导数复习专题(含参问题汇总)
导数专题(含答案
说明:导数的几何意义
可以简记为"k= ",
强化这一句话"斜率导数,导数斜率"
导数的物理意义:s=s<t>是物体运动的位移函数,物体在t= 时刻的瞬时速度是 .可以简记为 =
例1、已知函数 的图象在点 处的切线方程是 ,则 .
2、若函数 的导函数在区间[a,b]上是增函数,则函数 在区间[a,b]上的图像可能是〔〕
〔2〕设函数 则 〔〕
A.有最大值B.有最小值C.是增函数D.是减函数
3〕设 分别是定义在R上的奇函数和偶函数,当 时,
的解集为▲.
3>已知函数的单调性求参数范围
方法:常利用导数与函数单调性关系:即
"若函数单调递增,则 ;若函数单调递减,则 "来求解,注意此时公式中的等号不能省略,否则漏解.从而转化为不等式恒成立问题或利用数形结合来求参数〔 是二次型〕
[例]1函数y = f < x > = x3+ax2+bx+a2,在x = 1时,有极值10,则a = ,b =.
15.已知函数f<x>=-x3+3x2+9x+a.
〔I〕求f<x>的单调递减区间;
〔II〕若f<x>在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
解:〔I〕f’<x>=-3x2+6x+9.令f‘<x><0,解得x<-1或x>3,
综上,
4某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x〔x 10〕层,则每平方米的平均建筑费用为560+48x〔单位:元〕.为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?
导数27个专题学生版
目录专题1:切线问题 1专题2:函数的图像 3专题3:单调性问题 9专题4:函数的极值问题 11专题5:函数的最值 14专题6:三次函数 18专题7:零点问题 20专题8:恒成立与存在性问题 26专题9:构造函数解不等式 30专题10:有关距离问题 34专题11:参数的值或范围问题 36专题12:分离参数法 40专题13:数形结合法 44专题14:构造函数 45专题15:不等式放缩法 48专题16:卡根法专题 50专题17:数列不等式 53专题18:极值点偏移问题 61专题19:双变量问题 64专题20:凹凸反转问题 68专题21:与三角函数有关题 70专题22:隐零点设而不求 74专题23:端点效应专题 77专题24:最大最小函数问题 81专题25:恒成立专题 83专题26:筷子夹汤圆专题 87专题27:找点专题 91专题1:切线问题1.若函数f (x )=ln x 与函数g (x )=x 2+2x +a (x <0)有公切线,则实数a 的取值范围是()A.ln 12e,+∞ B.(-1,+∞)C.(1,+∞)D.(-ln2,+∞)2.已知直线y =2x 与曲线f x =ln ax +b 相切,则ab 的最大值为()A.e4B.e2C.eD.2e3.已知P 是曲线C 1:y =e x 上任意一点,点Q 是曲线C 2:y =ln x x上任意一点,则PQ 的最小值是()A.1-2ln 2B.1+ln22C.2D.24.若曲线y =ax +2cos x 上存在两条切线相互垂直,则实数a 的取值范围是()A.[-3,3]B.[-1,1]C.(-∞,1]D.[-3,1]5.已知关于x 不等式ae x ≥x +b 对任意x ∈R 和正数b 恒成立,则a b 的最小值为()A.12B.1C.2D.26.若存在实数a ,b ,使不等式2e ln x ≤ax +b ≤12x 2+e 对一切正数x 都成立(其中e 为自然对数的底数),则实数a 的最大值是()A.eB.2eC.2eD.27.若对函数f x =2x -sin x 的图象上任意一点处的切线l 1,函数g x =me x +m -2 x 的图象上总存在一点处的切线l 2,使得l 1⊥l 2,则m 的取值范围是()A.-e 2,0 B.0,e 2C.-1,0D.0,18.若过点P 1,m 可以作三条直线与曲线C :y =xe x 相切,则m 的取值范围是()A.-5e2,0 B.-5e2,e C.0,+∞D.-3e2,-1e9.已知y =kx +b 是函数f x =ln x +x 的切线,则2k +b 的最小值为______.10.存在k >0,b >0使kx -2k +b ≥x ln 对任意的x >0恒成立,则b k的最小值为________.11.若直线y =kx +b 是曲线y =e x 的切线,也是曲线y =x +2 ln 的切线,则k =.12.已知直线y =kx +b 与函数y =e x 的图像相切于点P x 1,y 1 ,与函数y =x ln 的图像相切于点Q x 2,y 2 ,若x 2>1,且x 2∈n ,n +1 ,n ∈Z ,,则n =_________.13.若直线y =kx +b 既是曲线y =x ln 的切线,又是曲线y =e x -2的切线,则b =______.14.已知实数a ,b ,c ,d ,满足aln b=2c d -1=1,那么a -c 2+b -d 2的最小值为.15.若直线y =kx +b 与曲线y =x ln +2相切于点P ,与曲线y =x +1 ln 相切于点Q ,则k =.专题2:函数的图像1.已知函数f (x )=ax 3+bx 2+c ,其导数f ′(x )的图象如图所示,则函数f (x )的极大值是()121OxyA.a +b +cB.8a +4b +cC.3a +2bD.c2.设函数y =f (x )可导,y =f (x )的图象如图所示,则导函数y =f ′(x )可能为()OxyA.Oxy B.Oxy C.Oxy D.Oxy3.函数y =sin2x 1-cos x的部分图象大致为()A.Oxy-π11π B.Oxy-π11πC.Oxy-π11π D.Oxy-π11π4.若函数f (x )的图象如图所示,则f (x )的解析式可能是()11O xyA.f (x )=x2ln |x |B.f (x )=ln |x |-x 2C.f (x )=1x+ln |x |D.f (x )=x ln |x ||x |5.函数f (x )=x ln |x |x 2+1的图象大致为()A.OxyB.OxyC.OxyD.Oxy6.函数f (x )=x ln x x 2+1,x >0x ln (-x )x 2+1,x <0的图象大致为()A.OxyB.OxyC.OxyD.Oxy7.函数f (x )=x ln |x ||x |的大致图象是()A.O xyB.O xyC.OxyD.Oxy8.函数f (x )=x -1xcos x (-π≤x ≤π且x ≠0)的图象可能为()A.Oxy-ππ B.Oxy-ππ C.Oxy-ππ D.Oxy-ππ9.已知f (x )=14x 2+sin π2+x ,f ′(x )为f (x )的导函数,则f ′(x )的图象是()A.OxyB.OxyC.OxyD.Oxy10.下面四图都是同一坐标系中某三次函数及其导函数的图象,其中一定不正确的序号是()OxyOxyOxyOxyA.①②B.③④C.①③D.①④11.已知R 上的可导函数f (x )的图象如图所示,则不等式(x -2)f (x )>0的解集为()2121O xyA.(-∞,-2)∪(1,+∞)B.(-∞,-2)∪(1,2)C.(-∞,1)∪(2,+∞)D.(-1,1)∪(2,+∞)12.函数f (x )=x 3+bx 2+cx +d 的大致图象如图所示,则x 21+x 22等于()Oxyx 1x 2-12A.89 B.109 C.169D.28913.如图是函数f (x )=x 3+bx 2+cx +d 的大致图象,则x 1+x 2=()Oxyx 1x 2-12A.23 B.109 C.89 D.28914.函数f (x )=ax +b (x +c )2的图象如图所示,则下列结论成立的是()OxyA.a <0,b >0,c <0B.a >0,b <0,c <0C.a >0,b <0,c >0D.a <0,b >0,c >015.函数f (x )=ax +b (x +c )2的图象大致如图所示,则下列结论正确的是()OxyA.a >0,b >0,c >0B.a <0,b >0,c <0C.a <0,b <0,c >0D.a >0,b >0,c <016.函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则下列结论成立的是()OxyA.a >0,b <0,c >0,d >0B.a >0,b <0,c <0,d >0C.a <0,b <0,c >0,d >0D.a >0,b >0,c >0,d <017.函数y =x 2sin x(2x 2-e |x |)在[-2,2]的图象大致为()A.1111O xyB.1111O xyC.1111OxyD.1111O xy18.函数y =2x 2-2|x |在[-2,2]的图象大致为()A.O xy-2-112-4B.OxyC.Oxy-2-1124D.Oxy 19.已知函数f (x )的图象如图所示,则f (x )的解析式可能是()Oxy 1A.f (x )=ln |x |-x 2B.f (x )=ln |x |-|x |C.f (x )=2ln |x |-x 2D.f (x )=2ln |x |-|x |21111OxA.f (x )=ln |x |-1x B.f (x )=ln |x |+1x C.f (x )=1x-ln |x |D.f (x )=ln |x |+1|x |21.函数f (x )的图象如图所示,则它的解析式可能是()212111OxyA.f (x )=x 2-12x B.f (x )=2x (|x |-1) C.f (x )=|ln |x || D.f (x )=xe x -122.已知函数f (x )的图象如图所示,则该函数的解析式可能是()O xyA.f (x )=ln |x |e xB.f (x )=e x ln |x |C.f (x )=ln |x |xD.f (x )=(x -1)ln |x |23.已知某函数的图象如图所示,则下列解析式中与此图象最为符合的是()96342423OxyA.f (x )=2xln |x |B.f (x )=2|x |ln |x |C.f (x )=1x 2-1D.f (x )=1|x |-1|x |14321321321OxA.f (x )=e |x |∙cos xB.f (x )=ln |x |∙cos xC.f (x )=e |x |+cos xD.f (x )=ln |x |+cos x25.已知函数f (x )的局部图象如图所示,则f (x )的解析式可以是()13π2ππ23π2ππ21OxyA.f (x )=e 1|x |∙sin π2xB.f (x )=e 1|x |∙cos π2xC.f (x )=ln |x |∙sin π2xD.f (x )=ln |x |∙cos π2x专题3:单调性问题1.已知函数f (x )=ln x +ln (a -x )的图象关于直线x =1对称,则函数f (x )的单调递增区间为()A.(0,2)B.[0,1)C.(-∞,1]D.(0,1]2.若函数f (x )的定义域为D 内的某个区间I 上是增函数,且F (x )=f (x )x在I 上也是增函数,则称y =f (x )是I 上的“完美函数”,已知g (x )=e x +x -ln x +1,若函数g (x )是区间m 2,+∞ 上的“完美函数”,则正整数m 的最小值为()A.1B.2C.3D.43.设函数f (x )=e 2x +ax 在(0,+∞)上单调递增,则实数a 的取值范围为()A.[-1,+∞)B.(-1,+∞)C.[-2,+∞)D.(-2,+∞)4.若函数f (x )=2x 2-ln x 在其定义域内的一个子区间[k -1,k +1]内不是单调函数,则实数k 的取值范围是()A.[1,2)B.(1,2)C.1,32D.1,325.若函数f (x )=ln x +ax 2-2在区间12,2 内存在单调递增区间,则实数a 的取值范围是()A.(-∞,-2]B.(-2,+∞)C.-2,-18D.-18,+∞6.若函数f (x )=ln x +(x -b )2(b ∈R )在区间12,2上存在单调递增区间,则实数b 的取值范围是()A.-∞,32B.-∞,94C.-32,94D.32,+∞ 7.设1<x <2,则ln x x 、ln x x 2、ln x 2x 2的大小关系是()A.ln x x 2<ln x x <ln x 2x2B.ln x x <ln x x 2<ln x 2x 2C.ln x x 2<ln x 2x2<ln x x D.ln x 2x2<ln x x 2<ln x x8.已知函数y =f (x -1)的图象关于直线x =1对称,且当x ∈(0,+∞)时,f (x )=ln x x .若a =f -e 2,b=f (2),c =f 23 ,则a ,b ,c 的大小关系是()A.b >a >cB.a >b >cC.a >c >bD.c >b >a9.下列命题为真命题的个数是()①e 2e >2;②ln2>23;③lnππ<1e ;④ln22<lnππ.A.1B.2C.3D.410.下列命题为真命题的个数是()①ln3<3ln2;②lnπ<πe;③215<15;④3e ln2<42A.1B.2C.3D.411.已知函数f (x )=e x ln x -ae x (a ∈R ),若f (x )在(0,+∞)上单调递增,则实数a 的取值范围是.12.已知函数f (x )=e -x -2,x ≤02ax -1,x >0(a >0),对于下列命题:(1)函数f (x )的最小值是-1;(2)函数f (x )在R 上是单调函数;(3)若f (x )>0在12,+∞ 上恒成立,则a 的取值范围是a >1,其中真命题的序号是.13.已知函数f (x )=ln x +(x -a )2(a ∈R )在区间12,2上存在单调递增区间,则实数a 的取值范围是14.设函数f (x )=3x 2+ax e x(a ∈R ),f (x )在[3,+∞)上为减函数,则a 的取值范围是.专题4:函数的极值问题1.若函数f(x)=e x(x-3)-13kx3+kx2只有一个极值点,则k的取值范围为()A.(-∞,e)B.[0,e]∪12e2C.(-∞,2)D.(0,2]2.已知函数f(x)=e x x-k12x2-1x,若x=1是函的f(x)的唯一一个极值点,则实数k的取值范围为() A.(-∞,e] B.-∞,-1eC.-∞,-1e∪{0} D.-∞,-1e∪{0,e}3.已知函数f(x)=e x(x2-4x-4)+12k(x2+4x),x=-2是f(x)的唯一极小值点,则实数k的取值范围为() A.[-e2,+∞) B.[-e3,+∞) C.[e2,+∞) D.[e3,+∞)4.已知函数f(x)=x2-2x+a ln x有两个极值点x1,x2,且x1<x2,则()A.f(x1)<3+2ln24 B.f(x1)<-1+2ln24C.f(x1)>1+2ln24 D.f(x1)>-3+2ln245.已知函数f(x)=x2-2x+1+a ln x有两个极值点x1,x2,且x1<x2,则()A.f(x2)<-1+2ln24 B.f(x2)<1-2ln24C.f(x2)>1+2ln24 D.f(x2)>1-2ln246.已知t为常数,函数f(x)=(x-1)2+t ln x有两个极值点a、b(a<b),则()A.f(b)>1-2ln24 B.f(b)<1-2ln24 C.f(b)>1+2ln24 D.f(b)<1-3ln247.若函数y=ae x+3x在R上有小于零的极值点,则实数a的取值范围是()A.(-3,+∞)B.(-∞,-3)C.-13,+∞D.-∞,-138.若函数f (x )=e x -ax -b 在R 上有小于0的极值点,则实数a 的取值范围是()A.(-1,0)B.(0,1)C.(-∞,-1)D.(1,+∞)9.已知函数f (x )=x ln x -ax 2有两个极值点,则实数a 的取值范围为()A.(-∞,0)B.(0,+∞)C.0,12D.(0,1)10.已知函数f (x )=x ln x -12ax 2-x +3a 3-4a 2-a +2(a ∈R )存在两个极值点.则实数a 的取值范围是()A.(0,+∞)B.0,1eC.1e,+∞ D.1e,e 11.若函数f (x )=e x (e x -4ax )存在两个极值点,则实数a 的取值范围为()A.0,12B.(0,1)C.12,+∞ D.(1,+∞)12.若函数f (x )=ax 22-(1+2a )x +2ln x (a >0)在区间12,1 内有极大值,则a 的取值范围是()A.1e,+∞ B.(1,+∞) C.(1,2) D.(2,+∞)13.已知f (x )=a 2x 2-(1+2a )x +2ln x (a >0)在区间(3,4)有极小值,则实数a 的取值范围是()A.(4-1,3-1)B.(3,4)C.(3-1,4)D.(4-1,3)14.已知a ∈R ,函数f (x )=-32x 2+(4a +2)x -a (a +2)ln x 在(0,1)内有极值,则a 的取值范围是()A.(0,1)B.(-2,0)∪(0,1)C.-2,-12 ∪-12,1D.(-2,1)15.已知函数f (x ),对∀a ,b ,c ∈R ,f (a ),f (b ),f (c )为一个三角形的三边长,则称f (x )为“三角形函数”,已知函数f (x )=m cos 2x +m sin x +3是“三角形函数”,则实数m 的取值范围是()A.-67,1213B.-2,1213C.0,1213D.(-2,2)16.已知x=0是函数f(x)=(x-2a)(x2+a2x+2a3)的极小值点,则实数a的取值范围是.17.已知x=1是函数f(x)=(x-2)e x-k2x2+kx(k>0)的极小值点,则实数k的取值范围是.18.若函数f(x)在区间A上,对∀a,b,c∈A,f(a),f(b),f(c)为一个三角形的三边长,则称函数f(x)为“三角形函数”.已知函数f(x)=x ln x+m在区间1e2,e上是“三角形函数”,则实数m的取值范围为.专题5:函数的最值1.已知函数f (x )=e x -3,g (x )=12+ln x 2,若f (m )=g (n )成立,则n -m 的最小值为()A.1+ln2B.ln2C.2ln2D.ln2-12.已知函数f x =x +ln x -1 ,g x =x ln x ,若f x 1 =1+2ln t ,g x 2 =t 2,则x 1x 2-x 2 ln t 的最小值为().A.1e2B.2eC.-12eD.-1e3.若对任意x ∈0,+∞ ,不等式2e 2x -a ln a -a ln x ≥0恒成立,则实数a 的最大值为()A.eB.eC.2eD.e 24.已知函数f (x )=ln x x,g (x )=xe -x ,若存在x 1∈(0,+∞),x 2∈R ,使得f (x 1)=g (x 2)=k (k <0)成立,则x 2x 1 3e k的最小值为()A.-1e2B.-4e2C.-9e3D.-27e 35.已知函数f (x )=-1x ,x <0e 2x,x ≥0,若关于x 的方程f (x )-a =0(a ∈R )恰有两个不等实根x 1,x 2,且x 1<x 2,则e x 2-x 1的最小值为()A.12ln2+12B.2+eC.2eD.2e6.已知函数f x =e xx-ax +ln x (1)a =1时,求函数f (x )的极值;(2)若a ∈1,e 24+12,求f (x )的最小值g (a )的取值范围.7.已知函数f x =e x -x +t 2x 2(t ∈R ,e 为自然对数的底数),且f x 在点1,f 1 处的切线的斜率为e ,函数g x =12x 2+ax +b a ∈R ,b ∈R .(1)求f x 的单调区间和极值;(2)若f x ≥g x ,求b a +12的最大值.8.已知函数f x =x -a ln x +1(a ∈R ).(1)讨论函数f (x )的单调性;(2)当1<a <e 时,记函数f (x )在区间1,e 的最大值为M .最小值为m ,求M -m 的取值范围.9.已知函数f (x )=x 2-ax +2ln x (a ∈R )两个极值x 1,x 2x 1<x 2 点.(1)当a =5时,求f x 2 -f x 1 ;(2)当a ≥2e +2e时,求f x 2 -f x 1 的最大值.10.已知函数f(x)=ln x x+1x+a.(1)当a=-1时,求f x 的最大值;(2)对任意的x>0,不等式f(x)≤e x恒成立,求实数a的取值范围.11.已知函数f x =xe x(其中e为自然对数的底数).(1)求函数f x 的最小值;(2)求证:f x >e x+ln x-12.12.已知函数f(x)=ax2-x+(1+b)ln x(a、b∈R).(1)当a=1,b=-4时,求y=f(x)的单调区间;(2)当b=-2,x≥1时,求g(x)=|f(x)|的最小值.13.已知函数f (x )=12(x +a )2+b ln x ,a ,b ∈R .(1)若直线y =ax 是曲线y =f (x )的切线,求a 2b 的最大值;(2)设b =1,若函数f (x )有两个极值点x 1与x 2,且x 1<x 2,求f x 2x 1的取值范围.14.已知函数f x =ae x -x .(1)求f x 的极值;(2)求f x 在0,1 上的最大值.15.已知函数f x =14x 3-x 2+x .(1)当x ∈-2,4 时,求证:x -6≤f x ≤x ;(2)设F x =f x -x +a a ∈R ,记F x 在区间-2,4 上的最大值为M a .当M a 最小时,求a 的值.专题6:三次函数1.已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,则a -b =()A.-7B.-2C.-7和-2D.以上答案都不对2.已知函数f (x )=x 3-3x 2+5,g (x )=m (x +1)(m ∈R ),若存在唯一的正整数x 0,使得f (x 0)<g (x 0),则实数m 的取值范围是()A.0,54B.13,54C.13,54D.0,133.设函数f (x )=x 3-3x 2-ax +5-a ,若存在唯一的正整数x 0,使得f (x 0)<0,则a 的取值范围是()A.0,13B.13,54C.13,32D.54,324.已知函数f (x )=-x 3+ax 2-x -1在(-∞,+∞)上是单调函数,则实数a 的取值范围是()A.(-∞,-3]∪[3,+∞)B.[-3,3]C.(-∞,-3)∪(3,+∞)D.(-3,3)5.若函数f (x )=x 33-a 2x 2+x +1在区间12,3上有极值点,则实数a 的取值范围是()A.2,52B.2,52C.2,103D.2,1036.若f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则b a 的值为()A.-32或-12B.-32或12C.-32D.-127.如果函数f (x )=13x 3-12ax 2+(a -1)x +1在区间(1,4)上为减函数,在(6,+∞)上为增函数,则实数a的取值范围是()A.a ≤5B.5≤a ≤7C.a ≥7D.a ≤5或a ≥78.已知函数f (x )=13x 3-12ax 2+x 在区间12,3上既有极大值又有极小值,则实数a 的取值范围是()A.(2,+∞)B.[2,+∞)C.2,52D.2,1039.已知函数f (x )=a 3x 3-12x 2-x (a ≥0)在区间(0,1)上不是单调函数,则实数a 的取值范围是()A.(0,2)B.[0,1)C.(0,+∞)D.(2,+∞)10.函数f (x )=13x 3-12(m +1)x 2+2(m -1)x 在(0,4)上无极值,则m =.11.设函数f (x )=x 3+(1+a )x 2+ax 有两个不同的极值点x 1,x 2,且对不等式f (x 1)+f (x 2)≤0恒成立,则实数a 的取值范围是.12.若函数f (x )=x 33-a 2x 2+x +1在区间12,3上单调递减,则实数a 的取值范围是.13.若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是.14.已知函数f (x )=13x 3-12(a +1)x 2+ax +1,a ∈R .若函数f (x )在区间(-1,1)内是减函数,则实数a 的取值范围是.专题7:零点问题1.设函数f (x )=x 2-2ex -ln x x+a (其中e 为自然对数的底数,若函数f (x )至少存在一个零点,则实数a的取值范围是()A.0,e 2-1eB.0,e 2+1eC.e 2-1e ,+∞D.-∞,e 2+1e2.设函数f (x )=x 3-2ex 2+mx -ln x ,记g (x )=f (x )x,若函数g (x )至少存在一个零点,则实数m 的取值范围是()A.-∞,e 2+1eB.0,e 2+1eC.e 2+1e,+∞ D.-e 2-1e ,e 2+1e3.已知函数f (x )=me x2与函数g (x )=-2x 2-x +1的图象有两个不同的交点,则实数m 取值范围为()A.[0,1)B.[0,2)∪-18e 2C.(0,2)∪-18e 2D.[0,2e )∪-18e 24.已知函数f (x )的定义域为R ,且对任意x ∈R 都满足f (1+x )=f (1-x ),当x ≤1时,f (x )=ln x ,0<x ≤1e x ,x ≤0 .(其中e 为自然对数的底数),若函数g (x )=m |x |-2与y =f (x )的图象恰有两个交点,则实数m 的取值范围是()A.m ≤0或m =eB.0<m ≤32C.32<m <eD.m >e5.定义:如果函数y =f (x )在区间[a ,b ]上存在x 1,x 2(a <x 1<x 2<b ),满足f ′(x 1)=f (b )-f (a )b -a,f ′(x 2)=f (b )-f (a )b -a,则称函数y =f (x )在区间[a ,b ]上的一个双中值函数,已知函数f (x )=x 3-65x 2是区间[0,t ]上的双中值函数,则实数t 的取值范围是()A.35,65B.25,65C.25,35D.1,656.定义:如果函数y =f (x )在定义域内给定区间[a ,b ]上存在(a <x 0<b ),满足f (x 0)=f (b )-f (a )b -a,则称函数y =f (x )是[a ,b ]上的“平均值函数”,x 0是它的一个均值点.则下列叙述正确的个数是()①y =x 2是区间[-1,1]上的平均值函数,0是它的均值点;②函数f (x )=-x 2+4x 在区间[0,9]上是平均值函数,它的均值点是5;③函数f (x )=log 2x 在区间[a ,b ](其中b >a >0)上都是平均值函数;④若函数f (x )=-x 2+mx +1是区间[-1,1]上的平均值函数,则实数m 的取值范围是(0,2)A.1B.2C.3D.47.若存在正实数m ,使得关于x 的方程x +a (2x +2m -4ex )[ln (x +m )-ln x ]=0有两个不同的根,其中e 为自然对数的底数,则实数a 的取值范围是()A.(-∞,0)B.0,12eC.(-∞,0)∪12e,+∞ D.12e,+∞ 8.已知函数u (x )=(2e -1)x -m ,υ(x )=ln (x +m )-ln x 若存在m ,使得关于x 的方程2a ∙u (x )∙υ(x )=x 有解,其中e 为自然对数的底数则实数a 的取值范围是()A.(-∞,0)∪12e,+∞ B.(-∞,0)C.0,12eD.(-∞,0)∪12e ,+∞9.若关于x 的方程x e x +e x x +e x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<0<x 2<x 3,其中m ∈R ,e 为自然对数的底数,则x 1e x 1+1 2x 2e x 2+1 x3e x 3+1 的值为()A.1+mB.eC.m -1D.110.若关于x 的方程|e x -1|+2|e x-1|+1+m =0有三个不相等的实数解x 1、x 2、x 3,(x 1<0<x 2<x 3)其中m ∈R ,e =2.71828⋯,则(|e x 1-1|+1)∙(|e x 2-1|+1)∙(|e x 3-1|+1)2的值为()A.eB.4C.m -1D.m +111.已知函数f (x )=-2x ,x <0-x 2+2x ,x ≥0若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则m 的取值范围是()A.0,34B.0,34C.0,916D.0,91612.已知函数f (x )=(3x +1)e x +1+mx (m ≥-4e ),若有且仅有两个整数使得f (x )≤0,则实数m 的取值范围是()A.5e ,2B.-52e ,-83e2 C.-12,-83e2 D.-4e ,-52e13.已知函数f (x )=ln (x +1)-ax x +a,a 是常数,且a ≥1.(Ⅰ)讨论f (x )零点的个数;(Ⅱ)证明:22n +1<ln 1+1n <33n +1,n ∈N +.14.已知函数f (x )=ae 2x +(a -2)e x -x .(1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.15.已知函数f (x )=(ex -e )e x +ax 2,a ∈R .(Ⅰ)讨论f (x )的单调性;(Ⅱ)若f (x )有两个零点,求a 的取值范围.16.已知函数f(x)=(x-2)e x+a(x-1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.17.已知函数f(x)=e x[ax2+(a-2)]-x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.18.已知函数f(x)=x3+ax+14,g(x)=-ln x(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.19.已知函数f(x)=-x2+a-14x(a∈R),g(x)=ln x x.(1)当a为何值时,x轴为曲线y=f(x)的切线,(2)用max{m,n}表示m,n中的最大值,设函数h(x)=max{xf(x),xg(x)}(x>0),当0<a<3时,讨论h(x)零点的个数.20.已知函数f(x)=-x2+a-14x.(1)当a为何值时,x轴为曲线y=f(x)的切线;(2)设函数g(x)=xf(x),讨论g(x)在区间(0,1)上零点的个数.21.已知函数f(x)=2x2-1x-a ln x(a∈R).(1)讨论f(x)的单调性;(2)设g(x)=e x-sin x,若h(x)=g(x)(f(x)-2x)且y=h(x)有两个零点,求a的取值范围.22.已知函数f(x)=ae x-ln(x+1)+ln a-1.(1)若a=1,求函数f(x)的极值;(2)若函数f(x)有且仅有两个零点,求a的取值范围.专题8:恒成立与存在性问题1.设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是()A.-32e ,1B.-32e ,34C.32e ,34D.32e ,12.设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在两个整数x 1,x 2,使得f (x 1),f (x 2)都小于0,则a 的取值范围是()A.53e 2,32eB.-32e ,32eC.53e 2,1 D.32e ,1 3.已知函数f (x )=(x 2-a )ln x ,曲线y =f (x )上存在两个不同点,使得曲线在这两点处的切线都与y 轴垂直,则实数a 的取值范围是()A.-1e2,0 B.(-1,0)C.-1e2,+∞ D.(-1,+∞)4.已知函数f (x )=x a -1ex ,曲线y =f (x )上存在两个不同点,使得曲线在这两点处的切线都与y 轴垂直,则实数a 的取值范围是()A.(-e 2,+∞)B.(-e 2,0)C.-1e2,+∞ D.-1e2,0 5.已知f (x )=a ln x +12x 2(a >0),若对任意两个不等的正实数x 1,x 2都有f (x 1)-f (x 2)x 1-x 2≥2恒成立,则a的取值范围是()A.(1,+∞)B.[1,+∞)C.(0,1]D.(0,1)6.已知f (x )=a ln x +12x 2,若对任意两个不等的正实数x 1,x 2都有f (x 1)-f (x 2)x 1-x 2>0成立,则实数a 的取值范围是()A.[0,+∞)B.(0,+∞)C.(0,1)D.(0,1]7.已知函数f(x)=a ln(x+1)-x2,若对∀p,q∈(0,1),且p≠q,有f(p+1)-f(q+1)p-q>2恒成立,则实数a的取值范围为() A.(-∞,18) B.(-∞,18] C.[18,+∞) D.(18,+∞)8.已知函数f(x)=a ln(x+1)-12x2,在区间(0,1)内任取两个数p,q,且p≠q,不等式f(p+1)-f(q+1)p-q>3恒成立,则实数a的取值范围是()A.[8,+∞)B.(3,8]C.[15,+∞)D.[8,15]9.设函数f(x)=e x(x3-3x+3)-ae x-x(x≥-2),若不等式f(x)≤0有解,则实数a的最小值为()A.2e-1B.2-2eC.1-1eD.1+2e210.设函数f(x)=x(ln x)3-(3x+1)ln x+(3-a)x,若不等式f(x)≤0有解,则实数a的最小值为()A.2e-1B.2-2eC.1+2e2D.1-1e11.设函数f(x)=e x x3+32x2-6x+2-2ae x-x,若不等式f(x)≤0在[-2,+∞)上有解,则实数a的最小值为()A.-32-1eB.-32-2eC.-34-12eD.-1-1e12.已知函数f(x)=ln x+(x-b)2x(b∈R),若存在x∈12,2,使得f(x)>-x∙f′(x),则实数b的取值范围是() A.(-∞,-2) B.-∞,32C.-∞,94D.(-∞,3)13.已知f (x )=xe x ,g (x )=-(x +1)2+a ,若存在x 1,x 2∈R ,使得f (x 2)≤g (x 1)成立,则实数a 的取值范围为()A.1e ,+∞ B.-1e ,+∞ C.(0,e )D.-1e ,0 14.设过曲线g (x )=ax +2cos x 上任意一点处的切线为l 1,总存在过曲线f (x )=-e x -x 上一点处的切线l 2,使得l 1⎳l 2,则实数a 的取值范围为()A.[1,+∞)B.[1,+∞]C.(-∞,-3]D.(-∞,-3)15.设函数f (x )=x 2+4x ,g (x )=xe x ,若对任意x 1,x 2∈(0,e ],不等式g (x 1)k +1≤f (x 2)k恒成立,则正数k 的取值范围为()A.4e e +1,1eB.(e ,4]C.0,e e +14-eD.0,4e e +1-416.设e 表示自然对数的底数,函数f (x )=(e x -a )24+(x -a )2(a ∈R ),若关于x 的不等式f (x )≤15有解,则实数a 的值为.17.已知f (x )=a ln x +12x 2+x ,若对任意两个不等的正实数x 1,x 2,都有f (x 1)-f (x 2)x 12-x 22<1恒成立,则a 的取值范围是.18.(1)设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0,使得f (x 0)<0,则a 的取值范围是.(2)已知f (x )=xe x ,g (x )=-(x +1)2+a ,若∃x 1,x 2∈R ,使得f (x 2)≤g (x 1)成立,则实数a 的取值范围.19.当x∈(0,+∞)时,不等式c2x2-(cx+1)ln x+cx≥0恒成立,则实数c的取值范围是.20.若关于x的不等式(ax+1)(e x-aex)≥0在(0,+∞)上恒成立,则实数a的取值范围是.21.关于x的不等式(ax-1)(ln x+ax)≥0在(0,+∞)上恒成立,则实数a的取值范围是.22.已知关于x的不等式ax3+x2+x≤ln x+1x在(0,+∞)上恒成立,则实数a的取值范围是.23.已知函数f(x)=x-1-a ln x(a<0),g(x)=4x,若对任意x1,x2∈(0,1]都有|f(x1)-f(x2)|≤|g(x1)-g(x2)|成立,则实数a的取值范围为.24.若f(x)=x-1-a ln x,g(x)=exe x,a<0,且对任意x1,x2∈[3,4](x1≠x2),|f(x1)-f(x2)|<1 g(x1)-1 g(x2)的恒成立,则实数a的取值范围为.25.设过曲线f(x)=-e x-x+3a上任意一点处的切线为l1,总存在过曲线g(x)=(x-1)a+2cos x上一点处的切线l2,使得l1⊥l2,则实数a的取值范围为.26.设函数f(x)=e2x2+1x,g(x)=e2xe x,对任意x1、x2∈(0,+∞),不等式f(x1)k+1≥g(x2)k,恒成立,则正数k的取值范围是.27.已知函数f(x)=x-1-a ln x(a∈R),g(x)=e x x,当a<0时,且对任意的x1,x2∈[4,5](x1≠x2),|f(x1)-f(x2)|<|g(x1)-g(x2)|恒成立,则实数a的取值范围为.专题9:构造函数解不等式1.设函数f (x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf (x)-f(x)>0,则使得f(x)>0成立的x的取值范围是()A.(-∞,-1)∪(-1,0)B.(0,1)∪(1,+∞)C.(-∞,-1)∪(0,1)D.(-1,0)∪(1,+∞)2.函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f (x)<1,则不等式e x f(x)>e x+1的解集为() A.{x|x>0} B.{x|x<0}C.{x|x<-1,或x>1}D.{x|x<-1,或0<x<1}3.已知定义在R上的函数f(x)满足f(2)=1,且f(x)的导函数f′(x)>x-1,则不等式f(x)<12x2-x+1的解集为() A.{x|-2<x<2} B.{x|x>2} C.{x|x<2} D.{x|x<-2或x>2}4.已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<e x的解集为() A.(-∞,0) B.(0,+∞) C.(-∞,e4) D.(e4,+∞)5.已知定义在R上的可导函数f(x)的导函数f′(x),满足f′(x)<f(x),且f(x+2)=f(x-2),f(4)=1,则不等式f(x)<e x的解集为()A.(0,+∞)B.(1,+∞)C.(4,+∞)D.(-2,+∞)+1(e为自然对数的底数6.若定义在R上的函数f(x)满足f(x)+f′(x)>1,f(0)=4,则不等式f(x)>3e x)的解集为() A.(0,+∞) B.(-∞,0)∪(3,+∞)C.(-∞,0)∪(0,+∞)D.(3,+∞)7.已知函数f(x)对定义域R内的任意x都有f(x)=f(4-x),且当x≠2时其导函数f′(x)满足xf′(x)> 2f′(x)若2<a<4则() A.f(2a)<f(3)<f(log2a) B.f(log2a)<f(3)<f(2a)<f(3)<f(2a)C.f(3)<f(log2a)<f(2a)D.f(log2a)<f(2a)<f(3)8.已知函数y=f(x)对于任意的x∈-π2,π2满足f′(x)cos x+f(x)sin x>0(其中f′(x)是函数f(x)的导函数),则下列不等式不成立的是()A.2fπ3 <fπ4B.2f-π3<f-π4C.f(0)<2fπ4D.f(0)<2fπ39.已知函数y=f(x)对于任意的x∈-π2,π2满足f (x)cos x+f(x)sin x>0(其中f (x)是函数f(x)的导函数),则下列不等式成立的是()A.2f-π3>f(0) B.f(0)>2fπ4 C.f(-1)>f(1) D.f(1)>f(0)cos110.函数f(x)的导函数为f′(x),对∀x∈R,都有2f′(x)>f(x)成立,若f(ln4)=2,则不等式f(x)>e x2的解是()A.x>1B.0<x<1C.x>ln4D.0<x<ln411.函数f(x)的导函数f′(x),对∀x∈R,都有f′(x)>f(x)成立,若f(2)=e2,则不等式f(x)>e x的解是()A.(2,+∞)B.(0,1)C.(1,+∞)D.(0,ln2)12.设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有xf′(x)-f(x)x2<0恒成立,则不等式xf(x)>0的解集是() A.(-2,0)∪(2,+∞) B.(-2,0)∪(0,2)C.(-∞,-2)∪(0,2)D.(-∞,-2)∪(2,+∞)13.已知一函数满足x>0时,有g′(x)=2x2>g(x)x,则下列结论一定成立的是()A.g(2)2-g(1)≤3 B.g(2)2-g(1)≥2 C.g(2)2-g(1)<4 D.g(2)2-g(1)≥414.定义在区间(0,+∞)上的函数f(x)使不等式2f(x)<xf′(x)<3f(x)恒成立,其中f′(x)为f(x)的导数,则()A.8<f(2)f(1)<16 B.4<f(2)f(1)<8 C.3<f(2)f(1)<4 D.2<f(2)f(1)<315.已知函数f(x)的定义域为(-∞,0)∪(0,+∞),图象关于y轴对称,且当x<0时,f′(x)>f(x)x恒成立,设a>1,则4af(a+1)a+1,2a f(2a),(a+1)f4aa+1的大小关系为()A.4af(a+1)a+1>2a f(2a)>(a+1)f4aa+1B.4af(a+1)a+1<2a f(2a)<(a+1)f4aa+1C.2a f(2a)>4af(a+1)a+1>(a+1)f4aa+1D.2a f(2a)<4af(a+1)a+1<(a+1)f4aa+116.已知函数f(x)的导函数为f′(x),若∀x∈(0,+∞),都有xf′(x)<2f(x)成立,则()A.2f(3)>3f(2)B.2f(1)<3f(2)C.4f(3)<3f(2)D.4f(1)>f(2)17.已知函数f(x)的导函数为f (x),若f(x)<xf (x)<2f(x)-x对x∈(0,+∞)恒成立,则下列不等式中,一定成立的是()A.f(2)3+12<f(1)<f(2)2 B.f(2)4+12<f(1)<f(2)2C.3f(2)8<f(1)<f(2)3+12 D.f(2)4+12<f(1)<3f(2)818.若a=67 -14,b=76 15,c=log278,定义在R上的奇函数f(x)满足:对任意的x1,x2∈[0,+∞)且x1≠x2都有f(x1)-f(x2)x1-x2<0,则f(a),f(b),f(c)的大小顺序为()A.f(b)<f(a)<f(c)B.f(c)>f(b)>f(a)C.f(c)>f(a)>f(b)D.f(b)>f(c)>f(a)19.设定义在R上的奇函数f(x)满足,对任意x1,x2∈(0,+∞),且x1≠x2,都有f(x2)-f(x1)x2-x1<1,且f(3)=3,则不等式f(x)x>1的解集为()A.(-3,0)∪(0,3)B.(-∞,-3)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-3,0)∪(3,+∞)20.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x),且有3f(x)+xf′(x)>0,则不等式(x+2015)3f(x+2015)+27f(-3)>0的解集是.21.设函数f(x)在R上存在导数f′(x),∀x∈R,有f(-x)+f(x)=x2,在(0,+∞)上f′(x)<x,若f(4-m)-f(m)≥8-4m,则实数m的取值范围是.22.已知定义在R上函数f(x)满足f(2)=1,且f(x)的导函数f′(x)<-2,则不等式f(ln x)>5-2ln x的解集为.23.若定义在R上的函数f(x)满足f(x)+f (x)<1,f(0)=4,则不等式e x[f(x)-1]>3(e为自然对数的底数)的解集为.24.定义在R上的函数f(x)满足:f(x)>1-f′(x),f(0)=0,f′(x)是f(x)的导函数,则不等式e x f(x)>e x-1(其中e为自然对数的底数)的解集为.25.函数f(x),g(x)(g(x)≠0)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)<f(x)g′(x),f(-3)=0,则不等式f(x)g(x)<0的解集为26.设f(x)是定义在R上的奇函数,且f(-1)=0,若不等式x1f(x1)-x2f(x2)x1-x2<0对区间(-∞,0)内任意两个不相等的实数x1,x2都成立,则不等式xf(2x)<0解集是.专题10:有关距离问题1.设点P在曲线y=12e x上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A.1-ln2B.2(1-ln2)C.1+ln2D.2(1+ln2)2.设点P在曲线y=e2x上,点Q在曲线y=12ln x上,则|PQ|的最小值为()A.22(1-ln2)B.2(1-ln2)C.2(1+ln2)D.22(1+ln2)3.设点P在曲线y=x上,点Q在曲线y=ln(2x)上,则|PQ|的最小值为()A.1-ln22 B.22(1-ln2) C.1+ln22 D.2(1+ln2)24.设动直线x=m与函数f(x)=x3,g(x)=ln x的图象分别交于点M、N,则|MN|的最小值为()A.13(1+ln3)B.13ln3C.13(1-ln3)D.ln3-15.设动直线x=m与函数f(x)=e x,g(x)=ln x的图象分别交于点M,N,则|MN|最小值的区间为()A.12,1B.(1,2)C.2,52D.52,36.已知直线y=a分别与函数y=e x+1和y=x-1交于A,B两点,则A,B之间的最短距离是()A.3-ln22 B.5-ln22 C.3+ln22 D.5+ln227.若实数a,b,c,d满足|b+a2-4ln a|+|2c-d+2|=0,则(a-c)2+(b-d)2的最小值为()A.3B.4C.5D.68.已知函数f(x)=e x-1,x≤012x-1,x>0,若m<n且f(m)=f(n),则n-m的最小值为()A.2ln2-1B.2-ln2C.1+ln2D.29.已知函数f (x )=x 3+sin x ,g (x )=12x +1,x <0ln (x +1),x ≥0,若关于x 的方程f (g (x ))+m =0有两个不等实根x 1,x 2,且x 1<x 2,则x 2-x 1的最小值是()A.2B.3-ln2C.4-2ln2D.3-2ln210.已知函数f (x )=-32x +1,x ≥0e -x-1,x <0,若x 1<x 2且f (x 1)=f (x 2),则x 2-x 1的取值范围是()A.23,ln2B.23,ln 32+13C.ln2,ln 32+13D.ln2,ln 32+1311.已知点M 在曲线y =3ln x -x 2上,点N 在直线x -y +2=0上,则|MN |的最小值为.12.已知直线y =b 与函数f (x )=2x +3和g (x )=ax +ln x 分别交于A ,B 两点,若AB 的最小值为2,则a +b =.13.若实数a ,b ,c ,d 满足2a 2-ln a b =3c -2d=1,则(a -c )2+(b -d )2的最小值为.14.若实数a 、b 、c 、d 满足a 2-2ln a b =3c -4d=1,则(a -c )2+(b -d )2的最小值为.15.已知实数a ,b ,c ,d 满足a -2e a b =1-c d -1=1,则(a -c )2+(b -d )2的最小值为.专题11:参数的值或范围问题1.已知函数f (x )=x -ln x ,g (x )=x 2-ax .(1)求函数f (x )在区间[t ,t +1](t >0)上的最小值m (t );(2)令h (x )=g (x )-f (x ),A (x 1,h (x 1)),B (x 2,h (x 2))(x 1≠x 2)是函数h (x )图象上任意两点,且满足h (x 1)-h (x 2)x 1-x 2>1,求实数a 的取值范围;(3)若∃x ∈(0,1],使f (x )≥a -g (x )x成立,求实数a 的最大值.2.已知函数f (x )=x ln x ,g (x )=-x 2+ax -3.(Ⅰ)求f (x )在[t ,t +2](t >0)上的最小值;(Ⅱ)若存在x ∈1e ,e(e 是常数,e =2.71828⋯)使不等式2f (x )≥g (x )成立,求实数a 的取值范围;(Ⅲ)证明对一切x ∈(0,+∞)都有ln x >1ex -2ex 成立.3.已知函数f (x )=x ln x ,g (x )=-x 2+ax -2(Ⅰ)求函数f (x )在[t ,t +2](t >0)上的最小值;(Ⅱ)若函数y =f (x )+g (x )有两个不同的极值点x 1,x 2(x 1<x 2)且x 2-x 1>ln2,求实数a 的取值范围.4.已知函数f(x)=ln x,g(x)=12x2-bx+1(b为常数).(1)函数f(x)的图象在点(1,f(1))处的切线与函数g(x)的图象相切,求实数b的值;(2)若b=0,h(x)=f(x)-g(x),∃x1、x2[1,2]使得h(x1)-h(x2)≥M成立,求满足上述条件的最大整数M;(3)当b≥2时,若对于区间[1,2]内的任意两个不相等的实数x1,x2,都有|f(x1)-f(x2)|>|g(x1)-g (x2)|成立,求b的取值范围.5.设函数f(x)=ax2-a-ln x,g(x)=1x-e⋯为自然对数的底数.e x,其中a∈R,e=2.718(1)讨论f(x)的单调性;(2)证明:当x>1时,g(x)>0;(3)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.6.已知函数f(x)=x+a ln x在x=1处的切线与直线x+2y=0垂直.(Ⅰ)求实数a的值;(Ⅱ)函数g(x)=f(x)+12x2-bx,若函数g(x)存在单调递减区间,求实数b的取值范围;(Ⅲ)设x1,x2(x1<x2)是函数g(x)的两个极值点,若b≥72,求g(x1)-g(x2)的最小值.7.已知函数f (x )=a ln x +a +12x 2+1(1)当a =12时,求f (x )在区间1e ,e上的最值(2)讨论函数f (x )的单调性(3)当-1<a <0时,有f (x )>1+2aln (-a )恒成立,求a 的取值范围.8.已知函数f (x )=ax +x ln x 的图象在点x =e (e 为自然对数的底数)处的切线的斜率为3.(Ⅰ)求实数a 的值;(Ⅱ)若f (x )≤kx 2对任意x >0成立,求实数k 的取值范围;(Ⅲ)当n >m >1(m ,n ∈N *)时,证明:nm m n>m n .9.已知函数f (x )=x -ln (x +a )的最小值为0,其中a >0.设g (x )=ln x +m x,(1)求a 的值;(2)对任意x 1>x 2>0,g (x 1)-g (x 2)x 1-x 2<1恒成立,求实数m 的取值范围;(3)讨论方程g (x )=f (x )+ln (x +1)在[1,+∞)上根的个数.10.设函数f(x)=ln x+a(1-x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.专题12:分离参数法1.已知函数f x =e x -ae -x ,若f (x )≥23恒成立,则实数a 的取值范围是.2.已知函数f x =ln x -a x ,若f x <x 2在1,+∞ 上恒成立,则a 的取值范围是.3.若对任意x ∈R ,不等式3x 2-2ax ≥x -34恒成立,则实数a 的范围是.4.设函数f (x )=x 2-1,对任意的x ∈32,+∞ ,f x m -4m 2f (x )≤f (x -1)+4f (m )恒成立,则实数m 的取值范围是.5.若不等式x 2+2+x 3-2x ≥ax 对x ∈0,4 恒成立,则实数a 的取值范围是.6.设正数f x =e 2x 2+1x ,g x =e 2x ex ,对任意x 1,x 2∈0,+∞ ,不等式g x 1 k ≤f x 2 k +1恒成立,则正数k 的取值范围是.7.已知函数f x =ax 2-2a +1 x +ln x ,a ∈R ,g x =e x -x -1,若对于任意的x 1∈0,+∞ ,x 2∈R ,不等式f x 1 ≤g x 2 恒成立,求实数a 的取值范围.8.若不等式x +22xy ≤a x +y 对任意正数x ,y 恒成立,则正数a 的最小值是()A.1B.2C.2+12D.22+19.已知函数f x =1+ln x x ,如果当x ≥1时,不等式f x ≥k x +1恒成立,求实数k 的取值范围.10.已知函数f x =x +x ln x ,若k ∈Z ,且k <f x x -1对任意x >1恒成立,则k 的最大值为________.。
专题05 导数中含参讨论问题总结(解析版)
专题05 导数中含参讨论问题总结一、重点题型目录【题型】一、由函数的单调区间求参数 【题型】二、由函数在区间上的单调性求参数 【题型】三、含参分类讨论求函数单调性区间 【题型】四、根据极值点求参数【题型】五、有导数求函数的最值(含参) 【题型】六、已知函数最值求参数 【题型】七、参变分离法解决导数问题【题型】八、构造函数并利用函数的单调性判定函数值大小 【题型】九、构造函数法解决导数问题 二、题型讲解总结【题型】一、由函数的单调区间求参数例1.(2023·全国·高三专题练习)已知函数()2ln x ax f x x =++的单调递减区间为1,12⎛⎫⎪⎝⎭,则( ). A .(],3a ∈-∞- B .3a =- C .3a = D .(],3a ∈-∞【答案】B【分析】根据()f x 得到()f x ',再根据()f x 的单调递减区间是1,12⎛⎫ ⎪⎝⎭,得到12和1是方程()0f x '=的两个根,代入解方程即可.【详解】由()2ln x ax f xx =++得()221x ax f x x++'=,又()f x 的单调递减区间是1,12⎛⎫ ⎪⎝⎭,所以12和1是方程2210x ax x++=的两个根,代入得3a =-.经检验满足题意故选:B.例2.(2023·全国·高三专题练习)已知函数()sin cos f x x a x =+在区间ππ,42⎛⎫⎪⎝⎭上是减函数,则实数a 的取值范围为( )A .1a >B .1a ≥C .1a >D .1a ≥-【答案】B【分析】根据函数的单调性知导数小于等于0恒成立,分离参数后由正切函数单调性求解.【详解】由题意,()cos sin 0f x x a x '=-≤在ππ,42⎛⎫⎪⎝⎭上恒成立,即cos 1sin tan x a x x ≥=在ππ,42⎛⎫⎪⎝⎭上恒成立, 因为tan y x =在ππ,42⎛⎫⎪⎝⎭上单调递增,所以tan 1y x =>,所以在ππ,42x ⎛⎫∈ ⎪⎝⎭时,101tan x <<, 所以1a ≥. 故选:B例3.(2022·全国·高三专题练习)已知函数()32f x x ax bx c =+++,()g x 为()f x 的导函数.若()f x 在(0,1)上单调递减,则下列结论正确的是( )A .23a b -有最小值3B .23a b -有最大值C .()()010f f ⋅≤D .()()010g g ⋅≥【答案】D【分析】由()f x 在(0,1)上单调递减,得到()00g b =≤,()1230g a b =++≤,即可判断D ;求出()()()2011f f c a b c ⋅=+++,当0c <时,有()()010f f ⋅>,可否定C ;记23z a b =-,其中(),a b 满足2300a b b ++≤⎧⎨≤⎩,利用数形结合求出,判断A 、B.【详解】由题意可得()()232g x f x x ax b ='=++.因为()f x 在(0,1)上单调递减,所以()0g x ≤在(0,1)上恒成立,即()00g b =≤,()1230g a b =++≤,所以()()010g g ⋅≥, 因为()()0,11f c f a b c ==+++,()f x 在(0,1)上单调递减, 所以1c a b c >+++,即10a b ++<,所以()()()()20111f f c a b c c a b c ⋅=+++=+++,当0c <时,有()()010f f ⋅> 所以C 错误,D 正确.记23z a b =-,其中(),a b 满足2300a b b ++≤⎧⎨≤⎩,作出可行域如图示:由2300a b b ++=⎧⎨=⎩解得:3,02A ⎛⎫- ⎪⎝⎭.当抛物线21133a z b -=,经过点3,02A ⎛⎫- ⎪⎝⎭时94z =最小,没有最大值.故A 、B 错误.故选:D.例4.(2023·全国·高三专题练习)已知()2121()1e 2x f x a x -=--,若不等式11ln 1f f x x ⎛⎫⎛⎫> ⎪ ⎪-⎝⎭⎝⎭在(1,)+∞上恒成立,则a 的值可以为( )A .B .1-C .1D 【答案】AD【分析】由条件可得()f x 在(1,)+∞上单调递增,再结合导数和单调性的关系列不等式求a 的范围,由此确定正确选项.【详解】设1ln (1)y x x x =-->,则110y x'=->, 所以1ln y x x =--在(1,)+∞上单调递增,所以1ln 0x x -->, 所以ln 1,(1,)x x x <-∈+∞,∴0ln 1x x <<-, ∴110ln 1x x >>-. 又11ln 1f f x x ⎛⎫⎛⎫> ⎪ ⎪-⎝⎭⎝⎭在(1,)+∞上恒成立, 所以()f x 在(1,)+∞上单调递增,所以()21()1e 0x f x a x -=--≥'对(1,)x ∀∈+∞恒成立,即211e x x a --≥恒成立.令111(),()eex x xxg x g x ---='=,当1x >时,()0g x '<,故()(1)1g x g <=,∴211a -≥,解得a ≥a ≤所以a 的值可以为, 故选:AD.【题型】二、由函数在区间上的单调性求参数例5.(2023·全国·高三专题练习)若函数2()ln 2f x x x x =+--在其定义域的一个子区间(21,21)k k -+内不是单调函数,则实数k 的取值范围是( ) A .33,24⎛⎫- ⎪⎝⎭B .1,32⎡⎫⎪⎢⎣⎭C .3,32⎛⎫- ⎪⎝⎭D .13,24⎡⎫⎪⎢⎣⎭【答案】D【分析】先求出函数的定义域(0,)+∞,则有210k -≥,对函数求导后,令()0f x '=求出极值点,使极值点在(21,21)k k -+内,从而可求出实数k 的取值范围.【详解】因为函数()f x 的定义域为(0,)+∞, 所以210k -≥,即12k ≥, 2121(1)(21)()21x x x x f x x x x x+-+-'=+-==, 令()0f x '=,得12x =或=1x -(舍去), 因为()f x 在定义域的一个子区间(21,21)k k -+内不是单调函数, 所以121212k k -<<+,得4143k -<<, 综上,1324k ≤<, 故选:D例6.(2023·全国·高三专题练习)若函数()324f x x ax x =-++在区间()0,2上单调递增,则实数a 的取值范围为( ) A .[)2,+∞ B .()2,+∞ C .(],2-∞ D .(),2-∞【答案】A【分析】将问题转化为()0f x '≥在()0,2上恒成立,采用分离变量法可得423a x x ≥-,由434x x-<可构造不等式求得结果. 【详解】()f x 在()0,2上单调递增,()23240f x x ax '∴=-++≥在()0,2上恒成立,即234423x a x x x-≥=-在()0,2上恒成立, 又43y x x =-在()0,2上单调递增,43624x x ∴-<-=,24a ∴≥,解得:2a ≥,即实数a 的取值范围为[)2,+∞. 故选:A.例7.(2023·全国·高三专题练习)下列说法正确的有( )A .设{}25A x x =≤≤,{}23B x a x a =≤≤+,若B A ⊆,则实数a 的取值范围是[]1,2 B .“1a >,1b >”是“1ab >”成立的充分条件C .命题p :x ∀∈R ,20x >,则p ⌝:x ∃∈R ,20x <D .“5a ≤”是“函数()()e 23xf x a x -=--是R 上的单调增函数”的必要不充分条件【答案】BD【分析】分B =∅与B ≠∅两种情况讨论,求出参数a 的范围,即可判断A ,根据不等式的性质及充分条件的定义判断B ,根据全称量词命题的否定为特称量词命题判断C ,求出函数的导数,由()0f x '≥恒成立求出a 的取值范围,再根据集合的包含关系判断D 即可; 【详解】解:对于A :当B =∅,即23a a >+,解得3a >时满足B A ⊆, 当B ≠∅,因为B A ⊆,所以352223a a a a +≤⎧⎪≥⎨⎪≤+⎩,解得12a ≤≤,综上可得[][)1,23,a ∈+∞,故A错误;对于B :由1a >,1b >则1ab >,故“1a >,1b >”是“1ab >”成立的充分条件,即B 正确; 对于C :命题p :x ∀∈R ,20x >,则p ⌝:x ∃∈R ,20x ≤,故C 错误;对于D :因为()()e 23xf x a x -=--,所以()()e 2x f x a =-'-,若()f x 在R 上单调递增, 则()()e 20xf x a -'=-≥恒成立,所以20a -≤,解得2a ≤,因为(],2-∞ (],5-∞, 所以“5a ≤”是“函数()()e 23xf x a x -=--是R 上的单调增函数”的必要不充分条件,故D正确; 故选:BD例8.(2023·全国·高三专题练习)已知函数()2sin 262x f x x mx π⎛⎫=+-- ⎪⎝⎭在06,π⎡⎤⎢⎥⎣⎦上单调递减,则实数m 的最小值是___________【分析】原问题等价于()2cos 206f x x x m π⎛⎫'=+--≤ ⎪⎝⎭在06,π⎡⎤⎢⎥⎣⎦上恒成立,构造函数求最值即可.【详解】由()2sin 262x f x x mx π⎛⎫=+-- ⎪⎝⎭在06,π⎡⎤⎢⎥⎣⎦上单调递减,得()2cos 206f x x x m π⎛⎫'=+--≤ ⎪⎝⎭06x ,⎛π⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,即2cos 26x x m π⎛⎫+-≤ ⎪⎝⎭,令()2cos 26g x x xπ⎛⎫=+- ⎪⎝⎭06x ,⎛π⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,则()4sin 216g x x π⎛⎫'=-+- ⎪⎝⎭, 当0,6x π⎡⎤∈⎢⎥⎣⎦时,2662x πππ≤+≤ ,则24sin 246x π⎛⎫≤+≤ ⎪⎝⎭,所以54sin 2+136x π-≤-≤-⎛⎫- ⎪⎝⎭,即()0g x '<,所以()g x 在0,6x π⎡⎤∈⎢⎥⎣⎦是单调递减函数,max ()(0)g x g ≤=得m ≥m【题型】三、含参分类讨论求函数单调性区间 例9.(2023·全国·高三专题练习)已知()()ln 11axf x x x =+++,则下列说法正确的是( ) A .当0a >时,()f x 有极大值点和极小值点 B .当a<0时,()f x 无极大值点和极小值点 C .当0a >时,()f x 有最大值 D .当a<0时,()f x 的最小值小于或等于0【答案】D【分析】讨论0a >、a<0,利用导数研究()f x 在定义域上的单调性,进而判断极值点及最值情况,即可确定答案. 【详解】由题设,2211()(1)1(1)a x a f x x x x ++'=+=+++且(1,)∈-+∞x ,当0a >时()0f x '>,则()f x 在(1,)-+∞上递增,无极值点和最大值,A 、C 错误; 当a<0时,若(1,1)x a ∈---则()0f x '<,()f x 递减;(1,)x a ∈--+∞则()0f x '>,()f x 递增;所以()(1)1ln()f x f a a a ≥--=++-,即()f x 无极大值点,有极小值点,B 错误; 令()1ln()g a a a =++-且(,0)a ∈-∞,则11()1a g a a a+'=+=, 当1a <-时()0g a '>,()g a 递增;当10a -<<时()0g a '<,()g a 递减; 所以()(1)0g a g ≤-=,即()f x 的最小值小于或等于0,D 正确; 故选:D例10.(2023·全国·高三专题练习)已知函数()ln 1f x x x =--,若不等式()()21f x a x ≥-在区间(]0,1上恒成立,则实数a 的取值范围为( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .1,2⎛⎫-∞ ⎪⎝⎭C .1,2⎛⎫+∞ ⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭【答案】A【分析】2()(1)0f x a x --≥即为2ln 1(1)0x x a x ----≥,设2()ln 1(1)g x x x a x =----,(0,1]x ∈,求出函数()g x 的导函数,分解12a ≤和12a >讨论函数()g x 的单调性,求出函数()g x 在区间(]0,1上的最小值,即可得解.【详解】解:由已知可得2()(1)0f x a x --≥即为2ln 1(1)0x x a x ----≥,设2()ln 1(1)g x x x a x =----,(0,1]x ∈, 则(1)(12)()x ax g x x--'=,当0a ≤时,显然()0g x '≤,当102a <≤时,()0g x '≤在(0,1]x ∈上也成立, 所以12a ≤时,()g x 在(0,1]上单调递减,()(1)0g x g ≥=恒成立; 当12a >时,当102x a <<时,()0g x '<,当112x a<<时,()0g x '>, 所以()g x 在10,2a ⎛⎤ ⎥⎝⎦上单调递减,在1,12a ⎛⎫ ⎪⎝⎭上单调递增, 于是,存在01,12x a ⎛⎫∈ ⎪⎝⎭,使得0()(1)0g x g <=,不满足()0g x ≥,舍去此情况,综上所述,12a ≤. 故选:A.例11.(2023·全国·高三专题练习)已知()()22e 2e e 2e a a b bm m a m m +--=+-,则( )A .当()1,0m ∈-,a ,(),0b ∈-∞时,a b >B .当()1,0m ∈-,a ,(),0b ∈-∞时,a b <C .当()1,2m ∈,a ,()0,b ∈+∞时,a b >D .当()1,2m ∈,a ,()0,b ∈+∞时,a b < 【答案】AC【分析】根据等号两边式子的结构特征构造函数()f x ,利用导数分类讨论函数()f x 的单调性进行求解.【详解】设()()2e 2e x xf x m m x =+--,因为()()22e 2e e 2e a a b bm m a m m +--=+-,所以()()f a f b b =+,当a ,(),0b ∈-∞时,()()0f a f b b -=<,即()()f a f b <.易知()()()e 12e 1x xf x m '=-+,当()1,0m ∈-时,()0f x '<,所以()f x 在(),0∞-上单调递减, 所以a b >,故选项A 正确,选项B 错误.当a ,()0,b ∈+∞时,()()0f a f b b -=>,即()()f a f b >. 当()1,2m ∈时,令()0f x '=,解得ln x m =-,所以()f x 在(),ln m -∞-上单调递减,在()ln ,m -+∞上单调递增, 所以a b >,故选项C 正确,选项D 错误. 故选:AC.【题型】四、根据极值点求参数例12.(2023·全国·高三专题练习)若函数3()3f x x bx b =-+在区间(0,1)内有极小值,则b 的取值范围是( ) A .(,1)-∞ B .(0,1)C .(1,)+∞D .(1,0)-【答案】B【分析】先利用导数求出函数的极小值点,然后使极小值点在(0,1)内,从而可求出b 的取值范围【详解】由题意,得2()33f x x b '=-,当0b ≤时,()0f x '>在(0,1)上恒成立,所以()f x 在(0,1)上递增,函数无极值, 所以0b >,令()0f x '=,则x =,∴函数在()上()0f x '<,+∞)上()0f x '>,函数递增 ∴x =∴函数3()3f x x bx b =-+在区间(0,1)内有极小值,∴01, ∴b ∴(0,1) 故选:B .例13.(2023·全国·高三专题练习)若3π-,3π分别是函数()()()sin 0,0f x x ωϕωϕπ=+><<的零点和极值点,且在区间,155ππ⎛⎫⎪⎝⎭上,函数()y f x =存在唯一的极大值点0x ,使得()01f x =,则下列数值中,ω的可能取值是( ) A .814B .994C .1054D .1174【答案】C【分析】由函数的零点和极值点的概念结合正弦函数图象的性质对各个选项进行判断即可. 【详解】设函数()y f x =的最小正周期为T ,由题意得1122,3(,),32k k k Z k πωϕπππωϕπ⎧-+=⎪⎪∈⎨⎪+=+⎪⎩则3(21),4,24k k ωππϕ+⎧=⎪='⎪⎨⎪+⎪⎩其中121221,(,),k k k k k Z k k k =+⎧∈⎨=-⎩'在区间,155ππ⎛⎫ ⎪⎝⎭上, 函数()y f x =存在唯一的极大值点0x ,使得()01f x =, 所以22,51515T πππ-=≤解得030,ω<≤即3(21)30,4k +≤解得19.5.k ≤ 对于D.若1174ω=,则19.k =由11139(),34k k k Z ππϕπωπ=+=+∈且0ϕπ<<可知3,4πϕ=可使1122,3(,),32k k k Z k πωϕπππωϕπ⎧-+=⎪⎪∈⎨⎪+=+⎪⎩成立, 当,155x ππ⎛⎫∈ ⎪⎝⎭时1173(2.7,6.6),44x πππ+∈当011739442x ππ+=或132π时,()01f x =都成立,故不符合; 对于C. 若1054ω=,则17k =,1135,34k k ππϕπωπ=+=+且0ϕπ<<可知 3,4πϕ=可使1122,3(,),32k k k Z k πωϕπππωϕπ⎧-+=⎪⎪∈⎨⎪+=+⎪⎩成立,当,155x ππ⎛⎫∈ ⎪⎝⎭时1053(2.5,6)44x πππ+∈,当010539442x ππ+=时,存在唯一的极大值点0x ,使得()01f x =,故符合条件; 对于B. 若949ω=,则16,k =由1133,34k k ππϕπωπ=+=+且0ϕπ<<可知,4πϕ= 可使1122,3(,),32k k k Z k πωϕπππωϕπ⎧-+=⎪⎪∈⎨⎪+=+⎪⎩成立,当,155x ππ⎛⎫∈ ⎪⎝⎭时99(1.9,5.2)44x πππ+∈, 当0995442x ππ+=或92π时,()01f x =都成立,故不符合; 对于A. 若148ω=,则13,k =由 112734k k ππϕπωπ=+=+且0ϕπ<<可知3,4πϕ=可使1122,3(,),32k k k Z k πωϕπππωϕπ⎧-+=⎪⎪∈⎨⎪+=+⎪⎩成立,当,155x ππ⎛⎫∈ ⎪⎝⎭时,813(2,1,4.8)44x πππ+∈, 当08135442x ππ+=或92π时,()01f x =都成立,故不符合; 故选:C【题型】五、有导数求函数的最值(含参)例14.(2023·全国·高三专题练习)设直线x t =与函数()22f x x =,()ln g x x =的图象分别交于点M ,N ,则当|MN |达到最小时t 的值为( )A .1B .12CD 【答案】B【分析】由题意,函数()()22ln y f x g x x x =-=-的最小值即|MN |达到最小值时,再求导分析()()22ln y f x g x x x =-=-的极小值点即可【详解】设函数()()22ln y f x g x x x =-=-,求导数得()()212114x x y x x x+-'=-= 因为0x >,故当102x <<时,0'<y ,函数在10,2⎛⎫⎪⎝⎭上为单调减函数, 当12x >时,0'>y ,函数在1,2⎛⎫+∞ ⎪⎝⎭上为单调增函数 所以x 12=为()()22ln y f x g x x x =-=-的极小值点.故当|MN |达到最小时t 的值为12. 故选:B .例15.(2023·全国·高三专题练习)如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,DBC △,ECA △,FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起DBC △,ECA △,FAB ,使得D 、E 、F 重合,得到三棱锥.当ABC 的边长变化时,所得三棱锥体积(单位:3cm )的最大值为______.【答案】3【分析】连接OD ,交BC 于点G ,设OG x =,则BC =,5DG x =-, 进而算出三棱锥的高和体积,构造函数,令45()2510f x x x =-,5(0,)2x ∈,求导,根据导函数的正负判断单调性进而求出最大值.【详解】由题意,连接OD ,交BC 于点G ,由题意得OD BC ⊥,OG =,即OG 的长度与BC 的长度成正比,设OG x =,则BC =,5DG x =-,三棱锥的高h 221)2ABCS==,则213ABC V Sh =⨯=45()2510f x x x =-,5(0,)2x ∈,34()10050f x x x '=-,令()0f x '≥,即4320x x -≤,解得2x ≤,则()(2)80f x f ≤=,∴3V ,∴体积最大值为3.故答案为:3【点睛】思路点睛:本题将三棱锥体积的计算转化为利用导数研究函数的最值问题,考查学生对这些知识的掌握能力,本题的解题关键是掌握根据导数求单调性的方法,属于中档题.例16.(2023·河北·高三阶段练习)R,2e 12x x x a ∀∈-≥+,则a 的最大值为_____________.【答案】1【分析】R,2e 12x x x a ∀∈-≥+,即R,2e 12x x x a ∀∈--≥,令()2e 12xf x x =--,分1ln2x >和1ln2x ≤两种情况讨论,利用导数求出函数的最小值,即可得出答案. 【详解】解:R,2e 12xx x a ∀∈-≥+, 即R,2e 12xx x a ∀∈--≥, 令()2e 12xf x x =--,当2e 10x ->,即1ln 2x >时,()2e 12xf x x =--,则()2e 2xf x '=-,当1ln02x <<时,()0f x '<,当0x >时,0f x ,所以函数()f x 在1ln ,02⎛⎫⎪⎝⎭上递减,在()0,∞+上递增,所以当1ln 2x >时,()()min 01f x f ==,当2e 10x -≤,即1ln2x ≤时,()12e 2xf x x =--, 因为函数2e ,2x y y x ==为增函数,所以函数()12e 2xf x x =--在1,ln 2⎛⎫-∞ ⎪⎝⎭上递减,所以当1ln2x ≤时,()min 1ln ln 412f x f ⎛⎫==> ⎪⎝⎭, 综上所述,()()min 01f x f ==, 所以1a ≤, 即a 的最大值为1. 故答案为:1.【题型】六、已知函数最值求参数例17.(2023·广西·模拟预测(文))已知函数()ln f x x ax =+存在最大值0,则a 的值为( ) A .2- B .1e-C .1D .e【答案】B【分析】讨论a 与0的大小关系确定()f x 的单调性,求出()f x 的最大值. 【详解】因为()1f x a x'=+,0x >, 所以当0a ≥时,0fx恒成立,故函数()f x 单调递增,不存在最大值;当a<0时,令()0f x '=,得出1x a=-,所以当10,x a ⎛⎫∈- ⎪⎝⎭时,0fx ,函数单调递增,当1,x a ∈-+∞⎛⎫⎪⎝⎭时,()0f x '<,函数单调递减,所以() max11ln 10f x f a a ⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,解得:=a 1e -. 故选:B.例18.(2023·全国·高三专题练习)若函数()22e xx x af x +-=在区间(,1)a a +上存在最小值,则实数a 的取值范围为( ) A .(),1-∞-B .()2,1--C .⎛-∞ ⎝⎭D .1⎫-⎪⎪⎝⎭【答案】D【分析】求得()22exx a f x -++'=,根据()f x 在区间(,1)a a +上存在最小值,得到()00f x '=且()0f a '<,()10f a '+>,设()22g x x a =-++,根据()0g a <且()10g a +>,列出不等式组,即可求解.【详解】由函数()22e xx x af x +-=,可得()22e x x a f x -++'=,且()f x 在区间(,1)a a +上存在最小值, 即()f x '在区间(,1)a a +上存在0(,1)x a a ∈+, 使得()00f x '=且()0f a '<,()10f a '+>,设()22g x x a =-++,即满足()0g a <,且()10g a +>,可得()()2220110g a a a g a a a ⎧=-++<⎪⎨+=--+>⎪⎩1a <<-,即实数a 的取值范围是1⎫-⎪⎪⎝⎭.故选:D.例19.(2023·全国·高三专题练习)已知函数21()e xx x f x +-=,则下列结论正确的是( )A .函数()f x 只有一个零点B .函数()f x 只有极大值而无极小值C .当e 0k -<<时,方程()f x k =有且只有两个实根D .若当[,)x t ∈+∞时,max 25()e f x =,则t 的最大值为2 【答案】CD【分析】解方程()0f x =判断A ;利用导数探讨()f x 的极值判断B ;分析函数()f x 的性质,借助图象判断C ;由25(2)e f =结合取最大值的x 值区间判断D 作答.【详解】对于A ,由()0f x =得:210x x +-=,解得x =A 不正确;对于B ,对()f x 求导得:22(1)(2)()e ex xx x x x f x '--+-=-=-,当1x <-或2x >时,()0f x '<,当12x -<<时,()0f x '>,即函数()f x 在(,1)-∞-,(2,)+∞上单调递减,在(1,2)-上单调递增,因此,函数()f x 在=1x -处取得极小值(1)e f -=-,在2x =处取得极大值25(2)e f =,B 不正确;对于C ,由选项B 知,作出曲线()y f x =及直线y k =,如图,观察图象得当e 0k -<<时,直线y k =与曲线()y f x =有2个交点,所以当e 0k -<<时,方程()f x k =有且只有两个实根,C 正确; 对于D ,因25(2)e f =,而函数()f x 在(2,)+∞上单调递减,因此当[,)x t ∈+∞时,max25()e f x =, 当且仅当2[,)t ∈+∞,即2t ≤,所以t 的最大值为2,D 正确. 故选:CD【点睛】方法点睛:函数零点个数判断方法:(1)直接法:直接求出f (x )=0的解;(2)图象法:作出函数f (x )的图象,观察与x 轴公共点个数或者将函数变形为易于作图的两个函数,作出这两个函数的图象,观察它们的公共点个数.【题型】七、参变分离法解决导数问题例20.(2023·江苏·苏州中学高三阶段练习)若关于x 的不等式(41ln )ln 3k x x x x --<-+对于任意(1,)x ∈+∞恒成立,则整数k 的最大值为( ) A .-2 B .-1 C .0 D .1【答案】C【分析】参变分离将恒成立问题转化为求函数最值问题,然后利用导数求最值可得. 【详解】(41ln )ln 3k x x x x --<-+对于任意(1,)x ∈+∞恒成立 等价于ln 34ln x k x x x<++对于任意(1,)x ∈+∞恒成立 令ln 3()ln x f x x x x =++,则2221ln 13ln 2()x x x f x x x x x ---'=+-= 令()ln 2g x x x =--,则11()10x g x x x-'=-=> 所以()g x 在(1,)+∞上单调递增,又(3)1ln30,(4)2ln 40g g =-<=->所以()g x 在()3,4有且仅有一个根0x ,满足00ln 20x x --=,即00ln 2x x =- 当0(1,)x x ∈时,()0g x <,即()0f x '<,函数()f x 单调递减, 0(,)x x ∈+∞时,()0g x >,即()0f x '>,函数()f x 单调递增,所以0min 000000231()()21x f x f x x x x x x -==+-+=+- 由对勾函数可知001113114134x x +-<+-<+-,即0713()34f x << 因为04()k f x <,即0()4f x k <,0()71312416f x <<,Z k ∈ 所以0k ≤. 故选:C例21.(2023·全国·高三专题练习)已知1a >,1x ,2x ,3x 均为2x a x =的解,且123x x x <<,则下列说法正确的是( ) A .1(2,1)x ∈-- B .2e (1,e )a ∈ C .120x x +< D .232e x x +<【答案】B【分析】A 选项:根据“三个等价”,将方程根的问题转化成构造出的函数零点的问题,利用零点存在性定理确定出1x 的取值情况;B ,C ,D 选项:对方程变形,参变分离构造函数,从函数的角度以及利用极值点偏移可以得出相应结论,详细过程见解析.【详解】对于A ,令2()x f x a x =-,因为1a >,所以()f x 在(,0)-∞上单调递增,与x 轴有唯一交点,由零点存在性定理,得1(1)10f a --=-<,0(0)00f a =->,则1(1,0)x ∈-,故A 错误. 对于B ,C ,D ,当0x >时,两边同时取对数,并分离参数得到ln ln 2a xx=, 令ln ()x g x x =,()21ln xg x x -'∴=, 当()0,e x ∈时,()0g x '>,()g x 单调递增; 当()e,x ∈+∞时,()0g x '<,()g x 单调递减; 如图所示,∴当0x >时,ln 2ay =与ln ()x g x x =的图象有两个交点,ln 1(0,)2ea ∈,解得2e (1,e )a ∈,故B 正确; ∴2(1,e)x ∈,由A 选项知1(1,0)x ∈-,120x x ∴+>,故C 错误;由极值点偏移知识,此时函数()g x 的极值点左移,则有23e 2x x +>,故D 错误. 故选:B.例22.(2023·上海·高三专题练习)在空间直角坐标系O xyz -中,三元二次方程所对应的曲面统称为二次曲面.比如方程2221x y z ++=表示球面,就是一种常见的二次曲面.二次曲面在工业、农业、建筑等众多领域应用广泛.已知点(,,)P x y z 是二次曲面22420x xy y z -+-=上的任意一点,且0x >,0y >,0z >,则当zxy取得最小值时,不等式ln e 3022xa yx za +-≥恒成立,则实数a 的取值范围是________.【答案】[e,)-+∞【分析】先通过zxy取得最小值这个条件找出当,,x y z 的关系,带入后一个不等式,利用对数恒等式变型,此后分离参数求最值即可.【详解】根据题意22420x xy y z -+-=,带入z xy 可得:2224212222z z x xy y x y xy xy xy y x -+===+-,而0x >,0y >,利用基本不等式222x y y x +≥=,当22x y y x =,即2y x =取得等号,此时22224246z x x x x x =-⋅+=,即23z x =,综上可知,当z xy 取得最小值时,223y x z x =⎧⎨=⎩,带入第二个式子可得,2e ln 02x a x ax x +-≥,即e ln 0x ax a x x +-≥,于是ln e ln (ln )0xx x ax a x e a x x x-+-=+-≥,设()ln u u x x x ==-,11()1x u x x x -'=-=,故当1x >时,()u x 递增,01x <<时,()u x 递减,min ()(1)1u x u ==;于是原不等式转化为1u ≥时,0u e au +≥恒成立,即ue a u -≤在1u ≥时恒成立,设()u e h u u=(1)u ≥,于是2(1)()0u e u h u u -'=≥,故()h u 在1u ≥时单调递增,min ()(1)h u h e ==,故a e -≤,a e ≥-即可. 故答案为:[e,)-+∞【点睛】本题e ln 0xax a x x+-≥恒成立的处理用到了对数恒等式,若直接分离参数求最值,会造成很大的计算量.【题型】八、构造函数并利用函数的单调性判定函数值大小例23.(2023·全国·高三专题练习)设函数()f x '是奇函数()f x (x ∴R )的导函数,f (﹣1)=0,当x >0时,()()0xf x f x '->,则使得f (x )>0成立的x 的取值范围是( ) A .(﹣∞,﹣1)∴(﹣1,0) B .(0,1)∴(1,+∞) C .(﹣∞,﹣1)∴(0,1) D .(﹣1,0)∴(1,+∞)【答案】D【分析】构造函数()()f x g x x =,求导结合题意可得()()f xg x x=的单调性与奇偶性,结合()10g -=求解即可 【详解】由题意设()()f x g x x=,则()()()2xf x f x g x x '-'=∴当x >0时,有()()0xf x f x '->, ∴当x >0时,()0g x '>, ∴函数()()f xg x x=在(0,+∞)上为增函数, ∴函数f (x )是奇函数, ∴g (﹣x )=g (x ),∴函数g (x )为定义域上的偶函数, g (x )在(﹣∞,0)上递减, 由f (﹣1)=0得,g (﹣1)=0, ∴不等式f (x )>0∴x •g (x )>0,∴()()01x g x g >⎧⎨>⎩或()()01x g x g <⎧⎨<-⎩, 即有x >1或﹣1<x <0,∴使得f (x )>0成立的x 的取值范围是:(﹣1,0)∴(1,+∞), 故选:D .例24.(2023·全国·模拟预测)以下数量关系比较的命题中,正确的是( )A .2e e 2> B .2ln 23>C .ln π1πe< D .ln 2ln π2π> 【答案】ABC【分析】令()()eln 0f x x x x =->,利用导数研究函数的单调性,进而可判断A ;根据指数函数与对数函数的单调性可判断B ;令()()ln 0xg x x x=>,利用导数研究函数的单调性,进而可判断CD ;【详解】对于A :设()()eln 0f x x x x =->,则()()e e 10xf x x x x-'=-=>, 当0e x <<时,0fx,函数单调递增;当e x >时,()0f x '<,函数单调递减;所以()()e elne e 0f x f <=-=,所以()()2eln 22e 0f f =-<=,即2>eln 2, 所以 2e e 2>,故A 正确;对于B :因为28e >,所以2ln8ln e >,所以3ln 22>,即2ln 23>,故B 正确; 对于CD :设()()ln 0xg x x x =>,()21ln x g x x-'=, 当0e x <<时,()0g x '>,函数单调递增;当e x >时,()0g x '<,函数单调递减; 所以()()e πg g >,即ln π1πe<,故C 正确; 又()()()e π4g g g >>,所以ln πln 4ln 2π42>=,故D 错误; 故选:ABC【题型】九、构造函数法解决导数问题例25.(2023·全国·高三专题练习)定义在(0)+∞,上的函数()f x 满足()()110,2ln2xf x f '+=>,则不等式)(e 0x f x +> 的解集为( ) A .(02ln2),B .(0,ln2)C .(ln21),D .(ln2)+∞,【答案】D【分析】构造新函数()()ln ,(0)g x f x x x =+>,利用导数说明其单调性,将)(e 0x f x +>变形为)>(e (2)x g g ,利用函数的单调性即可求解. 【详解】令()()ln ,(0)g x f x x x =+> , 则()11()()xf x g x f x x x'+''=+=,由于()10xf x '+>, 故()0g x '>,故()g x 在(0)+∞,单调递增, 而1(2)(2)ln2ln ln 202g f =+=+= ,由)(e 0x f x +>,得)>(e (2)x g g , ∴e 2x > ,即ln2x > ,∴不等式)(e 0x f x +>的解集为(ln2)+∞,, 故选:D .例26.(2023·全国·高三专题练习)已知e ,3,e a b c πππ===,则它们的大小关系是( ) A .a b c >> B .c b a >> C .b c a >> D .c a b >>【答案】C【分析】由y x π=在区间(0,)+∞上为单调递增函数,可得到b c >,设()eln f x x x =-,利用导数求得函数()f x 单调递增,可得eln 0ππ->,进而得到c a >,即可求解. 【详解】由函数y x π=在区间(0,)+∞上为单调递增函数, 因为3e >,所以3e ππ>,即b c >, 设()eln f x x x =-,可得()e 1f x x'=-, 令()e10f x x'=-=,解得x e =, 当e x >时,0fx,()f x 单调递增,可得()()e 0f f π>=,即eln 0ππ->,即eln ππ>, 两边取e 的指数,可得e e ππ>,即c a >, 所以b c a >>. 故选:C.例27.(2023·江西·赣州市赣县第三中学高三期中(理))设()f x '是函数()f x 的导函数,且()()()3R f x f x x '>∈,1e 3f ⎛⎫= ⎪⎝⎭(e 为自然对数的底数),则不等式()3ln f x x <的解集为( )A .e 0,3⎛⎫ ⎪⎝⎭B .1e ,e 3⎛⎫ ⎪⎝⎭C .(D .e 3⎛ ⎝【答案】C【分析】构造函数()()3exf xg x =,由已知可得函数()g x 在R 上为增函数,不等式()3ln f x x <即为()1ln 3g x g ⎛⎫< ⎪⎝⎭,根据函数的单调性即可得解.【详解】解:令()()3e x f x g x =,则()()()33e xf x f xg x '-'=, 因为()()()3R f x f x x '>∈,所以()()()330e xf x f xg x '-'=>,所以函数()g x 在R 上为增函数, 不等式()3ln f x x <即不等式()3ln <1>0f x x x ⎧⎪⎨⎪⎩,又()()()3ln 3ln ln ln e x f x f x g x x ==,11313e f g ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭,所以不等式()3ln f x x <即为()1ln 3g x g ⎛⎫< ⎪⎝⎭,即1ln 3x <,解得0x <<所以不等式()3ln f x x <的解集为(.故选:C.例28.(2023·全国·高三专题练习)已知函数()()()()e 1,1ln xf x xg x x x =+=+,若()()120f x g x =>,则21x x 可取( ) A .1 B .2 C .e D .2e【答案】CD【分析】由()()()ln 1ln ln e 1xg x x x x =+=+,利用同构结合()f x 在(0,)+∞上单调递增,即可得到12ln x x =,则()12111e ,0x x x x x =>,记e(),(0)xh x x x=>,求出()h x '即可判断()h x 在(0,)+∞上的单调性,即可得出21e x x ≥,由此即可选出答案. 【详解】因为()()120f xg x =>,所以120,1x x >>,因为()e ()0e e 111x x xx x x f =+'+++>=恒成立,所以()f x 在(0,)+∞上单调递增,又()()()ln 1ln ln e 1xg x x x x =+=+,因为()()12f x g x =,即()()12ln 12e 1ln e 1x xx x +=+,所以1122ln e xx x x =⇒=,所以()12111e ,0x x x x x =>,记e (),(0)xh x x x=>, 所以2(1)()x e x h x x '-= 当01x <<时,()0h x '<,()h x 单调递减,当1x >时,()0h x '>,()h x 单调递增,所以()(1)e h x h ≥=,即21e x x ≥ 故选:CD.【点睛】本题考查利用导数求函数的最值,属于难题,其中将()()()ln 1ln ln e 1x g x x x x =+=+变形为()()e 1x f x x =+的结构,是解本题的关键.。
导数复习题(含答案)
因为 ,所以 ,即 ,
所以 化为 ,
当 时,不等式 等价于 ,即 ,解得 ;
当 时,不等式 等价于 ,即 ,解得 ;
综上,不等式 的解集为 .
点睛:本题考查了与函数有关的不等式的求解问题,其中解答中涉及到利用条件构造新函数和利用导数研究函数的单调性,以及根据单调性和奇偶性的关系对不等式进行转化,解答中一定要注意函数值为零是自变量的取值,这是题目的一个易错点,试题综合性强,属于中档试题.
A. B. C. D.
【答案】A
【解析】由题意得 ,令
,选A.
点睛:对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.
故答案为B。
11.已知函数 有两个零点,则 的取值范围是()
A. B. C. D.
【答案】D
【解析】函数 的定义域为 ,因为 ,当 时, ,则函数 在 上单调递增,不满足条件;当 时,令 ,得 ,所以 在 上单调递减,在 上单调递增,所以 为极小值点,要使 有两个零点,即要 ,即 ,则 的取值范围是 ,故选D.
6.函数 的图象是()
A. B.
C. D.
【答案】A
【解析】由函数 ,则 ,所以函数 为奇函数,
图象关于原点对称,
又 时, ,
所以当 时, 单调递增,当 时, 单调递减,
综上,函数的图象大致为选项A,故选A.
7.已知函数 是函数 的导函数, ,对任意实数都有 ,设 则不等式 的解集为()
高中数学导数知识点归纳的总结及例题(word文档物超所值)
为函数
_____ _ 的图象的顶点在第四象限,则其导
o
y
x
-33
)
(x
f
y'
=
()y f x ='()f x 为( )
(安微省合肥市2010年高三第二次教学质量检测文科)函数()y f x =的图像如下右)
(x f y '=
(2010年浙江省宁波市高三“十校”联考文科)如右图所示是某
一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是( )
象大致形状是( )
2009湖南卷文)若函数()y f x =的导函数在区间[,]a b 上是增函数,则函数
()x 在区间[,]a b 上的图象可能是
y
y
y
14.(2008年福建卷12)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),
y=g(x)的图象可能是( )
15.(2008珠海一模文、理)设是函数的导函数,将和的图)('x f )(x f )(x f y =)('x f y =像画在同一个直角坐标系中,不可能正确的是( )
A .
B .
C .
D .16.(湖南省株洲市2008届高三第二次质检)已知函数
)(x f y =的导函数)(x f y '=的图像如下,则(
)
函数)(x f 有1个极大值点,1个极小值点
y。
(完整版)导数含参数取值范围分类讨论题型总结与方法归纳
导数习题题型十七:含参数导数问题的分类讨论问题含参数导数问题的分类讨论问题1.求导后,导函数的解析式含有参数,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。
★已知函数ax x a x x f 2)2(2131)(23++-=(a 〉0),求函数的单调区间)2)((2)2()(--=++-='x a x a x a x x f ★★例1 已知函数x a xax x f ln )2(2)(+--=(a 〉0)求函数的单调区间 222))(2(2)2()(x a x x x a x a x x f --=++-='★★★例3已知函数()()22211ax a f x x R x -+=∈+,其中a R ∈。
(Ⅰ)当1a =时,求曲线()y f x =在点()()2,2f 处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值。
解:(Ⅰ)当1a =时,曲线()y f x =在点()()2,2f 处的切线方程为032256=-+y x 。
(Ⅱ)由于0a ≠,所以()()12)1(222+-+='x x a x f ,由()'0f x =,得121,x x a a=-=。
这两个实根都在定()()()()()()22'2222122122111a x a x a x x ax a a f x x x ⎛⎫--+ ⎪+--+⎝⎭==++义域R 内,但不知它们之间 的大小。
因此,需对参数a 的取值分0a >和0a <两种情况进行讨论。
(1)当0a >时,则12x x <.易得()f x 在区间1,a ⎛⎫-∞- ⎪⎝⎭,(),a +∞内为减函数,在区间1,a a ⎛⎫- ⎪⎝⎭为增函数。
故函数()f x 在11x a =-处取得极小值21f a a ⎛⎫-=- ⎪⎝⎭;函数()f x 在2x a =处取得极大值()1f a =。
导数知识点总结及例题
导数知识点总结及例题一、导数的定义1.1 函数的变化率在生活中,我们经常会遇到函数随着自变量的变化而发生变化的情况,比如一辆汽车的速度随着时间的变化而变化、货物的销售量随着价格的变化而变化等。
这种情况下,我们就需要考虑函数在某一点处的变化率,也就是导数。
对于函数y=f(x),在点x处的变化率可以用函数的增量Δy和自变量的增量Δx的比值来表示:f'(x) = lim(Δx→0) (Δy/Δx)其中f'(x)表示函数f(x)在点x处的导数。
利用导数的定义,我们可以计算得到函数在某一点处的变化率。
1.2 导数的几何意义导数还有一个重要的几何意义,它表示了函数曲线在某一点处的切线的斜率。
例如,对于函数y=x^2,在点(1,1)处的导数就代表了曲线在这一点处的切线斜率。
这也意味着,导数可以帮助我们理解函数曲线在不同点处的形状和走向。
1.3 导数存在的条件对于一个函数f(x),它在某一点处的导数存在的条件是:在这一点处函数曲线的切线存在且唯一。
也就是说,如果函数在某一点处导数存在,那么这个点就是函数的可导点。
二、导数的性质2.1 导数与函数的关系导数是函数的一个重要属性,它可以帮助我们理解函数的性质。
例如,导数可以表示函数在某一点处的斜率,可以告诉我们函数曲线的凹凸性,还可以帮助我们找到函数的极值点等。
2.2 导数与导函数当一个函数在某一点处的导数存在时,我们可以使用导数的定义来求出函数在该点处的导数。
我们把这个过程称为求导,求出的导数称为导函数。
导函数的值就是原函数在对应点处的导数值。
2.3 导数的性质导数具有一些重要的性质,比如导数存在的条件、可导函数的和、差、积、商的导数求法则等。
这些性质是我们求解导数的问题时的重要依据,也是我们理解函数性质的基础。
三、求导法则3.1 基本求导法则基本求导法则是求解导数问题的基础,它包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数等函数的导数求法。
导数专题训练(含答案)
导数专题训练及答案专题一导数的几何意义及其应用导数的几何意义是高考重点考查的内容之一,常与解析几何知识交汇命题,主要题型是利用导数的几何意义求曲线上某点处切线的斜率或曲线上某点的坐标或过某点的切线方程,求解这类问题的关键就是抓住切点P(x0,f(x0)),P点的坐标适合曲线方程,P点的坐标也适合切线方程,P点处的切线斜率k=f′(x0).解题方法:(1) 解决此类问题一定要分清“在某点处的切线”,还是“过某点的切线”的问法.(2)解决“过某点的切线”问题,一般是设切点坐标为P(x0,y0),然后求其切线斜率k=f′(x0),写出其切线方程.而“在某点处的切线”就是指“某点”为切点.(3)曲线与直线相切并不一定只有一个公共点,当曲线是二次曲线时,我们知道直线与曲线相切,有且只有一个公共点,这种观点对一般曲线不一定正确.[例1]已知曲线y=13x3+43.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为4的曲线的切线方程.[变式训练]已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.专题二导数在研究函数单调性中的应用利用导数的符号判断函数的单调性,进而求出函数的单调区间,是导数几何意义在研究曲线变化规律时的一个重要应用,体现了数形结合思想.这类问题要注意的是f(x)为增函数⇔f′(x)≥0且f′(x)=0的根有有限个,f(x)为减函数⇔f′≤0且f′(x)=0的根有有限个.解题步骤:(1)确定函数的定义域;(2)求导数f′(x);(3)①若求单调区间(或证明单调性),只需在函数f(x)的定义域内解(或证明)不等式f′(x)>0或f′(x)<0.②若已知函数f(x)的单调性,则将原问题转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题,再进行求解.[例2]设函数f(x)=x e a-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.(1)求a,b的值;(2)求f(x)的单调区间.[变式训练]设函数f(x)=xekx(k≠0).(1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(-1,1)内单调递增,求k的取值范围.专题三 导数在求函数极值与最值中的应用利用导数可求出函数的极值或最值,反之,已知函数的极值或最值也能求出参数的值或取值范围.该部分内容也可能与恒成立问题、函数零点问题等结合在一起进行综合考查,是高考的重点内容.解题方法:(1)运用导数求可导函数y =f(x)的极值的步骤:①先求函数的定义域,再求函数y =f(x)的导数f ′(x);②求方程f ′(x)=0的根;③检查f ′(x)在方程根的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值,如果左负右正,那么f(x)在这个根处取得极小值.(2)求闭区间上可导函数的最值时,对函数极值是极大值还是极小值,可不再作判断,只需要直接与端点的函数值比较即可获得.(3)当连续函数的极值点只有一个时,相应的极值点必为函数的最值.[例3] 已知函数f (x )=-x 3+ax 2+bx 在区间(-2,1)内,当x =-1时取极小值,当x =23时取极大值.(1)求函数y =f (x )在x =-2时的对应点的切线方程;(2)求函数y =f (x )在[-2,1]上的最大值与最小值.[变式训练] 设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线方程与x 轴平行,求a ;(2)若f (x )在x =2处取得极小值,求a 的取值范围.专题四 导数在证明不等式中的应用在用导数方法证明不等式时,常构造函数,利用单调性和最值方法证明不等式.解题方法:一般地,如果证明f(x)>g(x),x ∈(a ,b),可转化为证明F(x)=f(x)-g(x)>0,若F ′(x)>0,则函数F(x)在(a ,b)上是增函数,若F(a)≥0,则由增函数的定义知,F(x)>F(a)≥0,从而f(x)>g(x)成立,同理可证f(x)<g(x),f(x)>g(x).[例4] 已知函数f (x )=ln x -(x -1)22. (1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1.[变式训练] 已知函数f (x )=a e x -ln x -1.(1)设x =2是f (x )的极值点,求a ,并求f (x )的单调区间;(2)证明:当a ≥1e 时,f (x )≥0.专题五 定积分及其应用定积分的基本应用主要有两个方面:一个是求坐标平面上曲边梯形的面积,另一个是求变速运动的路程(位移)或变力所做的功.高考中要求较低,一般只考一个小题.解题方法:(1)用微积分基本定理求定积分,关键是找出被积函数的原函数,这就需要利用求导运算与求原函数是互逆运算的关系来求原函数.(2) 利用定积分求平面图形的面积的步骤如下:①画出图形,确定图形范围;②解方程组求出图形交点坐标,确定积分上、下限;③确定被积函数,注意分清函数图形的上、下位置;④计算定积分,求出平面图形面积.(3)利用定积分求加速度或路程(位移),要先根据物理知识得出被积函数,再确定时间段,最后用求定积分方法求出结果.[例5] 已知抛物线y =x 2-2x 及直线x =0,x =a ,y =0围成的平面图形的面积为43,求a 的值.[变式训练] (1)若函数f (x )在R 上可导,f (x )=x 3+x 2f ′(1),则∫20f (x )d x = ____;(2)在平面直角坐标系xOy 中,直线y =a (a >0)与抛物线y =x 2所围成的封闭图形的面积为823,则a =____.专题六 化归与转化思想在导数中的应用化归与转化就是在处理问题时,把待解决的问题或难解决的问题,通过某种转化过程,归结为一类已解决或易解决的问题,最终求得问题的解答.解题方法:与函数相关的问题中,化归与转化思想随处可见,如,函数在某区间上单调可转化为函数的导数在该区间上符号不变,不等式的证明可转化为最值问题等.[例6] 设f (x )=e x1+ax 2,其中a 为正实数. (1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围.[变式训练] 如果函数f(x)=2x2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.答案例1 解:(1)因为P (2,4)在曲线y =13x 3+43上,且y ′=x 2,所以在点P (2,4)处的切线的斜率k =y ′|x =2=4.所以曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y -13x 3+43与过点P (2,4)的切线相切于点A ⎝ ⎛⎭⎪⎫x 0,13x 30+43,则切线的斜率k =y ′|x =x 0=x 20,所以切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0), 即y =x 20·x -23x 30+43.因为点P (2,4)在切线上,所以4=2x 20-23x 30+43,即x 30-3x 20+4=0,所以x 30+x 20-4x 20+4=0,所以(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为4x -y -4=0或x -y +2=0.(3)设切点为(x 1,y 1),则切线的斜率k =x 21=4,得x 0=±2.所以切点为(2,4),⎝ ⎛⎭⎪⎫-2,-43, 所以切线方程为y -4=4(x -2)和y +43=4(x +2),即4x -y -4=0和12x -3y +20=0.变式训练 解:(1)因为f (2)=23+2-16=-6,所以点(2,-6)在曲线上.因为f ′(x )=(x 3+x -16)′=3x 2+1,所以在点(2,-6)处的切线的斜率为k =f ′(2)=3×22+1=13,所以切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)设切点坐标为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,所以直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16.又因为直线l 过点(0,0),所以0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得x 30=-8,所以x 0=-2,y 0=(-2)3+(-2)-16=-26,所以k =3×(-2)2+1=13,所以直线l 的方程为y =13x ,切点坐标为(-2,-26).例2 解:(1)因为f (x )=x e a -x +bx ,所以f ′(x )=(1-x )e a -x +b .依题设,知⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得a =2,b =e.(2)由(1)知f (x )=x e 2-x +e x .由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号. 令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值,从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞). 故f (x )的单调递增区间为(-∞,+∞).变式训练 解:(1)f ′(x )=(1+kx )e kx (k ≠0), 令f ′(x )=0得x =-1k (k ≠0).若k >0,则当x ∈⎝ ⎛⎭⎪⎫-∞,-1k 时,f ′(x )<0,函数f (x )单调递减,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )>0,函数f (x )单调递增; 若k <0,则当x ∈⎝⎛⎭⎪⎫-∞,-1k 时,f ′(x )>0,函数f (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )<0,函数f (x )单调递减. (2)由(1)知,若k >0时,则当且仅当-1k ≤-1,即k ≤1,函数f (x )在(-1,1)上单调递增.若k <0时,则当且仅当-1k ≥1,即k ≥-1时,函数f (x )在(-1,1)上单调递增.综上可知,函数f (x )在(-1,1)上单调递增时,k 的取值范围是[-1,0)∪(0,1].例3 解:(1)f ′(x )=-3x 2+2ax +b .又x =-1,x =23分别对应函数取得极小值、极大值的情况,所以-1,23为方程-3x 2+2ax +b =0的两个根.所以a =-12,b =2,则f (x )=-x 3-12x 2+2x . x =-2时,f (x )=2,即(-2,2)在曲线上. 又切线斜率为k =f ′(x )=-3x 2-x +2, f ′(-2)=-8,所求切线方程为y -2=-8(x +2), 即为8x +y +14=0.(2)x 在变化时,f ′(x )及f (x )的变化情况如下表: ↘↗↘则f (x )在[-2,1]上的最大值为2,最小值为-32.变式训练 解:(1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[2ax -(4a +1)]e x +[ax 2-(4a +1)x +4a +3]e x =[ax 2-(2a +1)x +2]e x .所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点.综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.例4 (1)解:f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞). 由f ′(x )>0得⎩⎪⎨⎪⎧x >0,-x 2+x +1>0,解得0<x <1+52. 故f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,1+52. (2)证明:令F (x )=f (x )-(x -1),x ∈(0,+∞). 则有F ′(x )=1-x 2x .当x ∈(1,+∞)时,F ′(x )<0, 所以F (x )在[1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.变式训练 (1)解:f (x )的定义域为(0,+∞),f ′(x )=a e x -1x .由题设知,f ′(2)=0,所以a =12e 2. 从而f (x )=12e 2e x -ln x -1,f ′(x )=12e 2e x -1x . 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增. (2)证明:当a ≥1e 时,f (x )≥e xe -ln x -1. 设g (x )=e x e -ln x -1,则g ′(x )=e x e -1x . 当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e 时,f (x )≥0.例5 解:作出y =x 2-2x 的图象如图所示.(1)当a <0时,S =∫0a (x 2-2x )d x =⎝⎛⎭⎪⎫13x 3-x 2|0a =-a 33+a 2=43,所以(a +1)(a -2)2=0, 因为a <0,所以a =-1. (2)当a >0时, ①若0<a ≤2,则S =-∫a 0(x 2-2x )d x = -⎝ ⎛⎭⎪⎫13x 3-x 2|a 0=a 2-a 33=43, 所以a 3-3a 2+4=0, 即(a +1)(a -2)2=0. 因为a >0,所以a =2. ②当a >2时,不合题意. 综上a =-1或a =2.变式训练 解析:(1)因为f (x )=x 3+x 2f ′ 所以f ′(x )=3x 2+2xf ′(x ), 所以f ′(1)=3+2f ′(1), 所以f ′(1)=-3,所以∫20f (x )d x =⎝⎛⎭⎪⎫14x 4+13x 3f ′(1)|20=-4.(2)由⎩⎪⎨⎪⎧y =x 2,y =a 可得A (-a ,a ),B (a ,a ),S = (a -x 2)d x=⎝ ⎛⎭⎪⎫ax -13x 3|=2⎝ ⎛⎭⎪⎫a a -13a a =4a 323=823, 解得a =2. 答案:(1)-4 (2)2例6 解:(1)对f (x )求导得f ′(x )=e x·1+ax 2-2ax (1+ax 2)2.①当a =43时,若f ′(x )=0,则4x 2-8x +3=0, 解得x 1=32,x 2=12. 综合①,可知: ↗↘↗所以,x 1=32是极小值点,x 2=12是极大值点. (2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0, 知ax 2-2ax +1≥0在R 上恒成立, 因此Δ=4a 2-4a =4a (a -1)≤0, 由此并结合a >0,知0<a ≤1.变式训练 解析:显然函数f (x )的定义域为(0,+∞), y ′=4x -1x =4x 2-1x .由y ′>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞; 由y ′<0,得函数f (x )的单调递减区间为⎝⎛⎭⎪⎫0,12,由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎨⎧k -1<12<k +1,k -1≥0,解得1≤k <32. 答案:⎣⎢⎡⎭⎪⎫1,32。
高三复习导数与函数---含参数的单调性问题
重点:1、含参数单调性的讨论;2、函数在某个区间单调求参数取值范围难点:含参数单调性的讨论一、基本知识点A 、在参数范围内讨论单调性的解题的主体思路或步骤:1.先明确定义域(通常针对的是对数函数)2.求导,这时需要判断导数在定义域范围内是否存在恒正或恒负的情况(对于二次函数型的通过判别式来明确分类讨论的主体框架,对于含有对数函数的,可能需要通过二次求导来判定)。
即在定义域范围内恒单调递增或递减。
3.当在定义域范围内导数有正有负,即存在极值点,这时令导函数的值为零,求出极值点(一般会含有2个极值点,这时要比较这2个极值点的相对大小,还有在定义域的相对位置)4.根据参数的范围划分好单调区间。
B 、函数在给定某个区间内的单调,求参数的取值范围的解题思路或步骤: 主体思路跟上面类似,结合单调区间判定极值点相对位置。
C 、函数是给定的,单调区间是含有参数的解题思路和步骤:先把函数的单调区间明确,而条件中的单调区间是函数单调区间的某个子集。
二、基础模块例1. 设函数x kx x x f +-=23)( 当1=k 时,求函数)(x f 的单调区间;例2. 设函数3()3(0)f x x ax b a =-+≠。
求函数()f x 的单调区间与极值点。
例3. 已知函数321()1()3f x x x ax a R =+++∈求函数()f x 的单调区间例4. 已知函数f(x)=x 3-21x 2+bx+c.若f(x)在(-∞,+∞)上是增函数,求b 的取值范围;例5. 已知函数f(x)=x(x-1)(x-a)在(2,+∞)上是增函数,试确定实数a 的取值范围.例6. 已知函数f (x )=x 3+3x 2若函数()f x 在区间[,1]m m +上单调递增,求m 的取值范围.三、拓展模块例1. 已知函数2()(2ln ),(0)f x x a x a x =-+->,讨论()f x 的单调性.例2. 设函数()(0)kx f x xe k =≠(Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 在区间(1,1)-内单调递增,求k 的取值范围.例3. 已知函数f(x)=21x 2-ax+(a -1)ln x ,1a >。
导数大题求参归类(学生版)
导数大题求参归类目录题型01 恒成立求参:常规型题型02 恒成立求参:三角函数型题型03恒成立求参:双变量型题型04 恒成立求参:整数型题型05恒成立求参:三角函数型整数题型06“能”成立求参:常规型题型07“能”成立求参:双变量型题型08“能”成立求参:正余弦型题型09 零点型求参:常规型题型10 零点型求参:双零点型题型11 零点型求参:多零点综合型题型12 同构型求参:x1,x2双变量同构题型13 虚设零点型求参高考练场热点题型归纳题型01恒成立求参:常规型【解题攻略】利用导数求解参数范围的两种常用方法:(1)分离参数法:将参数和自变量分离开来,构造关于自变量的新函数,研究新函数最值与参数之间的关系,求解出参数范围;(2)分类讨论法:根据题意分析参数的临界值,根据临界值作分类讨论,分别求解出满足题意的参数范围最后取并集.1(2024上·北京·高三阶段练习)设a>0,函数f(x)=x a ln x.(1)讨论f(x)的单调性;(2)若f(x)≤x,求a的取值范围;(3)若f (x)≤1,求a.2(2024上·甘肃武威·高三统考期末)已知函数f x =2xe x+a ln x+1.(1)当a=0时,求f x 的最大值;(2)若f x ≤0在x∈0,+∞上恒成立,求实数a的取值范围.【变式训练】1(2023上·江苏镇江·高三校考阶段练习)已知函数f x =x2-ax e x.(1)若f x 在-2,-1上单调递增,求实数a的取值范围;(2)若f x ≥sin x对x∈-∞,0恒成立,求实数a的取值范围.2(2024上·山西·高三期末)已知函数f x =m x-12-2x+2ln x,m≥2.(1)求证:函数f x 存在单调递减区间,并求出该函数单调递减区间a,b的长度b-a的取值范围;(2)当x≥1时,f x ≤2xe x-1-4x恒成立,求实数m的取值范围.3(2024·全国·模拟预测)已知函数f(x)=2x2-a ln x-1,a∈R.(1)求函数f(x)的单调区间;(2)若对任意的x∈(0,+∞),不等式f(x+1)>(x+1)2+1x+1-1e x恒成立,求实数a的取值范围.题型02恒成立求参:三角函数型【解题攻略】三角函数与导数应用求参:1.正余弦的有界性2.三角函数与函数的重要放缩公式:x≥sin x x≥0.1(2023·全国·高三专题练习)已知函数f x =sin xx,g x =a cos x.(1)求证:x∈0,π2时,f x <1;(2)当x∈-π2,0∪0,π2时,f x >g x 恒成立,求实数a的取值范围;(3)当x∈-π2,0∪0,π2时,f x2>g x 恒成立,求实数a的取值范围.2(2023上·全国·高三期末)已知函数f (x )=e x sin x -2x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求f (x )在区间0,π2上的最大值;(3)设实数a 使得f (x )+x >ae x 对x ∈R 恒成立,求a 的最大整数值.【变式训练】1(2023上·湖北省直辖县级单位·高三校考阶段练习)已知函数f x =e ax -2ax a ∈R ,a ≠0 .(1)讨论f x 的单调性;(2)若不等式f x ≥sin x -cos x +2-2ax 对任意x ≥0恒成立,求实数a 的取值范围.2(2023上·甘肃定西·高三甘肃省临洮中学校考阶段练习)已知函数f x =e x-sin x-cos x,f x 为其导函数.(1)求f x 在-π,+∞上极值点的个数;(2)若f (x)≥ax+2-2cos x a∈R对∀x∈-π,+∞恒成立,求a的值.题型03恒成立求参:双变量型【解题攻略】一般地,已知函数y =f x ,x ∈a ,b ,y =g x ,x ∈c ,d(1)若∀x 1∈a ,b ,∀x 2∈c ,d ,总有f x 1 <g x 2 成立,故f x max <g x min ;(2)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,故f x max <g x max ;(3)若∃x 1∈a ,b ,∀x 2∈c ,d ,有f x 1 <g x 2 成立,故f x min <g x min ;(4)若∃x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,故f x min <g x max .1(2023·四川攀枝花·统考模拟预测)已知函数f x =ae x -x a ∈R .(1)当a =1时,求f x 的单调区间;(2)设函数g x =x 2-1 e x -x -f x ,当g x 有两个极值点x 1,x 2x 1<x 2 时,总有tg x 2 ≥2+x 1 ex 2+x 22-3 成立,求实数t 的值.2(2024上·四川成都·高三成都七中校考阶段练习)设函数f x =e x -ax ,其中a ∈R .(1)讨论函数f (x )在[1,+∞)上的极值;(2)若函数f (x )有两零点x 1,x 2x 1<x 2 ,且满足x 1+λx 21+λ>1,求正实数λ的取值范围.【变式训练】1(2023·上海松江·校考模拟预测)已知函数f (x )=ax -a ln x -e xx.(1)若a =0,求函数y =f (x )的极值点;(2)若不等式f (x )<0恒成立,求实数a 的取值范围;(3)若函数y =f (x )有三个不同的极值点x 1、x 2、x 3,且f (x 1)+f (x 2)+f (x 3)≤3e 2-e ,求实数a 的取值范围.2(2023下·山东德州·高三校考阶段练习)已知函数f x =2ln x +12(a -x )2,其中a ∈R .(1)讨论函数f x 的单调性;(2)若f x 存在两个极值点x 1,x 2x 1<x 2 ,f x 2 -f x 1 的取值范围为34-ln2,158-2ln2 ,求a 的取值范围.题型04恒成立求参:整数型【解题攻略】恒成立求参的一般规律①若k ≥f (x )在[a ,b ]上恒成立,则k ≥f (x )max ;②若k ≤f (x )在[a ,b ]上恒成立,则k ≤f (x )min ;③若k ≥f (x )在[a ,b ]上有解,则k ≥f (x )min ;④若k ≤f (x )在[a ,b ]上有解,则k ≤f (x )max ;如果参数涉及到整数,要注意对应解中相邻两个整数点函数的符号1(2023上·湖北·高三校联考阶段练习)已知f x =e x -2x +a .(1)若f x ≥0恒成立,求实数a 的取值范同:(2)设x 表示不超过x 的最大整数,已知e x +2ln x -e +2 x +2≥0的解集为x x ≥t ,求et .(参考数据:e ≈2.72,ln2≈0.69,ln3≈1.10)2(2023上·浙江·高三校联考阶段练习)已知函数f x =ae x-2,g x =x+1x+2ln x,e=2.71828⋯为自然对数底数.(1)证明:当x>1时,ln x<x2-12x;(2)若不等式f x >g x 对任意的x∈0,+∞恒成立,求整数a的最小值.【变式训练】1(2023·江西景德镇·统考一模)已知函数f x =sin x+sin ax,x∈0,π2.(1)若a=2,求函数g x =f x +sin x值域;(2)是否存在正整数a使得f xx>3cos x恒成立?若存在,求出正整数a的取值集合;若不存在,请说明理由.2(2023·全国·高三专题练习)已知函数f x =5+ln x,g x =kxx+1k∈R.(1)若函数f x 的图象在点1,f1处的切线与函数y=g x 的图象相切,求k的值;(2)若k∈N∗,且x∈1,+∞时,恒有f x >g x ,求k的最大值.(参考数据:ln5≈1.61,ln6≈1.7918,ln2+1≈0.8814)题型05恒成立求参:三角函数型整数1(2020·云南昆明·统考三模)已知f(x)=e x-2x-1 2.(1)证明:f(x)>0;(2)对任意x≥1,e sin x+x2-ax-1-ln x>0,求整数a的最大值.(参考数据:sin1≈0.8,ln2≈0.7)2(2020上·浙江·高三校联考阶段练习)已知函数f x =a sin x +sin2x ,a ∈R .(1)若a =2,求函数f x 在0,π 上的单调区间;(2)若a =1,不等式f x ≥bx cos x 对任意x ∈0,2π3恒成立,求满足条件的最大整数b .【变式训练】1(2022·全国·高三专题练习)已知函数f (x )=e x +a cos x -2x -2,f ′(x )为f (x )的导函数.(1)讨论f ′(x )在区间0,π2 内极值点的个数;(2)若x ∈-π2,0时,f (x )≥0恒成立,求整数a 的最小值.2(2023·云南保山·统考二模)设函数f x =x sin x ,x ∈R (1)求f x 在区间0,π 上的极值点个数;(2)若x 0为f x 的极值点,则f x 0 ≥λln 1+x 20 ,求整数λ的最大值.题型06“能”成立求参:常规型【解题攻略】形如f x ≥g x 的有解的求解策略:1、构造函数法:令F x =f x -g x ,利用导数求得函数F x 的单调性与最小值,只需F x max≥0恒成立即可;2、参数分离法:转化为a≥φx 或a≤φx 恒成立,即a≥φx min或a≤φx max恒成立,只需利用导数求得函数φx 的单调性与最值即可.1(2023上·浙江·高三浙江省长兴中学校联考期中)已知函数f x =a ln x+x,a∈R.(1)讨论函数f x 的单调性;(2)若存在x∈e,e2,使f x ≤ax+1 2ln x成立,求实数a的取值范围.注:e为自然对数的底数.2(2023上·湖南长沙·高三统考阶段练习)已知函数f x =a2e2x+a-2e x-12x2,y=g x 是y=f x 的导函数.(1)若a=3,求y=g x 的单调区间;(2)若存在实数x∈0,1使f x >32a-2成立,求a的取值范围.【变式训练】1(2023·全国·模拟预测)已知函数f x =x2+a ln ex.(1)讨论f x 的单调性;(2)若存在x∈1,e,使得f x -ax-a≤2,求实数a的最小值.2(2023上·黑龙江齐齐哈尔·高三统考阶段练习)已知函数f x =a ln x+1-a2x2-x a∈R.(1)若a=2,求函数f x 的单调区间;(2)若存在x0≥1,使得f x0<aa-1,求a的取值范围.题型07“能”成立求参:双变量型【解题攻略】一般地,已知函数y =f x ,x ∈a ,b ,y =g x ,x ∈c ,d(1)相等关系记y =f x ,x ∈a ,b 的值域为A , y =g x ,x ∈c ,d 的值域为B ,①若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 =g x 2 成立,则有A ⊆B ;②若∃x 1∈a ,b ,∀x 2∈c ,d ,有f x 1 =g x 2 成立,则有A ⊇B ;③若∃x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 =g x 2 成立,故A ∩B ≠∅;(2)不等关系(1)若∀x 1∈a ,b ,∀x 2∈c ,d ,总有f x 1 <g x 2 成立,故f x max <g x min ;(2)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,故f x max <g x max ;(3)若∃x 1∈a ,b ,∀x 2∈c ,d ,有f x 1 <g x 2 成立,故f x min <g x min ;(4)若∃x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,故f x min <g x max .1(2022·江西上饶·高三校联考阶段练习)已知函数f (x )=2ax -e x +2,其中a ≠0.(1)若a =12,讨论函数f (x )的单调性;(2)是否存在实数a ,对任意x 1∈[0,1],总存在x 2∈[0,1],使得f x 1 +f x 2 =4成立?若存在,求出实数a 的值;若不存在,请说明理由.2(2023上·辽宁沈阳·高三沈阳二十中校考阶段练习)已知函数f x =a ln x +1xx >0 .(1)讨论函数f x 的单调性;(2)若存在x 1,x 2满足0<x 1<x 2,且x 1+x 2=1,f x 1 =f x 2 ,求实数a 的取值范围.【变式训练】1(2023·全国·高三专题练习)已知函数f x =ax 2-2+5a x +5ln x a ∈R ,g x =x 2-52x .(1)若曲线y =f x 在x =3和x =5处的切线互相平行,求a 的值;(2)求f x 的单调区间;(3)若对任意x 1∈0,52 ,均存在x 2∈0,52,使得f x 1 <g x 2 ,求a 的取值范围.2(2023上·重庆·高三校联考阶段练习)已知函数f (x )=ax +ln x (a ∈R ),g (x )=x 2-2x +2.(1)当a =-12时,求函数f (x )在区间[1,e ]上的最大值和最小值;(2)若对任意的x 1∈[-1,2],均存在x 2∈(0,+∞),使得g x 1 <f x 2 ,求a 的取值范围.题型08“能”成立求参:正余弦型1(2017·江苏淮安·高三江苏省淮安中学阶段练习)函数f (x )=a cos x -x +b (a >0,b >0).(1)求证:函数f (x )在区间0,a +b 内至少有一个零点;(2)若函数f (x )在x =-π6处取极值,且∃x ∈0,π2 ,使得f (x )<3cos x -sin x 成立,求实数b 的取值范围.2(2023·全国·高三专题练习)已知函数f (x )=x +2-2cos x(1)求函数f (x )在-π2,π2 上的最值:(2)若存在x ∈0,π2使不等式f (x )≤ax 成立,求实数a 的取值范围【变式训练】1(2020·四川泸州·统考二模)已知函数f (x )=sin x x,g (x )=(x -1)m -2ln x .(1)求证:当x ∈(0,π]时,f (x )<1;(2)求证:当m >2时,对任意x 0∈(0,π],存在x 1∈(0,π]和x 2∈(0,π](x 1≠x 2)使g (x 1)=g (x 2)=f (x 0)成立.2(2023·全国·高三专题练习)已知函数f x =ln1+x-a sin x,a∈R.(1)若y=f x 在0,0处的切线为x-3y=0,求a的值;(2)若存在x∈1,2,使得f x ≥2a,求实数a的取值范围.题型09零点型求参:常规型【解题攻略】零点常规型求参基础:1.分类讨论思想与转化化归思想2.数形结合与单调性的综合应用:一个零点,则多为所求范围内的单调函数,或者“类二次函数”切线处(极值点处)3.注意“找点”难度,对于普通学生,可以用极限思维代替“找点思维”。
(完整版)高考导数专题(含详细解答)
导数及其应用导数的运算1. 几种常有的函数导数:①、 c( c 为常数); ②、( x n )( n R ); ③、 (sin x) = ;④、 (cos x) =;⑤、( a x ); ⑥、 ( ex); ⑦、 (log a x ) ; ⑧、 (ln x ).2. 求导数的四则运算法规:(u v)u v ; (uv) u vu'u v ' uv 'u ( v0 ) 注:① u, v 必定是可导函数 .uv ; (u)vuvvvv 223. 复合函数的求导法规:f x ( ( x))f (u) ? ( x) 或 y xy u ? u x一、求曲线的切线(导数几何意义)导数几何意义: f (x 0 ) 表示函数 y f (x) 在点 ( x 0 , f (x 0 ) )处切线 L 的斜率;函数 y f (x) 在点 ( x 0 , f (x 0 ) )处切线 L 方程为 y f (x 0 )f (x 0 )(x x 0 )1. 曲线在点 处的切线方程为( )。
A:B:C:D:答案详解 B 正确率 : 69%, 易错项 : C解析 :本题主要观察导数的几何意义、导数的计算以及直线方程的求解。
对 求导得,代入 得 即为切线的斜率, 切点为,因此切线方程为即。
故本题正确答案为B 。
2.3. 设函数f ( x) g( x) x2,曲线 y g(x) 在点 (1,g(1)) 处的切线方程为 y 2x 1,则曲线 y f ( x) 在点 (1, f (1))处切线的斜率为( )A .41C.21B . D .4 24. 已知函数 f ( x) 在R上满足 f ( x) 2 f (2 x) x28x 8,则曲线y f (x) 在点 (1, f (1)) 处的切线方程是()A . y2x 1 B. y x C. y3x 2 D. y2x 3变式二:5. 在平面直角坐标系xoy 中,点P在曲线C : y x310 x 3 上,且在第二象限内,已知曲线 C 在点 P 处的切线的斜率为 2,则点 P 的坐标为.6. 设曲线 yx n 1 (n N * ) 在点( 1,1)处的切线与 x 轴的交点的横坐标为 x n ,令 a n lg x n ,则 a 1 a 2 L a 99 的值为.7. 已知点 P 在曲线 y=4 上, 为曲线在点 P 处的切线的倾斜角,则的取值范围是e x1, 3]D 、 [ 3,A 、 [0, )B 、 [, ) C 、 ( )44 22 4 4变式三:8. 已知直线y =x+ 1 与曲线y ln( x a) 相切,则α的值为( )A . 1 B. 2 C. - 1 D. - 29. 若存在过点 (1,0)的直线与曲线 yx 3 和 y ax 2 15 x 9 都相切,则 a 等于4( )A . 1或 -25B . 1或21C . 7 或 - 25D .7或 76444 6441 110. 若曲线 yx 2 在点 a, a 2 处的切线与两个坐标围成的三角形的面积为18,则 aA 、64B 、 32C 、 16D 、811. (本小题满分 13 分) 设 f ( x)ae x 1b( a 0) . ( I )求 f ( x) 在 [0, ) 上的最小值;ae x3x ;求 a,b 的值 .( II )设曲线 yf ( x) 在点 (2, f (2)) 的切线方程为 y212. 若曲线 f x ax2Inx 存在垂直于y轴的切线,则实数 a 的取值范围是.二、求单调性或单调区间1、利用导数判断函数单调性的方法:设函数y f (x) 在某个区间 D 内可导,若是 f ( x) >0,则y f (x) 在区间D上为增函数;若是 f ( x) <0,则y f (x) 在区间 D 上为减函数;若是 f ( x) =0恒成立,则y f (x) 在区间 D 上为常数 .2、利用导数求函数单调区间的方法:不等式 f ( x) >0的解集与函数y f (x) 定义域的交集,就是y f ( x) 的增区间;不等式 f ( x) <0的解集与函数y f (x) 定义域的交集,就是y f (x) 的减区间 .1、函数f (x) ( x 3)e x的单调递加区间是( )A . ( ,2) B. (0,3) C. (1,4) D . (2, )2. 函数f (x)x315x233x 6 的单调减区间为.3. 已知函数,,谈论的单调性。
导数专题,导数题型归纳
导数专题,导数题型归纳贾老师高考数学一轮复【题型归纳】系列辅导资料导数专题:导数题型归纳目录:第1节:导数的概念与导函数题型48:导数的概念与求极限知识点摘要:本题型主要考察导数的概念和求导函数的极限值。
需要掌握导数的定义和求导法则,以及极限的基本概念和计算方法。
典型例题精讲精练:例题1:已知函数$f(x)=x^2+3x-4$,求$f(x)$在$x=2$处的导数。
解析:根据导数的定义,导数$f'(x)$表示函数$f(x)$在$x$处的变化率。
因此,我们可以使用导数的定义来求$f(x)$在$x=2$处的导数:f'(2)=\lim_{\Delta x\to 0}\frac{f(2+\Delta x)-f(2)}{\Delta x}$$将函数$f(x)=x^2+3x-4$代入上式,得到:f'(2)=\lim_{\Delta x\to 0}\frac{(2+\Delta x)^2+3(2+\Delta x)-4-(2^2+3\times 2-4)}{\Delta x}$$化简得:f'(2)=\lim_{\Delta x\to 0}\frac{(4\Delta x+\Deltax^2)+3\Delta x}{\Delta x}=\lim_{\Delta x\to 0}(4+\Deltax+3)=\boxed{7}$$因此,$f(x)$在$x=2$处的导数为$7$。
例题2:已知函数$f(x)=\sqrt{x^2+1}$,求$f'(x)$。
解析:根据导数的定义,导数$f'(x)$表示函数$f(x)$在$x$处的变化率。
因此,我们可以使用导数的定义来求$f(x)$的导数:f'(x)=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$$将函数$f(x)=\sqrt{x^2+1}$代入上式,得到:f'(x)=\lim_{\Delta x\to 0}\frac{\sqrt{(x+\Delta x)^2+1}-\sqrt{x^2+1}}{\Delta x}$$分子有两个根号,难以计算,因此我们需要进行有理化。
导数 专题知识清单及例题练习(含答案)
桂林市卓远文化艺术培训学校专用资料导数专题知识清单及例题练习编写者: 审核者:邹俊飞一.导数的概念设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值xx f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000 说明:1. 函数f (x )在点0x 处可导,是指0→∆x 时,x y ∆∆有极限。
如果x y∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。
2.x ∆是自变量x 在0x 处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
3. 由导数的定义可知,求函数y=f (x )在点0x 处的导数的步骤(可由学生来归纳): (1)求函数的增量y ∆=f (0x +x ∆)-f (0x );(2)求平均变化率x y ∆∆=x x f x x f ∆-∆+)()(00; (3)取极限,得导数f’(0x )=x y x ∆∆→∆0lim。
例题: 利用定义求 2)(x x f =在x=2处的导数;练习:求 24)(x x f =在x=2处的导数二.导数的几何意义 (求切线方程)函数y=f (x )在点0x 处的导数的几何意义是曲线y=f (x )在点p (0x ,f (x 0))处的切线的斜率。
也就是说,曲线y=f (x )在点p (0x ,f (x 0))处的切线的斜率是f’( 0x )。
导数的含参分类讨论练习(含答案)
贯穿高中的数学工具系列之5《一元二次类与韦达定理》下篇含参一元二次类在高中数学的应用1、讨论导数的单调性(含参二次不等式)(1)设函数f (x )=13x 3-(1+a )x 2+4ax +24a ,其中常数a >1,则f (x )的单调减区间为________.(2)(2019·荆州质检)设函数f (x )=13x 3-a2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(a)求b ,c 的值;(b)若a >0,求函数f (x )的单调区间.(3)已知函数f (x )=12ax 2-(a +1)x +ln x (a >0),讨论函数f (x )的单调性.(4)已知函数g (x )=ln x +ax 2-(2a +1)x ,若a ≥0,试讨论函数g (x )的单调性.(5)(2019·兰州模拟)已知函数f (x )=ln x -ax +1-a x-1(a ∈R ).当0<a <12时,讨论f (x )的单调性.(6)已知f (x )=a (x -ln x )+2x -1x2,a ∈R .讨论f (x )的单调性.(7)设函数f (x )=ax 2-a -ln x ,其中a ∈R ,讨论f (x )的单调性.(8)讨论函数f (x )=(a -1)ln x +ax 2+1的单调性.(9)已知函数2()(2ln )(0)f x x a x a x=-+->,讨论()f x 的单调性.(10)(2018·高考全国卷Ⅰ节选)已知函数f(x)=1x-x+a ln x,讨论f(x)的单调性.(11)已知函数f(x)=x2e-ax-1(a是常数),求函数y=f(x)的单调区间.mx3+(4+m)x2,g(x)=a ln(x-1),其中a≠0.(12)设函数f(x)=13(1)若函数y=g(x)的图象恒过定点P,且点P关于直线x=32对称的点在y=f(x)的图象上,求m的值.(2)当a=8时,设F(x)=f′(x)+g(x+1),讨论F(x)的单调性.(13)已知函数g(x)=ln x+ax2+bx,其中g(x)的函数图象在点(1,g(1))处的切线平行于x轴.(1)确定a与b的关系;(2)若a≥0,试讨论函数g(x)的单调性.下篇含参一元二次类在高中数学的应用参考答案1讨论导数的单调性(含参二次不等式)(1)解析:f ′(x )=x 2-2(1+a )x +4a =(x -2)(x -2a ),由a >1知,当x <2时,f ′(x )>0,故f (x )在区间(-∞,2)上单调递增;当2<x <2a 时,f ′(x )<0,故f (x )在区间(2,2a )上单调递减;当x >2a 时,f ′(x )>0,故f (x )在区间(2a ,+∞)上单调递增.综上,当a >1时,f (x )在区间(-∞,2)和(2a ,+∞)上单调递增,在区间(2,2a )上单调递减.答案:(2,2a )(2)解析:(a)f ′(x )=x 2-ax +b ,0)=1,(0)=0,=1,=0.(b)由(a)得,f ′(x )=x 2-ax =x (x -a )(a >0),当x ∈(-∞,0)时,f ′(x )>0;当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ).(3)解f ′(x )=ax -(a +1)+1x =(ax -1)(x -1)x(x >0),①当0<a <1时,1a>1,由f ′(x )>0,解得x >1a 或0<x <1,由f ′(x )<0,解得1<x <1a.②当a =1时,f ′(x )≥0在(0,+∞)上恒成立.③当a >1时,0<1a<1,由f ′(x )>0,解得x >1或0<x <1a ,由f ′(x )<0,解得1a<x <1.综上,当0<a <1时,f (x )(0,1)当a=1时,f(x)在(0,+∞)上单调递增,当a>1时,f(x)在(1,+∞)(4)解g′(x)=2ax2-(2a+1)x+1x=(2ax-1)(x-1)x.∵函数g(x)的定义域为(0,+∞),∴当a=0时,g′(x)=-x-1 x.由g′(x)>0,得0<x<1,由g′(x)<0,得x>1.当a>0时,令g′(x)=0,得x=1或x=1 2a,若12a<1,即a>12,由g′(x)>0,得x>1或0<x<1 2a,由g′(x)<0,得12a<x<1;若12a>1,即0<a<12,由g′(x)>0,得x>12a或0<x<1,由g′(x)<0,得1<x<12a,若12a=1,即a=12,在(0,+∞)上恒有g′(x)≥0.综上可得:当a=0时,函数g(x)在(0,1)上单调递增,在(1,+∞)上单调递减;当0<a<12时,函数g(x)在(0,1)上单调递增,当a=12时,函数g(x)在(0,+∞)上单调递增;当a>12时,函数g(x)(1,+∞)上单调递增.(5)解析:因为f (x )=ln x -ax +1-ax-1,所以f ′(x )=1x -a +a -1x 2=-ax 2-x +1-a x 2,x ∈(0,+∞),令f ′(x )=0,可得两根分别为1,1a -1,因为0<a <12,所以1a-1>1>0,当x ∈(0,1)时,f ′(x )<0,函数f (x )单调递减;当x ,1a -f ′(x )>0,函数f (x )单调递增;当x ∈(1a -1,+∞)时,f ′(x )<0,函数f (x )单调递减.(6)【解】f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0时,x ∈(0,1)时,f ′(x )>0,f (x )单调递增,x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.当a >0时,f ′(x )(1)0<a <2时,2a>1,当x ∈(0,1)或x f ′(x )>0,f (x )单调递增.当x f ′(x )<0,f (x )单调递减.(2)a =2时,2a=1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增.(3)a >2时,0<2a<1,当x x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增,当x f ′(x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,1)内单调递增,在(1,+∞)内单调递减;当0<a <2时,f (x )在(0,1)当a =2时,f (x )在(0,+∞)内单调递增;当a >2时,f (x )(1,+∞)内单调递增.(7)解:f (x )的定义域为(0,+∞)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当a >0时,由f ′(x )=0,有x =12a.此时,当x f ′(x )<0,f (x )单调递减;当x f ′(x )>0,f (x )单调递增.综上当a ≤0时,f (x )的递减区间为(0,+∞),当a >0时,f (x )(8)解:f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x.①当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增;②当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减;③当0<a <1时,令f ′(x )=0,解得x =1-a2a,则当x ∈,时,f ′(x )<0;当x 1-a2a,+f ′(x )>0,故f (x ),1-a2a,+(9)解析函数()f x 的定义域为()()222220,,1a x ax f x x x x-+'+∞=+-=。
导数单调性含参讨论问题
导数单调性专题:导数单调性含参讨论——核心在于找临界点:导数单调性含参讨论临界点一、因为极值点二、因为二次项系数(主要是开口方向)三、因为定义域(定义域的限制)四、因为绝对值一、因为极值点的大小比较而产生的分类讨论——这是一种最主流的分类讨论1、(江苏高考)已知函数b ax x x f ++=23)((R b a ∈,)(1)讨论)(x f 的单调性:2、(四川高考)已知函数a a ax x x a x x f +--++-=2222ln )(2)(,)0(>a 其中)(x g 是)(x f 的导函数,讨论函数)(x g 单调性:二、因为二次项系数含有参数而产生的分类讨论3、(北京高考)已知函数kx e k x x f •-=2)()((1)讨论函数)(x f 单调性:三、因定义域的限制而产生的分类讨论——这是一种最容易忽略的分类讨论4、(山东高考)已知函数11ln )(--+-=xa ax x x f (R a ∈) (1)讨论函数)(x f 单调性:四、因绝对值而产生的分类讨论——这是一种天然的分类讨论5、(浙江高考)已知函数a=3(3(R+)f-xxxa∈)(1)若函数))((aM-M,求)am (x[-上的最大值和最小值分别记为)f在]1,1(),m(aa回家作业:1、已知函数x)(2++=,求)ln-2(af)1xaxxf的单调区间;(x。
导数题型汇总整理
导数题型汇总题型一:讨论参变量求解单调区间、极值例题1:已知函数()()22ln f x x a x x =-+-,(0a >)讨论()f x 的单调性。
变式1:已知函数()()221x b f x x -=-,求导函数()'f x ,并确定()f x 的单调区间。
变式2:设函数()()330f x x ax b a =-+≠(1)若曲线()y f x =在点()()2,2f 处与直线8y =相切,求,a b 的值。
(2)求函数()f x 的单调区间与极值点。
变式3:设函数()3213f x x ax bx =++,且()'10f -=。
(1)试用含a 的代数式表示b ; (2)求函数()f x 的单调区间变式4:已知函数()()()22223,3x f x x ax a a e x R a =+-+∈≠,求函数()f x 的单调区间与极值题型二:已知区间单调或不单调,求解参变量的范围例题2设函数()()0.kx f x xe k =≠(1) 求曲线()y f x =在点()()0,0f 处的切线方程; (2)求函数()f x 的单调区间 (3)若函数()f x 在区间()1,1-内单调递增,求k 的取值范围。
变式1:已知函数()()321f x x ax x a R =+++∈ (1)讨论()f x 的单调区间;(2)若函数()f x 在区间21,33⎛⎫-- ⎪⎝⎭内单调递减,求a 的取值范围。
变式2:已知函数()()323m f x x x x m R =+-∈,函数()f x 在区间()2,+∞内存在单调递增区间,求m 的取值范围。
变式3:已知函数()()()()32222152,1,f x x k k x x g x k x kx k R =--++-=++∈,设函数()()()p x f x g x =+,若()p x 在区间()0,3上不单调,求k 的取值范围。
导数专题:含参函数单调性讨论问题(解析版)
导数专题:含参函数单调性讨论问题一、导数与函数的单调性1、用导数求函数的单调性的概念:在某个区间(,)a b 内,如果()0f x '≥,那么函数()y f x =在这个区间内单调递增;如果()0f x '≤,那么函数()y f x =在这个区间内单调递减.【注意】(1)在某区间内()0(()0)f x f x ''><是函数()f x 在此区间上为增(减)函数的充分不必要条件.(2)可导函数()f x 在(,)a b 上是增(减)函数的充要条件是对(,)x a b ∀∈,都有()0(()0)f x f x ''><且()f x '在(,)a b 上的任何子区间内都不恒为零.2、确定函数单调区间的求法(1)确定函数()f x 的定义域;(2)求()f x ';(3)解不等式()0f x '>,解集在定义域内的部分为单调递增区间;(4)解不等式()0f x '<,解集在定义域内的部分为单调递减区间.二、含参函数单调性讨论依据讨论含参函数的单调性,其本质是导函数符号的变化情况,所以讨论的关键是抓住导函数解析式中的符号变化部分,即导数的主要部分,简称导主。
讨论时要考虑参数所在的位置及参数取值对导函数符号的影响,一般需要分四个层次来分类:(1)最高次幂的系数是否为0,即“是不是”;(2)导函数是都有变号零点,即“有没有”;(3)导函数的变号零点是否在定义域或指定区间内,即“在不在”;(4)导函数有多个零点时大小关系,即“大不大”。
三、两大类含参导函数的具体方法1、含参一次函数单调性讨论(1)讨论最高次项是否为0,正负情况;(2)求解导函数的根;(3)定义域划分为若干个单调区间,分别讨论每个区间上导函数的正负值.2、含参二次函数单调性的讨论(1)确定函数的定义域;(2)讨论最高次项是否为0,正负情况;(3)可因式分解型,解得12,x x (注意讨论12x x =);不可因式分解型,讨论0∆≤及0∆>;(4)讨论1x 和2x 的大小,能因式分解的,注意讨论12x x =;(5)12,x x 将定义域划分为若干个单调区间,分别讨论每个区间上导函数的正负值,判断根和区间端点位置关系的方法有3种:端点函数值+对称轴;韦达定理;求根公式。
导数有关知识点总结、经典例题及解析、近年高考题带答案
导数及其应用【考纲说明】1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。
2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。
3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。
【知识梳理】一、导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值x y∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。
如果当0→∆x 时,x y∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。
即f (x 0)=0lim →∆x x y∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。
说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。
如果x y∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。
(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0);(2)求平均变化率x y ∆∆=x x f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=x yx ∆∆→∆0lim。
二、导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。
2023届高考数学导数满分通关:含参函数的极值、最值讨论
专题10 含参函数的极值、最值讨论考点一 含参函数的极值 【例题选讲】[例1] 设a >0,函数f (x )=12x 2-(a +1)x +a (1+ln x ).(1)若曲线y =f (x )在(2,f (2))处的切线与直线y =-x +1垂直,求切线方程. (2)求函数f (x )的极值.解析 (1)由已知,得f ′(x )=x -(a +1)+ax (x >0),又由题意可知y =f (x )在(2,f (2))处切线的斜率为1,所以f ′(2)=1,即2-(a +1)+a2=1,解得a =0,此时f (2)=2-2=0,故所求的切线方程为y =x -2.(2)f ′(x )=x -(a +1)+a x =x 2-(a +1)x +a x =(x -1)(x -a )x(x >0).①当0<a <1时,若x ∈(0,a ),则f ′(x )>0,函数f (x )单调递增;若x ∈(a ,1),则f ′(x )<0,函数f (x )单调递减;若x ∈(1,+∞),则f ′(x )>0,函数f (x )单调递增.此时x =a 是f (x )的极大值点,x =1是f (x )的极小值点,函数f (x )的极大值是f (a )=-12a 2+a ln a ,极小值是f (1)=-12.②当a =1时,f ′(x )=(x -1)2x ≥0,所以函数f (x )在定义域(0,+∞)内单调递增,此时f (x )没有极值点,故无极值.③当a >1时,若x ∈(0,1),则f ′(x )>0,函数f (x )单调递增;若x ∈(1,a ),则f ′(x )<0,函数f (x )单调递减;若x ∈(a ,+∞),则f ′(x )>0,函数f (x )单调递增. 此时x =1是f (x )的极大值点,x =a 是f (x )的极小值点, 函数f (x )的极大值是f (1)=-12,极小值是f (a )=-12a 2+a ln a .综上,当0<a <1时,f (x )的极大值是-12a 2+a ln a ,极小值是-12;当a =1时,f (x )没有极值;当a >1时f (x )的极大值是-12,极小值是-12a 2+a ln a .[例2] 已知函数f (x )=ln x -ax (a ∈R ). (1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解析 (1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=2-x2x ,令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表.故f (x )在定义域上的极大值为f (x )极大值=f (2)=ln 2-1,无极小值. (2)由(1)知,函数的定义域为(0,+∞),f ′(x )=1x -a =1-ax x .当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,则函数在(0,+∞)上单调递增,此时函数在定义域上无极值点; 当a >0时,若x ∈⎝⎛⎭⎫0,1a ,则f ′(x )>0, 若x ∈⎝⎛⎭⎫1a ,+∞,则f ′(x )<0,故函数在x =1a处有极大值. 综上可知,当a ≤0时,函数f (x )无极值点,当a >0时,函数y =f (x )有一个极大值点,且为x =1a .[例3] 设f (x )=x ln x -32ax 2+(3a -1)x .(1)若g (x )=f ′(x )在[1,2]上单调,求a 的取值范围; (2)已知f (x )在x =1处取得极小值,求a 的取值范围.解析 (1)由f ′(x )=ln x -3ax +3a ,即g (x )=ln x -3ax +3a ,x ∈(0,+∞),g ′(x )=1x-3a ,①g (x )在[1,2]上单调递增,∴1x -3a ≥0对x ∈[1,2]恒成立,即a ≤13x 对x ∈[1,2]恒成立,得a ≤16;②g (x )在[1,2]上单调递减,∴1x -3a ≤0对x ∈[1,2]恒成立,即a ≥13x 对x ∈[1,2]恒成立,得a ≥13,由①②可得a 的取值范围为⎝⎛⎦⎤-∞,16∪⎣⎡⎭⎫13,+∞. (2)由(1)知,①当a ≤0时,f ′(x )在(0,+∞)上单调递增,∴x ∈(0,1)时,f ′(x )<0,f (x )单调递减, x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增,∴f (x )在x =1处取得极小值,符合题意;②当0<a <13时,13a >1,又f ′(x )在⎝⎛⎭⎫0,13a 上单调递增,∴x ∈(0,1)时,f ′(x )<0,x ∈⎝⎛⎭⎫1,13a 时,f ′(x )>0, ∴f (x )在(0,1)上单调递减,在⎝⎛⎭⎫1,13a 上单调递增,f (x )在x =1处取得极小值,符合题意; ③当a =13时,13a =1,f ′(x )在(0,1)上单调递增,在(1,+∞)上单调递减,∴x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意;④当a >13时,0<13a<1,当x ∈⎝⎛⎭⎫13a ,1时,f ′(x )>0,f (x )单调递增, 当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减,∴f (x )在x =1处取得极大值,不符合题意. 综上所述,可得a 的取值范围为⎝⎛⎭⎫-∞,13. [例4] (2016·山东)设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R . (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围.解析 (1)由f ′(x )=ln x -2ax +2a ,可得g (x )=ln x -2ax +2a ,x ∈(0,+∞).所以g ′(x )=1x -2a =1-2ax x .当a ≤0,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增;当a >0,x ∈⎝⎛⎭⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝⎛⎭⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减. 所以当a ≤0时,g (x )的单调增区间为(0,+∞);当a >0时,g (x )的单调增区间为⎝⎛⎭⎫0,12a ,单调减区间为⎝⎛⎭⎫12a ,+∞. (2)由(1)知,f ′(1)=0.①当a ≤0时,f ′(x )单调递增,所以当x ∈(0,1)时,f ′(x )<0,f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.所以f (x )在x =1处取得极小值,不合题意. ②当0<a <12时,12a >1,由(1)知f ′(x )在⎝⎛⎭⎫0,12a 内单调递增, 可得当x ∈(0,1)时,f ′(x )<0,当x ∈⎝⎛⎭⎫1,12a 时,f ′(x )>0. 所以f (x )在(0,1)内单调递减,在⎝⎛⎭⎫1,12a 内单调递增,所以f (x )在x =1处取得极小值,不合题意. ③当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意.④当a >12时,0<12a <1,当x ∈⎝⎛⎭⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )在x =1处取极大值,符合题意. 综上可知,实数a 的取值范围为⎝⎛⎭⎫12,+∞. [例5] 已知函数f (x )=⎝⎛⎭⎫x -1-a6e x +1,其中e =2.718…为自然对数的底数,常数a >0. (1)求函数f (x )在区间(0,+∞)上的零点个数;(2)函数F (x )的导数F ′(x )=()e x -a f (x ),是否存在无数个a ∈(1,4),使得ln a 为函数F (x )的极大值点?请说明理由.解析 (1)f ′(x )=⎝⎛⎭⎫x -a 6e x ,当0<x <a 6时,f ′(x )<0,f (x )单调递减;当x >a6时,f ′(x )>0,f (x )单调递增, 所以当x ∈(0,+∞)时,f (x )min =f ⎝⎛⎭⎫a 6,因为f ⎝⎛⎭⎫a 6<f (0)=-a 6<0,f ⎝⎛⎭⎫1+a 6=1>0, 所以存在x 0∈⎝⎛⎭⎫a 6,1+a6,使f (x 0)=0,且当0<x <x 0时,f (x )<0,当x >x 0时,f (x )>0. 故函数f (x )在(0,+∞)上有1个零点,即x 0.(2)方法一 当a >1时,ln a >0.因为当x ∈()0,ln a 时,e x -a <0;当x ∈()ln a ,+∞时,e x -a >0. 由(1)知,当x ∈(0,x 0)时,f (x )<0;当x ∈(x 0,+∞)时,f (x )>0.下面证:当a ∈()1,e 时,ln a <x 0,即证f ()ln a <0.f ()ln a =⎝⎛⎭⎫ln a -1-a 6a +1=a ln a -a -a 26+1,记g (x )=x ln x -x -x26+1,x ∈(1,e), g ′(x )=ln x -x3,x ∈(1,e),令h (x )=g ′(x ),则h ′(x )=3-x 3x >0,所以g ′(x )在()1,e 上单调递增,由g ′(1)=-13<0,g ′(e)=1-e3>0,所以存在唯一零点t 0∈()1,e ,使得g ′()t 0=0,且x ∈()1,t 0时,g ′(x )<0,g (x )单调递减,x ∈()t 0,e 时,g ′(x )>0,g (x )单调递增. 所以当x ∈()1,e 时,g (x )<max {}g (1),g (e).由g (1)=-16<0,g (e)=6-e 26<0,得当x ∈()1,e 时,g (x )<0.故f ()ln a <0,0<ln a <x 0.当0<x <ln a 时,e x -a <0,f (x )<0, F ′(x )=()e x -a f (x )>0,F (x )单调递增;当ln a <x <x 0时,e x -a >0,f (x )<0,F ′(x )=()e x -a f (x )<0,F (x )单调递减.所以存在a ∈()1,e ⊆(1,4),使得ln a 为F (x )的极大值点. 方法二 因为当x ∈()0,ln a 时,e x -a <0;当x ∈()ln a ,+∞时,e x -a >0. 由(1)知,当x ∈(0,x 0)时,f (x )<0;当x ∈(x 0,+∞)时,f (x )>0. 所以存在无数个a ∈(1,4),使得ln a 为函数F (x )的极大值点, 即存在无数个a ∈(1,4),使得ln a <x 0成立,①由(1),问题①等价于存在无数个a ∈(1,4),使得f ()ln a <0成立,因为f ()ln a =⎝⎛⎭⎫ln a -1-a 6a +1=a ln a -a -a 26+1,记g (x )=x ln x -x -x26+1,x ∈(1,4), g ′(x )=ln x -x3,x ∈(1,4),设k (x )=g ′(x ),因为k ′(x )=3-x 3x,当x ∈⎝⎛⎭⎫32,2时,k ′(x )>0,所以g ′(x )在⎝⎛⎭⎫32,2上单调递增,因为g ′⎝⎛⎭⎫32=ln 32-12<0,g ′(2)=ln 2-23>0, 所以存在唯一零点t 0∈⎝⎛⎭⎫32,2,使得g ′()t 0=0,且当x ∈⎝⎛⎭⎫32,t 0时,g ′(x )<0,g (x )单调递减;当x ∈()t 0,2时,g ′(x )>0,g (x )单调递增; 所以当x ∈⎣⎡⎦⎤32,2时,g (x )min =g ()t 0=t 0ln t 0-t 0-t 26+1,② 由g ′()t 0=0,可得ln t 0=t 03,代入②式可得g (x )min =g ()t 0=t 206-t 0+1,当t 0∈⎝⎛⎭⎫32,2时,g ()t 0=t 206-t 0+1=()t 0-326-12<-18<0,所以必存在x ∈⎝⎛⎭⎫32,2,使得g (x )<0,即对任意a ∈⎝⎛⎭⎫32,2,f ()ln a <0有解, 所以对任意a ∈⎝⎛⎭⎫32,2⊆(1,4),函数F (x )存在极大值点为ln a . 【对点训练】1.已知函数f (x )=ln x -12ax 2+x ,a ∈R .(1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)令g (x )=f (x )-(ax -1),求函数g (x )的极值.1.解析 (1)当a =0时,f (x )=ln x +x ,则f (1)=1,∴切点为(1,1),又f ′(x )=1x +1,∴切线斜率k =f ′(1)=2,故切线方程为y -1=2(x -1),即2x -y -1=0.(2)g (x )=f (x )-(ax -1)=ln x -12ax 2+(1-a )x +1,则g ′(x )=1x -ax +(1-a )=-ax 2+(1-a )x +1x ,①当a ≤0时,∵x >0,∴g ′(x )>0,∴g (x )在(0,+∞)上是增函数,函数g (x )无极值点.②当a >0时,g ′(x )=-ax 2+(1-a )x +1x =-a ⎝⎛⎭⎫x -1a (x +1)x ,令g ′(x )=0得x =1a.∴当x ∈⎝⎛⎭⎫0,1a 时,g ′(x )>0;当x ∈⎝⎛⎭⎫1a ,+∞时,g ′(x )<0. 因此g (x )在⎝⎛⎭⎫0,1a 上是增函数,在⎝⎛⎭⎫1a ,+∞上是减函数. ∴x =1a 时,g (x )取极大值g ⎝⎛⎭⎫1a =ln 1a -a 2×1a 2+(1-a )×1a +1=12a -ln a . 由①②得,当a ≤0时,函数g (x )无极值;当a >0时,函数g (x )有极大值12a -ln a ,无极小值.2.设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围.2.解析 (1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x ,所以f ′(x )=[ax 2-(2a +1)x +2]e x .f ′(1)=(1-a )e . 由题设知f ′(1)=0,即(1-a )e =0,解得a =1.此时f (1)=3e≠0.所以a 的值为1. (2)f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝⎛⎭⎫1a ,2时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0.所以f (x )在x =2处取得极小值. 若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0,所以2不是f (x )的极小值点.综上可知,a 的取值范围是⎝⎛⎭⎫12,+∞. 3.已知函数f (x )=x 2-3x +ax .(1)若a =4,讨论f (x )的单调性;(2)若f (x )有3个极值点,求实数a 的取值范围. 3.解析 (1)因为a =4时,f (x )=x 2-3x +4x,所以f ′(x )=2x -3-4x 2=2x 3-3x 2-4x 2=2x 3-4x 2+x 2-4x 2=(x -2)(2x 2+x +2)x 2(x ≠0),令f ′(x )>0,得x >2;令f ′(x )<0,得x <0或0<x <2.所以f (x )在(-∞,0),(0,2)上单调递减,在(2,+∞)上单调递增.(2)由题意知,f ′(x )=2x -3-a x 2=2x 3-3x 2-ax 2(x ≠0),设函数g (x )=2x 3-3x 2-a ,则原条件等价于g (x )在(-∞,0)∪(0,+∞)上有3个零点,且3个零点附近的左、右两侧的函数值异号,又g ′(x )=6x 2-6x =6x (x -1), 由g ′(x )>0,得x >1或x <0;由g ′(x )<0,得0<x <1.故g (x )在(-∞,0)上单调递增,在(0,1)上单调递减,在(1,+∞)上单调递增,故原条件等价于g (x )在(-∞,0),(0,1),(1,+∞)上各有一个零点,令g (0)=-a >0,得a <0, 当a <0时,--a <0,g (--a )=2(--a )3-3(-a )-a =2a (-a +1)<0, 故a <0时,g (x )在(-∞,0)上有唯一零点;令g (1)=-1-a <0,解得a >-1,故-1<a <0时,g (x )在(0,1)上有唯一零点; 又-1<a <0时,g (2)=4-a >0,所以g (x )在(1,+∞)上有唯一零点. 综上可知,实数a 的取值范围是(-1,0). 4.已知函数f (x )=ax -x 2-ln x (a ∈R ). (1)求函数f (x )的单调区间;(2)若函数f (x )存在极值,且这些极值的和大于5+ln2,求实数a 的取值范围.4.解析 (1)f (x )的定义域为(0,+∞).f ′(x )=a -2x -1x .∵2x +1x ≥22⎝⎛⎭⎫当且仅当x =22时等号成立,当a ≤22时,f ′(x )≤0,函数f (x )在(0,+∞)上单调递减. 当a >22时,f ′(x )=a -2x -1x =-2x 2-ax +1x.由f ′(x )=0得x 1=a -a 2-84,x 2=a +a 2-84且x 2>x 1>0.由f ′(x )>0得x 1<x <x 2,由f ′(x )<0得0<x <x 1,或x >x 2, ∴函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫a -a 2-84,a +a 2-84, 单调递减区间为⎝ ⎛⎭⎪⎫0,a -a 2-84,⎝ ⎛⎭⎪⎫a +a 2-84,+∞.综上所述,当a ≤22时,函数f (x )的单调递减区间为(0,+∞),无单调递增区间;当a >22时,函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,a -a 2-84,⎝ ⎛⎭⎪⎫a + a 2-84,+∞,单调递增区间为⎝ ⎛⎭⎪⎫a -a 2-84,a +a 2-84.(2)由(1)知,当f (x )存在极值时,a >22.即方程2x 2-ax +1=0有两个不相等的正根x 1,x 2, ∴⎩⎨⎧x 1+x 2=a2>0,x 1x 2=12>0.∴f (x 1)+f (x 2)=a (x 1+x 2)-(x 21+x 22)-(ln x 1+ln x 2)=a (x 1+x 2)-[](x 1+x 2)2-2x 1x 2-ln(x 1x 2)=a 22-a 24+1-ln 12=a 24+1-ln 12.依题意a 24+1-ln 12>5+ln 2,即a 2>16,∴a >4或a <-4.又a >22.∴a >4,即实数a 的取值范围是(4,+∞). 5.(2018·全国Ⅲ)已知函数f (x )=(2+x +ax 2)·ln(1+x )-2x . (1)若a =0,证明:当-1<x <0时,f (x )<0;当x >0时,f (x )>0. (2)若x =0是f (x )的极大值点,求a .5.解析 (1)证明:当a =0时,f (x )=(2+x )ln(1+x )-2x ,f ′(x )=ln(1+x )-x1+x .设函数g (x )=f ′(x )=ln (1+x )-x 1+x ,则g ′(x )=x(1+x )2.当-1<x <0时,g ′(x )<0;当x >0时,g ′(x )>0.故当x >-1时,g (x )≥g (0)=0, 且仅当x =0时,g (x )=0,从而f ′(x )≥0,且仅当x =0时,f ′(x )=0.所以f (x )在(-1,+∞)单调递增.又f (0)=0,故当-1<x <0时,f (x )<0;当x >0时,f (x )>0. (2)(ⅰ)若a ≥0,由(1)知,当x >0时,f (x )≥(2+x )·ln (1+x )-2x >0=f (0),这与x =0是f (x )的极大值点矛盾.(ⅱ)若a <0,设函数h (x )=f (x )2+x +ax 2=ln(1+x )-2x2+x +ax 2.由于当|x |<min{1,1|a |}时,2+x +ax 2>0,故h (x )与f (x )符号相同. 又h (0)=f (0)=0,故x =0是f (x )的极大值点当且仅当x =0是h (x )的极大值点. h ′(x )=11+x -2(2+x +ax 2)-2x (1+2ax )(2+x +ax 2)2=x 2(a 2x 2+4ax +6a +1)(x +1)(ax 2+x +2)2.如果6a +1>0,则当0<x <-6a +14a,且|x |<min{1,1|a |}时,h ′(x )>0,故x =0不是h (x )的极大值点. 如果6a +1<0,则a 2x 2+4ax +6a +1=0存在根x 1<0,故当x ∈(x 1,0),且|x |<min{1,1|a |}时,h ′(x )<0,所以x =0不是h (x )的极大值点. 如果6a +1=0,则h ′(x )=x 3(x -24)(x +1)(x 2-6x -12)2,则当x ∈(-1,0)时,h ′(x )>0;当x ∈(0,1)时,h ′(x )<0.所以x =0是h (x )的极大值点,从而x =0是f (x )的极大值点. 综上,a =-16.考点二 含参函数的最值 【例题选讲】[例1] 已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值. 解析 (1)f ′(x )=1x-a (x >0),①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )的单调递增区间为(0,+∞).②当a >0时,令f ′(x )=1x -a =0,可得x =1a,当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x <0,故函数f (x )的单调递增区间为⎝⎛⎭⎫0,1a ,单调递减区间为⎝⎛⎭⎫1a ,+∞. 综上可知,当a ≤0时,函数f (x )的单调递增区间为(0,+∞);当a >0时,函数f (x )的单调递增区间为⎝⎛⎭⎫0,1a ,单调递减区间为⎝⎛⎭⎫1a ,+∞. (2)①当0<1a ≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln 2-2a .②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )的最小值是f (1)=-a .③当1<1a <2,即12<a <1时,函数f (x )在⎣⎡⎦⎤1,1a 上是增函数,在⎣⎡⎦⎤1a ,2上是减函数. 又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,最小值是f (1)=-a ;当ln 2≤a <1时,最小值为f (2)=ln 2-2a .综上可知,当0<a <ln2时,函数f (x )的最小值是f (1)=-a ;当a ≥ln2时,函数f (x )的最小值是f (2)=ln2-2a .[例2] 已知函数f (x )=ax 2+(1-2a )x -ln x . (1)当a >0时,求函数f (x )的单调递增区间; (2)当a <0时,求函数f (x )在⎣⎡⎦⎤12,1上的最小值.解析 (1)因为f (x )=ax 2+(1-2a )x -ln x ,所以f ′(x )=2ax +1-2a -1x =(2ax +1)(x -1)x .因为a >0,x >0,所以2ax +1>0,令f ′(x )>0,得x >1,所以f (x )的单调递增区间为(1,+∞).(2)当a <0时,令f ′(x )=0,得x 1=-12a,x 2=1,当-12a >1,即-12<a <0时,f (x )在(0,1]上是减函数,所以f (x )在⎣⎡⎦⎤12,1上的最小值为f (1)=1-a . 当12≤-12a ≤1,即-1≤a ≤-12时,f (x )在⎣⎡⎦⎤12,-12a 上是减函数,在⎣⎡⎦⎤-12a ,1上是增函数, 所以f (x )在⎣⎡⎦⎤12,1上的最小值为f ⎝⎛⎭⎫-12a =1-14a+ln(-2a ). 当-12a <12,即a <-1时,f (x )在⎣⎡⎦⎤12,1上是增函数,所以f (x )在⎣⎡⎦⎤12,1上的最小值为f ⎝⎛⎭⎫12=12-34a +ln 2. 综上,函数f (x )在区间⎣⎡⎦⎤12,1上的最小值为f (x )min=⎩⎪⎨⎪⎧12-34a +ln 2,a <-1,1-14a +ln(-2a ),-1≤a ≤-12,1-a ,-12<a <0.[例3] 已知函数f (x )=ln xx -1.(1)求函数f (x )的单调区间及极值;(2)设m >0,求函数f (x )在区间[m ,2m ]上的最大值.解析 (1)因为函数f (x )的定义域为(0,+∞),且f ′(x )=1-ln xx 2,由⎩⎪⎨⎪⎧f ′(x )>0,x >0,得0<x <e ;由⎩⎪⎨⎪⎧f ′(x )<0,x >0,得x >e .所以函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞), 且f (x )极大值=f (e)=1e-1,无极小值.(2)①当⎩⎪⎨⎪⎧2m ≤e ,m >0,即0<m ≤e 2时,函数f (x )在区间[m ,2m ]上单调递增,所以f (x )max =f (2m )=ln 2m2m -1;②当m <e<2m ,即e2<m <e 时,函数f (x )在区间(m ,e)上单调递增,在(e ,2m )上单调递减,所以f (x )max =f (e)=ln e e -1=1e-1; ③当m ≥e 时,函数f (x )在区间[m ,2m ]上单调递减,所以f (x )max =f (m )=ln mm-1.综上所述,当0<m ≤e 2时,f (x )max =ln 2m 2m -1;当e 2<m <e 时,f (x )max =1e -1;当m ≥e 时,f (x )max =ln mm -1.[例4] 已知函数f (x )=m ln xx +n ,g (x )=x 2⎣⎡⎦⎤f (x )-1x -a 2(m ,n ,a ∈R ),且曲线y =f (x )在点(1,f (1))处的切线方程为y =x -1.(1)求实数m ,n 的值及函数f (x )的最大值;(2)当a ∈⎝⎛⎭⎫-e ,1e 时,记函数g (x )的最小值为b ,求b 的取值范围. 解析 (1)函数f (x )的定义域为(0,+∞),f ′(x )=m (1-ln x )x 2, 因为f (x )的图象在点(1,f (1))处的切线方程为y =x -1,所以⎩⎪⎨⎪⎧f ′(1)=m =1,f (1)=m ln 11+n =0,解得⎩⎪⎨⎪⎧m =1,n =0. 所以f (x )=ln xx ,f ′(x )=1-ln x x 2,令f ′(x )=0,得x =e ,当0<x <e 时,f ′(x )>0,f (x )单调递增;当x >e 时,f ′(x )<0,f (x )单调递减. 所以当x =e 时,f (x )取得最大值,最大值为f (e)=1e .(2)因为g (x )=x 2⎣⎡⎦⎤f (x )-1x -a 2=x ln x -ax 22-x ,所以g ′(x )=ln x -ax =x ⎝⎛⎭⎫ln x x -a .①当a ∈⎝⎛⎭⎫0,1e 时,x →+∞时,g (x )→-∞,g (x )无最小值. ②当a =0时,g ′(x )=ln x ,由g ′(x )>0得x >1,由g ′(x )<0得0<x <1,所以g (x )在(0,1)上单调递减,在(1,+∞)上单调递增,g (x )的最小值b =g (1)=-1. ③当a ∈(-e ,0)时,由(1)知方程ln xx-a =0有唯一实根,又f ⎝⎛⎭⎫1e =-e ,f (1)=0,f (x )在⎝⎛⎭⎫1e ,1上单调递增,所以存在t ∈⎝⎛⎭⎫1e ,1,使得g ′(t )=0,即ln t =at . 当x ∈(0,t )时,g ′(x )<0;当x ∈(t ,+∞)时,g ′(x )>0, 所以g (x )在(0,t )上单调递减,在(t ,+∞)上单调递增,g (x )的最小值b =g (t )=t ln t -a 2t 2-t =t ln t 2-t ,令h (t )=t ln t 2-t ,t ∈⎝⎛⎭⎫1e ,1, 则h ′(t )=ln t -12<0,所以h (t )在⎝⎛⎭⎫1e ,1上单调递减,从而b =h (t )∈⎝⎛⎭⎫-1,-32e . 综上所述,当a ∈(-e ,0]时,b ∈⎣⎡⎭⎫-1,-32e ;当a ∈⎝⎛⎭⎫0,1e 时,b 不存在. [例5] (2019·全国Ⅲ)已知函数f (x )=2x 3-ax 2+b . (1)讨论f (x )的单调性;(2)是否存在a ,b ,使得f (x )在区间[0,1]的最小值为-1且最大值为1?若存在,求出a ,b 的所有值;若不存在,说明理由.解析 (1)f ′(x )=6x 2-2ax =2x (3x -a ). 令f ′(x )=0,得x =0或x =a3.若a >0,则当x ∈(-∞,0)∪⎝⎛⎭⎫a3,+∞时,f ′(x )>0;当x ∈⎝⎛⎭⎫0,a 3时,f ′(x )<0.故f (x )在(-∞,0),⎝⎛⎭⎫a 3,+∞单调递增,在⎝⎛⎭⎫0,a3单调递减. 若a =0,f (x )在(-∞,+∞)单调递增.若a <0,则当x ∈⎝⎛⎭⎫-∞,a3∪(0,+∞)时,f ′(x )>0; 当x ∈⎝⎛⎭⎫a 3,0时,f ′(x )<0.故f (x )在⎝⎛⎭⎫-∞,a 3,(0,+∞)单调递增,在⎝⎛⎭⎫a3,0单调递减. (2)满足题设条件的a ,b 存在.①当a ≤0时,由(1)知,f (x )在[0,1]单调递增,所以f (x )在区间[0,1]的最小值为f (0)=b ,最大值为f (1)=2-a +b .此时a ,b 满足题设条件当且仅当b =-1,2-a +b =1,即a =0,b =-1.②当a ≥3时,由(1)知,f (x )在[0,1]单调递减,所以f (x )在区间[0,1]的最大值为f (0)=b ,最小值为f (1)=2-a +b .此时a ,b 满足题设条件当且仅当2-a +b =-1,b =1,即a =4,b =1.③当0<a <3时,由(1)知,f (x )在[0,1]的最小值为f ⎝⎛⎭⎫a 3=-a327+b ,最大值为b 或2-a +b . 若-a 327+b =-1,b =1,则a =332,与0<a <3矛盾.若-a 327+b =-1,2-a +b =1,则a =33或a =-33或a =0,与0<a <3矛盾.综上,当且仅当a =0,b =-1或a =4,b =1时,f (x )在[0,1]的最小值为-1,最大值为1. 【对点训练】1.已知函数g (x )=a ln x +x 2-(a +2)x (a ∈R ). (1)若a =1,求g (x )在区间[1,e]上的最大值; (2)求g (x )在区间[1,e]上的最小值h (a ).1.解析 (1)∵a =1,∴g (x )=ln x +x 2-3x ,∴g ′(x )=1x +2x -3=(2x -1)(x -1)x ,∵x ∈[1,e],∴g ′(x )≥0,∴g (x )在[1,e]上单调递增,∴g (x )max =g (e)=e 2-3e +1. (2)g (x )的定义域为(0,+∞),g ′(x )=ax +2x -(a +2)=2x 2-(a +2)x +a x =(2x -a )(x -1)x .①当a2≤1,即a ≤2时,g (x )在[1,e]上单调递增,h (a )=g (1)=-a -1;②当1<a2<e ,即2<a <2e 时,g (x )在⎣⎡⎭⎫1,a 2上单调递减,在⎝⎛⎦⎤a 2,e 上单调递增, h (a )=g ⎝⎛⎭⎫a 2=a ln a 2-14a 2-a ; ③当a2≥e ,即a ≥2e 时,g (x )在[1,e]上单调递减,h (a )=g (e)=(1-e)a +e 2-2e .综上,h (a )=⎩⎪⎨⎪⎧-a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e ,(1-e)a +e 2-2e ,a ≥2e.2.已知函数f (x )=(x -a )e x (a ∈R ).(1)当a =2时,求函数f (x )的图象在x =0处的切线方程; (2)求函数f (x )在区间[1,2]上的最小值. 2.解析 f ′(x )=(x +1-a )e x .(1)当a =2时,f ′(x )=(x -1)e x .∴f (0)=-2,f ′(0)=-1, ∴所求切线方程为y +2=-x ,即x +y +2=0. (2)令f ′(x )=0得x =a -1.①若a -1≤1,则a ≤2.当x ∈[1,2]时,f ′(x )≥0,则f (x )在[1,2]上单调递增.∴f (x )min =f (1)=(1-a )e ; ②若a -1≥2,则a ≥3.当x ∈[1,2]时,f ′(x )≤0,则f (x )在[1,2]上单调递减.∴f (x )min =f (2)=(2-a )e 2; ③若1<a -1<2,则2<a <3.f ′(x ),f (x )随x 的变化情况如表:∴f (x )的单调递减区间为(1,a -1),单调递增区间为(a -1,2),∴f (x )min =f (a -1)=-e a -1. 综上可知,当a ≤2时,f (x )min =(1-a )e ;当a ≥3时,f (x )min =(2-a )e 2;当2<a <3时,f (x )min =-e a -1. 3.已知函数f (x )=ax -ln x ,F (x )=e x +ax ,其中x >0,a <0.(1)若f (x )和F (x )在区间(0,ln 3)上具有相同的单调性,求实数a 的取值范围;(2)若a ∈⎝⎛⎦⎤-∞,-1e 2,且函数g (x )=x e ax -1-2ax +f (x )的最小值为M ,求M 的最小值. 3.解析 (1)由题意得f ′(x )=a -1x =ax -1x,F ′(x )=e x +a ,x >0,∵a <0,∴f ′(x )<0在(0,+∞)上恒成立,即f (x )在(0,+∞)上单调递减, 当-1≤a <0时,F ′(x )>0,即F (x )在(0,+∞)上单调递增,不合题意, 当a <-1时,由F ′(x )>0,得x >ln(-a ),由F ′(x )<0,得0<x <ln(-a ), ∴F (x )的单调递减区间为(0,ln(-a )),单调递增区间为(ln(-a ),+∞). ∵f (x )和F (x )在区间(0,ln 3)上具有相同的单调性,∴ln(-a )≥ln 3,解得a ≤-3, 综上,a 的取值范围是(-∞,-3].(2)g ′(x )=e ax -1+ax e ax -1-a -1x =(ax +1)⎝⎛⎭⎫e ax -1-1x ,由e ax -1-1x =0,解得a =1-ln x x , 设p (x )=1-ln x x ,则p ′(x )=ln x -2x2,当x >e 2时,p ′(x )>0,当0<x <e 2时,p ′(x )<0,从而p (x )在(0,e 2)上单调递减,在(e 2,+∞)上单调递增,p (x )min =p (e 2)=-1e 2,当a ≤-1e 2时,a ≤1-ln x x ,即e ax -1-1x≤0,当x ∈⎝⎛⎭⎫0,-1a 时,ax +1>0,g ′(x )≤0,g (x )单调递减, 当x ∈⎝⎛⎭⎫-1a ,+∞时,ax +1<0,g ′(x )≥0,g (x )单调递增,∴g (x )min =g ⎝⎛⎭⎫-1a =M , 设t =-1a ∈(0,e 2],M =h (t )=t e 2-ln t +1(0<t ≤e 2),则h ′(t )=1e 2-1t ≤0,h (t )在(0,e 2]上单调递减,∴h (t )≥h (e 2)=0,即M ≥0,∴M 的最小值为0. 4.已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值.4.解析 (1)易知f (x )的定义域为(0,+∞),当a =-1时,f (x )=-x +ln x ,f ′(x )=-1+1x =1-xx ,令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.∴f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.∴f (x )max =f (1)=-1.∴当a =-1时,函数f (x )在(0,+∞)上的最大值为-1. (2)f ′(x )=a +1x ,x ∈(0,e],1x ∈⎣⎡⎭⎫1e,+∞. ①若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上单调递增,∴f (x )max =f (e)=a e +1≥0,不符合题意.②若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∈(0,e],解得0<x <-1a ;令f ′(x )<0得a +1x <0,结合x ∈(0,e],解得-1a <x ≤e .从而f (x )在⎝⎛⎭⎫0,-1a 上单调递增,在⎝⎛⎦⎤-1a ,e 上单调递减, ∴f (x )max =f ⎝⎛⎭⎫-1a =-1+ln ⎝⎛⎭⎫-1a .令-1+ln ⎝⎛⎭⎫-1a =-3,得ln ⎝⎛⎭⎫-1a =-2,即a =-e 2. ∵-e 2<-1e ,∴a =-e 2为所求.故实数a 的值为-e 2.5.已知函数f (x )=ax 2-(a +2)x +ln x ,其中a ∈R .(1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)当a >0时,若f (x )在区间[1,e]上的最小值为-2,求a 的取值范围. 5.解析 (1)当a =1时,f (x )=x 2-3x +ln x (x >0),所以f ′(x )=2x -3+1x =2x 2-3x +1x,所以f (1)=-2,f ′(1)=0.所以切线方程为y +2=0. (2)函数f (x )=ax 2-(a +2)x +ln x 的定义域为(0,+∞),当a >0时,f ′(x )=2ax -(a +2)+1x =2ax 2-(a +2)x +1x =(2x -1)(ax -1)x ,令f ′(x )=0,解得x =12或x =1a.①当0<1a ≤1,即a ≥1时,f (x )在[1,e]上单调递增.所以f (x )在[1,e]上的最小值为f (1)=-2,符合题意;②当1<1a <e ,即1e <a <1时,f (x )在⎣⎡⎦⎤1,1a 上单调递减,在⎣⎡⎦⎤1a ,e 上单调递增, 所以f (x )在[1,e]上的最小值为f ⎝⎛⎭⎫1a <f (1)=-2,不合题意; ③当1a ≥e ,即0<a ≤1e时,f (x )在[1,e]上单调递减,所以f (x )在[1,e]上的最小值为f (e)<f (1)=-2,不合题意. 综上,实数a 的取值范围是[1,+∞). 考点三 含参函数的极值与最值的综合问题 【例题选讲】[例1] 已知函数f (x )=e x 1+ax 2,其中a 为正实数,x =12是f (x )的一个极值点.(1)求a 的值;(2)当b >12时,求函数f (x )在[b ,+∞)上的最小值.解析 f ′(x )=(ax 2-2ax +1)e x(1+ax 2)2.(1)因为x =12是函数y =f (x )的一个极值点,所以f ′⎝⎛⎭⎫12=0,因此14a -a +1=0,解得a =43. 经检验,当a =43时,x =12是y =f (x )的一个极值点,故所求a 的值为43.(2)由(1)可知,f ′(x )=⎝⎛⎭⎫43x 2-83x +1e x⎝⎛⎭⎫1+43x 22,令f ′(x )=0,得x 1=12,x 2=32.f (x )与f ′(x )随x 的变化情况如下:所以f (x )的单调递增区间是⎝⎛⎭⎫-∞,12,⎝⎛⎭⎫32,+∞,单调递减区间是⎝⎛⎭⎫12,32.当12<b <32时,f (x )在[b ,32)上单调递减,在⎝⎛⎭⎫32,+∞上单调递增. 所以f (x )在[b ,+∞)上的最小值为f ⎝⎛⎭⎫32=e e4; 当b ≥32时,f (x )在[b ,+∞)上单调递增,所以f (x )在[b ,+∞)上的最小值为f (b )=e b 1+ab 2=3e b3+4b 2.[例2] 已知函数f (x )=a ln (x +b )-x . (1)若a =1,b =0,求f (x )的最大值; (2)当b >0时,讨论f (x )极值点的个数.解析 (1)当a =1,b =0时,f (x )=ln x -x ,此时,f (x )的定义域是(0,+∞), f ′(x )=1x -12x =2-x 2x,由f ′(x )>0,解得0<x <4,由f ′(x )<0,解得x >4,故f (x )在(0,4)上单调递增,在(4,+∞)上单调递减,故f (x )max =f (4)=2ln 2-2. (2)当b >0时,函数的定义域是[0,+∞),f ′(x )=a x +b -12x =-x +2a x -b 2x x +b, ①当a ≤0时,f ′(x )<0对任意x ∈(0,+∞)恒成立,故此时f (x )的极值点的个数为0; ②当a >0时,设h (x )=-x +2a x -b ,(Ⅲ)当4a 2-4b ≤0即0<a ≤ b 时,f ′(x )≤0对任意x ∈(0,+∞)恒成立,即f ′(x )在(0,+∞)上无变号零点, 故此时f (x )的极值点个数是0;(Ⅲ)当4a 2-4b >0即a >b 时,记方程h (x )=0的两根分别为x 1,x 2,由于x 1+x 2=2a >0,x 1x 2=b >0,故x 1,x 2都大于0,即f ′(x )在(0,+∞)上有2个变号零点, 故此时f (x )的极值点的个数是2.综上,a ≤b 时,f (x )极值点的个数是0;a >b 时,f (x )极值点的个数是2. [例3] 设函数f (x )=a x +e -x (a >1). (1)求证:f (x )有极值;(2)若x =x 0时f (x )取得极值,且对任意正整数a 都有x 0∈(m ,n ),其中m ,n ∈Z ,求n -m 的最小值. 解析 (1)由题意得f ′(x )=a x ln a -e -x ,令h (x )=f ′(x )=a x ln a -e -x , 则h ′(x )=a x (ln a )2+e -x >0,所以函数h (x ),即f ′(x )在R 上单调递增. 由f ′(x )=0,得a x e x ln a =1,因为a >1,所以a x e x =1ln a >0,得x =log a e 1ln a ,当x >log a e1ln a 时,f ′(x )>0;当x <log a e 1ln a时,f ′(x )<0. 所以函数f (x )在⎝⎛⎭⎫-∞,log a e 1ln a 上单调递减,在⎝⎛⎭⎫log a e 1ln a ,+∞上单调递增,因此,当x =log a e 1ln a时函数f (x )取极值.(2)由(1)知,函数f (x )的极值点x 0(即函数f ′(x )的零点)唯一.由f ′(-1)=ln a a -e ,令g (a )=ln aa ,则g ′(a )=1-ln a a 2,由g ′(a )=0,得a =e ,当a >e 时,g ′(a )<0;当0<a <e 时,g ′(a )>0.所以g (a )在(0,e)上单调递增,在(e ,+∞)上单调递减,所以g (a )≤g (e)=1e ,所以f ′(-1)=ln aa-e <0.当a 为大于1的正整数时,f ′(0)=ln a -1的值有正有负.f ′(1)=a ln a -1e ,因为a 为正整数且a >1,所以a ln a ≥2ln 2>1e ,所以f ′(1)>0.所以x 0∈(-1,1)恒成立,所以n -m 的最小值为2. [例4] 已知函数f (x )=a ln x +1x (a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.解析 由题意,知函数的定义域为{x |x >0},f ′(x )=a x -1x 2(a >0).(1)由f ′(x )>0解得x >1a ,所以函数f (x )的单调递增区间是⎝⎛⎭⎫1a ,+∞; 由f ′(x )<0解得x <1a,所以函数f (x )的单调递减区间是⎝⎛⎭⎫0,1a . 所以当x =1a 时,函数f (x )有极小值f ⎝⎛⎭⎫1a =a ln 1a +a =a -a ln a ,无极大值. (2)不存在.理由如下:由(1)可知,当x ∈⎝⎛⎭⎫0,1a 时,函数f (x )单调递减;当x ∈⎝⎛⎭⎫1a ,+∞时,函数f (x )单调递增. ①若0<1a≤1,即a ≥1时,函数f (x )在[1,e]上为增函数,故函数f (x )的最小值为f (1)=a ln 1+1=1,显然1≠0,故不满足条件.②若1<1a ≤e ,即1e ≤a <1时,函数f (x )在⎣⎡⎭⎫1,1a 上为减函数,在⎣⎡⎦⎤1a ,e 上为增函数, 故函数f (x )的最小值为f (x )的极小值f ⎝⎛⎭⎫1a =a ln 1a +a =a -a ln a =a (1-ln a )=0,即ln a =1, 解得a =e ,而1e≤a <1,故不满足条件.③若1a >e ,即0<a <1e 时,函数f (x )在[1,e]上为减函数,故函数f (x )的最小值为f (e)=a +1e=0,解得a =-1e ,而0<a <1e ,故不满足条件.综上所述,这样的a 不存在.[例5] 已知函数f (x )=(ax -1)ln x +x 22.(1)若a =2,求曲线y =f (x )在点(1,f (1))处的切线l 的方程;(2)设函数g (x )=f ′(x )有两个极值点x 1,x 2,其中x 1∈(0,e],求g (x 1)-g (x 2)的最小值. 解析 (1)当a =2时,f (x )=(2x -1)ln x +x 22,则f ′(x )=2ln x +x -1x +2,f ′(1)=2,f (1)=12,∴切线l 的方程为y -12=2(x -1),即4x -2y -3=0.(2)函数g (x )=a ln x +x -1x +a ,定义域为(0,+∞),则g ′(x )=1+a x +1x 2=x 2+ax +1x 2,令g ′(x )=0,得x 2+ax +1=0,其两根为x 1,x 2,且x 1+x 2=-a ,x 1x 2=1,故x 2=1x 1,a =-⎝⎛⎭⎫x 1+1x 1. g (x 1)-g (x 2)=g (x 1)-g ⎝⎛⎭⎫1x 1=a ln x 1+x 1-1x 1+a -⎝⎛⎭⎫a ln 1x 1+1x 1-x 1+a =2⎝⎛⎭⎫x 1-1x 1+2a ln x 1=2⎝⎛⎭⎫x 1-1x 1-2⎝⎛⎭⎫x 1+1x 1ln x 1, 令h (x )=2⎝⎛⎭⎫x -1x -2⎝⎛⎭⎫x +1x ln x .则[g (x 1)-g (x 2)]min =h (x )min , 又h ′(x )=2(1+x )(1-x )ln xx 2,当x ∈(0,1]时,h ′(x )≤0,当x ∈(1,e]时,h ′(x )<0,即当x ∈(0,e]时,h (x )单调递减,∴h (x )min =h (e)=-4e ,故[g (x 1)-g (x 2)]min =-4e .[例6] 已知函数g (x )=x 22+x +ln x .(1)若函数g ′(x )≥a 恒成立,求实数a 的取值范围;(2)函数f (x )=g (x )-mx ,若f (x )存在单调递减区间,求实数m 的取值范围; (3)设x 1,x 2(x 1<x 2)是函数f (x )的两个极值点,若m ≥72,求f (x 1)-f (x 2)的最小值.解析 (1)∵g ′(x )=x +1x +1,g ′(x )=x +1x+1≥2x ·1x+1=3,g ′(x )≥a ,∴a ≤3. (2)∴f ′(x )=x +1-m +1x =x 2+(1-m )x +1x,又∵f ′(x )<0在(0,+∞)上有解,令h (x )=x 2+(1-m )x +1,则h (0)=1>0,只需⎩⎪⎨⎪⎧m -12>0,(m -1)2-4>0,解得⎩⎪⎨⎪⎧m >1,m >0或m <-1,即m >3(3)∵f ′(x )=x 2+(1-m )x +1x,令f ′(x )=0,即x 2+(1-m )x +1=0,两根分别为x 1,x 2,则⎩⎪⎨⎪⎧x 1+x 2=m -1,x 1x 2=1,又∵f (x 1)-f (x 2)=12(x 21-x 22)+(1-m )(x 1-x 2)+ln x 1x 2=12(x 21-x 22)-(x 21-x 22)+ln x 1x 2, =ln x 1x 2-12(x 21-x 22)=ln x 1x 2-12⎝⎛⎭⎫x 1x 2-x 2x 1. 令t =x 1x 2,由于x 1<x 2,∴0<t <1.又∵m ≥72,(x 1+x 2)2=(m -1)2≥254,即(x 1+x 2)2x 1x 2=x 1x 2+2+x 2x 1,即t +2+1t ≥254,∴4t 2-17t +4≥0,解得t ≥4或t ≤14,即0<t ≤14.令h (t )=ln t -12⎝⎛⎭⎫t -1t (0<t ≤14),h ′(t )=1t -12⎝⎛⎭⎫1+1t 2=-(t -1)22t 2<0,∴h (t )在(0,14]上单调递减,h (t )min =h (14)=-2ln2+158.∴f (x 1)-f (x 2)的最小值为-2ln2+158.【对点训练】 1.已知函数f (x )=x ln x . (1)求函数f (x )的极值点;(2)设函数g (x )=f (x )-a (x -1),其中a ∈R ,求函数g (x )在区间(0,e]上的最小值(其中e 为自然对数的底数).1.解析 (1)f ′(x )=ln x +1,x >0,由f ′(x )=0,得x =1e .当x ∈⎝⎛⎭⎫0,1e 时,f ′(x )<0,当x ∈⎝⎛⎭⎫1e ,+∞时,f ′(x )>0, 所以f (x )在区间⎝⎛⎭⎫0,1e 上单调递减,在区间⎝⎛⎭⎫1e ,+∞上单调递增. 所以x =1e是函数f (x )的极小值点,极大值点不存在.(2)g (x )=x ln x -a (x -1),则g ′(x )=ln x +1-a ,由g ′(x )=0,得x =e a -1. 所以在区间(0,e a -1)上,g (x )单调递减,在区间(e a -1,+∞)上,g (x )单调递增. 当e a -1≥e ,即a ≥2时,g (x )在(0,e]上单调递减,∴g (x )min =g (e)=a +e -a e , 当e a -1<e 即a <2时,g (x )在(0,e a -1)上单调递减,在(e a -1,e]上单调递增, ∴g (x )min =g (e a -1)=a -e a -1,令g (x )的最小值为h (a ),综上有h (a )=⎩⎪⎨⎪⎧a -e a -1,a <2,a +e -a e ,a ≥2.2.已知函数f (x )=⎩⎪⎨⎪⎧-x 3+x 2,x <1,a ln x ,x ≥1.(1)求f (x )在区间(-∞,1)上的极小值和极大值; (2)求f (x )在[-1,e](e 为自然对数的底数)上的最大值. 2.解析 (1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2), 令f ′(x )=0,解得x =0或x =23.当x 变化时,f ′(x ),f (x )的变化情况如下表:故当x =0当x =23时,函数f (x )取到极大值,极大值为f ⎝⎛⎭⎫23=427. (2)①当-1≤x <1时,根据(1)知,函数f (x )在[-1,0)和⎝⎛⎭⎫23,1上单调递减,在⎣⎡⎦⎤0,23上单调递增. 因为f (-1)=2,f ⎝⎛⎭⎫23=427,f (0)=0,所以f (x )在[-1,1)上的最大值为2. ②当1≤x ≤e 时,f (x )=a ln x ,当a ≤0时,f (x )≤0;当a >0时,f (x )在[1,e]上单调递增.则f (x )在[1,e]上的最大值为f (e)=a . 故当a ≥2时,f (x )在[-1,e]上的最大值为a ; 当a <2时,f (x )在[-1,e]上的最大值为2. 3.已知函数f (x )=a ln x +x 2-ax (a ∈R ).(1)若x =3是f (x )的极值点,求f (x )的单调区间; (2)求g (x )=f (x )-2x 在区间[1,e]上的最小值h (a ).3.解析 (1)f (x )的定义域为(0,+∞),f ′(x )=ax +2x -a =2x 2-ax +a x ,因为x =3是f (x )的极值点,所以f ′(3)=18-3a +a3=0,解得a =9,所以f ′(x )=2x 2-9x +9x =(2x -3)(x -3)x ,所以当0<x <32或x >3时,f ′(x )>0,当32<x <3时,f ′(x )<0,即x =3是f (x )的极小值点, 所以f (x )的单调递增区间为⎝⎛⎭⎫0,32,(3,+∞),单调递减区间为⎝⎛⎭⎫32,3.(2)g ′(x )=2x 2-ax +a x -2=(2x -a )(x -1)x ,令g ′(x )=0,得x 1=a2,x 2=1.①当a2≤1,即a ≤2时,g (x )在[1,e]上为增函数,h (a )=g (1)=-a -1;②当1<a2<e ,即2<a <2e 时,g (x )在⎣⎡⎭⎫1,a 2上为减函数,在⎝⎛⎦⎤a 2,e 上为增函数, h (a )=g ⎝⎛⎭⎫a 2=a ln a 2-14a 2-a ; ③当a2≥e ,即a ≥2e 时,g (x )在[1,e]上为减函数,h (a )=g (e)=(1-e)a +e 2-2e.综上,h (a )=⎩⎪⎨⎪⎧-a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e ,1-e a +e 2-2e ,a ≥2e.4.已知常数a ≠0,f (x )=a ln x +2x . (1)当a =-4时,求f (x )的极值;(2)当f (x )的最小值不小于-a 时,求实数a 的取值范围.4.解析 (1)由已知得f (x )的定义域为(0,+∞),f ′(x )=ax +2=a +2x x .当a =-4时,f ′(x )=2x -4x. 所以当0<x <2时,f ′(x )<0,即f (x )在(0,2)上单调递减; 当x >2时,f ′(x )>0,即f (x )在(2,+∞)上单调递增.所以f (x )只有极小值,且当x =2时,f (x )取得极小值f (2)=4-4ln 2. 所以当a =-4时,f (x )只有极小值4-4ln 2,无极大值. (2)因为f ′(x )=a +2xx,所以当a >0,x ∈(0,+∞)时, f ′(x )>0,即f (x )在(0,+∞)上单调递增,没有最小值.当a <0时,由f ′(x )>0,得x >-a2,所以f (x )在⎝⎛⎭⎫-a 2,+∞上单调递增; 由f ′(x )<0,得x <-a2,所以f (x )在⎝⎛⎭⎫0,-a 2上单调递减. 所以当a <0时,f (x )的最小值为f ⎝⎛⎭⎫-a 2=a ln ⎝⎛⎭⎫-a 2+2⎝⎛⎭⎫-a 2. 根据题意,知f ⎝⎛⎭⎫-a 2=a ln ⎝⎛⎭⎫-a 2+2⎝⎛⎭⎫-a2≥-a ,即a [ln (-a )-ln 2]≥0. 因为a <0,所以ln (-a )-ln 2≤0,解得a ≥-2, 所以实数a 的取值范围是[-2,0). 5.已知函数f (x )=a sin x +sin2x ,a ∈R .(1)若f (x )在⎝⎛⎭⎫0,π2上有极值点,求a 的取值范围; (2)若a =1,x ∈⎝⎛⎭⎫0,2π3时,f (x )≥bx cos x ,求b 的最大值. 5.解析 (1)f ′(x )=a cos x +2cos 2x =4cos 2x +a cos x -2,依题意,f ′(x )在⎝⎛⎭⎫0,π2上有变号零点,令cos x =t ,则t ∈(0,1), 所以g (t )=4t 2+at -2=0在(0,1)有实根,注意到Δ>0,所以g (0)·g (1)<0,解得a >-2,即a ∈(-2,+∞).(2)a =1时,f (x )=sin x +sin 2x ,当x ∈⎣⎡⎭⎫π2,2π3时,f (x )≥0≥bx cos x ,显然成立;当x ∈⎝⎛⎭⎫0,π2时,cos x >0,所以tan x +2sin x ≥bx . 记h (x )=tan x +2sin x -bx ,则h (x )≥0恒成立,h ′(x )=1cos 2x +2cos x -b ,h ″(x )=2sin x cos 3x -2sin x =2sin x (1-cos 3x )cos 3x>0, h ′(x )在⎝⎛⎭⎫0,π2单调递增,h ′(0)=3-b , 若b >3,则h ′(0)<0,记cos θ=1b ,θ∈⎝⎛⎭⎫0,π2,则h ′(θ)=b +2b -b =2b>0, 所以存在x 0∈(0,θ),使得h ′(x 0)=0,当x ∈(0,x 0)时,h ′(x )<0,h (x )单调递减, 所以x ∈(0,x 0)时,h (x )<h (0)=0,不符题意.当b =3时,h ′(x )>h ′(0)=0,即x ∈⎝⎛⎭⎫0,π2时,h (x )单调递增,所以h (x )>h (0)=0,符合题意, 当x ∈⎝⎛⎭⎫π2,2π3时,f (x )=sin x +2sin x cos x =sin x (1+2cos x ),由2cos x +1>2cos 2π3+1=0,sin x >0,所以f (x )>0, 而b =3时,bx cos x <0,所以f (x )>bx cos x 成立,综上所述,b 的最大值为3.6.已知函数f (x )=ln x +12x 2-ax +a (a ∈R ). (1)若函数f (x )在(0,+∞)上为单调递增函数,求实数a 的取值范围;(2)若函数f (x )在x =x 1和x =x 2处取得极值,且x 2≥e x 1(e 为自然对数的底数),求f (x 2)-f (x 1)的最大值.6.解析 (1)∵f ′(x )=1x+x -a (x >0),又f (x )在(0,+∞)上单调递增,∴恒有f ′(x )≥0, 即1x +x -a ≥0恒成立,∴a ≤⎝⎛⎭⎫x +1x min ,而x +1x ≥2 x ·1x=2,当且仅当x =1时取“=”,∴a ≤2. 即函数f (x )在(0,+∞)上为单调递增函数时,a 的取值范围是(-∞,2].(2)∵f (x )在x =x 1和x =x 2处取得极值,且f ′(x )=1x +x -a =x 2-ax +1x(x >0),。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二理数期中专题复习卷----导数专题(二)
【知识点5:含参数的单调性问题】
1.若3
2
()33(2)1f x x ax a x =++++有极大值和极小值,则a 的取值围是( )
A .12a -<<
B .2a >或1a <-
C .2a ≥或1a ≤-
D .12a a ><-或 2.已知函数3
2
()1f x x ax x =-+--在(),-∞+∞上单调递减,则实数a 的取值围是( )
A.(
),33,⎡-∞-+∞
⎣
U B.3,3⎡-
⎣ C.(),33,-∞-+∞
U
D.(3,3
3.若函数2
()2ln f x x x =-在定义域的一个子区间(1,1)k k -+上不是单调函数,则实数k 的取值围是 .
4.已知函数2
()ln (2)f x x ax a x =-+-,讨论()f x 的单调性.
5.设函数1
()(2)ln 2.f x a x ax x
=-+
+ (1)当0a =时,求()f x 的极值; (2)设1
()()g x f x x
=-在[)1,+∞上单调递增,求a 的取值围; (3)当0a ≠时,求()f x 的单调区间.
【知识点6:含参数的零点个数问题】
1.设a 为实数, 函数3
()3f x x x a =-++
(1)求()f x 的极值; (2)若方程()0f x =有3个实数根,求a 的取值围; (3)若()0f x =恰有两个实数根,求a 的值.
2.已知函数32
11(),,32
a f x x x ax a x R -=
+--∈其中0a >. (1)求函数()f x 的单调区间; (2)若函数()f x 在区间(2,0)-恰有两个零点,求a 的取值围.
3.已知函数()1x a
f x x e
=-+
(,a R e ∈为自然对数的底数). (1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴, 求a 的值. (2)求函数()f x 的极值; (3)当1a =时,,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.
【知识点7:含参数的恒成立问题】
1.若函数32
1()(1)132
a f x x x a x =
-+-+在区间(1,4)上是减函数,在区间(6,)+∞上是增函数,则实数a 的取值围为 .
2.已知函数()3
2
3()1,2
f x ax x x R =-+∈其中0a >.
(1)若1a =,求曲线()y f x =在点(2,(2))f 处的切线方程;
(2)若在区间11,22⎡⎤
-⎢⎥⎣⎦
上,()0f x >恒成立,求a 的取值围.
3.已知2
()2ln .f x x x =-
(1)求()f x 的最小值; (2)若21
()2f x tx x
≥-在(]0,1x ∈恒成立,求t 的取值围.
4.已知函数3
()3f x x ax b =-+(,)a b R ∈在2x =处的切线方程914y x =-. (1)求()f x 的单调区间;
(2)令2
()2g x x x k =-++,若对任意[]10,2x ∈,均存在[]20,2x ∈,使得()()12f x g x <,数k 的取值围.
5.已知函数()1ln ()f x ax x a R =--∈. (1)讨论函数()f x 在定义域的极值点的个数.
(2)若函数()f x 在1x =处取得极值,对(0,)x ∀∈+∞,()2f x bx ≥-恒成立,数b 的取值围.
(3)当1x y e >>-时,证明ln(1)
ln(1)
x y
x e
y -+>
+.
高二理数期中专题复习卷----导数专题(二) (答案)
【知识点5】
1. B
2.B
3.
3 1,
2⎡⎫
⎪⎢⎣⎭
4.
. 5.
【知识点6】
1.(1)极小值(1)2f a -=- 极大值(1)2f a =+ (2)22a -<< (3)22a a =-=或
2.(1)单调递增区间为:()(),1,a -∞-+∞和 单调递减区间:()1,a - (2)1a <
3.(1)a e = (2)若0a ≤,无极值;若0a >,极小值(ln )ln f a a =,无极大值. (3)max 1k =
【知识点7】 1.[5,7] 2.
3.
4.
5.。