高中数学第一章数列等差数列学案北师大版
2.1等差数列-北师大版必修5教案
2.1 等差数列-北师大版必修5教案一、教学目标1.了解等差数列的定义和概念;2.掌握等差数列的通项公式和求和公式;3.学会应用等差数列解决实际问题。
二、教学重点1.理解等差数列的概念及其特点;2.掌握等差数列的通项公式和求和公式;3.能够运用等差数列的公式解决实际问题。
三、教学难点1.理解等差数列的特点;2.理解通项公式和求和公式的原理。
四、教学方法1.教师讲授与学生演练相结合的方法;2.课堂练习与小组合作学习相结合的方法;3.让学生通过实例分析来理解概念和方法。
五、教学过程1. 引入(10分钟)教师通过贴近学生生活的例子,引入等差数列的概念和原理。
比如:两个人去旅行,第一个人每次走10米,第二个人每次走20米,问他们能不能相遇?如何计算相遇点的距离?2. 概念讲解(20分钟)教师讲解等差数列的定义和特点,包括公差、通项公式、前n项和公式等。
3. 公示演练(25分钟)教师让学生通过公式来计算等差数列的第n项和前n项和,并让学生互相检查答案。
4. 解决实际问题(20分钟)教师让学生通过实际例子来解决问题。
比如:如何计算摩托车行驶的路程?如果已知起点坐标、速度和时间,如何计算终点坐标?如果已知起点坐标和终点坐标,如何计算旅行时间?5. 小组合作学习(20分钟)将学生分成小组,让他们合作完成几道等差数列的题目,并将答案汇总到黑板上进行讲解。
6. 总结(5分钟)教师帮助学生总结本节课所学的知识。
六、教学资源1.课本;2.计算器;3.练习题。
七、教学评估1.课堂练习;2.作业练习;3.课后测试。
八、教学延伸让学生通过编写程序来计算等差数列的通项公式和前n项和,来巩固和拓展所学知识。
北师大版高中数学必修5同步学案:第1章 等差数列的概念及其通项公式
§2 等差数列2.1 等差数列第1课时等差数列的概念及其通项公式学习目标核心素养1.理解等差数列的概念.(难点)2.掌握等差数列的判定方法.(重点) 3.会求等差数列的通项公式及利用通项公式求特定的项.(重点、难点) 1.通过等差数列概念的学习培养学生的数学抽象素养.2.借助于等差数列的通项公式提升学生的数学运算素养.1.等差数列的概念阅读教材P10~P11例1以上部分,完成下列问题.文字语言从第2项起,每一项与它前一项的差等于同一个常数,这样的数列就叫作等差数列.这个常数称为等差数列的公差,通常用字母d 表示符号语言若a n-a n-1=d(n≥2),则数列{a n}为等差数列思考:(1)数列{a n}的各项为:n,2n,3n,4n,…,数列{a n}是等差数列吗?[提示] 不是,该数每一项与其前一项的差都是n,不是常数,所以不是等差数列.(2)若一个数列从第二项起每一项与它前一项的差都是常数,这个数列一定是等差数列吗?[提示] 不一定,当一个数列从第二项起每一项与它前一项的差都是同一个常数时,这个数列才是等差数列.如数列:1,2,3,5,7,9,就不是等差数列.2.等差数列的通项公式如果等差数列{a n}的首项为a1,公差为d,那么它的通项公式为a n=a1+(n-1)d.思考:(1)若已知等差数列{a n}的首项a1和第二项a2,可以求其通项公式吗?[提示] 可以,可利用a2-a1=d求出d,即可求出通项公式.(2)等差数列的通项公式一定是n的一次函数吗?[提示] 不一定,当公差为0时,等差数列的通项公式不是n的一次函数,而是常数函数.3.等差数列通项公式的推导如果等差数列{a n}的首项是a1,公差是d,根据等差数列的定义得到a2-a1=d,a3-a2=d,a4-a3=d,…所以a2=a1+d,a 3=a 2+d =a 1+d +d =a 1+2d, a 4=a 3+d =a 1+2d +d =a 1+3d, ……由此归纳出等差数列的通项公式为a n =a 1+(n -1)d .1.等差数列{a n }中a 1=2,公差d =3,则a n =( ) A .2n +1 B .3n +1 C .2n -1D .3n -1D [a n =a 1+(n -1)d =2+3(n -1)=3n -1.] 2.在等差数列{a n }中,a 1=0,a 3=4,则公差d =( ) A .4 B .2 C .-4D .-2B [a 3-a 1=4-0=2d,故d =2.]3.等差数列32,-12,-52,…的第10项为( )A .-372B .-332C .372D .332B [由a 1=32,d =-12-32=-2,得a n =32+(n -1)(-2)=-2n +72.所以a 10=-2×10+72=-332.]4.已知等差数列{a n }中,d =-13,a 7=8,则a 1=________.10 [由a 7=a 1+6d =8且d =-13代入解得a 1=8-6d =8+2=10.]等差数列的判定【例1(1)a n =3-2n ;(2)a n =n 2-n.[解] (1)因为a n +1-a n =[3-2(n +1)]-(3-2n)=-2,是常数,所以数列{a n }是等差数列.(2)因为a n +1-a n =[(n +1)2-(n +1)]-(n 2-n)=2n,不是常数,所以数列{a n }不是等差数列.等差数列的判断方法——定义法等差数列的定义是判断一个数列是否为等差数列的重要依据,要证明一个数列是等差数列,可用a n +1-a n =d(常数)或a n -a n -1=d(d 为常数且n≥2).但若要说明一个数列不是等差数列,则只需举出一个反例即可.[提醒] 当d >0时,等差数列{a n }是递增数列; 当d <0时,等差数列{a n }是递减数列; 当d =0时,等差数列{a n }是常数列.1.若数列{a n }满足a n +1=a n2a n +1,a 1=1,求证:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列.[证明] 由a n +1=a n 2a n +1得1a n +1=2a n +1a n =2+1a n ,即1a n +1-1a n =2,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为1,公差为2的等差数列.等差数列的通项公式及应用【例2】 (1)求等差数列8,5,2,…的第20项;(2)在等差数列{a n }中,已知a 6=12,a 18=36,求通项公式a n . [解] (1)由a 1=8,a 2=5,得d =a 2-a 1=5-8=-3, 故a n =8-3(n -1)=11-3n, 则a 20=11-3×20=-49.(2)由题意可得⎩⎪⎨⎪⎧a 1+5d =12,a 1+17d =36,解得d =2,a 1=2,故a n =2n.等差数列通项公式的四个应用(1)已知a n ,a 1,n,d 中的任意三个量,可以求出第四个量.(2)由等差数列的通项公式可以求出该数列中的任意项,也可以判断某一个数是不是该数列中的项. (3)根据等差数列的两个已知条件建立关于“基本量”a 1和d 的方程组,求出a 1和d,从而确定通项公式,求出待求项.(4)若数列{a n }的通项公式是关于n 的一次函数或常数函数,则可判断数列{a n }是等差数列.2.(1)等差数列{a n }中,a 2=4,公差d =3,a n =22,求n ;(2)判断-401是不是等差数列-5,-9,-13,…的项,如果是,是第几项?[解] (1)由条件知⎩⎪⎨⎪⎧a 1+3=4,a 1+3(n -1)=22,解得a 1=1,n =8;(2)由a 1=-5,d =-9-(-5)=-4,得这个数列的通项公式为a n =-5+(n -1)×(-4)=-4n -1. 由题意,令-401=-4n -1,得n =100, 即-401是这个数列的第100项.等差数列的实际应用[1.一种游戏软件的租金,第一天5元,以后每一天比前一天多1元,那么第n(n≥2)天的租金怎样表示?每天的租金数有什么特点?[提示] 每天的租金构成以5为首项,以1为公差的等差数列,a n =5+(n -1)×1=n +4(n≥2). 2.直角三角形三边长成等差数列,你能求出三边的比吗?[提示] 设直角三角形的三边长分别为a,a +d,a +2d(a >0,d >0),则(a +2d)2=a 2+(a +d)2,即a 2-2ad -3d 2=0,解得a =3d,则三边长分别为3d,4d,5d, 故三边长的比为3∶4∶5.【例3】 某市出租车的计价标准为1.2 元/km,起步价为10元,即最初的4 km(不含4 km)计费10元,如果某人乘坐该市的出租车去往14 km 处的目的地,且一路畅通,等候时间为0,那么需要支付多少车费?思路探究:某人需支付的车费构成等差数列,运用等差数列的知识去解决.[解] 根据题意,当该市出租车的行程大于或等于4 km 时,每增加1 km,乘客需要支付1.2元.所以,可以建立一个等差数列{a n }来计算车费. 令a 1=11.2,表示4 km 处的车费,公差d =1.2, 那么当出租车行至14 km 处时,n =11,此时需要支付车费a 11=11.2+(11-1)×1.2=23.2(元).即需要支付车费23.2元.1.(变条件)在例3中,若某人乘坐该市的出租车去往18.5 km(不足1 km,按1 km 计费),且一路畅通,等候时间为0,那么,需支付多少车费?[解] 由题意知,当出租车行至18.5 km 处时,n =16,此时需支付车费a 16=11.2+(16-1)×1.2=29.2(元).2.(变结论)在例3中,若某人乘坐该市的出租车去往n km(n ∈ N +)处的目的地,求其需支付的车费a n .[解] 当n ∈{1,2,3}时,a n =10,当n ∈N +,且n≥4时,a n =11.2+(n -4)×1.2=1.2n +6.4.所以a n =⎩⎪⎨⎪⎧10,n ∈{1,2,3},1.2n +6.4,n≥4且n ∈N +.应用等差数列解决实际问题的步骤(1)审题,读懂题意,把握已知条件与求解问题. (2)将实际问题抽象为等差数列模型. (3)利用等差数列解决问题.(4)验证答案是否符合实际问题的意义.1.等差数列的通项公式为a n =a 1+(n -1)d,已知a 1,n,d,a n 这四个量中的三个,可以求得另一个量. 2.等差数列的判定关键是看a n +1-a n (或a n -a n -1(n≥2))是否为一个与n 无关的常数. 3.对于通项公式的理解.a n =a 1+(n -1)d ⇒a n =nd +(a 1-d),所以,当d≠0时,a n 是关于n 的一次函数,一次项系数就是等差数列的公差,当d =0时,等差数列{a n }为常数列:a 1,a 1,a 1,…,a 1,…1.判断正误(正确的打“√”,错误的打“×”) (1)常数列是等差数列.( )(2)-1,-2,-3,-4,-5不是等差数列.( ) (3)若数列{a n }是等差数列,则其公差d =a 7-a 8.( ) [答案] (1)√ (2)× (3)×[提示] (1)正确,(2)不正确,数列-1,-2,-3,-4,-5是公差为-1的等差数列;(3)不正确,公差d =a 8-a 7.2.下列数列是等差数列的是( ) A .13,15,17,19 B .1,3,5,7 C .1,-1,1,-1D .0,0,0,0D [由等差数列的定义知:0,0,0,0是等差数列,选D .] 3.在等差数列{a n }中,a 2=4,a 8=a 6+3,则a 1=________.52 [由已知得⎩⎪⎨⎪⎧a 1+d =4,a 1+7d =a 1+5d +3,解得a 1=52.]4.在等差数列{a n }中,a 5=10,a 12=31,求a 20,a n . [解] 由a 5=10,a 12=31, 得7d =a 12-a 5=21,所以d =3,a 1=a 5-4d =10-4×3=-2. 所以a 20=a 1+19d =-2+19×3=55,a n =a 1+(n -1)d =-2+3(n -1)=3n -5(n ∈N +).。
高中数学第一章数列 数列在日常经济生活中的应用学案含解析北师大版必修5
§4数列在日常经济生活中的应用知识点一零存整取模型[填一填](1)单利:单利的计算是仅在原有本金上计算利息,对本金所产生的利息不再计算利息,其公式为利息=本金×利率×存期.若以P代表本金,n代表存期,r代表利率,S代表本金和利息和(以下简称本利和),则有S=P(1+nr).(2)复利:把上期末的本利和作为下一期的本金,在计算时每一期本金的数额是不同的.复利的计算公式是S=P(1+r)n.[答一答]1.简单总结一下本节课中几种模型的规律方法.提示:(1)银行存款中的单利是等差数列模型,本息和公式为S=P(1+nr).(2)银行存款中的复利是等比数列模型,本利和公式为S=P(1+r)n.(3)产值模型:原来产值的基础数为N,平均增长率为P,对于时间x的总产值y=N(1+P)x.(4)分期付款模型:a为贷款总额,r为年利率,b为等额还款数,则b=r(1+r)n a (1+r)n-1.知识点二数列知识的实际应用及解决问题的步骤[填一填](1)数列知识有着广泛的应用,特别是等差数列和等比数列.例如银行中的利息计算,计算单利时用等差数列,计算复利时用等比数列,分期付款要综合运用等差、等比数列的知识.(2)解决数列应用题的基本步骤为:①仔细阅读题目,认真审题,将实际问题转化为数列模型;②挖掘题目的条件,分析该数列是等差数列,还是等比数列,分清所求的是项的问题,还是求和问题;③检验结果,写出答案.[答一答]2.数列应用题中常见模型是哪些? 提示:等差模型和等比模型.1.数列实际应用题的解题策略解等差、等比数列应用题时,首先要认真审题,深刻理解问题的实际背景,理清蕴含在语言中的数学关系,把应用问题抽象为数学中的等差、等比数列问题,然后求解.2.处理分期付款问题的注意事项(1)准确计算出在贷款全部付清时,各期所付款额及利息(注:最后一次付款没有利息). (2)明确各期所付的款以及各期所付款到最后一次付款时所产生的利息之和等于商品售价及从购买到最后一次付款时的利息之和,只有掌握了这一点,才可以顺利建立等量关系.类型一 单利计算问题【例1】 有一种零存整取的储蓄项目,它是每月某日存入一笔相同的金额,这是零存;到约定日期,可以提出全部本金及利息,这是整取.它的本利和公式如下:本利和=每期存入金额×⎣⎡⎦⎤存期+12存期×(存期+1)×利率. (1)试解释这个本利和公式;(2)若每月初存入100元,月利率5.1‰,到第12个月底的本利和是多少?(3)若每月初存入一笔金额,月利率是5.1‰,希望到第12个月底取得本利和2 000元,那么每月应存入多少金额?【思路探究】 存款储蓄是单利计息,若存入金额为A ,月利率为P ,则n 个月后的利息是nAP .【解】 (1)设每期存入金额A ,每期利率P ,存入期数为n ,则各期利息之和为 AP +2AP +3AP +…+nAP =12n (n +1)AP .连同本金,就得:本利和=nA +12n (n +1)AP =A ⎣⎡⎦⎤n +12n (n +1)P . (2)当A =100,P =5.1‰,n =12时,本利和=100×⎝⎛⎭⎫12+12×12×13×5.1‰=1 239.78(元). (3)将(1)中公式变形得 A =本利和n +12n (n +1)P= 2 00012+12×12×13×5.1‰≈161.32(元).即每月应存入161.32元.规律方法 单利的计算问题,是等差数列模型的应用.王先生为今年上高中的女儿办理了“教育储蓄”,已知当年“教育储蓄”存款的月利率是2.7‰.(1)欲在3年后一次支取本息合计2万元,王先生每月大约存入多少元?(2)若教育储蓄存款总额不超过2万元,零存整取3年期教育储蓄每月至多存入多少元?此时3年后本息合计约为多少元?(精确到1元)解:(1)设王先生每月存入A 元,则有A (1+2.7‰)+A (1+2×2.7‰)+…+A (1+36×2.7‰)=20 000,利用等差数列前n 项和公式,得A ⎝⎛⎭⎫36+36×2.7‰+36×352×2.7‰=20 000,解得A ≈529元.(2)由于教育储蓄的存款总额不超过2万元,所以3年期教育储蓄每月至多存入20 00036≈555(元),这样,3年后的本息和为:555(1+2.7‰)+555(1+2×2.7‰)+…+555(1+36×2.7‰)=555⎝⎛⎭⎫36+36×2.7‰+36×352×2.7‰≈20 978(元).类型二 关于复利模型问题【例2】 小张为实现“去上海,看世博”的梦想,于2005年起,每年2月1日到银行新存入a 元(一年定期),若年利率r 保持不变,且每年到期存款自动转为新的一年定期,到2010年2月1日,将所有存款及利息全部取回,试求他可以得到的总钱数.【思路探究】 由题意知,本题为定期自动转存问题,应为等比数列前n 项和的模型. 【解】 依题意每一年的本息和构成数列{a n },则2005年2月1日存入的a 元钱到2006年1月31日所得本息和为a 1=a (1+r ).同理,到2007年1月31日所得本息和为 a 2=[a (1+r )+a ](1+r )=a (1+r )2+a (1+r ), 到2008年1月31日所得本息和为[a (1+r )2+a (1+r )+a ](1+r )=a (1+r )3+a (1+r )2+a (1+r ), 到2009年1月31日所得本息和为[a (1+r )3+a (1+r )2+a (1+r )+a ](1+r )=a (1+r )4+a (1+r )3+a (1+r )2+a (1+r ), 到2010年1月31日所得本息和为[a (1+r )4+a (1+r )3+a (1+r )2+a (1+r )+a ](1+r )=a (1+r )5+a (1+r )4+a (1+r )3+a (1+r )2+a (1+r ),所以2010年2月1日他可取回的钱数为a (1+r )5+a (1+r )4+a (1+r )3+a (1+r )2+a (1+r )=a ·(1+r )[1-(1+r )5]1-(1+r )=ar [(1+r )6-(1+r )](元).规律方法 本例主要考查阅读理解能力,这里关键是每年2月1日又新存入a 元,因此每年到期时所得钱的本息和组成一个等比数列前n 项和模型.某牛奶厂2013年初有资金1 000万元,由于引进了先进生产设备,资金年平均增长率可达到50%.每年年底扣除下一年的消费基金后,余下的资金投入再生产.这家牛奶厂每年应扣除多少消费基金,才能实现经过5年资金达到2 000万元的目标?解:设这家牛奶厂每年应扣除x 万元消费基金. 2013年底剩余资金是1 000(1+50%)-x ;2014年底剩余资金是[1 000(1+50%)-x ]·(1+50%)-x =1 000(1+50%)2-(1+50%)x -x ;……5年后达到资金1 000(1+50%)5-(1+50%)4x -(1+50%)3x -(1+50%)2x -(1+50%)x =2 000, 解得x =459(万元). 类型三 分期付款模型【例3】 用分期付款的方式购买一件家用电器,其价格为1 150元.购买当天先付150元,以后每月这一天都交付50元,并加付欠款的利息,月利率为1%,分20次付完.若交付150元以后的第1个月开始算分期付款的第1个月,问:分期付款的第10个月需交付多少钱?全部贷款付清后,买这件家电实际花了多少钱?【思路探究】 构建等差数列模型,利用等差数列的前n 项和公式求解.【解】 购买时付款150元,欠1 000元,以后每月付款50元,分20次付清.设每月付款数顺次构成数列{a n },则a 1=50+1 000×1%=60,a 2=50+(1 000-50)×1%=59.5=60-0.5×1, a 3=50+(1 000-50×2)×1%=59=60-0.5×2, ……a 10=50+(1 000-50×9)×1%=55.5=60-0.5×9, 则a n =60-0.5(n -1)=-0.5n +60.5(1≤n ≤20). 所以数列{a n }是以60为首项,-0.5为公差的等差数列,所以付款总数为S 20+150=20×60+20×192×(-0.5)+150=1 255(元).所以第10个月需交55.5元,全部付清实际花了1 255元.规律方法 解题时务必要注意第一次付款的利息是1 000元欠款的利息,而不是950元的利息,而最后一次付款的利息是50元欠款的利息.某人在2015年年初向银行申请个人住房公积金贷款20万元购买住房,月利率为3.375‰,按复利计算,每月等额还贷一次,并从贷款后的次月初开始还贷.如果10年还清,那么每月应还贷多少元?(参考数据:1.003 375120≈1.498 28)解:方法一:由题意知借款总额a =200 000(元),还款次数n =12×10=120, 还款期限m =10(年)=120(个月), 月利率r =3.375‰ .代入公式得,每月还款数额为: 200 000×0.003 375×(1+0.003 375)120(1+0.003 375)120-1≈2 029.66.故如果10年还清,每月应还贷约2 029.66元.方法二:设每月应还贷x 元,共付款12×10=120(次),则有x [1+(1+0.003 375)+(1+0.003 375)2+…+(1+0.003 375)119]=200 000×(1+0.003 375)120,解方程得x ≈2 029.66.故每月应还贷约2 029.66元. 类型四 增长率问题【例4】 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游业.根据规划,本年度投入800万元,以后每年投入将比上年减少15,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加14.(1)设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元,写出a n ,b n 的表达式;(2)至少经过几年旅游业的总收入才能超过总投入?【思路探究】 (1)由题设知各年的投入费用及旅游业收入分别构成等比数列,利用等比数列的前n 项和公式易得a n 与b n ;(2)建立a n 与b n 的不等关系,解不等式即得.【解】 (1)第一年投入为800万元,第二年投入为800⎝⎛⎭⎫1-15万元,…,第n 年投入为800⎝⎛⎭⎫1-15n -1万元,各年投入依次构成以800为首项,1-15=45为公比的等比数列,所以n 年内的总投入为a n =800⎣⎡⎦⎤1-⎝⎛⎭⎫45n 1-45=4 000-4 000·⎝⎛⎭⎫45n . 第一年旅游业收入为400万元,第二年旅游业收入为400⎝⎛⎭⎫1+14万元,…,第n 年旅游业收入为400⎝⎛⎭⎫1+14n -1万元,各年旅游业收入依次构成以400为首项,1+14=54为公比的等比数列,所以n 年内的旅游业总收入为b n =400⎣⎡⎦⎤1-⎝⎛⎭⎫54n 1-54=1 600⎝⎛⎭⎫54n -1 600. (2)设经过n 年旅游业的总收入才能超过总投入,则b n -a n >0,即1 600⎝⎛⎭⎫54n-1 600-4 000+4 000⎝⎛⎭⎫45n>0,化简得2⎝⎛⎭⎫54n +5⎝⎛⎭⎫45n-7>0.设⎝⎛⎭⎫45n=x ,代入上式得5x 2-7x +2>0,根据二次函数y =5x 2-7x +2的图像解此不等式, 得x <25或x >1(舍去),即⎝⎛⎭⎫45n <25,由此得n ≥5.故至少经过5年旅游业的总收入才能超过总投入.规律方法 当问题中涉及的各量依次以相同的倍数变化时,则考虑构建等比数列模型.其解题步骤为:(1)由题意构建等比数列模型(有时需要从特殊情况入手,归纳总结出一般规律,进而构建等比数列模型);(2)确定其首项a 1与公比q ,分清是求第n 项a n ,还是求前n 项和S n ; (3)利用等比数列的通项公式及前n 项和公式求解; (4)经过检验得出实际问题的答案.某商场出售甲、乙两种不同价格的笔记本电脑,其中甲商品因供不应求,连续两次提价10%,而乙商品由于外观过时而滞销,只得连续两次降价10%,最后甲、乙两种电脑均以9 801元售出.若商场同时售出甲、乙电脑各一台,与价格不升不降比较,商场赢利情况是少赚598元.解析:设甲原价是m 元,则m (1+10%)2=9 801⇒m =9 8011.21,设乙原价是n 元,则n (1-10%)2=9 801⇒n =9 8010.81.(m +n )-2×9 801=9 801×⎝⎛⎭⎫11.21+10.81-19 602=9 801× 2.021.21×0.81-19 602=20 200-19 602=598.——多维探究系列——数列中的探索性问题探索性问题是一种具有开放性和发散性的问题,此类题目的条件或结论不完备,要求考生自己去探索,结合已知条件,进行观察、分析、比较和概括.它对考生的数学思想、数学意识及综合运用数学方法解决问题的能力提出了较高的要求.这类问题不仅考查考生的探索能力,而且给考生提供了创新思维的空间,所以备受高考的青睐,是高考重点考查的内容.探索性问题一般可以分为:条件探索性问题、规律探索性问题、结论探索性问题、存在探索性问题等.【例5】 已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18. (1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.【思路分析】 (1)根据已知条件得出关于a 1,q 的方程组,求解即可;(2)只需表示出前n 项和,解指数不等式.【规范解答】 (1)设等比数列{a n }的公比为q ,则a 1≠0,q ≠0.由题意得⎩⎪⎨⎪⎧ S 2-S 4=S 3-S 2,a 2+a 3+a 4=-18,即⎩⎪⎨⎪⎧-a 1q 2-a 1q 3=a 1q 2,a 1q (1+q +q 2)=-18,解得⎩⎪⎨⎪⎧a 1=3,q =-2.故数列{a n }的通项公式为a n =3×(-2)n -1. (2)由(1)有S n =3[1-(-2)n ]1-(-2)=1-(-2)n .若存在n ,使得S n ≥2 013,则1-(-2)n ≥2 013, 即(-2)n ≤-2 012.当n 为偶数时,(-2)n >0,上式不成立;当n 为奇数时,(-2)n =-2n ≤-2 012,即2n ≥2 012,则n ≥11.综上,存在符合条件的正整数n ,且n 的集合为{n |n =2k +1,k ∈N ,k ≥5}.【名师点评】 求解此类题需要同学们熟练运用公式和相关概念来构建方程(组),进而求得数列的通项.本例题的难点在于对不等式2n ≥2 012的求解及对n 的奇偶性的讨论.建议熟记2的1~10次幂的值.已知数列{a n }中,a 1=1,且点P (a n ,a n +1)(n ∈N +)在直线x -y +1=0上. (1)求数列{a n }的通项公式;(2)设b n =1a n,S n 表示数列{b n }的前n 项和,试问:是否存在关于n 的关系式g (n ),使得S 1+S 2+S 3+…+S n -1=(S n -1)·g (n )对于一切不小于2的自然数n 恒成立?若存在,写出g (n )的解析式,并加以证明;若不存在,试说明理由.解:(1)由点P (a n ,a n +1)在直线x -y +1=0上, 即a n +1-a n =1,且a 1=1,即数列{a n }是以1为首项,1为公差的等差数列. 则a n =1+(n -1)×1=n (n ∈N +).(2)假设存在满足条件的g (n ), 由b n =1n ,可得S n =1+12+13+…+1n ,S n -S n -1=1n (n ≥2),nS n -(n -1)S n -1=S n -1+1, (n -1)S n -1-(n -2)S n -2=S n -2+1, …2S 2-S 1=S 1+1.以上(n -1)个等式等号两端分别相加得 nS n -S 1=S 1+S 2+S 3+…+S n -1+n -1,即S 1+S 2+S 3+…+S n -1=nS n -n =n (S n -1),n ≥2.令g (n )=n ,故存在关于n 的关系式g (n )=n ,使得S 1+S 2+S 3+…+S n -1=(S n -1)·g (n )对于一切不小于2的自然数n 恒成立.一、选择题1.有一种细菌和一种病毒,每个细菌在每秒钟末能在杀死一个病毒的同时将自身分裂为2个,现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要( B )A .6秒钟B .7秒钟C .8秒钟D .9秒钟解析:依题意,得1+21+22+…+2n -1≥100, ∴1-2n 1-2≥100,∴2n ≥101,∴n ≥7, 则所求为7秒钟.2.某林厂年初有森林木材存量S 立方米,木材以每年25%的增长率生长,而每年末都砍伐固定的木材量x 立方米,为实现经过两次砍伐后的木材的存量增加50%,则x 的值是( C )A.S 32B.S 34C.S 36D.S 38解析:一次砍伐后木材的存量为S (1+25%)-x ; 二次砍伐后木材存量为[S (1+25%)-x ](1+25%)-x =2516S -54x -x =S (1+50%),解得x =S 36. 3.某工厂2013年年底制订生产计划,要使工厂的年总产值到2023年年底在原有基础上翻两番,则年总产值的平均增长率为( A )A .4110-1B .5110-1C .3110-1D .4111-1二、填空题4.一个工厂的生产总值月平均增长率是p ,那么年平均增长率为(1+p )12-1.解析:一年12个月,故1月至12月产值构成公比为1+p 的等比数列,设去年年底产值为a ,∴a 12=a (1+p )12,∴年平均增长率为a (1+p )12-aa=(1+p )12-1.5.今年,某公司投入资金500万元,由于坚持改革、大胆创新,以后每年投入资金比上一年增加30%,那么7年后该公司共投入资金5 0003(1.37-1)万元.解析:设第n 年投入的资金为a n 万元, 则a n +1=a n +a n ×30%=1.3a n ,则a n +1a n=1.3,所以数列{a n }是首项为500,公比为1.3的等比数列,所以7年后该公司共投入资金S 7=a 1(1-q 7)1-q =500×(1-1.37)1-1.3=5 0003(1.37-1)(万元).。
2021_2022学年高中数学第一章数列2.2.1等差数列的前n项和课时素养评价含解析北师大版必修5
五等差数列的前n项和(20分钟35分)1.设数列{a n}是等差数列,其前n项和为S n,若a6=2且S5=30,则S8等于( )A.31B.32C.33D.34【解析】选B.由已知解得所以S8=8a1+d=32.2.在等差数列{a n}和{b n}中,a1=25,b1=15,a100+b100=139,则数列{a n+b n}的前100项的和为( )A.0B.4475C.8950D.10000【解析】选C.设=a n+b n,则c1=a1+b1=40,c100=a100+b100=139,{}是等差数列,所以前100项和S100===8 950.3.设等差数列{a n}的前n项和为S n,若S3=9,S6=36,则a7+a8+a9等于( )A.63B.45C.36D.27【解析】选B.因为a7+a8+a9=S9-S6,而由等差数列的性质可知,S3,S6-S3,S9-S6构成等差数列, 所以S3+(S9-S6)=2(S6-S3),即a7+a8+a9=S9-S6=2S6-3S3=2×36-3×9=45.4.设S n是等差数列{a n}的前n项和,若=,则等于( )A. B.C.D.【解析】选A.设S3=m,因为=,所以S6=3m,所以S6-S3=2m.由等差数列依次每k项之和仍为等差数列,得S3=m,S6-S3=2m,S9-S6=3m,S12-S9=4m,所以S12=10m.所以=.5.(2019·高考)设等差数列{a n}的前n项和为S n,若a2=-3,S5=-10,则a5=,S n的最小值为. 【解析】设公差为d,a2=a1+d=-3,S5=5a1+d=-10,即a1+2d=-2,解得a1=-4,d=1,所以a5=a1+4d=0,S n=na1+d=,当n=4或5时,S n最小,为-10.答案:0 -106.在等差数列{a n}中,a1=25,S17=S9,求S n的最大值.【解析】方法一:设等差数列{a n}的公差为d.由S17=S9,得25×17+×(17-1)d=25×9+×(9-1)d,解得d=-2.所以S n=25n+×(n-1)×(-2)=-(n-13)2+169.由二次函数的性质,知当n=13时,S n有最大值169.方法二:设等差数列{a n}的公差为d.由S17=S9,得25×17+×(17-1)d=25×9+×(9-1)d,解得d=-2.因为a1=25>0,由解得≤n≤,所以当n=13时,S n有最大值,S13=25×13+=169.【补偿训练】设数列{a n}是公差不为零的等差数列,S n是数列{a n}的前n项和,且=9S2,S4=4S2,求数列{a n}的通项公式.【解析】设等差数列{a n}的公差为d,由S n=na1+d及已知条件得(3a1+3d)2=9(2a1+d),①4a1+6d=4(2a1+d).②由②得d=2a1,代入①,有=a1,解得a1=0或a1=.当a1=0时,d=0(舍去),因此a1=,d=.故数列{a n}的通项公式为a n=+(n-1)×=(2n-1).(30分钟60分)一、选择题(每小题5分,共25分)1.已知等差数列{a n}的前n项和为S n.若S5=7,S10=21,则S15等于( )A.35B.42C.49D.63【解析】选B.在等差数列{a n}中,S5,S10-S5,S15-S10成等差数列,即7,14,S15-21成等差数列,所以7+(S15-21)=2×14,解得S15=42.2.(2018·全国Ⅰ卷)记S n为等差数列的前n项和.若3S3=S2+S4,a1=2,则a5=( )A.-12B.-10C.10D.12【解析】选 B.3=2a1+d+4a1+×d⇒9a1+9d=6a1+7d⇒3a1+2d=0⇒6+2d=0⇒d=-3,所以a5=a1+4d=2+4×(-3)=-10.3.(2020·某某高一检测)《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每个人所得成等差数列,最大的三份之和的是最小的两份之和,则最小的一份的量是( )A. B. C.D.【解题指南】由题意可得中间部分的为20个面包,设最小的一份为a1,公差为d,可得到a1和d 的方程,即可求解.【解析】选D.由题意可得中间的那份为20个面包,设最小的一份为a1,公差为d,由题意可得[20+(a1+3d)+(a1+4d)]×=a1+(a1+d),解得a1=.4.(2020·仙游高一检测)记S n为等差数列的前n项和.已知S4=0,a5=5,则( )A.a n=2n-5B.a n=3n-10C.S n=2n2-8nD.S n=n2-2n【解析】选A.由题知,解得,所以a n=2n-5.所以S n==n2-4n.【光速解题】选 A.本题还可用排除法,对B,a5=5,S4==-10≠0,排除B;对C,S4=0,a5=S5-S4=2×52-8×5-0=10≠5,排除C;对D,S4=0,a5=S5-S4=×52-2×5-0=≠5,排除D.5.等差数列{a n}的前四项和为124,后四项和为156,各项和为210,则此数列的项数为( )A.5B.6C.7D.8【解析】选B.由题意知a1+a2+a3+a4=124,a n+a n-1+a n-2+a n-3=156,所以4(a1+a n)=280,所以a1+a n=70.又S==×70=210,所以n=6.二、填空题(每小题5分,共15分)6.(2019·某某高考)已知数列{a n}(n∈N+)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是.【解析】设等差数列的首项为a1,公差为d,由a2a5+a8=0,S9=27,得解得a1=-5,d=2,所以S8==4(2a1+7d)=16.答案:167.已知S n是等差数列{a n}的前n项和,若a1=-2018,-=6,则S2020=.【解析】由等差数列的性质可得也为等差数列.设其公差为d,则-=6d=6,所以d=1.故=+2 019d=-2 018+2 019=1,所以S2 020=1×2 020=2 020.答案:2 0208.(2020·全国Ⅱ卷)记S n为等差数列的前n项和.若a1=-2,a2+a6=2,则S10=.【解析】设等差数列的公差为d.因为是等差数列,且a1=-2,a2+a6=2,根据等差数列通项公式:a n=a1+d,可得a1+d+a1+5d=2,即-2+d++5d=2,整理可得:6d=6,解得:d=1.根据等差数列前n项和公式:S n=na1+d,n∈N*,可得:S10=10×+=-20+45=25,所以S10=25. 答案:25三、解答题(每小题10分,共20分)9.在等差数列{a n}中.(1)a1=105,a n=994,d=7,求S n;(2)d=2,a n=11,S n=35,求a1和n.【解析】(1)d====7,解得n=128.所以S n===70 336.(2)由得解方程组得或10.设等差数列的前n项和为S n,且a5+a13=34,S3=9.(1)求数列的通项公式及前n项和公式.(2)设数列{b n}的通项公式为b n=,问:是否存在正整数t,使得b1,b2,b m(m≥3,m∈N)成等差数列?若存在,求出t和m的值;若不存在,请说明理由.【解析】(1)设等差数列的公差为d,因为a5+a13=34,S3=9.所以整理得解得所以a n=1+(n-1)×2=2n-1,S n=n×1+×2=n2.(2)由(1)知b n=,所以b1=,b2=,b m=,若b1,b2,b m(m≥3,m∈N)成等差数列,则2b2=b1+b m,所以=+,即6(1+t)(2m-1+t)=(3+t)(2m-1+t)+(2m-1)(1+t)(3+t),整理得(m-3)t2-(m+1)t=0,因为t是正整数,所以(m-3)t-(m+1)=0,m=3时显然不成立,所以t===1+.又因为m≥3,m∈N,所以m=4或5或7,当m=4时,t=5;当m=5时,t=3;当m=7时,t=2.所以存在正整数t,使得b1,b2,b m(m≥3,m∈N)成等差数列.即当t=5时,b1,b2,b4成等差数列;当t=3时,b1,b2,b5成等差数列;当t=2时,b1,b2,b7成等差数列.1.一个凸多边形的内角成等差数列,其中最小的内角为120°,公差为5°,那么这个多边形的边数n等于( )A.12B.16C.9D.16或9【解析】选C.a n=120+5(n-1)=5n+115,由a n<180得n<13且n∈N+,由n边形内角和定理得,(n-2)×180=n×120+×5.解得n=16或n=9,因为n<13,所以n=9.2.某仓库有同一型号的圆钢600根,堆放成如图所示的形状,从第二层开始,每一层比下面一层少放一根,而第一层至少要比第二层少一根,要使堆垛的占地面积最小(即最下面一层根数最少),则最下面一层放几根?共堆了多少层?【解析】设最下面一层放n根,则最多可堆n层,则1+2+3+…+n=≥600,所以n2+n-1 200≥0,记ƒ(n)=n2+n-1 200,因为当n∈N+时,f(n)单调递增,而f(35)=60>0,f(34)=-10<0,所以n≥35,因此最下面一层最少放35根.因为1+2+3+…+35=630,所以最多可堆放630根,必须去掉上面30根,去掉顶上7层,共1+2+3+…+7=28根,再去掉顶上第8层的2根,剩下的600根共堆了28层.故最下面一层放35根,共堆了28层.高考- 11 - / 11。
高中数学 第一章 数列 1.2 等差数列 1.2.2 第2课时 等差数列的综合问题学案(含解析)北师
第2课时等差数列的综合问题知识点一等差数列的性质[填一填](1)若{a n}为等差数列,则距首末距离相等的两项之和都相等,且等于首末两项之和,即a1+a n=a2+a n-1=a3+a n-2=….(2)若{a n}为等差数列,m,n,p,q∈N+,且m+n=p+q,则a m+a n=a p+a q.(3)若{a n}为等差数列,m,k,n成等差数列,则a m,a k,a n也成等差数列(m,k,n∈N+),即若m+n=2k,则a m+a n=2a k.[答一答]1.对于性质:若{a n}为等差数列,m,n,p,q∈N+,且m+n=p+q,则a m+a n=a p +a q,请给出证明.提示:证明:设{a n}的公差为d,则a m=a1+(m-1)d,a n=a1+(n-1)d,a p=a1+(p-1)d,a q=a1+(q-1)d,∴a m+a n=2a1+(m+n-2)d,a p+a q=2a1+(p+q-2)d,∵m+n=p+q,∴a m+a n=a p+a q.知识点二 等差数列前n 项和的性质[填一填](1)等差数列前n 项和公式S n =na 1+n (n -1)2d 可写成S n =d2n 2+⎝⎛⎭⎫a 1-d 2n ,即S n =An 2+Bn (A ,B 为常数)的形式,当A ≠0时(即d ≠0),S n 是关于n 的二次函数,其图像是抛物线y =Ax 2+Bx 上的一群孤立的点.(2)若{a n },{b n }都是等差数列,则{pa n +qb n }(p ,q 为常数)是等差数列.(3)若等差数列{a n }的公差为d ,前n 项和为S n ,则数列S k ,S 2k -S k ,S 3k -S 2k ,…(k ∈N +)也是等差数列,其公差等于k 2d .(4)若等差数列{a n }的项数为2n (n ∈N +),则S 2n =n (a n +a n +1)(a n ,a n +1为中间两项),且S偶-S 奇=nd ,S 偶S 奇=a n +1a n.(5)若等差数列{a n }的项数为2n -1(n ∈N +),则S 2n -1=(2n -1)a n (a n 为中间项),且S 奇-S偶=a n ,S 偶S 奇=n -1n .[答一答]2.等差数列前n 项和的“奇偶”性质:在等差数列{a n }中,公差为d ,①若数列共有2n 项,则S 2n =n (a n +a n +1),S 偶-S 奇=nd ,S 偶S 奇=a n +1a n ;②若数列共有2n +1项,则S 2n+1=(2n +1)a n +1,S 偶-S 奇=-a n +1,S 偶S 奇=n(n +1).请给出证明.提示:证明:①若数列共有2n 项,则S 2n =2n (a 1+a 2n )2=2n (a n +a n +1)2=n (a n +a n +1),S 偶=n (a 2+a 2n )2=2na n +12=na n +1,S 奇=n (a 1+a 2n -1)2=2na n2=na n ,S 偶-S 奇=na n +1-na n =n (a n +1-a n )=nd , S 偶S 奇=a n +1a n ;②若数列共有2n +1项,则S 2n +1=(2n +1)(a 1+a 2n +1)2=2(2n +1)a n +12=(2n +1)a n +1,S 偶=n (a 2+a 2n )2=2na n +12=na n +1,S 奇=(n +1)(a 1+a 2n +1)2=2(n +1)a n +12=(n +1)a n +1,S 偶-S 奇=-a n +1, S 偶S 奇=n(n +1).1.三数成等差数列的设法为:a -d ,a ,a +d ,其中d 为公差;四数成等差数列的设法为:a -3d ,a -d ,a +d ,a +3d ,其公差为2d .2.会用方程的思想处理等差数列的有关问题.等差数列的通项公式与前n 项和公式涉及五个量:a 1,d ,n ,a n ,S n ,知道其中任意三个就可以通过列方程组求出另外两个(俗称“知三求二”).解等差数列问题的基本方法是方程法,在遇到一些较复杂的方程组时,要注意整体代换,使运算更加迅速和准确.类型一 等差数列的性质的应用【例1】 在等差数列{a n }中,(1)若a 3+a 4+a 5+a 6+a 7=350,则a 2+a 8=________;(2)若a 2+a 3+a 4+a 5=34,a 2·a 5=52,且a 4<a 2,则a 5=________; (3)若a 3=6,则a 1+2a 4=________.【解析】 若设出a 1,d 从通项公式入手,运算过程较为繁琐,若能利用性质,可使问题简化.(1)∵a 3+a 7=a 4+a 6=2a 5=a 2+a 8,又由已知a 3+a 4+a 5+a 6+a 7=350,∴5a 5=350, ∴a 5=70,∴a 2+a 8=2a 5=140.(2)∵a 2+a 3+a 4+a 5=34,又由等差数列的性质知a 3+a 4=a 2+a 5,∴2(a 2+a 5)=34,∴a 2+a 5=17.又a 2·a 5=52,联立⎩⎪⎨⎪⎧a 2+a 5=17a 2·a 5=52,解之得⎩⎪⎨⎪⎧a 2=4a 5=13,或⎩⎪⎨⎪⎧a 2=13a 5=4,又∵a 4<a 2,∴a 4-a 2=2d <0, ∴d <0,∴a 2>a 5,∴a 5=4.(3)∵a 3=6,∴a 1+2a 4=a 1+a 3+a 5=a 3+(a 1+a 5)=a 3+2a 3=3a 3=18. 【答案】 (1)140 (2)4 (3)18规律方法 等差数列具有一些性质,例如当m +n =p +q (m ,n ,p ,q ∈N +)时,有a m +a n =a p +a q ,特别地,当m +n =2k (m ,n ,k ∈N +)时,有a m +a n =2a k ;a n =a m +(n -m )d 等等.灵活运用这些性质,可大大简化解题过程.【例2】 在等差数列{a n }中,已知a 2+a 5+a 8=9,a 3a 5a 7=-21,求数列的通项公式. 【思路探究】 要求通项公式,需要求出首项a 1及公差d ,由a 2+a 5+a 8=9和a 3a 5a 7=-21直接求解很困难,这就促使我们转换思路.如果考虑到等差数列的性质,注意到a 2+a 8=2a 5=a 3+a 7,问题就容易解决了.【解】 a 2+a 5+a 8=9,a 3a 5a 7=-21,又由等差数列的性质知a 2+a 8=a 3+a 7=2a 5,∴a 5=3, ∴a 2+a 8=a 3+a 7=6,① 又a 3a 5a 7=-21, ∴a 3a 7=-7,②由①②解得a 3=-1,a 7=7或a 3=7,a 7=-1. ∴a 3=-1,d =2或a 3=7,d =-2. 由通项公式的变形公式a n =a 3+(n -3)d , 得a n =2n -7或a n =-2n +13.规律方法 若m +n =p +q ,则a m +a n =a p +a q ,此性质要求等式两边必须是两项和的形式,否则不成立,如a 10≠a 2+a 8,只能是a 2+a 8=a 3+a 7,使用时应切记它的结构特征.在等差数列{a n }中,a 3+a 7=36,则a 2+a 4+a 5+a 6+a 8=90. 解析:a 3+a 7=a 2+a 8=a 4+a 6=2a 5=36, ∴a 2+a 4+a 5+a 6+a 8==36+36+18=90.类型二 等差数列前n 项和的性质【例3】 项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求这个数列的中间项及项数.【思路探究】 根据等差数列中的奇数项依次仍成等差数列,偶数项依次仍成等差数列可求解.【解】 设等差数列{a n }共有(2n +1)项,则奇数项有(n +1)个,偶数项有n 个,中间项是第(n +1)项,即a n +1,所以S 奇S 偶=12(a 1+a 2n +1)·(n +1)12(a 2+a 2n )·n=(n +1)a n +1na n +1=n +1n =4433=43.解得n =3.又因为S 奇=(n +1)·a n +1=44,所以a n +1=11. 故这个数列的中间项为11,共有2n +1=7项.规律方法 在等差数列{a n }中,(1)若项数为2n +1(n ∈N +),则S 奇S 偶=n +1n ,其中S 奇=(n +1)a n +1,S 偶=na n +1;(2)若数列的项数为2n (n ∈N +),则S 偶-S 奇=nd .【例4】 已知等差数列{a n }的前10项和为30,它的前30项和为210,则前20项和为( )A .100B .120C .390D .540【解析】 方法一:设等差数列{a n }的前n 项和为S n =na 1+n (n -1)2d .由题意,得⎩⎪⎨⎪⎧10a 1+45d =30,30a 1+435d =210,解得⎩⎨⎧a 1=65,d =25.∴S n =65n +n (n -1)2·25=15(n 2+5n ).∴S 20=15×(202+5×20)=100.方法二:设S n =An 2+Bn ,由题意,得⎩⎪⎨⎪⎧100A +10B =30,900A +30B =210,解得⎩⎪⎨⎪⎧A =15,B =1.∴S n =15n 2+n .∴S 20=15×202+20=100.方法三:由题意,知S 10,S 20-S 10,S 30-S 20也是等差数列. ∴2(S 20-S 10)=S 10+S 30-S 20,即S 20=13(3S 10+S 30)=S 10+13S 30=100.【答案】 A规律方法 一个等差数列,从首项起,分成项数相等的若干段后,各段内诸项之和组成新的等差数列.若每段含有n 项,则新公差是原公差的n 2倍.(1)已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为3. (2)在等差数列{a n }中,a 1=-2 017,其前n 项和为S n ,若S 1010-S 88=2,则S 2 017的值等于-2_017.解析:(1)由等差数列前n 项和的性质,得S 偶-S 奇=102×d (d 为该数列的公差),即30-15=5d ,解得d =3.(2)方法一:设等差数列{a n }的公差为d ,由S 1010-S 88=2得-2 017×10+10×92d10--2 017×8+8×72d8=2,解得d =2,所以S 2 017=-2 017×2 017+2 017×2 0162×2=-2 017.方法二:由等差数列前n 项和的性质可知,数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列,设其公差为d ,则由S 1010-S 88=2可得2d =2,即d =1.又S 11=-2 017,所以S 2 0172 017=-2 017+(2 017-1)×1=-1,所以S 2 017=-2 017.类型三 等差数列的综合应用题【例5】 已知数列{a n }是等差数列. (1)若a m =n ,a n =m (m ≠n ),求a m +n ; (2)若S m =n ,S n =m (m >n ),求S m +n .【思路探究】 (1)由通项公式或前n 项和公式得a 1和d 的关系,通过解方程组求得a 1和d ,进而求得a m +n 和S m +n .(2)利用等差数列的性质可使问题简化.【解】 设首项为a 1,公差为d , (1)解法一:由a m =n ,a n =m ,得⎩⎪⎨⎪⎧a 1+(m -1)d =n ,a 1+(n -1)d =m ,解得a 1=m +n -1,d =-1.∴a m +n =a 1+(m +n -1)d =m +n -1-(m +n -1)=0. 解法二:由a m =n ,a n =m ,得d =n -mm -n =-1,∴a m +n =a m +(m +n -m )d =n +n ×(-1)=0. (2)解法一:由已知可得 ⎩⎪⎨⎪⎧m =na 1+n (n -1)2d ,n =ma 1+m (m -1)2d ,解得⎩⎪⎨⎪⎧a 1=n 2+m 2+mn -m -nmn ,d =-2(m +n )mn .∴S m +n =(m +n )a 1+(m +n )(m +n -1)2d =-(m +n ).解法二:∵{a n }是等差数列, ∴可设S n =An 2+Bn .则⎩⎪⎨⎪⎧Am 2+Bm =n ,①An 2+Bn =m .②①-②得A (m 2-n 2)+B (m -n )=n -m , ∵m ≠n ,∴A (m +n )+B =-1.∴S m +n =A (m +n )2+B (m +n )=-(m +n ).规律方法 (1)灵活运用性质求等差数列中的量,可以简化运算,提高解题速度及准确性;(2)在应用性质:若m +n =l +k ,则a m +a n =a l +a k 时,首先要找到项数和相等的条件,然后根据需要求解,解决此类问题要有整体代换的意识.数列{a n }满足a 1=1,a n +1=a n +2,且前n 项和为S n . (1)求数列{S nn }的前n 项和T n ;(2)求数列{1T n}的前n 项和.解:(1)由a n +1=a n +2,得数列{a n }是等差数列,且a 1=1,公差d =2, 从而a n =2n -1,∴S n =n (a 1+a n )2=n 2.∴S nn =n ,从而T n =n (n +1)2. (2)由(1)有1T n =2n (n +1)=2(1n -1n +1),其前n 项和为2[(11-12)+(12-13)+(13-14)+…+(1n -1n +1)]=2nn +1.——多维探究系列—— 特殊值法解等差数列问题特殊值法在解一些选择题和填空题中经常用到,就是通过取一些特殊值、特殊点、特殊函数、特殊数列、特殊图形等来求解或否定问题的目的.用特殊值法解题时要注意,所选取的特例一定要简单,且符合题设条件.【例6】 在等差数列{a n }中,a 1=1,前n 项和S n 满足条件S 2n S n =4n +2n +1,n =1,2,…,则a n =________.【思路分析】 因S n =na 1+n (n -1)2d =n +n (n -1)2d ,则S 2n =2na 1+2n (2n -1)2d =2n +n (2n -1)d ,故S 2n S n =2n +n (2n -1)d n +n (n -1)2d=2(2dn +2-d )dn +2-d =4n +2n +1, 解得d =1,则a n =n . 【规范解答】 n已知正数数列{a n }对任意p ,q ∈N +,都有a p +q =a p +a q ,若a 2=4,则a 9=( C ) A .6 B .9 C .18D .20解析:解法一:∵a 2=a 1+1=a 1+a 1=4,∴a 1=2,a 9=a 8+1=a 8+a 1=2a 4+a 1=4a 2+a 1=18.解法二:∵a 2=a 1+1=a 1+a 1=4,∴a 1=2,令p =n ,q =1,所以a n +1=a n +a 1,即a n +1-a n =2,∴{a n }是等差数列,且首项为2,公差为2,故a 9=2+(9-1)×2=18.一、选择题1.设S n 是等差数列{a n }的前n 项和,S 5=10,则a 3的值为( C ) A.65B .1C .2D .3 解析:∵S 5=5(a 1+a 5)2=5a 3,∴a 3=15S 5=15×10=2.2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 1=4,则公差d 等于( C ) A .1 B.53C .-2D .3解析:由题意,得6=3×4+3×22d ,解得d =-2.3.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项和S 10等于( C ) A .138 B .135 C .95 D .23解析:设公差为d ,则⎩⎪⎨⎪⎧a 1+d +a 1+3d =4,a 1+2d +a 1+4d =10, 解得a 1=-4,d =3,所以S 10=10a 1+10×92d =95. 二、填空题4.在数列{a n }中,a n =5n -105,则当n =20或21时,S n 取最小值.5.已知{a n }是等差数列,S n 为其前n 项和,n ∈N +,若a 3=16,S 20=20,则S 10的值为110.解析:设等差数列{a n }的首项为a 1,公差为d . a 3=a 1+2d =16,S 20=20a 1+20×192d =20. ∴⎩⎪⎨⎪⎧ a 1+2d =16,2a 1+19d =2.解得⎩⎪⎨⎪⎧ a 1=20,d =-2.∴S 10=10a 1+10×92d =200-90=110. 三、解答题6.等差数列{a n }中,a 2+a 3=-38,a 12=0,求S n 的最小值以及相对应的n 值. 解:解法一:(单调性法)设等差数列{a n }的首项为a 1,公差为d ,则有⎩⎪⎨⎪⎧ (a 1+d )+(a 1+2d )=-38a 1+11d =0, 解得⎩⎪⎨⎪⎧ a 1=-22d =2.∴当⎩⎨⎧ a n ≤0a n +1≥0, 即⎩⎪⎨⎪⎧-22+2(n -1)≤0-22+2n ≥0时,S n 有最小值,解得11≤n ≤12, ∴当n =11或12时,S n 取得最小值,最小值为S 11=S 12=-132. 解法二:(配方法)由解法一得⎩⎪⎨⎪⎧a 1=-22d =2,∴S n =-22n +n (n -1)2×2=n 2-23n =⎝⎛⎭⎫n -2322-5294, ∴当n =11或12时,S n 取得最小值,最小值为S 11=S 12=-132. 解法三:(邻项比较法)由解法二得S n =n 2-23n ,又由⎩⎪⎨⎪⎧ S n ≤S n -1,S n ≤S n +1,得⎩⎪⎨⎪⎧n 2-23n ≤(n -1)2-23(n -1),n 2-23n ≤(n +1)2-23(n +1), 解得11≤n ≤12,故S 11=S 12, ∴当n =11或12时,S n 取得最小值,最小值为S 11=S 12=-132.。
2020_2021学年高中数学第一章数列2等差数列第1课时等差数列的概念及通项公式练习(含解析)北师大版必修5
等差数列的概念及通项公式A 级 基础巩固一、选择题1.在等差数列{a n }中,a 2=2,a 3=4,则a 10=( D ) A .12 B .14 C .16D .18[解析] 该题考查等差数列的通项公式,由其两项求公差d . 由a 2=2,a 3=4知d =4-23-2=2.∴a 10=a 2+8d =2+8×2=18.2.等差数列3,1,-1,-3,…,-97的项为( B ) A .52 B .51 C .49D .50[解析] ∵a 1=3,a 2=1,∴d =1-3=-2, ∴a n =3+(n -1)×(-2)=-2n +5, 由-97=-2n +5,得n =51.3.(2019·威海检测)已知m 和2n 的等差中项是4,2m 和n 的等差中项是5,则m 和n 的等差中项是( B )A .2B .3C .6D .9 [解析] 由题意2m +n =10,2n +m =8,两式相加得3m +3n =18,∴m +n =6,∴m +n2=3.4.在等差数列{a n }中,a 2=-5,a 6=a 4+6,则a 1等于( B ) A .-9 B .-8 C .-7D .-4[解析] 由题意,得⎩⎪⎨⎪⎧a 1+d =-5a 1+5d =a 1+3d +6,解得a 1=-8. 5.已知a =13+2,b =13-2,则a ,b 的等差中项为( A ) A . 3 B . 2 C .33D .22[解析]a +b2=13+2+13-22=3-2+3+22= 3.6.设x 是a 与b 的等差中项,x 2是a 2与-b 2的等差中项,则a ,b 的关系是( C ) A .a =-bB .a =3bC .a =-b 或a =3bD .a =b =0[解析] 由等差中项的定义知:x =a +b2,x 2=a 2-b 22,∴a 2-b 22=(a +b2)2,即a 2-2ab -3b 2=0.故a =-b 或a =3b . 二、填空题7.lg(3+2)与lg(3-2)的等差中项是 0 .[解析] lg(3+2)+lg(3-2)=lg(3-2)=0,所以lg(3+2)与lg(3-2)的等差中项是0.8.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为6766升. [解析] 设此等差数列为{a n },公差为d ,则⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,∴⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4,解得⎩⎪⎨⎪⎧a 1=1322,d =766,∴a 5=a 1+4d =1322+4×766=6766.三、解答题9.在等差数列{a n }中,已知a 5=10,a 15=25,求a 25.[解析] 方法一:设数列{a n }的首项为a 1,公差为d ,则根据题意可得⎩⎪⎨⎪⎧a 1+4d =10,a 1+14d =25.解这个方程组,得a 1=4,d =32.∴这个数列的通项公式为a n =4+32×(n -1),即a n =32n +52.∴a 25=32×25+52=40.方法二:由题意可知:a 15=a 5+10d ,即25=10+10d , ∴10d =15.又∵a 25=a 15+10d ,∴a 25=25+15=40. 10.已知数列{a n }满足a 1=2,a n +1=2a na n +2, (1)数列{1a n}是否为等差数列?说明理由.(2)求a n .[解析] (1)数列{1a n}是等差数列,理由如下:∵a 1=2,a n +1=2a n a n +2,∴1a n +1=a n +22a n =12+1a n, ∴1a n +1-1a n =12,即{1a n }是首项为1a 1=12, 公差为d =12的等差数列.(2)由上述可知1a n =1a 1+(n -1)d =n2,∴a n =2n.(n ∈N +)B 级 素养提升一、选择题1.{a n }是首项为a 1=4,公差d =2的等差数列,如果a n =2 020,则序号n 等于( A ) A .1 009 B .1 012 C .1 008D .1 010[解析] ∵a 1=4,d =2,∴a n =a 1+(n -1)d =4+2(n -1)=2n +2, ∴2n +2=2 020,∴n =1 009.2.数列{a n }中,a 1=2,2a n +1=2a n +1,则a 101的值是( D ) A .49 B .50 C .51D .52 [解析] 由2a n +1=2a n +1得a n +1-a n =12,∴{a n }是等差数列,首项a 1=2,公差d =12,∴a n =2+12(n -1)=n +32,∴a 101=101+32=52.3.在首项为81,公差为-7的等差数列中,值最接近零的项是( C ) A .第11项 B .第12项 C .第13项D .第14项[解析] 由a n =a 1+(n -1)d 得a n =-7n +88, 令a n ≥0,解得n ≤887=1247.而a 12=4,a 13=-3, 故a 13的值最接近零.4.等差数列的首项为125,且从第10项开始为比1大的项,则公差d 的取值范围是( D )A .d >875B .d <325C .875<d <325D .875<d ≤325[解析] 由题意⎩⎪⎨⎪⎧a 10>1a 9≤1,∴⎩⎪⎨⎪⎧125+9d >1125+8d ≤1,∴875<d ≤325. 二、填空题5.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6= 13 . [解析] 由a 5=a 2+6得a 5-a 2=6, 故3d =6,d =2.∴a 6=a 3+3d =7+3×2=13.6.若x ≠y ,两个数列:x ,a 1,a 2,a 3,y 和x ,b 1,b 2,b 3,b 4,y 都是等差数列,则a 2-a 1b 3-b 2= 54.[解析] 设这两个等差数列的公差分别为d 1,d 2. 则a 2-a 1b 3-b 2=d 1d 2.由等差数列的性质,是y -x =4d 1=5d 2,∴d 1d 2=54. 三、解答题7.等差数列{a n }中, a 3+a 4=4,a 5+a 7=6. (1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.[解析] (1)设数列{a n }的公差为d ,由题意有2a 1+5d =4,a 1+5d =3.解得a 1=1,d =25. 所以{a n }的通项公式为a n =2n +35. (2)由(1)知,b n =[2n +35].当n =1,2,3时,1≤2n +35<2,b n =1;当n =4,5时,2<2n +35<3,b n =2;当n =6,7,8时,3≤2n +35<4,b n =3;当n =9,10时,4<2n +35<5,b n =4.所以数列{b n }的前10项和为1×3+2×2+3×3+4×2 =24. 8.已知f (x )=2x x +2,在数列{x n }中,x 1=13,x n =f (x n -1)(n ≥2,n ∈N *),试说明数列{1x n}是等差数列,并求x 95的值.[解析] 因为当n ≥2时,x n =f (x n -1), 所以x n =2x n -1x n -1+2(n ≥2),即x n x n -1+2x n =2x n -1(n ≥2), 得2x n -1-2x n x n x n -1=1(n ≥2),即1x n -1x n -1=12(n ≥2).又1x 1=3,所以数列{1x n }是以3为首项,12为公差的等差数列,所以1x n =3+(n -1)×12=n +52,所以x n =2n +5,所以x 95=295+5=150.。
2021-2022学年北师大版必修5 1.2.1 等差数列 教案
【课题】等差数列的定义【教学目标】(1)理解等差数列的定义;(2)逐步灵活应用等差数列的概念;(3)通过教学,培养学生的观察、分析、归纳、推理的能力,渗透由特殊到一般的思想。
【教学重点】等差数列的概念【教学难点】等差数列的概念理解【教学方法】合作探究,讨论法【教具准备】黑板,多媒体【课时安排】1课时【教学过程】(一)情境引入问题1:如下图,建筑工地堆放一堆木材,从上到下每层的数目分别为多少?1,2,3,4,5,6,7,8,9,10以此类推,第十一层有多少? 第十二层?第十三层呢? ……思考:上述两个例子中的数列有什么特点?数列从第二项起,每一项减去前一项的差等于同一个常数〔二〕.探究新知〔三〕.例题例1:判断以下数列是否为等差数列?〔1〕1,2,4,6,8,10,12,…;〔2〕0,1,2,3,4,5,6,…;〔3〕3,3,3,3,3,3,3,…;〔4〕2,4,7,11,16,…;〔5〕-8,-6,-4,0,2,4,…;例2:求以下数列的公差。
〔1〕5,5,5,5,5,…〔2〕4,5,6,7,8,9,…〔3〕2,0,-2,-4,-6,-8,-10.例3:等差数列的首项为12,公差为-5,试写出这个数列的第2项到第五项。
解 由于5,121-==d a ,因此 ()751212=-+=+=d a a ; 〔四〕稳固练习{}n a 为等差数列,58a =-,公差2d =,试写出这个数列的第8项8a .2.写出等差数列11,8,5,2,…的第10项. 〔五〕课堂小结本节课你学习到了哪些内容? 〔六〕作业。
高中数学第一章数列2.1.2等差数列的性质课时素养评价含解析北师大版必修5
等差数列的性质(20分钟35分)1.在等差数列{a n}中,a10=30,a20=50,则a40等于( )A.40B.70C.80D.90【解析】选D.方法一:设公差为d.因为a20=a10+10d,所以50=30+10d,所以d=2,a40=a20+20d=50+20×2=90.方法二:因为2a20=a10+a30,所以2×50=30+a30,所以a30=70,又因为2a30=a20+a40,所以2×70=50+a40,所以a40=90.2.在等差数列{a n}中,已知a1=2,a2+a3=13,则a4+a5+a6等于( )A.40B.42C.43D.45【解析】选B.因为a2+a3=13,所以2a1+3d=13.因为a1=2,所以d=3.所以a4+a5+a6=3a5=3(a1+4d)=42.3.在等差数列{a n}中,首项a1=0,公差d≠0.若a k=a1+a2+a3+…+a7,则k= ( )A.22B.23C.24D.25【解题指南】利用等差数列的性质得:a1+a2+a3+…+a7=7a4.【解析】选A.因为数列{a n}为等差数列,首项a1=0,公差d≠0,所以a k=a1+(k-1)d=a1+a2+a3+…+a7=7a4=21d.解得k=22.4.设{a n}是公差为正数的等差数列,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13等于 ( )A.120B.105C.90D.75【解析】选B.设公差为d.因为a1+a2+a3=3a2=15,所以a2=5,又因为a1a2a3=80,所以a1a3=16,即(a2-d)(a2+d)=16,因为d>0,所以d=3.则a11+a12+a13=3a12=3(a2+10d)=105.5.(2020·重庆高一检测)等差数列中a2+a4+a6+a8=20,则a3+a7= .【解析】a2+a4+a6+a8=2=20,所以a3+a7=10.答案:106.(1)三个数成等差数列,和为6,积为-24,求这三个数;(2)四个数成递增等差数列,中间两数的和为2,首末两项的积为-8,求这四个数.【解析】(1)方法一:设等差数列的等差中项为a,公差为d,则这三个数分别为a-d,a,a+d,由已知,3a=6且a(a-d)(a+d)=-24,所以a=2,代入a(a-d)(a+d)=-24,化简得d2=16,于是d=±4,所以这三个数为-2,2,6或6,2,-2.方法二:设首项为a,公差为d,则这三个数分别为a,a+d,a+2d,由已知,3a+3d=6,且a(a+d)(a+2d)=-24,所以a=2-d,代入a(a+d)(a+2d)=-24,得2(2-d)(2+d)=-24,整理得4-d2=-12,即d2=16,于是d=±4,所以,这三个数为-2,2,6或6,2,-2.(2)方法一:设这四个数为a-3d,a-d,a+d,a+3d(公差为2d),由已知,2a=2,且(a-3d)(a+3d)=-8,即a=1,a2-9d2=-8,所以d2=1,所以d=1或d=-1.又四个数成递增等差数列,所以d>0,所以d=1,所以所求的四个数为-2,0,2,4.方法二:设这四个数为a,a+d,a+2d,a+3d(公差为d),由已知,2a+3d=2,且a(a+3d)=-8, 把a=1-d代入a(a+3d)=-8,得=-8,即1-d2=-8,化简得d2=4,所以d=2或-2.又四个数成递增等差数列,所以d>0,所以d=2,所以所求的四个数为-2,0,2,4.【补偿训练】设数列{a n}是等差数列,b n=,又因为b1+b2+b3=,b1b2b3=,求通项a n.【解析】因为b1b2b3=,又因为b n=,所以··=.所以=,所以a1+a2+a3=3,又因为{a n}成等差数列,所以a2=1,a1+a3=2,所以b1b3=,b1+b3=,所以或即或所以a n=2n-3或a n=-2n+5.(30分钟60分)一、选择题(每小题5分,共25分)1.(2020·石嘴山高一检测)在等差数列中,若a1+a2=4,a3+a4=12,则a5+a6= ( )A.8B.16C.20D.28【解析】选C.因为为等差数列,则a1+a2,a3+a4,a5+a6也成等差数列,公差为12-4=8.所以a5+a6=a3+a4+8=12+8=20.2.在数列中,已知a n+1-a n=a n+2-a n+1,a1 011=1,则该数列中a1+a2 021= ( )A.1B.2C.3D.4【解题指南】根据条件判断出为等差数列,利用等差数列的等差中项得到答案.【解析】选B.因为a n+1-a n=a n+2-a n+1,所以2a n+1=a n+a n+2,所以为等差数列,因为a1 011=1,所以a1+a2 021=2a1 011=2.【光速解题】选B.根据题意,可以让a1=a2=…=a2 021=1求解.3.(2020·邢台高一检测)在等差数列{a n}中,若a1+a4+a7=39,a2+a5+a8=33,则a3+a6+a9的值为( )A.30B.27C.24D.21【解题指南】首先由等差中项的性质知:a4=13,a5=11,由d=a5-a4,a3+a6+a9=3a6,计算a6代入即可. 【解析】选B.因为a1+a4+a7=3a4=39,所以a4=13.因为a2+a5+a8=3a5=33,所以a5=11.所以d=a5-a4=-2.又a6=a5+d=9,所以a3+a6+a9=3a6=27.4.(2020·福州高三检测)在等差数列中,已知a1=3,公差d=2,若a m=a1+a2+a3+a4+a5(m∈N*),则m= ( )A.19B.18C.17D.16【解题指南】依题意a n=2n+1,且a1+a2+a3+a4+a5=5a3=35,令a m=35解方程即可.【解析】选C.根据题意,数列{a n}是等差数列,且a1=3,公差d=2,所以a n=a1+(n-1)d=3+2n-2=2n+1,又因为a m=2m+1=a1+a2+a3+a4+a5=5a3=35(m∈N*),所以m=17.5.设等差数列满足a3+a7=36,a4a6=275,且a n a n+1有最小值,则这个最小值为( )A.-10B.-12C.-14D.-16【解题指南】设该等差数列的首项为a1,公差为d,根据题意,分析可得(a1+2d)+(a1+6d)=36,(a1+3d)(a1+5d)=275,解可得a1与d的值,即可得数列的通项,将其代入a n a n+1中,结合二次函数的性质分析可得答案.【解析】选B.根据题意,设该等差数列的首项为a1,公差为d,若a3+a7=36,a4a6=275,则有(a1+2d)+(a1+6d)=36,(a1+3d)(a1+5d)=275,解得或,则数列的通项为a n=7n-17或a n=-7n+53,当a n=7n-17时,a n a n+1=(7n-17)(7n-10)=49=49-,分析可得当n=2时,a n a n+1有最小值,且其最小值为-12;当a n=-7n+53时,a n a n+1=(-7n+53)(-7n+46)=(7n-53)(7n-46)=49,因为=≈7.07,分析可得当n=7时,a n a n+1有最小值,且其最小值为-12;即a n a n+1有最小值-12.【误区警示】本题因为d有两个解,所以求解a n易错,最后在计算a n a n+1的最值时由于计算量较大,也容易出错.二、填空题(每小题5分,共15分)6.(5分)已知{a n}为等差数列,且a6=4,则a4a7的最大值为.【解析】设等差数列的公差为d,则a4a7=(a6-2d)(a6+d)=(4-2d)(4+d)=-2(d+1)2+18,即a4a7的最大值为18.答案:187.已知数列{a n}为等差数列且a1+a7+a13=4π,则tan(a2+a12)的值为.【解析】由等差数列的性质得a1+a7+a13=3a7=4π,所以a7=.所以tan(a2+a12)=tan(2a7)=tan =tan =-.答案:-8.在△ABC中,若lgsin A,lgsin B,lgsin C成等差数列,且三个内角A,B,C也成等差数列,则△ABC的形状为.【解析】因为lgsin A,lgsin B,lgsin C成等差数列,得lgsin A+lgsin C=2lgsin B,即sin2 B=sin Asin C①,又三内角A,B,C也成等差数列,所以B=60°,代入①得sin Asin C=②,设A=60°-α,C=60°+α,代入②得sin(60°+α)sin(60°-α)=,⇒cos2α-sin2α=,即cos2α=1,所以α=0°,所以A=B=C=60°,所以△ABC为等边三角形.答案:等边三角形三、解答题(每小题10分,共20分)9.已知无穷等差数列{a n},首项a1=3,公差d=-5,依次取出项的序号被4除余3的项组成数列{b n}.(1)求b1和b2;(2)求数列{b n}的通项公式;(3)数列{b n}中的第110项是数列{a n}中的第几项?【解析】(1)由题意,等差数列{a n}的通项公式为a n=3+(n-1)(-5)=8-5n,设数列{b n}的第n项是数列{a n}的第m项,则需满足m=4n-1,n∈N+,所以b1=a3=8-5×3=-7,b2=a7=8-5×7=-27.(2)由(1)知b n+1-b n=a4(n+1)-1-a4n-1=4d=-20,所以新数列{b n}也为等差数列,且首项为b1=-7,公差为d′=-20,所以b n=b1+(n-1)d′=-7+(n-1)×(-20)=13-20n.(3)因为m=4n-1,n∈N+,所以当n=110时,m=4×110-1=439,所以数列{b n}中的第110项是数列{a n}中的第439项.10.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产,已知该厂连续生产n个月的累计产量为f(n)=n(n+1)(2n-1)吨,但如果月产量超过96吨,将会给环境造成危害.(1)请你代表环保部门给厂拟定最长的生产周期.(2)若该厂在环保部门的规定下生产,但需要每月交纳a万元环保税,已知每吨售价0.6万元,第n个月的工人工资为g(n)=n2-n-1万元,若每月都赢利,求出a的范围?【解析】(1)设化工厂每个月的产量构成数列{a n},则a n=f(n)-f(n-1)=n(n+1)(2n-1)-(n-1)n(2n-3)=3n2-2n,所以产量逐月递增.当3n2-2n≤96时,解得n≤6,所以环保部门给厂拟定最长的生产周期为6个月.(2)若每月都赢利,则(3n2-2n)--a>0恒成立,所以a<,当n=2时,=,所以a<.又因为a>0,所以0<a<.1.在数表中,已知每行、每列中的数都成等差数列.第1列第2列第3列…第1行 1 2 3 …第2行 2 4 6 …第3行 3 6 9 ………………那么位于表中的第n行第n+1列的数是.【解析】观察可知,第n行的数构成以n为首项,n为公差的等差数列,所以第n行第n+1列的数是n+[(n+1)-1]×n=n2+n.答案:n2+n2.已知,,成等差数列,求证:,,也成等差数列. 【证明】因为,,成等差数列,所以=+,即2ac=b(a+c).因为+=====,所以,,成等差数列.。
第一章 数列§2 2.2 第1课时 等差数列的前n项和 北师大版 必修五.
2Sn (a1 an ) (a1 an ) (a1 an ) (共n个) n(a1 an ).
于是,首项为a1,末项为an,项数为n的等差数列的前n项和
n(a1 an ) Sn . 2
这种求和的方法叫作“倒序相加法”
③
这个公式表明:等差数列前n项的和等于首末两项的 和与项数乘积的一半,参见下图.
100 (1 100) 1 2 3 99 100 5050. 2
等差数列的前n项和公式
…
…
… …
有200根相同的圆木料,要把它们堆成正三角形垛,并 使剩余的圆木料尽可能少,那么将剩余多少根圆木料? 根据题意,各层圆木料数比上一层多一根,故其构成 等差数列: 1,2,3,…
抽象概括
设Sn是等差数列{an}的前n项和,即
Sn a1 a2 a3 an .
根据等差数列{an}的通项公式,上式可以写成
Sn a1 (a1 d ) (a1 2d ) [a1 (n 1)d ],
再把项的次序反过来,Sn又可以写成
①
Sn an (an d ) )d ], ②
2.2 等差数列的前n项和 第1课时 等差数列的前n项和
1.知识目标:掌握等差数列前n项和公式及其获取思路; 会用等差数列的前n项和公式解决一些简单的问题.
2.能力目标:通过公式的推导和公式的运用,使学生体会 从特殊到一般,再从一般到特殊的思维规律,初步形成认 识问题,解决问题的思路和方法;通过公式推导的过程教 学,对学生进行思维灵活性与广阔性的训练,提高学生的 思维水平. 3.情感目标:通过公式的推导过程,展现数学中的对称美
高中数学数列教案:等差数列精选4篇
高中数学数列教案:等差数列精选4篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!高中数学数列教案:等差数列精选4篇教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
高中数学课件-1-2-1-1等差数列的概念和通项公式 课件(北师大版必修5)
第一章 数列
进入导航
2.1 等差数列
第一章 数列
进入导航
第1课时 等差数列的概念和通项公式
预习篇 课堂篇 提高篇
巩固篇 课时作业
第一章 数列
进入导航
学习目标
1.理解等差数列的特点与定义,掌握等差数列的判断 方法.
2.记住等差数列的概念、等差数列的通项公式,并能 运用通项公式解决一些简单问题.
第一章 数列
进入导航
进入导航
【尝试解答】 数列5,8,11,…记为{an},数列 3,7,11,…记为{bm},则an=5+(n-1)·3=3n+2,bm=3+ (m-1)·4=4m-1.
令an=bm,得3n+2=4m-1(n,m∈N+), 即n=43m-1(n,m∈N+). 要使n为正整数,m必须是3的倍数,记m=3k(k∈N+). ∴n=43·3k-1=4k-1.
第一章 数列
进入导航
理解等差数列的定义需注意以下问题: (1)注意定义中“从第2项起”这一前提条件的两层含 义:其一,第1项前面没有项,无法与后续条件中“与前一 项的差”相吻合;其二,定义中包括首项这一基本量,且 必须从第2项起,以便保证数列中各项均与其前一项作差. (2)注意定义中“每一项与它的前一项的差”这一运算 要求,它的含义也有两个:其一是强调作差的顺序,即后 面的项减前面的项;其二是强调这两项必须相邻.
第一章 数列
进入导航
规律方法 求解时要紧紧抓住“同一个常数”这个条件,本例中 的第2小题是从第2项开始的等差数列,即1,2,3,…n构 成等差数列,但整个数列不是等差数列.
第一章 数列
进入导航
根据下列数列的通项公式an,判断各数列是否为等差 数列:
(1)an=3n+5;(2)an=n2.
北师版高中同步学案数学选择性必修第二册精品课件 第1章 数列 第1课时 等差数列的概念及其通项公式
所以通项公式为an=23-4(n-1)=-4n+27.
1 2 3 4 5 6
13
A.
5
B.3
13
C.
3
D.5
解析 设数列{an}的公差为d,则由2a2+a4=a3+13,得2(2+d)+2+3d=2+2d+13,
解得d=3.
故选B.
1 2 3 4 5 6
3.已知等差数列{an}的首项为3,公差为2,则a10=
解析 因为等差数列{an}的首项为3,公差为2,
则a10=a1+9d=3+9×2=21.
C.{an}是首项为5的等差数列
D.{an}是公差为n的等差数列
解析 ∵an+1-an=2(n+1)+5-(2n+5)=2,∴{an}是公差为2的等差数列.
探究点二
等差数列的通项公式
角度1.求等差数列的通项公式
【例2】 若数列{an}是等差数列,a15=8,a60=20,求an.
分析先求出a1,d,再求an.
知a1,n,an,求d
知d,n,an,求a1
3.通项公式可变形为an=dn+(a1-d),当d≠0时,可把an看作自变量为n的一次
函数.
变式训练2已知数列{an}为等差数列,a3=5,a7=13,求数列{an}的通项公式.
解 设公差为d,则
3 = 1 + 2 = 5,
1 = 1,
解得
7 = 1 + 6 = 13,
(3)公差d是每一项(从第2项起)与它的前一项的差,不要把被减数与减数弄
北师版高中数学选择性必修第二册课后习题 第一章 2.1 第1课时 等差数列的概念及其通项公式 (2)
2.1 等差数列的概念及其通项公式第1课时 等差数列的概念及其通项公式课后训练巩固提升1.在等差数列{a n }中,2a n+1=2a n +1,则公差为( ). A.2B.±12C.12D.-12a n+1-a n =12,∴公差为12.2.在等差数列{a n }中,a 1=13,a 2+a 5=4,a n =33,则n 为( ).A.48B.49C.50D.51{a n }的公差为d. ∵a 2+a 5=a 1+d+a 1+4d=4, ∴2a 1+5d=4.∵a 1=13,∴d=23,∴a n =a 1+(n-1)d=13+(n-1)×23=33.∴n=50.3.在等差数列{a n }中,a 2=-4,a 6=a 4+8,那么a 1=( ). A.-9B.-8C.-7D.-6d=a 6-a 42=4,∴a1=a2-d=-4-4=-8.4.已知{a n}为等差数列,且a7-2a4=-1,a3=0,则公差d=( ).A.-2B.-12C.12D.2a3=0,∴a7-2a4=a3+4d-2(a3+d)=2d=-1,∴d=-12.5.在数列{a n}中,a1=3,且对任意大于1的正整数n,点(√a n,√a n-1)在直线x-y-√3=0上,则( ).A.a n=3nB.a n=√3nC.a n=n-√3D.a n=3n2(√a n,√a n-1)在直线x-y-√3=0上,∴√a n−√a n-1=√3,即数列{√a n}是首项为√3,公差为√3的等差数列.∴数列{√a n}的通项公式为√a n=√3+(n-1)√3=√3n,∴a n=3n2.6.已知数列{a n}满足a n+1=a n+1,a1=2,则a20= ;a n= .a n+1-a n =1,∴数列{a n }是等差数列,公差为1,a 20=a 1+19d=2+19=21,a n =2+(n-1)×1=n+1.n+17.已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n = .d,则d>0,由a 3=a 22-4,得1+2d=(1+d)2-4,即d 2=4,∴d=2(d=-2舍去), ∴a n =2n-1.8.已知数列{a n }满足a 1=13,a n+1=a n 1+3a n.(1)求证:数列1a n是等差数列;(2)求数列{a n }的通项公式. 由题可得1a n+1=1a n+3,即1a n+1−1a n=3,∴数列1a n是以3为首项,3为公差的等差数列.(1)可得1a n=3+3(n-1)=3n,∴a n =13n. 9.已知数列{a n }满足a 1=2,a n+1=2a n a n +2.(1)数列{1an}是不是等差数列?请说明理由.(2)求数列{a n}的通项公式.数列{1a n}是等差数列.理由如下:因为a1=2,a n+1=2a na n+2,所以1a n+1=a n+22a n=12+1a n,所以1a n+1−1a n=12,即{1a n }是首项为1a1=12,公差为d=12的等差数列.(2)由(1)可知,1a n =1a1+(n-1)d=n2,所以a n=2n.。
北师大版高中数学必修5第一章《数列》等差数列(二)
课堂小结 课堂小结 通过今天的学习,你学到了什么知识?有何体会 有何体会? 师 通过今天的学习,你学到了什么知识 有何体会? 通过今天的学习,明确等差中项的概念 明确等差中项的概念;进一步熟练 生 通过今天的学习 明确等差中项的概念 进一步熟练 掌握等差数列的通项公式及其性质. 掌握等差数列的通项公式及其性质 (让学生自己来总结,将所学的知识 结合获取知识的 让学生自己来总结, 让学生自己来总结 将所学的知识,结合获取知识的 过程与方法,进行回顾与反思, 过程与方法,进行回顾与反思,从而达到三维目标的 整合,培养学生的概括能力和语言表达能力 培养学生的概括能力和语言表达能力) 整合 培养学生的概括能力和语言表达能力 布置作业课本习题1-2 A组9,B组1 布置作业课本习题 组 , 组 预习内容:课本下节内容;预习提纲: 预习内容:课本下节内容;预习提纲:①等差数列的 项和公式; 等差数列前n项和的简单应用 项和的简单应用。 前n项和公式;②等差数列前 项和的简单应用。 项和公式 教后反思: 五、教后反思:
通项公式的应用: 通项公式的应用: ①可以由首项和公差求出 等差数列中的任意一项; 等差数列中的任意一项; ②已知等差数列的任意两 项,可以确定数列的任意 一项。 一项。
a+b A= ⇔ 2A = a + b 有 ____________________ 2
如果在 a 和 b 之间插入一个数 A,使 a、A、b 成等差数列, , 、 、 成等差数列, 等差中项 。 则 A 叫做 a、b 的__________。 、
(4). 1,2,3,2,3,4,……; 1, ……; 不是 (5). 0,0,0,0,0,0,…… 0, 是d=0 (6). a, a, a, a, ……; ……; 是d=0
高中数学 第一章 数列 1.3 等比数列 1.3.2 第1课时 等比数列的前n项和学案(含解析)北师
3.2 等比数列的前n 项和第1课时 等比数列的前n 项和知识点一 等比数列前n 项和公式[填一填](1)等比数列{a n }的前n 项和为S n ,当公比q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q ;当q =1时,S n =na 1.(2)推导等比数列前n 项和公式的方法是错位相减法.[答一答]1.若一个数列是等比数列,它的前n 项和写成S n =Aq n +B (q ≠1),则A 与B 有何种关系?提示:互为相反数.知识点二 等比数列前n 项和公式的有关知识[填一填]在等比数列的前n 项和公式中共有a 1,a n ,n ,q ,S n 五个量,在这五个量中知三求二.[答一答]2.你能根据所学知识列举几种数列求和的方法吗? 提示:(1)公式法.(2)倒序相加法. (3)乘公比错位相减法.1.利用错位相减法求前n 项和的数列的特点如果数列{a n }是等差数列,公差为d ;数列{b n }是等比数列,公比为q ,则求数列{a n b n }的前n 项和就可以运用错位相减法.方法如下:设S n =a 1b 1+a 2b 2+a 3b 3+…+a n b n . 当q =1时,{b n }是常数列, S n =b 1(a 1+a 2+a 3+…+a n )=nb 1(a 1+a n )2; 当q ≠1时,则:qS n =qa 1b 1+qa 2b 2+qa 3b 3+…+qa n b n =a 1b 2+a 2b 3+…+a n -1b n +a n b n +1,所以(1-q )S n =a 1b 1+b 2(a 2-a 1)+b 3(a 3-a 2)+…+b n (a n -a n -1)-a n b n +1 =a 1b 1+d ·b 1·q (1-q n -1)1-q -a n b n +1.所以S n =a 1b 1-a n b n +11-q +b 1dq (1-q n -1)(1-q )2.2.等比数列前n 项和公式与函数的关系(1)当公比q ≠1时,等比数列的前n 项和公式是S n =a 1(1-q n )1-q ,它可以变形为S n =-a 11-q ·q n +a 11-q ,设A =a 11-q ,上式可写成S n =-Aq n +A .由此可见,q ≠1的等比数列的前n 项和S n 是由一个关于n 的指数式与一个常数的和构成的,而指数式的系数与常数项互为相反数.当公比q =1时,因为a 1≠0,所以S n =na 1,是n 的正比例函数(常数项为0的一次函数).(2)当q ≠1时,数列S 1,S 2,S 3,…,S n ,…的图像是函数y =-Aq x +A 图像上的一些孤立的点.当q =1时,数列S 1,S 2,S 3,…,S n ,…的图像是正比例函数y =a 1x 图像上的一些孤立的点.类型一 等比数列前n 项和的应用【例1】 在等比数列{a n }中, (1)若a 1=81,a 5=16,求S 5;(2)若S 5=93,a 2+a 3+a 4+a 5+a 6=186,求a 8; (3)若a 1+a n =66,a 2a n -1=128,S n =126,求n ,q .【思路探究】 (1)由a 1,a 5的值求q ,已知a 1,利用S n =a 1(1-q n )1-q求S 5.(2)a 2+a 3+a 4+a 5+a 6可看成首项为a 2,公比仍为{a n }的公比q 的等比数列的前5项和,利用求和公式列方程组求q ,再求出a 1,于是可求a 8.(3)可采用列方程组求a 1,q 的方法,用S n =a 1(1-q n )1-q ,也可采用先求a 1,a n ,利用公式S n =a 1-a n q 1-q求n ,q .【解】 (1)设等比数列的公比为q ,则 q 4=a 5a 1=1681,∴q =±23.当q =23时,S 5=81⎣⎡⎦⎤1-⎝⎛⎭⎫2351-23=211.当q =-23时,S 5=81×⎣⎡⎦⎤1-⎝⎛⎭⎫-2351+23=55.(2)显然q ≠1,由题意知⎩⎪⎨⎪⎧a 1(1-q 5)1-q=93, ①a 2(1-q 5)1-q =186, ②②①得q =a 2a 1=18693=2,代入①得a 1=3,∴a 8=a 1q 7=3×27=384. (3)∵a 1a n =a 2a n -1=128,又a 1+a n =66, ∴a 1,a n 是方程x 2-66x +128=0的两根,解方程得a 1=2,a n =64或a 1=64,a n =2,显然q ≠1. 若a 1=2,a n =64,由a 1-a n q1-q =126得2-64q =126-126q ,∴q =2. 由a n =a 1q n -1得2n -1=32,∴n =6. 若a 1=64,a n =2,同理可求q =12,n =6,综上所述,n 的值为6,q =2或12.规律方法 (1)在等比数列中,对于a 1,a n ,q ,n ,S n 五个量,已知其中三个量,可以求得其余两个量.(2)等比数列前n 项和问题,必须注意q 是否等于1,如果不确定,应分q =1或q ≠1两种情况讨论.(3)等比数列前n 项和公式中,当q ≠1时,若已知a 1,q ,n 利用S n =a 1(1-q n )1-q 来求;若已知a 1,a n ,q ,利用S n =a 1-a n q1-q来求.(1)在等比数列{a n }中,已知S n =189,q =2,a n =96,求a 1和n ; (2)设等比数列的前n 项和为S n ,且S 3+S 6=2S 9,求数列的公比q . 解:(1)由通项公式及前n 项和公式, 得⎩⎪⎨⎪⎧a 1(1-2n )1-2=189,a 1·2n -1=96.化简得⎩⎪⎨⎪⎧2n a 1-a 1=189, ①2n a 1=192, ②把②代入①得192-a 1=189,∴a 1=3. 把a 1=3代入②式得,2n =64=26,∴n =6. 即a 1=3,n =6.(2)若q =1,则S 3=3a 1,S 6=6a 1,S 9=9a 1,但a 1≠0, ∴S 3+S 6≠2S 9,∴q =1不成立. 当q ≠1时,依题意,S 3+S 6=2S 9. ∴a 1(1-q 3)1-q +a 1(1-q 6)1-q =2·a 1(1-q 9)1-q ,整理得q 3·(2q 6-q 3-1)=0. 由q ≠0得2q 6-q 3-1=0, ∴(2q 3+1)(q 3-1)=0,∵q 3-1≠0,∴2q 3+1=0,∴q =-342. 类型二 错位相减求和问题【例2】 设S n 为数列{a n }的前n 项和,已知a 1≠0,2a n -a 1=S 1·S n ,n ∈N +. (1)求a 1,a 2,并求数列{a n }的通项公式; (2)求数列{na n }的前n 项和.【思路探究】 (1)根据a n =S n -S n -1(n ≥2)消去S n 得到关于a n 的关系式,即可求{a n }的通项公式;(2)利用错位相减法求前n 项和.【解】 (1)因为S 1=a 1,所以当n =1时,2a 1-a 1=S 1·S 1,即a 1=a 21. 因为a 1≠0,所以a 1=1.令n =2,得2a 2-1=S 2=1+a 2,解得a 2=2.当n ≥2时,a n =S n -S n -1=2a n -a 1S 1-2a n -1-a 1S 1=2a n -2a n -1,所以a n =2a n -1,所以数列{a n }是首项为1,公比为2的等比数列, 所以a n =2n -1,n ∈N +.(2)设数列{na n }的前n 项和为T n ,则T n =1×1+2×2+3×22+…+n ×2n -1 ①, 2T n =1×2+2×22+…+(n -1)×2n -1+n ×2n ②. ①-②得-T n =1+2+22+…+2n -1-n ×2n =1×(1-2n )1-2-n ×2n=2n -1-n ×2n , 所以T n =(n -1)×2n +1,故数列{na n }的前n 项和为(n -1)×2n +1. 规律方法 错位相减法求和的适用情况和注意点一般地,若数列{a n }为等差数列,{b n }为等比数列且公比为q (q ≠1),求{a n ·b n }的前n 项和时,常用“乘公比,错位减”的方法求和,即错位相减法.在写出S n 与qS n 的表达式时,应特别注意将两式“错项对齐”,以便于下一步准确写出S n -qS n 的表达式.在运用错位相减法求数列前n 项和时要注意三点:①是否符合使用此方法的条件;②是否需要对q 进行讨论;③两式相减后所呈现的规律.已知a n =n3n ,求数列{a n }的前n 项和S n .解:S n =13+232+333+…+n -13n -1+n 3n ,13S n =132+233+…+n -13n +n3n +1, 两式相减得23S n =13+132+133+…+13n -n 3n +1 =13⎝⎛⎭⎫1-13n 1-13-n 3n +1=12-12×3n -n 3n +1, 所以S n =34-14×3n -1-n 2×3n =34-2n +34×3n.类型三 等比数列中的最值问题【例3】 数列{a n }是等比数列,项数是偶数,各项都为正,它所有项的和等于偶数项之和的4倍,且第二项与第四项的积是第三项与第四项的和的9倍,数列{lg a n }的前多少项和最大?【思路探究】 利用等差数列与等比数列的首项与公差或首项与公比之间的关系,数列的增减性,就可求得数列的最值问题.【解】 由题意知q ≠1,且a 1(1-q n)1-q =4a 2[1-(q 2)n 2]1-q 2且a 2=a 1·q ,即4q1+q=1, 所以q =13.又a 1q ·a 1q 3=9(a 1q 2+a 1q 3),所以a 1=22×33,a n =22×33·13n -1=43n -4.所以lg a n =2lg2-(n -4)lg3.所以当n ≥2时,lg a n -lg a n -1=2lg2-(n -4)lg3-[2lg2-(n -5)lg3]=-lg3<0. 所以数列{lg a n }是递减的等差数列,且lg a 1=lg(22×33)>0.设数列{lg a n }的前n 项和最大,则有⎩⎨⎧lg a n ≥0lg a n +1<0,即⎩⎪⎨⎪⎧2lg2-(n -4)lg3≥02lg2-(n -3)lg3<0,所以⎩⎪⎨⎪⎧n ≤4+log 34n >3+log 34,因为1<log 34<2,n ∈N +,所以n =5, 所以数列{lg a n }的前5项和最大. 规律方法 (1)在等比数列{a n }中,a 1>0⎩⎪⎨⎪⎧{a n }递增(q >1){a n}为常数列(q =1){a n }递减(0<q <1){a n}摆动(q <0),a 1<0⎩⎪⎨⎪⎧{a n }递增(0<q <1){a n }为常数列(q =1){a n }递减(q >1){a n}摆动(q <0).(2)若{a n }是等差数列,当⎩⎨⎧a 1>0d <0时,若有⎩⎪⎨⎪⎧a n ≥0a n +1<0,则S n 最大;当⎩⎨⎧a 1<0d >0时,若有⎩⎪⎨⎪⎧a n ≤0a n +1>0,则S n 最小.{a n }为首项为正数的等比数列,前n 项和S n =80,前2n 项和S 2n =6 560,在前n 项中数值最大的为54,求通项a n .解:∵S n =80,S 2n =6 560,故q ≠1,∴⎩⎪⎨⎪⎧a 1(1-q n )1-q=80, ①a 1(1-q 2n)1-q =6 560. ②②÷①得1+q n =82,∴q n =81. ③ ∴将③代入①,得a 1(-80)1-q=80,∴a 1=q -1.而a 1>0,∴q >1,等比数列{a n }为递增数列. 故a n =54,即a 1q n -1=54,④ 将③代入④,得a 1=23q .由⎩⎪⎨⎪⎧a 1=q -1,a 1=23q ,∴⎩⎪⎨⎪⎧a 1=2,q =3. ∴a n =2·3n -1(n ∈N +).类型四 等比数列前n 项和公式的实际应用【例4】 为了保护某库区的生态环境,凡是坡角在25°以上的坡荒地都要绿化造林.经初步统计,在某库区内坡角大于25°的坡荒地面积约有2 640万亩.若从2015年年初开始绿化造林,第一年造林120万亩,以后每年比前一年多绿化60万亩.(1)如果所有被绿化造林的坡荒地全都绿化成功,那么到哪一年年底可使库区内坡角大于25°的坡荒地全部绿化?(2)若每万亩绿化造林所植树苗的木材量平均为0.1万立方米,每年树木木材量的自然生产率为20%,则当整个库区25°以上坡荒地全部绿化完的那一年年底,一共有木材多少万立方米?(保留一位小数,1.29≈5.16,1.28≈4.30)【思路探究】 (1)利用等差数列前n 项和公式求解.(2)利用错位相减法求和. 【解】 (1)设a 1=120,d =60,第n 年后可以使绿化任务完成,则有S n =120n +n (n -1)2·60≥2 640,n ∈N +,解得n ≥8.(2)2022年造林数量为a 8=120+7×60=540(万亩). 设到2022年年底木材总量为S ,由题意,得S =(120×1.28+180×1.27+240×1.26+…+540×1.2)×0.1=6×(2×1.28+3×1.27+…+9×1.2).令S ′=2×1.28+3×1.27+…+9×1.2,①两边同乘1.2,得1.2S ′=2×1.29+3×1.28+…+9×1.22.②②-①,得0.2S ′=2×1.29+(1.28+1.27+…+1.22)-9×1.2=2×1.29+1.22×(1-1.27)1-1.2-10.8=7×1.29-18.∴S ′=5×(7×1.29-18)≈90.6. ∴S =6×90.6=543.6(万立方米).答:(1)到2022年年底可以使库区内坡角在25°以上的坡荒地全部绿化.(2)到2022年年底共有木材543.6万立方米.规律方法 价格升降、细胞繁殖、利率、增长率等问题常归结为数列问题进行建模,即从实际背景中抽象出数学模型,归纳转化为数学问题去解决.为保护我国的稀土资源,国家限定某矿区的出口总量不能超过80吨,该矿区从2016年开始出口,当年出口a 吨,以后每年出口量均比上一年减少10%.(1)以2016年为第一年,设第n 年出口量为a n 吨,试求a n 的表达式;(2)国家计划10年后终止该矿区的出口,问2016年最多出口多少吨?(0.910≈0.35,保留一位小数)解:(1)由题意知每年的出口量构成等比数列,且首项a 1=a ,公比q =1-10%=0.9,∴a n =a ·0.9n -1.(2)10年的出口总量S 10=a (1-0.910)1-0.9=10a (1-0.910).∵S 10≤80,∴10a (1-0.910)≤80, 即a ≤81-0.910,∴a ≤12.3.故2016年最多出口12.3吨.——数学思维应用系列——分类讨论思想在等比数列前n 项和中的应用在应用等比数列求和公式求和时,要注意分两种情况q =1和q ≠1讨论,若题目中未说明q 的范围,求解时应分类讨论,而不能直接利用公式S n =a 1(1-q n )1-q. 【例5】 设等比数列{a n }的公比为q ,前n 项和S n >0(n =1,2,3,…),则q 的取值范围为________.【思路分析】 因为{a n }为等比数列,S n >0,可以得到a 1=S 1>0,q ≠0,当q =1时,S n =na 1>0;当q ≠1时,S n =a 1(1-q n )1-q>0, 即1-q n1-q>0(n =1,2,3,…), 上式等价于不等式组⎩⎪⎨⎪⎧ 1-q <0,1-q n <0,(n =1,2,3,…)① 或⎩⎪⎨⎪⎧1-q >0,1-q n >0,(n =1,2,3,…)② 解①式得q >1,解②式,由于n 可为奇数,可为偶数,得-1<q <1.综上,q 的取值范围是(-1,0)∪(0,+∞).【规范解答】 (-1,0)∪(0,+∞)等比数列{a n }中,a 3=32,S 3=92,求a n 及前n 项和S n .解:当q =1时,a 1=a 2=a 3=32, S 3=3×32=92,符合题意, 此时a n =32,S n =32n ; 当q ≠1时,由已知得⎩⎪⎨⎪⎧ a 1q 2=32,a 1(1-q 3)1-q =92,即⎩⎨⎧ a 1q 2=32, ①a 1(1+q +q 2)=92, ②由①②两式相除得2q 2-q -1=0,解得q =-12,q =1(舍去). 则a 1=6,故a n =a 1q n -1=6×⎝⎛⎭⎫-12n -1, 此时S n =a 1(1-q n)1-q =6×⎣⎡⎦⎤1-⎝⎛⎭⎫-12n 1+12 =4⎣⎡⎦⎤1-⎝⎛⎭⎫-12n =4-⎝⎛⎭⎫-12n -2.一、选择题1.在等比数列{a n }(n ∈N +)中,若a 1=1,a 4=18,则该数列的前10项的和为( D ) A .2-124 B .2-122 C .2-1210 D .2-129 2.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( C )A .7B .8C .15D .16解析:设等比数列的公比为q ,则由4a 1,2a 2,a 3成等差数列,得4a 2=4a 1+a 3,∴4a 1q =4a 1+a 1q 2.∴q 2-4q +4=0.∴q =2.∴S 4=a 1(1-q 4)1-q=15. 二、填空题 3.等比数列1,2,4,…从第5项到第10项的和是1_008. 解析:由题意a 1=1,q =2,∴a 5=a 1q 4=24.∴a 5+a 6+…+a 10=a 5(1-26)1-2=1 008. 或利用a 5+a 6+…+a 10=S 10-S 4.4.已知等比数列{a n }的前n 项和S n =4n +a ,则a 的值等于-1.解析:由题意可知q ≠1,则等比数列的前n 项和S n =a 1(1-q n )1-q =a 11-q -a 11-q·q n =A -Aq n (记A =a 11-q), ∴a =-1.三、解答题5.若数列{a n }满足a 1=1,a n +1=2a n ,n =1,2,3,…,求a 1+a 2+a 3+…+a n 的值. 解:由a 1=1,a n +1=2a n ,得{a n }为等比数列且公比q =a n +1a n=2, 故前n 项和S n =a 1+a 2+a 3+…+a n=a 1(1-q n )1-q =1·(1-2n )1-2=2n -1.。
2017-2018学年高中数学 第一章 数列 1.2 等差数列 1.2.1.1 等差数列的概念和通项公式讲义 北师大版必修5
������1 + ������1 + ������ = 3,
������1 + 2������ + ������1 + 3������ = 5,
解得
a1=
5 4
,
������
=
12.
所以a7+a8=a1+6d+a1+7d=9.
答案:9
12345
5若{an}为等差数列,且a15=8,a60=20,求a75.
题型一 题型二 题型三
题型二 等差数列的通项公式 【例2】 在等差数列{an}中, (1)an=2n+3,求a1和d; (2)a7=131,a14=61,求a100,并判断0是不是该数列的项. 分析:(1)在an的表达式中,令n=1即可得到a1,然后再令n=2求出a2, 而d=a2-a1,或者根据等差数列的定义求d; (2)利用等差数列的通项公式和已知条件,可以列方程解决.
解得
������1 = 191, ������ = -10.
故an=a1+(n-1)·d=-10n+201.
所以a100=-10×100+201=-799.
令-10n+201=0,解得n=20.1∉N+, 故0不是该数列的项.
题型一 题型二 题型三
反思在等差数列{an}中,首项a1与公差d是两个最基本的元素;有 关等差数列的问题,若条件与结论间的关系不明显,则均可化成有 关a1,d的关系列方程组求解,但是,要注意公式的变形及整体计算,以 减少计算量.
=
24.
A.an=4-2n B.an=2n-4 C.an=6-2n D.an=2n-6
解析:通项公式an=a1+(n-1)d=4+(n-1)×(-2)=6-2n.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 等差数列(二) 学习目标 1.能根据等差数列的定义推出等差数列的常用性质.2.能运用等差数列的性质解决有关问题.知识点一 等差数列通项公式的推广思考1 已知等差数列{a n }的首项a 1和公差d 能表示出通项a n =a 1+(n -1)d ,如果已知第m 项a m 和公差d ,又如何表示通项a n ?思考2 由思考1可得d =a n -a 1n -1,d =a n -a m n -m ,你能联系直线的斜率解释一下这两个式子的几何意义吗?梳理 等差数列{a n }中,若公差为d ,则a n =a m +(n -m )d ,当n ≠m 时,d =a n -a m n -m. 知识点二 等差数列的性质思考 还记得高斯怎么计算1+2+3+…+100的吗?推广到一般的等差数列,你有什么猜想?梳理 在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N +),则a m +________=a p +________.特别地,若m +n =2p ,则a n +a m =2a p .知识点三 由等差数列衍生的新数列思考 若{a n }是公差为d 的等差数列,那么{a n +a n +2}是等差数列吗?若是,公差是多少? 梳理 若{a n },{b n }分别是公差为d ,d ′的等差数列,则有数列结论 {c +a n }公差为d 的等差数列(c 为任一常数) {c ·a n }公差为cd 的等差数列(c 为任一常数) {a n +a n +k }公差为2d 的等差数列(k 为常数,k ∈N +) {pa n +qb n } 公差为pd +qd ′的等差数列(p ,q 为常数)类型一 等差数列推广通项公式的应用例1 在等差数列{a n }中,已知a 2=5,a 8=17,求数列的公差及通项公式. 反思与感悟 灵活利用等差数列的性质,可以减少运算.跟踪训练1 数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N +),若b 3=-2,b 10=12,则a 8等于( )A.0 B.3 C.8 D.11类型二等差数列与一次函数的关系例2 已知数列{a n}的通项公式a n=pn+q,其中p,q为常数,那么这个数列一定是等差数列吗?若是,首项和公差分别是多少?反思与感悟判断一个数列是不是等差数列的常用方法:(1)从递推公式上看,a n+1-a n=d(d为常数,n∈N+)⇔{a n}是等差数列;(2)从任意连续三项关系上看,2a n+1=a n+a n+2(n∈N+)⇔{a n}是等差数列;(3)从通项公式代数特点上看,a n=kn+b(k,b为常数,n∈N+)⇔{a n}是等差数列.但若要说明一个数列不是等差数列,则只需举出一个反例即可.如:其中某连续三项不成等差数列;存在n∈N+,a n+1-a n的结果不等于同一个常数等.跟踪训练2 若数列{a n}满足a1=15,3a n+1=3a n-2,则使a k·a k+1<0的k值为________.类型三等差数列性质的应用引申探究1.在例3中,不难验证a1+a4+a7=a2+a4+a6,那么,在等差数列{a n}中,若m+n+p=q +r+s,m,n,p,q,r,s∈N+,是否有a m+a n+a p=a q+a r+a s?2.在等差数列{a n}中,已知a3+a8=10,则3a5+a7=________.例3 已知等差数列{a n}中,a1+a4+a7=15,a2a4a6=45,求此数列的通项公式.反思与感悟解决等差数列运算问题的一般方法:一是灵活运用等差数列{a n}的性质;二是利用通项公式,转化为等差数列的首项与公差的求解,属于通项方法;或者兼而有之.这些方法都运用了整体代换与方程的思想.跟踪训练3 在等差数列{a n}中,已知a1+a4+a7=39,a2+a5+a8=33,求a3+a6+a9的值.1.等差数列{a n}中,已知a3=10,a8=-20,则公差d等于( )A.3 B.-6C.4 D.-32.在等差数列{a n}中,已知a4=2,a8=14,则a15等于( )A.32 B.-32C.35 D.-353.等差数列{a n}中,a4+a5=15,a7=12,则a2等于( )A.3 B.-3C.32 D .-321.在等差数列{a n }中,当m ≠n 时,d =a m -a n m -n,利用这个公式很容易求出公差,还可变形为a m =a n +(m -n )d .2.等差数列{a n }中,每隔相同的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等差数列.3.等差数列{a n }中,若m +n =p +q ,则a n +a m =a p +a q (n ,m ,p ,q ∈N +),特别地,若m +n =2p ,则a n +a m =2a p .4.在等差数列{a n }中,首项a 1与公差d 是两个最基本的元素;有关等差数列的问题,如果条件与结论间的联系不明显,则均可根据a 1,d 的关系列方程组求解,但是,要注意公式的变形及整体计算,以减少计算量.答案精析问题导学知识点一思考1 设等差数列的首项为a 1,则a m =a 1+(m -1)d ,变形得a 1=a m -(m -1)d ,则a n =a 1+(n -1)d =a m -(m -1)d +(n -1)d=a m +(n -m )d .思考2 等差数列通项公式可变形为a n =dn +(a 1-d ),其图像为一条直线上孤立的一系列点,(1,a 1),(n ,a n ),(m ,a m )都是这条直线上的点.d 为直线的斜率,故两点(1,a 1),(n ,a n )连线的斜率d =a n -a 1n -1.当两点为(n ,a n ),(m ,a m )时,有d =a n -a m n -m . 知识点二思考 利用1+100=2+99=….在有穷等差数列中,与首末两项“等距离”的两项之和等于首项与末项的和.即a 1+a n =a 2+a n -1=a 3+a n -2=….梳理 a n a q知识点三思考 ∵(a n +1+a n +3)-(a n +a n +2)=(a n +1-a n )+(a n +3-a n +2)=d +d =2d .∴{a n +a n +2}是公差为2d 的等差数列.题型探究例1 解 因为a 8=a 2+(8-2)d ,所以17=5+6d ,解得d =2.又因为a n =a 2+(n -2)d ,所以a n =5+(n -2)×2=2n +1.跟踪训练1 B [∵{b n }为等差数列,设公差为d ,则d =b 10-b 310-3=12--27=2,∴b n =b 3+(n -3)d =2n -8.∴a 8=(a 8-a 7)+(a 7-a 6)+(a 6-a 5)+(a 5-a 4)+(a 4-a 3)+(a 3-a 2)+(a 2-a 1)+a 1 =b 7+b 6+…+b 1+a 1=(b 7+b 1)+(b 6+b 2)+(b 5+b 3)+b 4+a 1=7b 4+a 1=7×0+3=3.]例2 解 取数列{a n }中任意相邻两项a n 和a n -1(n >1),求差得a n -a n -1=(pn +q )-[p (n -1)+q ]=pn +q -(pn -p +q )=p . 它是一个与n 无关的常数,所以{a n }是等差数列. 由于a n =pn +q =q +p +(n -1)p , 所以首项a 1=p +q ,公差d =p . 跟踪训练2 23解析 由3a n +1=3a n -2,得a n +1-a n =-23. ∴{a n }是首项为15,公差为-23的等差数列, ∴a n =a 1+(n -1)d=15+(n -1)×(-23) =-23n +473. 令a n =0,解得n =472=23.5, ∵d =-23,数列{a n }是递减数列, ∴a 23>0,a 24<0.∴k =23.例3 解 方法一 因为a 1+a 7=2a 4,a 1+a 4+a 7=3a 4=15, 所以a 4=5.又因为a 2a 4a 6=45,所以a 2a 6=9, 即(a 4-2d )(a 4+2d )=9,(5-2d )(5+2d )=9, 解得d =±2.若d =2,a n =a 4+(n -4)d =2n -3; 若d =-2,a n =a 4+(n -4)d =13-2n . 方法二 设等差数列的公差为d , 则由a 1+a 4+a 7=15,得a 1+a 1+3d +a 1+6d =15, 即a 1+3d =5,① 由a 2a 4a 6=45,得(a 1+d )(a 1+3d )(a 1+5d )=45, 将①代入上式,得(a 1+d )×5×(5+2d )=45,即(a 1+d )×(5+2d )=9, ② 解①,②组成的方程组,得a 1=-1,d =2或a 1=11,d =-2, a n =-1+2(n -1)=2n -3 或a n =11-2(n -1)=-2n +13. 引申探究1.解 设公差为d ,则a m =a 1+(m -1)d , a n =a 1+(n -1)d ,a p =a 1+(p -1)d ,a q =a 1+(q -1)d ,a r =a 1+(r -1)d ,a s =a 1+(s -1)d ,∴a m +a n +a p =3a 1+(m +n +p -3)d , a q +a r +a s =3a 1+(q +r +s -3)d , ∵m +n +p =q +r +s ,∴a m +a n +a p =a q +a r +a s .2.20解析 ∵a 3+a 8=10,∴a 3+a 3+a 8+a 8=20.∵3+3+8+8=5+5+5+7, ∴a 3+a 3+a 8+a 8=a 5+a 5+a 5+a 7, 即3a 5+a 7=2(a 3+a 8)=20. 跟踪训练3 解 方法一 ∵(a 2+a 5+a 8)-(a 1+a 4+a 7)=3d , (a 3+a 6+a 9)-(a 2+a 5+a 8)=3d , ∴a 1+a 4+a 7,a 2+a 5+a 8,a 3+a 6+a 9成等差数列. ∴a 3+a 6+a 9=2(a 2+a 5+a 8)-(a 1+a 4+a 7) =2×33-39=27.方法二 ∵a 1+a 4+a 7=a 1+(a 1+3d )+(a 1+6d ) =3a 1+9d =39,∴a 1+3d =13, ①∵a 2+a 5+a 8=(a 1+d )+(a 1+4d )+(a 1+7d ) =3a 1+12d =33.∴a 1+4d =11, ②由①②联立⎩⎪⎨⎪⎧ a 1+3d =13,a 1+4d =11,得⎩⎪⎨⎪⎧ d =-2,a 1=19.∴a3+a6+a9=(a1+2d)+(a1+5d)+(a1+8d) =3a1+15d=3×19+15×(-2)=27.当堂训练1.B 2.C 3.A。