板间做圆周运动的最大半径(用h表示)。
(3)若板间电场强度E随时间的变化仍如图1所示,磁场的变化改为如图3所示,试画出粒子在板间运动的轨迹图(不必写计算过程)。
【来源】带电粒子的偏转【答案】(1)粒子在0~t0时间内的位移大小与极板间距h的比值115sh=(2)粒子在极板间做圆周运动的最大半径225hRπ=(3)粒子在板间运动的轨迹如图:【解析】【分析】【详解】(1)设粒子在0~t0时间内运动的位移大小为s121012s at =① 0qEa m=②又已知200200102,mE m t h qB qB ππ== 联立解得:115s h = (2)解法一粒子在t 0~2t 0时间内只受洛伦兹力作用,且速度与磁场方向垂直,所以粒子做匀速圆周运动。
设运动速度大小为v 1,轨道半径为R 1,周期为T ,则10v at =21101mv qv B R =联立解得:15h R π= 又002mT t qB π== 即粒子在t 0~2t 0时间内恰好完成一个周期的圆周运动。
在2t 0~3t 0时间内,粒子做初速度为v 1的匀加速直线运动,设位移大小为s 22210012s v t at =+解得:235s h =由于s 1+s 2<h ,所以粒子在3t 0~4t 0时间内继续做匀速圆周运动,设速度大小为v 2,半径为R 2,有:210v v at =+22202mv qv B R =解得225h R π=由于s 1+s 2+R 2<h ,粒子恰好又完成一个周期的圆周运动。
工程力学第14章材料力学中的能量法习题及解析
—38 —B F P CF P (a)工程力学(静力学与材料力学)习题解答第14章材料力学中的能量法14-1线弹性材料悬臂梁承受载荷如图所示,εV 为梁的总应变能,B w 、C w 分别为点B 、C 的挠度。
关于偏导数P ε/F V ∂∂的含义,有下列四种论述,试判断哪一个是正确的。
(A )C w ;(B )C w 2;(C )B w +C w ;(D )C w 21。
知识点:应变能,卡氏定理难度:难解答:正确答案是 C 。
解:线性结构的外力功,由克拉贝依隆原理C C B B wF w F W P P 2121+=而C C B B w F w F W V P P ε2121+==而卡氏第二定理B B w F V =∂∂P ε,CCw F V =∂∂P εCB C B C C B B w w F F F V F F F V F F F V F F F V F V +=∂∂⋅∂∂+∂∂⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂PPP εP P P εP P P εP P P εP ε14-2 线弹性材料悬臂梁承受载荷如图所示,其中P PF F =',εV 为梁的总应变能,AB V ε和BC V ε分别为AB 和BC 段梁的应变能,B w 、C w 分别为点B 、C 的挠度。
关于这些量之间的关系有下列四个等式,试判断哪一个是正确的。
(A )C B w w F V+=∂∂Pε;(B )C B w w F V -=∂∂Pε;(C )B ABw F V =∂∂P ε,C BC w F V =∂∂Pε;(D )B AB w F V =∂∂P ε,C w F V=∂∂Pε。
知识点:应变能,卡氏定理难度:难解答:正确答案是A 。
解:沿各自力方向的线位移为正:EIl F EI l F EI l F l EI lF EI l F EI l F w C 48114853)2(2)2(3)2(33P 3P 3P 2P 3P 3P =-'=⋅--'=(↓)习题14-1图习题14-2图C'P F 1x 2x AB2l 2l xPF w(a)EIl F EI l F EI l F EI l l F EI l F EI l F w B 16485242)2)(2(3)2(3)2(3P 3P 3P 2P 3P 3P ='+-='+'+-=(↓) 1P 1)(x F x M BC '-=,2P 2P 2)2()(x F x lF x M AB ++'-=EIl F EI x x F EI x M V l l BC BC 48)(2d )(2d 32P 20121P 2012ε'='-==⎰⎰ EIl F EI l F F EI l F x EI x F x l F EI x M V l lAB AB 4848548)(7d 2])2([2d 32P 3P P 32P 20222P 2P2022ε+'-'=⋅++'-==⎰⎰ EIl F EI l F F EI l F V V V AB BC 484856)(32P 3P P 32P εεε+'-'=+= C B w w EI l F EI l F EI l F EI l F F V F V F F F V F F F V F V +='-+-'=∂∂+'∂∂=∂∂⋅∂∂+∂'∂⋅'∂∂=∂∂4852448533P 3P 3P 3P P εP εP P P εP P P εP ε14-3 线弹性材料悬臂梁承受载荷如图所示,εV 为梁的总应变能。
高考物理带电粒子在复合场中的运动的基本方法技巧及练习题及练习题
一、带电粒子在复合场中的运动专项训练1.在xOy平面的第一象限有一匀强电磁,电场的方向平行于y轴向下,在x轴和第四象限的射线OC之间有一匀强电场,磁感应强度为B,方向垂直于纸面向里,有一质量为m,带有电荷量+q的质点由电场左侧平行于x轴射入电场,质点到达x轴上A点,速度方向与x 轴的夹角为φ,A点与原点O的距离为d,接着,质点进入磁场,并垂直与OC飞离磁场,不计重力影响,若OC与x轴的夹角为φ.求:⑴粒子在磁场中运动速度的大小;⑵匀强电场的场强大小.【来源】带电粒子在复合场中的运动计算题【答案】(1) (2)【解析】【分析】【详解】试题分析:(1)由几何关系得:R=dsinφ由洛仑兹力公式和牛顿第二定律得解得:(2)质点在电场中的运动为类平抛运动.设质点射入电场的速度为v0,在电场中的加速度为a,运动时间为t,则有:v 0=vcosφ vsinφ=at d=v 0t设电场强度的大小为E ,由牛顿第二定律得 qE=ma 解得:2.如图所示,待测区域中存在匀强电场和匀强磁场,根据带电粒子射入时的受力情况可推测其电场和磁场. 图中装置由加速器和平移器组成,平移器由两对水平放置、相距为l 的相同平行金属板构成,极板长度为l 、间距为d,两对极板间偏转电压大小相等、电场方向相反. 质量为m 、电荷量为+q 的粒子经加速电压U0 加速后,水平射入偏转电压为U1 的平移器,最终从A 点水平射入待测区域. 不考虑粒子受到的重力.(1)求粒子射出平移器时的速度大小v1;(2)当加速电压变为4U0 时,欲使粒子仍从A 点射入待测区域,求此时的偏转电压U; (3)已知粒子以不同速度水平向右射入待测区域,刚进入时的受力大小均为F. 现取水平向右为x 轴正方向,建立如图所示的直角坐标系Oxyz. 保持加速电压为U0 不变,移动装置使粒子沿不同的坐标轴方向射入待测区域,粒子刚射入时的受力大小如下表所示.请推测该区域中电场强度和磁感应强度的大小及可能的方向. 【来源】2012年普通高等学校招生全国统一考试理综物理(江苏卷) 【答案】(1)012qU v m=1U?4U = (3)E 与Oxy 平面平行且与x 轴方向的夹角为30°或150°,若B 沿-x 轴方向,E 与Oxy 平面平行且与x 轴方向的夹角为-30°或-150°. 【解析】(1)设粒子射出加速器的速度为0v 动能定理20012qU mv =由题意得10v v =,即012qU v m=(2)在第一个偏转电场中,设粒子的运动时间为t 加速度的大小1qU a md=在离开时,竖直分速度yv at = 竖直位移2112y at =水平位移1l v t = 粒子在两偏转电场间做匀速直线运动,经历时间也为t 竖直位移2y y v t =由题意知,粒子竖直总位移12y?2y y =+ 解得210U l y U d=则当加速电压为04U 时,1U?4U =(3)(a)由沿x 轴方向射入时的受力情况可知:B 平行于x 轴. 且FE q= (b)由沿y +-轴方向射入时的受力情况可知:E 与Oxy 平面平行.222F f (5F)+=,则f?2F =且1f?qv B =解得02F mB BqU =(c)设电场方向与x 轴方向夹角为.若B 沿x 轴方向,由沿z 轴方向射入时的受力情况得222sin )(cos )(7)f F F F αα++=( 解得=30°,或=150°即E 与Oxy 平面平行且与x 轴方向的夹角为30°或150°. 同理,若B 沿-x 轴方向E 与Oxy 平面平行且与x 轴方向的夹角为-30°或-150°.3.如图,平面直角坐标系中,在,y >0及y <-32L 区域存在场强大小相同,方向相反均平行于y 轴的匀强电场,在-32L <y <0区域存在方向垂直于xOy 平面纸面向外的匀强磁场,一质量为m ,电荷量为q 的带正电粒子,经过y 轴上的点P 1(0,L )时的速率为v 0,方向沿x 轴正方向,然后经过x 轴上的点P 2(32L ,0)进入磁场.在磁场中的运转半径R =52L(不计粒子重力),求:(1)粒子到达P2点时的速度大小和方向;(2)EB;(3)粒子第一次从磁场下边界穿出位置的横坐标;(4)粒子从P1点出发后做周期性运动的周期.【来源】2019年内蒙古呼和浩特市高三物理二模试题【答案】(1)53v0,与x成53°角;(2)043v;(3)2L;(4)()4053760Lvπ+.【解析】【详解】(1)如图,粒子从P1到P2做类平抛运动,设到达P2时的y方向的速度为v y,由运动学规律知32L=v0t1,L=2yvt1可得t1=32Lv,v y=43v0故粒子在P2的速度为v220yv v+=53v0设v与x成β角,则tanβ=yvv=43,即β=53°;(2)粒子从P1到P2,根据动能定理知qEL=12mv2-12mv02可得E=289mvqL粒子在磁场中做匀速圆周运动,根据qvB =m 2v R解得:B =mv qR =05352m v q L ⨯⨯=023mv qL解得:43v E B =; (3)粒子在磁场中做圆周运动的圆心为O ′,在图中,过P 2做v 的垂线交y =-32L 直线与Q ′点,可得: P 2O ′=3253L cos =52L =r故粒子在磁场中做圆周运动的圆心为O ′,因粒子在磁场中的轨迹所对圆心角α=37°,故粒子将垂直于y =-32L 直线从M 点穿出磁场,由几何关系知M 的坐标x =32L +(r -r cos37°)=2L ; (4)粒子运动一个周期的轨迹如上图,粒子从P 1到P 2做类平抛运动:t 1=032Lv在磁场中由P 2到M 动时间:t 2=372360r v π︒⨯=037120Lv π从M 运动到N ,a =qE m =289v L则t 3=v a =0158Lv 则一个周期的时间T =2(t 1+t 2+t 3)=()04053760Lv π+.4.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B 和B (B 的大小未知),第二象限和第三象限内存在沿﹣y 方向的匀强电场,x 轴上有一点P ,其坐标为(L ,0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
上海电力学院
工程力学习题册
14.1
例8 图示半径为r的半圆形凸轮在水平面上滑 8.3 动,使直杆OA可绕轴O转动。OA=r,在图示瞬时 杆OA与铅垂线夹角 30,杆端A与凸轮相接触, 牵 1在同一铅直线上,凸轮的的速度为 v ,加 连 点O与 O 运 速度为 a 。求在图示瞬时A点的速度和加速度。并 动 O 为 求OA杆的角速度和角加速度。 平 解:以杆端A为动点,定系 va 动 取在地面上,动系取在凸轮上, v 时 v r A ve a 点 动点的速度合成矢量图如图。 r 的 建立如图的投影坐标轴 A , 加 O1 速 由va ve vr,将各矢量投影到投 度 影轴上,得 合
AB
ve v 3 e (rad s) AC 2 R 3
A
动点的加速度合成矢量图如图所示。 8.4 其中 a n R 2 8 3(cm s 2 ) a 牵
连 4 3 n 2 2 2 ae AC AB 2 R AB (cm s ) 运 3 动 16 aen ar 2 ac 2 AB vr 3 (cm s ) n 为 ae aa 3 转 R C O 建立如图的投影轴,由 动 B ac n n 时 aa aa ae ae ar ac 点 的 将各矢量投影到投影轴上得 加 n n 速 aa cos ae cos ae sin ac 度 1 n 合 所以 ae (ac aen sin aa cos ) 4.52(cm s 2 ) cos 成 定 ae ae 0.65(rad s 2 ) 转向为逆时针方向。 理 故 AB
故OA杆的角加速度
OA
a 3 v2 a (a ) OA 3r r
1
上海电力学院
工程力学习题册
14.2 图示机构中 AB=CD=EF=l,设在图示位置时 45 ,杆 EF 的角速度为 ,角加速度为 0,求此 时杆 AB 的角速度与角加速度。
F
E
B
D
A
C
以滑块 F 为动点,动系固结于 BD 杆上,定系固结于地面,牵连运动为平动。动点的速度矢量合成图如图(a) 所示,则有
成 定 理
va cos ve vr cos va sin vr sin
8.3
牵 连 运 动 为 平 动 时 点 的 加 速 度 合 成 定 理
ve v v 3 v 2 cos 2 cos 30 3 3 OA杆的角速度为 va 3 v OA OA 3r
ve va
而 ve lAB , va l ,所以 。 AB (顺时针转向) 动点的加速度矢量合成图如图(b)所示。其中 aa l , ae lAB l , ae l AB
2 n 2 2 t
将 aa ar ae ae 向水平方向投影得
t n
例13 圆盘的半径 R 2 3cm , A 以匀角速度 2 rad s,绕O轴转 动,并带动杆AB绕A轴转动,如 图。求机构运动到A、C两点位于 v a vr 同一铅垂线上,且 30 时,AB ve 杆转动的角速度与角加速度。 O R C B 解:取圆盘中心C为动点,定系 取在地面上,动系取在AB杆上。动 点的速度合成矢量图如图所示。 由图可得 ve va tan R tan 30 4 cm s vr va cos R cos 30 8 cm s 所以杆AB的角速度为
2 OA
v v v2 arn r 3r r 3r
2
2
n aa a a ar v A ae a arn
O
所以
1 3 v2 n n aa (ae 2ar aa ) (a ) 3 r 3
8.3
牵 连 运 动 为 平 动 时 点 的 加 速 度 合 成 定 理
解得: va vr
动点的加速度合成矢量图如图。 其中
a r
n a
r 建立如图的投影轴,由 O1 n n aa aa ae ar ar 将各矢量投影到投影轴上,得
n aa cos 30 aa cos 60 ae cos 60 arn
1 L 2
e vB 3L e r r v B cos L , v B vB vB vB , v B 钟向)
[6 分]
c r e aB 0 , 2 v B 3L 2 , a B 0
a B L12 L 2
n t aa sin 45 ae cos 45 ae sin 45
AB 22 (顺时针转向)
vr va
F
ar
a
t e
F
B D
ve
E
a
B
n e
D
aa
E
A
C
(a)
A
C
(b)
2
上海电力学院
工程力学习题册
14.3
8.4
牵 连 运 动 为 转 动 时 点 的 加 速 度 合 成 定 理
AC
2R
3
上海电力学院
工程力学习题册
14.4 图示平面机构中,杆 O1A 绕 O1 轴转动,设 O2B = L,在图示 = 30°位置时,杆 O1A 的角速度为, 角加速度为零。试求该瞬时杆 O2B 转动的角速度与角加速度。
解:以铰链为动点,杆 O1A 为动系。有
e vB O1 B L sin
[10 分]
由
e e r c a B a B a B a B a B a B
c x: a B sin a B cos a B
得
c a B 2a B 3a B 3L 2
1
aB 3 2 O2 B
(逆钟向)
[15 分]