高中数学选修4-5中的著名不等式

合集下载

高中数学·选修4-5(人教版)第一讲几何平均不等式及绝对值三角不等式PPT课件

高中数学·选修4-5(人教版)第一讲几何平均不等式及绝对值三角不等式PPT课件

9
3 .
归纳升华
1.利用三个正数的算术—几何平均不等式常处理下
面两个类型的最值: (1)求函数 y=ax2+bx的最小值,其中 ax2>0,bx>0.

y

ax2

b x

ax2

b 2x

b 2x

3
3
ax2·2bx·2bx

3 2
3 2ab2.当且仅当 ax2=2bx,即 x= 3 2ba时,等号成立.
(1)如果 a,b,c∈R,那么a+3b+c≥3 abc.(
)
(2)如果 a,b,c∈R+,那么a+3b+c≥3 abc,当且仅
当 a=b 或 b=c 时,等号成立.( )
(3)如果 a,b,c∈R+,那么 abc≤a+3b+c3,当且 仅当 a=b=c 时,等号成立.( )
(4)如果 a1,a2,a3,…,an 都是实数.那么 a1+a2
n
+…+an≥n· a1a2…an.( )
解析:(1)根据定理 3,只有在 a,b,c 都是正数才成
立.其他情况不一定成立,如 a=1,b=-1,c=-3,
a+b+c
3
3
3 =-1, abc= 3,故(1)不正确.
(2)由定理 3,知等号成立的条件是 a=b=c.故(2)不正
确.
(3)由定理 3 知(3)正确. (4)必须 a1,a2,…,an 都是正数,命题才成立. 答案:(1)× (2)× (3)√ (4)×
第一讲 不等式和绝对值不等式
1.1 不等式 1.1.3 三个正数的算术—
几何平均不等式
[知识提炼·梳理] 1.三个正数的算术—几何平均不等式 (1)如果 a1,a2,a3∈R+,则a1+a32+a3叫做这 3 个正 数的算术平均数,3 a1a2a3叫做这三个正数的几何平均数.

人教版-高中数学选修4-5 柯西不等式

人教版-高中数学选修4-5 柯西不等式

注意观察此不等式的简洁性,对称性,深刻体现出 数学形式的美。
(二)柯西不等式的证明方法
共同思考,讨论发现。借助以往的知识和经验, 运用类比联想与化归转化的思想,探究用什么方法来 证明它。
归纳总结 1.向量法:(类比数学模型) 2.比较法:(不等式证明的基本方法) 3.构造法:(类比联想,利用二次函数的性质) 4.几何法:(利用余弦定理)
(二)柯西不等式的推广与应用
柯西不等式是一个非常重要的不等式,它在数学和物 理方面,尤其在解决不等式证明的有关问题中有着十分广 泛的应用。
进一步的论证可以得到N维形式的柯西不等式 :
由柯西不等式可以导出几个著名的不等式
推广1:(闵可夫斯基不等式 )
推广2:(赫尔德(H0lder)不等式 )
推广3:(赫尔德不等式一个极好的变式) :

学习报告 3000字左右 科学小论文 1500~2000字左右 规则 1. 严格按照报告或论文格式书写(自查) 2. 学习报告独立完成,论文可以2~3人合作 完成 时间 两个月完成上交 1.明确问题 2.制定计划 4.获得结论 5.书写成文 3.收集资料
步骤 建议
论文题目可以自定,也可以选择我们在课堂中提出 的合作探究题或是研究性课题。
(二)评价
1.客观性评价
概念形成,方法运用,解题能力 2.发展性评价
(1) 、 学 习 态 度 , 积 极 思 考 , 主 动 参 与 , 合 作交流,勤奋刻苦,不畏艰难等方面。 (2)、开放性考查课题完成情况。 (3)、报告与论文的表述 (4)、学习反思与学习方式的改进。
衷心感谢大家的合作 与支持!
大胆假设,小心求证,运用发散思维,自主探求。不断提升 思维层次,提炼出其中蕴含的数学思想方法。

高二数学选修4-5:第二章 2.1 柯西不等式

高二数学选修4-5:第二章 2.1 柯西不等式

又 a,b,c 为正实数,∴a+b+c>0.
∴ab2+bc2+ca2≥a+b+c.
利用柯西不等式求最值
[例 3] 设 2x+3y+5z=29,求函数 u= 2x+1+ 3y+4+ 5z+6 的最大值.
[思路点拨] 本题考查三维柯西不等式的应用,解答本题 需要利用好特定条件,设法去掉根号.
[精解详析] 根据柯西不等式 120=3[(2x+1)+(3y+4)+(5z+6)] ≥(1× 2x+1+1× 3y+4+1× 5z+6)2, 故 2x+1+ 3y+4+ 5z+6≤2 30.
2.设 a,b,c 为正数,求证:ab2+bc2+ca2≥a+b+c.
证明:∵ab2+bc2+ca2(a+b+c)

a 2+ b
b 2+ c
ca2·[(
b)2+(
c)2+(
a)2]

a b·
b+
b c·
c+
c a·
a2=(a+b+c)2,
即ab2+bc2+ca2(a+b+c)≥(a+b+c)2,
8.已知 x,y,z 均为正实数,且 x+y+z=1,则1x+4y+9z的最小值 为________.
解析:利用柯西不等式.
由于(x+y+z)1x+4y+9z ≥
x·1x+
y·2y+
z·3z2=36,
所以1x+4y+9z≥36.
当且仅当 x2=14y2=19z2,即 x=16,y=13,z=12时,等号成立.∴
≥a1+a2+…+an,
∴ a12+a22+…+a2n· n≥a1+a2+…+an.
即得
a21+a22+n …+a2n≥a1+a2+n …+an,∴P≥Q.
答案:B
二、填空题 5.设 a,b,c,d,m,n 都是正实数,P= ab+ cd,Q=

高中数学新人教A版选修4-5课件:第一讲不等式和绝对值不等式1.1.2基本不等式

高中数学新人教A版选修4-5课件:第一讲不等式和绝对值不等式1.1.2基本不等式
1
年销售收入为 150% 32 3- t+1 + 3 + 2t.
首 页
探究一
探究二
J 基础知识 Z 重点难点
ICHU ZHISHI
探究三
由题意,生产 x 万件化妆品正好销完,
由年利润=年销售收入-年生产成本-促销费,
-t2 +98t+35
得年利润 y=
(t≥0).
2(t+1)
-t2 +98t+35
1 2x+y 2
1
(x,y∈R+)中,用的是不等式链中的
其变形去解题,如 xy= ×(2x)y≤
2
2
2
2
1 (2x+y)
1
a+b 2
(x,y∈R+)也可以,这两种解法比较,
.但是 xy= ×(2x)y≤ ×
ab≤
2
2
2
2
可以发现,求得的最值不一样,这说明选择不同的重要不等式的变形形式,求
得的值或范围是不同的,所以我们在选择重要不等式的变形形式时,要使
论有关的不等关系,得出有关理论参数的值.
(4)作出问题结论:根据③中得到的理论参数的值,结合题目要求得出问
题的结论.
J 基础知识 Z 重点难点
首 页
ICHU ZHISHI
HONGDIAN NANDIAN
1
1.下列各式中,最小值等于 2 的是(
x
A.
y
y
+
x
B.
1
C.tanθ+θ
2
3
S 随堂练习
1
的最大值,转化为求 (2x)y 的最大值,即

人教版-高中数学选修4-5-柯西不等式

人教版-高中数学选修4-5-柯西不等式
定理(一般形式的柯西不等式) 设a1 , a2 , a3 ,, an , b1 , b2 , b3 ,, bn是实数,则
2 2 2 2 2 (a1 a2 an )( b12 b2 bn ) (a1b1 a2b2 anbb )2
当且仅当bi 0(i 1, 2,, n)或存在一个数 k , 使得ai kbi (i 1, 2,, n)时, 等号成立
证明 : (a c d )(b c d a ) (ab bc cd da )2 a b c d a , b, c , d是不全相等的正数, 不成立 b c d a (a 2 b 2 c 2 d 2 )2 (ab bc cd da )2 即 a 2 b 2 c 2 d 2 ab bc cd da
已知 a2+2b2=6,则 a+b 的取值范围是____________. 1 2 1 2 【解析】 ∵(a +2b )[1 +( ) ]≥(1· a+ 2b· ) =(a+b)2 2 2
2 2 2
3 ∴(a+b) ≤6× =9,∴-3≤a+b≤3, 2
2
故 a+b 的取值范围是[-3,3] 【名师点睛】 解此题关键在于构造因式,使其符合柯西不等
证 明: ( x 2 y 2 z 2 )(12 2 2 3 2 ) ( x 2 y 3 z ) 2 1 1 2 2 2 x y z 14 x y z 1 1 3 当 且 仅 当 即x , y , z 时 1 2 3值 14
2 2 2 2
二维形式的三角不等式
2 2 x1 y1 2 2 x2 y2 ( x1 x 2 ) 2 ( y1 y2 ) 2
2 2 2 2 2 2 三维形式的三角不等式 x1 y1 z1 x2 y2 z2

高中文科数学第十三章 不等式选讲(选修4-5)

高中文科数学第十三章  不等式选讲(选修4-5)

第十三章⎪⎪⎪不等式选讲(选修4-5)第一节 绝对值不等式1.绝对值三角不等式定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立. 定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集(2)|ax +b |①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .(3)|x -a |+|x -b |≥c ,|x -a |+|x -b |≤c (c >0)型不等式的解法: ①利用绝对值不等式的几何意义求解. ②利用零点分段法求解.③构造函数,利用函数的图象求解. [小题体验]1.(教材习题改编)设ab >0,下面四个不等式中,正确的是( ) ①|a +b |>|a |;②|a +b |<|b |;③|a +b |<|a -b |;④|a +b |>|a |-|b |. A .①和② B .①和③ C .①和④D .②和④解析:选C ∵ab >0,即a ,b 同号, 则|a +b |=|a |+|b |, ∴①④正确,②③错误.2.若不等式|kx -4|≤2的解集为{}x |1≤x ≤3,则实数k =________.解析:由|kx -4|≤2⇔2≤kx ≤6. ∵不等式的解集为{}x |1≤x ≤3, ∴k =2. 答案:23.不等式|x +1|-|x -2|≥1的解集是________. 解析:f (x )=|x +1|-|x -2|=⎩⎪⎨⎪⎧-3, x ≤-1,2x -1, -1<x <2,3, x ≥2.当-1<x <2时,由2x -1≥1,解得1≤x <2. 又当x ≥2时,f (x )=3>1恒成立. 所以不等式的解集为{}x |x ≥1. 答案:{}x |x ≥11.对形如|f (x )|>a 或|f (x )|<a 型的不等式求其解集时,易忽视a 的符号直接等价转化造成失误.2.绝对值不等式||a |-|b ||≤|a ±b |≤|a |+|b |中易忽视等号成立的条件.如|a -b |≤|a |+|b |,当且仅当ab ≤0时等号成立,其他类似推导.[小题纠偏]1.设a ,b 为满足ab <0的实数,那么( ) A .|a +b |>|a -b | B .|a +b |<|a -b | C .|a -b |<|||a |-|b |D .|a -b |<|a |+|b |解析:选B ∵ab <0,∴|a -b |=|a |+|b |>|a +b |.2.若存在实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是________. 解析:∵|x -a |+|x -1|≥|(x -a )-(x -1)|=|a -1|, 要使|x -a |+|x -1|≤3有解,可使|a -1|≤3, ∴-3≤a -1≤3,∴-2≤a ≤4. 答案:[-2,4]考点一 绝对值不等式的解法(基础送分型考点——自主练透)[题组练透]1.(易错题)若不等式|x -a |+3x ≤0(其中a >0)的解集为{}x |x ≤-1,求实数a 的值.解:不等式|x -a |+3x ≤0等价于⎩⎪⎨⎪⎧ x ≥a ,x -a +3x ≤0或⎩⎪⎨⎪⎧x <a ,a -x +3x ≤0,即⎩⎪⎨⎪⎧x ≥a ,x ≤a4或⎩⎪⎨⎪⎧x <a ,x ≤-a 2. 因为a >0,所以不等式组的解集为⎩⎨⎧⎭⎬⎫x |x ≤-a 2 .由题设可得-a2=-1,故a =2.2.在实数范围内,解不等式|2x -1|+|2x +1|≤6. 解:法一:当x >12时,原不等式转化为4x ≤6⇒12<x ≤32;当-12≤x ≤12时,原不等式转化为2≤6,恒成立;当x <-12时,原不等式转化为-4x ≤6⇒-32≤x <-12.综上知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32. 法二:原不等式可化为⎪⎪⎪⎪x -12 +⎪⎪⎪⎪x +12 ≤3, 其几何意义为数轴上到12,-12两点的距离之和不超过3的点的集合,数形结合知,当x=32或x =-32时,到12,-12两点的距离之和恰好为3,故当-32≤x ≤32时,满足题意,则原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32 .3.(2015·山东高考改编)解不等式|x -1|-|x -5|<2.解:当x <1时,不等式可化为-(x -1)-(5-x )<2,即-4<2,显然成立,所以此时不等式的解集为(-∞,1);当1≤x ≤5时,不等式可化为x -1-(5-x )<2,即2x -6<2,解得x <4,所以此时不等式的解集为[1,4);当x >5时,不等式可化为(x -1)-(x -5)<2,即4<2,显然不成立.所以此时不等式无解.综上,不等式的解集为(-∞,4).[谨记通法]1.求解绝对值不等式要注意两点:(1)要求的不等式的解集是各类情形的并集,利用零点分段法的操作程序是:找零点,分区间,分段讨论.(2)对于解较复杂绝对值不等式,要恰当运用条件,简化分类讨论,优化解题过程.如“题组练透”第1题要注意分类讨论.2.求解该类问题的关键是去绝对值符号,可以运用零点分段法去绝对值,此外还常利用绝对值的几何意义求解.考点二 绝对值不等式的证明 (重点保分型考点——师生共研)[典例引领](2015·唐山三模)设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M . (1)证明:⎪⎪⎪⎪13a +16b <14;(2)比较|1-4ab |与2|a -b |的大小,并说明理由. 解:(1)证明:记f (x )=|x -1|-|x +2| =⎩⎪⎨⎪⎧3,x ≤-2,-2x -1,-2<x <1,-3,x ≥1.由-2<-2x -1<0,解得-12<x <12,则M =⎝⎛⎭⎫-12,12 . 所以⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14. (2)由(1)得a 2<14,b 2<14.因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2) =(4a 2-1)(4b 2-1)>0, 所以|1-4ab |2>4|a -b |2, 故|1-4ab |>2|a -b |.[由题悟法]证明绝对值不等式主要的3种方法(1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明.(2)利用三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |进行证明. (3)转化为函数问题,数形结合进行证明.[即时应用]已知x ,y ∈R ,且|x +y |≤16,|x -y |≤14,求证:|x +5y |≤1.证明:∵|x +5y |=|3(x +y )-2(x -y )|. ∴由绝对值不等式的性质,得|x +5y |=|3(x +y )-2(x -y )|≤|3(x +y )|+|2(x -y )| =3|x +y |+2|x -y |≤3×16+2×14=1.即|x +5y |≤1.考点三 绝对值不等式的综合应用 (重点保分型考点——师生共研)[典例引领](2016·大同调研)已知函数f (x )=|2x -1|+|x -2a |. (1)当a =1时,求f (x )≤3的解集;(2)当x ∈[1,2]时,f (x )≤3恒成立,求实数a 的取值范围. 解:(1)当a =1时,由f (x )≤3,可得|2x -1|+|x -2|≤3, ∴⎩⎪⎨⎪⎧x <12,1-2x +2-x ≤3①或⎩⎪⎨⎪⎧12≤x <2,2x -1+2-x ≤3② 或⎩⎪⎨⎪⎧x ≥2,2x -1+x -2≤3.③ 解①求得0≤x <12;解②求得12≤x <2;解③求得x =2.综上可得,0≤x ≤2,即不等式的解集为[0,2]. (2)∵当x ∈[1,2]时,f (x )≤3恒成立, 即|x -2a |≤3-|2x -1|=4-2x ,故2x -4≤2a -x ≤4-2x ,即3x -4≤2a ≤4-x . 再根据3x -4的最大值为6-4=2, 4-x 的最小值为4-2=2, ∴2a =2,∴a =1, 即a 的取值范围为{1}.[由题悟法]1.研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,将原函数转化为分段函数,然后利用数形结合解决问题,这是常用的思想方法.2.f (x )<a 恒成立⇔f (x )max <a . f (x )>a 恒成立⇔f (x )min >a .[即时应用](2015·重庆高考改编)若函数f (x )=|x +1|+2|x -a |的最小值为5,求实数a 的值. 解:当a =-1时,f (x )=3|x +1|≥0,不满足题意; 当a <-1时,f (x )=⎩⎪⎨⎪⎧-3x -1+2a , x ≤a ,x -1-2a , a <x ≤-1,3x +1-2a , x >-1,f (x )min =f (a )=-3a -1+2a =5, 解得a =-6;当a >-1时,f (x )=⎩⎪⎨⎪⎧-3x -1+2a , x ≤-1,-x +1+2a , -1<x ≤a ,3x +1-2a , x >a ,f (x )min =f (a )=-a +1+2a =5, 解得a =4.综上所述,实数a 的值为-6或4.1.(2016·福建四地六校联考)已知函数f (x )=|x -1|+|x +1|. (1)求不等式f (x )≥3的解集;(2)若关于x 的不等式f (x )≥a 2-a 在R 上恒成立,求实数a 的取值范围.解:(1)原不等式等价于⎩⎪⎨⎪⎧ x ≤-1,-2x ≥3或⎩⎪⎨⎪⎧ -1<x ≤1,2≥3或⎩⎪⎨⎪⎧x >1,2x ≥3,解得x ≤-32或x ∈∅或x ≥32.∴不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-32或x ≥32. (2)由题意得,关于x 的不等式|x -1|+|x +1|≥a 2-a 在R 上恒成立. ∵|x -1|+|x +1|≥|(x -1)-(x +1)|=2, ∴a 2-a ≤2,即a 2-a -2≤0,解得-1≤a ≤2.∴实数a 的取值范围是[-1,2].2.(2016·忻州模拟)已知|2x -3|≤1的解集为[m ,n ]. (1)求m +n 的值;(2)若|x -a |<m ,求证:|x |<|a |+1.解:(1)由不等式|2x -3|≤1可化为-1≤2x -3≤1, 得1≤x ≤2,∴m =1,n =2,m +n =3.(2)证明:若|x -a |<1,则|x |=|x -a +a |≤|x -a |+|a |<|a |+1. 3.设函数f (x )=|x -1|+|x -2|. (1)求证:f (x )≥1; (2)若f (x )=a 2+2a 2+1成立,求x 的取值范围.解:(1)证明:f (x )=|x -1|+|x -2|≥|(x -1)-(x -2)|=1. (2)∵a 2+2a 2+1=a 2+1+1a 2+1=a 2+1+1a 2+1≥2,当且仅当a =0时等号成立, ∴要使f (x )=a 2+2a 2+1成立,只需|x -1|+|x -2|≥2,即⎩⎪⎨⎪⎧ x <1,1-x +2-x ≥2或⎩⎪⎨⎪⎧ 1≤x <2,x -1+2-x ≥2或⎩⎪⎨⎪⎧x ≥2,x -1+x -2≥2, 解得x ≤12或x ≥52,故x 的取值范围是⎝⎛⎦⎤-∞,12 ∪⎣⎡⎭⎫52,+∞. 4.(2016·唐山一模)已知函数f (x )=|2x -a |+|x +1|. (1)当a =1时,解不等式f (x )<3; (2)若f (x )的最小值为1,求a 的值.解:(1)当a =1时,f (x )=|2x -1|+|x +1|=⎩⎪⎨⎪⎧-3x ,x ≤-1,-x +2,-1<x <12,3x ,x ≥12,且f (1)=f (-1)=3,所以f (x )<3的解集为{}x |-1<x <1.(2)|2x -a |+|x +1|=⎪⎪⎪⎪x -a 2 +|x +1|+⎪⎪⎪⎪x -a 2 ≥⎪⎪⎪⎪1+a 2 +0=⎪⎪⎪⎪1+a2 , 当且仅当(x +1)⎝⎛⎭⎫x -a 2 ≤0且x -a2=0时,取等号. 所以⎪⎪⎪⎪1+a2 =1,解得a =-4或0.5.(2015·南宁二模)已知函数f (x )=|x -a |.(1)若f (x )≤m 的解集为{}x |-1≤x ≤5,求实数a ,m 的值; (2)当a =2且0≤t ≤2时,解关于x 的不等式f (x )+t ≥f (x +2). 解:(1)∵|x -a |≤m ,∴-m +a ≤x ≤m +a . ∵-m +a =-1,m +a =5, ∴a =2,m =3.(2)f (x )+t ≥f (x +2)可化为|x -2|+t ≥|x |. 当x ∈(-∞,0)时,2-x +t ≥-x,2+t ≥0, ∵0≤t ≤2,∴x ∈(-∞,0);当x ∈[0,2)时,2-x +t ≥x ,x ≤1+t 2,0≤x ≤1+t 2,∵1≤1+t 2≤2,∴0≤x ≤1+t2;当x ∈[2,+∞)时,x -2+t ≥x ,t ≥2,当0≤t <2时,无解,当t =2时,x ∈[2,+∞). ∴当0≤t <2时原不等式的解集为⎝⎛⎦⎤-∞,t2+1; 当t =2时原不等式的解集为[2,+∞).6.(2015·全国卷Ⅰ)已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解:(1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0, 解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x 23<x <2.(2)由题设可得f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝⎛⎭⎫2a -13,0,B (2a +1,0),C (a ,a +1),则△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞).7.(2015·郑州二检)已知函数f (x )=|3x +2|. (1)解不等式f (x )<4-|x -1|;(2)已知m +n =1(m ,n >0),若|x -a |-f (x )≤1m +1n (a >0)恒成立,求实数a 的取值范围.解:(1)不等式f (x )<4-|x -1|,即|3x +2|+|x -1|<4. 当x <-23时,即-3x -2-x +1<4,解得-54<x <-23;当-23≤x ≤1时,即3x +2-x +1<4,解得-23≤x <12;当x >1时,即3x +2+x -1<4,无解. 综上所述,x ∈⎝⎛⎭⎫-54,12 . (2)1m +1n =⎝⎛⎭⎫1m +1n (m +n )=1+1+n m +m n ≥4, 当且仅当m =n =12时等号成立.令g (x )=|x -a |-f (x )=|x -a |-|3x +2|= ⎩⎪⎨⎪⎧2x +2+a ,x <-23,-4x -2+a ,-23≤x ≤a ,-2x -2-a ,x >a .∴x =-23时,g (x )max =23+a ,要使不等式恒成立,只需g (x )max =23+a ≤4,即0<a ≤103.所以实数a 的取值范围是⎝⎛⎦⎤0,103 . 8.(2016·大庆模拟)设函数f (x )=|2x -1|-|x +4|. (1)解不等式:f (x )>0;(2)若f (x )+3|x +4|≥|a -1|对一切实数x 均成立,求a 的取值范围.解:(1)原不等式即为|2x -1|-|x +4|>0,当x ≤-4时,不等式化为1-2x +x +4>0,解得x <5,即不等式组⎩⎪⎨⎪⎧x ≤-4,|2x -1|-|x +4|>0的解集是{}x |x ≤-4.当-4<x <12时,不等式化为1-2x -x -4>0,解得x <-1,即不等式组⎩⎪⎨⎪⎧-4<x <12,|2x -1|-|x +4|>0的解集是{}x |-4<x <-1.当x ≥12时,不等式化为2x -1-x -4>0,解得x >5,即不等式组⎩⎪⎨⎪⎧x ≥12,|2x -1|-|x +4|>0的解集是{}x |x >5.综上,原不等式的解集为{}x |x <-1或x >5.(2)∵f (x )+3|x +4|=|2x -1|+2|x +4|=|1-2x |+|2x +8|≥|(1-2x )+(2x +8)|=9. ∴由题意可知|a -1|≤9,解得-8≤a ≤10, 故所求a 的取值范围是[]-8,10.第二节 不等式的证明1.基本不等式定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.定理2:如果a ,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.2.比较法(1)比差法的依据是:a -b >0⇔a >b .步骤是:“作差→变形→判断差的符号”.变形是手段,变形的目的是判断差的符号.(2)比商法:若B >0,欲证A ≥B ,只需证AB ≥1.3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.[小题体验]1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( ) A .s ≥t B .s >t C .s ≤tD .s <t解析:选A ∵s -t =b 2-2b +1=(b -1)2≥0,∴s ≥t .2.若a >0,b >0,a +b =2,则下列不等式对一切满足条件的a ,b 恒成立的是________(写出所有正确命题的序号).①ab ≤1;② a +b ≤2;③a 2+b 2≥2; ④a 3+b 3≥3;⑤1a +1b ≥2. 解析:令a =b =1,排除②④;由2=a +b ≥2ab ⇒ab ≤1,命题①正确; a 2+b 2=(a +b )2-2ab =4-2ab ≥2,命题③正确; 1a +1b =a +b ab =2ab ≥2,命题⑤正确. 答案:①③⑤1.在使用作商比较法时易忽视说明分母的符号.2.在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,易忽视性质成立的前提条件.[小题纠偏]1.已知a >0,b >0,则a a b b________(ab )+2a b (填大小关系).解析:∵a ab b(ab )+2a b =⎝⎛⎭⎫a b -2a b,∴当a =b 时,⎝⎛⎭⎫a b -2a b=1,当a >b >0时,ab >1,a -b 2>0,∴⎝⎛⎭⎫a b -2a b>1,当b >a >0时,0<ab <1,a -b 2<0,则⎝⎛⎭⎫a b -2a b>1,∴a a b b≥(ab ) +2a b .答案:≥2.已知a ,b ,c 是正实数,且a +b +c =1,则1a +1b +1c 的最小值为________. 解析:把a +b +c =1代入1a +1b +1c 得a +b +c a +a +b +c b +a +b +c c =3+⎝⎛⎭⎫b a +a b +⎝⎛⎭⎫c a +a c +⎝⎛⎭⎫c b +b c ≥3+2+2+2=9,当且仅当a =b =c =13时,等号成立.答案:9考点一 比较法证明不等式(基础送分型考点——自主练透)[题组练透]1.(2016·莆田模拟)设a ,b 是非负实数, 求证:a 2+b 2≥ab (a +b ). 证明:因为a 2+b 2-ab (a +b ) =(a 2-a ab )+(b 2-b ab ) =a a (a -b )+b b (b -a ) =(a -b )(a a -b b )=(a 12-b 12)(a 32-b 32),因为a ≥0,b ≥0,所以不论a ≥b ≥0,还是0≤a ≤b ,都有a 12-b 12与a 32-b 32同号,所以(a 12-b 12)(a 32-b 32)≥0,所以a 2+b 2≥ab (a +b ). 2. 已知a =ln 22,b =ln 33,试比较a ,b 大小. 解:∵ln 22>0,ln 33>0, ∴b a =2ln 33ln 2=log 89>1.∴b >a .[谨记通法]作差比较法证明不等式的步骤(1)作差;(2)变形;(3)判断差的符号;(4)下结论.其中“变形”是关键,通常将差变形成因式连乘积的形式或平方和的形式,再结合不等式的性质判断出差的正负.考点二 综合法证明不等式 (重点保分型考点——师生共研)[典例引领]设a ,b ,c 均为正数,且a +b +c =1,证明: (1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a ≥1.证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1,所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c , 故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c . 所以a 2b +b 2c +c 2a ≥1.[由题悟法]1.综合法证明不等式的方法综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.2.综合法证明时常用的不等式 (1)a 2≥0. (2)|a |≥0.(3)a 2+b 2≥2ab ,它的变形形式有:a 2+b 2≥2|ab |;a 2+b 2≥-2ab ;(a +b )2≥4ab ; a 2+b 2≥12(a +b )2;a 2+b 22≥⎝⎛⎭⎫a +b 22.(4)a +b2≥ab ,它的变形形式有:a +1a ≥2(a >0);ab +b a ≥2(ab >0); a b +ba ≤-2(ab <0).[即时应用]已知a ,b ,c >0且互不相等,abc =1.试证明:a +b +c <1a +1b +1c .证明:因为a ,b ,c >0,且互不相等,abc =1, 所以a +b +c =1bc +1ac +1ab<1b +1c 2+1a +1c 2+1a +1b 2=1a +1b +1c ,即a +b +c <1a +1b +1c .考点三 分析法证明不等式 (重点保分型考点——师生共研)[典例引领](2016·沈阳模拟)设a ,b ,c >0,且ab +bc +ca =1.求证: (1)a +b +c ≥ 3. (2)abc +b ac +cab ≥ 3(a +b +c ).证明:(1)要证a+b+c≥3,由于a,b,c>0,因此只需证明(a+b+c)2≥3.即证:a2+b2+c2+2(ab+bc+ca)≥3,而ab+bc+ca=1,故只需证明:a2+b2+c2+2(ab+bc+ca)≥3(ab+bc+ca).即证:a2+b2+c2≥ab+bc+ca.而这可以由ab+bc+ca≤a2+b22+b2+c22+c2+a22=a2+b2+c2(当且仅当a=b=c时等号成立)证得.所以原不等式成立.(2) abc+bac+cab=a+b+cabc.在(1)中已证a+b+c≥ 3. 因此要证原不等式成立,只需证明1abc≥a+b+c,即证a bc+b ac+c ab≤1,即证a bc+b ac+c ab≤ab+bc+ca.而a bc=ab·ac≤ab+ac2,b ac≤ab+bc2,c ab≤bc+ac2.所以a bc+b ac+c ab≤ab+bc+ca(当且仅当a=b=c=33时等号成立).所以原不等式成立.[由题悟法]1.用分析法证“若A则B”这个命题的模式为了证明命题B为真,只需证明命题B1为真,从而有…只需证明命题B2为真,从而有………只需证明命题A为真,而已知A为真,故B必真.2.分析法的应用当所证明的不等式不能使用比较法,且和重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.[即时应用]已知a>b>c,且a+b+c=0,求证:b2-ac<3a.证明:要证b2-ac<3a,只需证b2-ac<3a2.∵a+b+c=0,只需证b2+a(a+b)<3a2,只需证2a2-ab-b2>0,只需证(a-b)(2a+b)>0,只需证(a-b)(a-c)>0.∵a>b>c,∴a-b>0,a-c>0.∴(a-b)(a-c)>0显然成立,故原不等式成立.1.设不等式|2x-1|<1的解集为M.(1)求集合M.(2)若a,b∈M,试比较ab+1与a+b的大小.解:(1)由|2x-1|<1得-1<2x-1<1,解得0<x<1.所以M={x|0<x<1}.(2)由(1)和a,b∈M可知0<a<1,0<b<1,所以(ab+1)-(a+b)=(a-1)(b-1)>0.故ab+1>a+b.2.已知a>0,b>0,2c>a+b,求证:c-c2-ab<a<c+c2-ab.证明:要证:c-c2-ab<a<c+c2-ab,只需证:-c2-ab<a-c<c2-ab,只需证:|a-c|<c2-ab,只需证:(a-c)2<c2-ab,只需证:a2+c2-2ac<c2-ab,即证:2ac>a2+ab.因为a>0,所以只需证2c>a+b,由题设,上式显然成立.故c-c2-ab<a<c+c2-ab.3.(2015·湖南高考)设a >0,b >0,且a +b =1a +1b .证明:(1)a +b ≥2;(2)a 2+a <2与b 2+b <2不可能同时成立. 证明:由a +b =1a +1b =a +bab ,a >0,b >0, 得ab =1.(1)由基本不等式及ab =1, 有a +b ≥2ab =2, 即a +b ≥2.(2)假设a 2+a <2与b 2+b <2同时成立, 则由a 2+a <2及a >0,得0<a <1; 同理,0<b <1,从而ab <1, 这与ab =1矛盾.故a 2+a <2与b 2+b <2不可能同时成立.4.(2015·长春三模)(1)已知a ,b 都是正数,且a ≠b ,求证:a 3+b 3>a 2b +ab 2; (2)已知a ,b ,c 都是正数,求证:a 2b 2+b 2c 2+c 2a 2a +b +c ≥abc .证明:(1)(a 3+b 3)-(a 2b +ab 2)=(a +b )(a -b )2. 因为a ,b 都是正数,所以a +b >0. 又因为a ≠b ,所以(a -b )2>0.于是(a +b )(a -b )2>0,即(a 3+b 3)-(a 2b +ab 2)>0, 所以a 3+b 3>a 2b +ab 2. (2)因为b 2+c 2≥2bc ,a 2>0, 所以a 2(b 2+c 2)≥2a 2bc .① 同理b 2(a 2+c 2)≥2ab 2c . ② c 2(a 2+b 2)≥2abc 2. ③①②③相加得2(a 2b 2+b 2c 2+c 2a 2)≥2a 2bc +2ab 2c +2abc 2, 从而a 2b 2+b 2c 2+c 2a 2≥abc (a +b +c ). 由a ,b ,c 都是正数,得a +b +c >0, 因此a 2b 2+b 2c 2+c 2a 2a +b +c ≥abc .5.若a >0,b >0,且1a +1b =ab . (1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.解:(1)由ab =1a +1b ≥2ab,得ab ≥2,且当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2. (2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6. 6.(2016·吉林实验中学模拟)设函数f (x )=|x -a |. (1)当a =2时,解不等式f (x )≥4-|x -1|;(2)若f (x )≤1的解集为[0,2],1m +12n =a (m >0,n >0),求证:m +2n ≥4.解:(1)当a =2时,不等式为|x -2|+|x -1|≥4,①当x ≥2时,不等式可化为x -2+x -1≥4,解得x ≥72;②当12<x <72时,不等式可化为2-x +x -1≥4,不等式的解集为∅;③当x ≤12时,不等式可化为2-x +1-x ≥4,解得x ≤-12.综上可得,不等式的解集为⎝⎛⎦⎤-∞,-12∪⎣⎡⎭⎫72,+∞. (2)证明:∵f (x )≤1,即|x -a |≤1,解得a -1≤x ≤a +1,而f (x )≤1的解集是[0,2],∴⎩⎪⎨⎪⎧a -1=0,a +1=2,解得a =1, 所以1m +12n =1(m >0,n >0),所以m +2n =(m +2n )⎝⎛⎭⎫1m +12n =2+m 2n +2nm≥2+2m 2n ·2nm=4, 当且仅当m =2,n =1时取等号.7.(2015·全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件. 证明:(1)因为(a +b )2=a +b +2ab ,(c+d)2=c+d+2cd,由题设a+b=c+d,ab>cd,得(a+b)2>(c+d)2.因此a+b>c+d.(2)①必要性:若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(1),得a+b>c+d.②充分性:若a+b>c+d,则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件.8.已知x,y∈R,且|x|<1,|y|<1.求证:11-x2+11-y2≥21-xy.证明:法一:(分析法)∵|x|<1,|y|<1,∴11-x2>0,11-y2>0,∴11-x2+11-y2≥2(1-x2)(1-y2).故要证明结论成立,只要证明2(1-x2)(1-y2)≥21-xy成立.即证1-xy≥(1-x2)(1-y2)成立即可.∵(y-x)2≥0,有-2xy≥-x2-y2,∴(1-xy)2≥(1-x2)(1-y2),∴1-xy≥(1-x2)(1-y2)>0.∴不等式成立.法二:(综合法)∵211-x2+11-y2≤1-x2+1-y22=2-(x2+y2)2≤2-2|xy|2=1-|xy|,∴11-x2+11-y2≥21-|xy|≥21-xy,∴原不等式成立.提升考能、阶段验收专练卷(一)集合与常用逻辑用语、函数、导数及其应用(时间:70分钟 满分:104分)Ⅰ.小题提速练(限时45分钟)(一)选择题(本大题共12小题,每小题5分)1.命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是( )A .∃x 0∉∁R Q ,x 30∈QB .∃x 0∈∁R Q ,x 30∉QC .∀x ∉∁R Q ,x 3∈QD .∀x ∈∁R Q ,x 3∉Q解析:选D 根据特称命题的否定为全称命题知D 正确. 2.(2015·安徽高考)下列函数中,既是偶函数又存在零点的是( ) A .y =ln x B .y =x 2+1 C .y =sin xD .y =cos x解析:选D A 是非奇非偶函数,故排除;B 是偶函数,但没有零点,故排除;C 是奇函数,故排除;y =cos x 是偶函数,且有无数个零点.3.(2015·南昌一模)若集合A ={}x |1≤3x ≤81,B ={}x |log 2x 2-x,则A ∩B =()A .(2,4]B .[2,4]C .(-∞,0)∪(0,4]D .(-∞,-1)∪[0,4]解析:选A 因为A ={}x |1≤3x≤81 ={}x |30≤3x ≤34={}x |0≤x ≤4, B ={}x |log 2x 2-x={}x |x 2-x >2={}x |x <-1或x >2,所以A ∩B ={}x |0≤x ≤4∩{}x |x <-1或x >2={}x |2<x ≤4=(2,4].4.(2016·陕西质检)已知直线y =-x +m 是曲线y =x 2-3ln x 的一条切线,则m 的值为( )A .0B .2C .1D .3解析:选B 因为直线y =-x +m 是曲线y =x 2-3ln x 的切线,所以令y ′=2x -3x =-1,得x =1或x =-32(舍),即切点为(1,1),又切点(1,1)在直线y =-x +m 上,所以m =2.5.(2016·南昌二中模拟)下列说法正确的是( )A .命题“若x 2=1,则x =1”的否命题为:“若x 2=1,则x ≠1”B .已知y =f (x )是R 上的可导函数,则“f ′(x 0)=0”中“x 0是函数y =f (x )的极值点”的必要不充分条件C .命题“存在x 0∈R ,使得x 20+x 0+1<0”的否定是:“对任意x ∈R ,均有x 2+x +1<0”D .命题“角α的终边在第一象限,则α是锐角”的逆否命题为真命题解析:选B 选项A 不正确,∵不符合否命题的定义;选项B 显然正确;选项C 不正确,命题“存在x 0∈R ,使得x 20+x 0+1<0”的否定是:“对任意x ∈R ,均有x 2+x +1≥0”;对于选项D ,原命题是假命题,故逆否命题也为假命题,故选B.6.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,x +c ,x <1,则“c =-1”是“函数f (x )在R 上递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若函数f (x )在R 上递增,则需log 21≥c +1,即c ≤-1.由于c =-1⇒c ≤-1,但c ≤-1⇒/ c =-1,所以“c =-1”是“f (x )在R 上递增”的充分不必要条件.7.已知函数f (x )=⎩⎪⎨⎪⎧3x, x ≤1,log 13x , x >1,则函数y =f (1-x )的大致图象是()解析:选D 当x =0时,y =f (1)=3,即y =f (1-x )的图象过点(0,3),排除A ;当x =-2时,y =f (3)=-1,即y =f (1-x )的图象过点(-2,-1),排除B ;当x =-13时,y =f ⎝⎛⎭⎫43 =log 1343<0,即y =f (1-x )的图象过点⎝ ⎛⎭⎪⎫-13,log 1343 ,排除C. 8.(2016·宁夏中宁一中月考)设f (x )是定义在R 上以2为周期的偶函数,已知x ∈(0,1)时,f (x )=log 12(1-x ),则函数f (x )在(1,2)上( )A .是增函数且f (x )<0B .是增函数且f (x )>0C .是减函数且f (x )<0D .是减函数且f (x )>0解析:选D 设-1<x <0,则0<-x <1,f (-x )=log 12(1+x )=f (x )>0,故函数f (x )在(-1,0)上单调递减.又因为f (x )以2为周期,所以函数f (x )在(1,2)上也单调递减且有f (x )>0.9.(2016·湖南调研)已知函数f (x )=ln x -⎝⎛⎭⎫12x -2的零点为x 0,则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)解析:选C ∵f (x )=ln x -⎝⎛⎭⎫12 x -2在(0,+∞)上是增函数, 又f (1)=ln 1-⎝⎛⎭⎫12 -1=ln 1-2<0, f (2)=ln 2-⎝⎛⎭⎫12 0<0, f (3)=ln 3-⎝⎛⎭⎫12 1>0, ∴x 0∈(2,3).10.(2016·洛阳统考)设函数f (x )=x |x -a |,若对∀x 1,x 2∈[3,+∞),x 1≠x 2,不等式f (x 1)-f (x 2)x 1-x 2>0恒成立,则实数a 的取值范围是( )A .(-∞,-3]B .[-3,0)C .(-∞,3]D .(0,3]解析:选C 由题意分析可知条件等价于f (x )在[3,+∞)上单调递增,又∵f (x )=x |x -a |,∴当a ≤0时,结论显然成立,当a >0时,f (x )=⎩⎪⎨⎪⎧x 2-ax ,x ≥a ,-x 2+ax ,x <a ,∴f (x )在⎝⎛⎭⎫-∞,a 2上单调递增,在⎝⎛⎭⎫a 2,a 上单调递减,在(a ,+∞)上单调递增,∴0<a ≤3.综上,实数a 的取值范围是(-∞,3].11.(2015·全国卷Ⅰ)设函数y =f (x )的图象与y =2x+a的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则a =( )A .-1B .1C .2D .4解析:选C 设(x ,y )为函数y =f (x )的图象上任意一点,则(-y ,-x )在y =2x +a的图象上,所以有-x =2-y +a,从而有-y +a =log 2(-x )(指数式与对数式的互化), 所以y =a -log 2(-x ), 即f (x )=a -log 2(-x ),所以f (-2)+f (-4)=(a -log 22)+(a -log 24)=(a -1)+(a -2)=1,解得a =2.故选C. 12.设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.⎣⎡⎭⎫-32e ,1 B.⎣⎡⎭⎫-32e ,34 C.⎣⎡⎭⎫32e ,34D.⎣⎡⎭⎫32e ,1解析:选D ∵f (0)=-1+a <0,∴x 0=0. 又∵x 0=0是唯一使f (x )<0的整数,∴⎩⎪⎨⎪⎧f (-1)≥0,f (1)≥0, 即⎩⎪⎨⎪⎧e -1[2×(-1)-1]+a +a ≥0,e (2×1-1)-a +a ≥0,解得a ≥32e .又∵a <1,∴32e≤a <1.(二)填空题(本大题共4小题,每小题5分)13.(2016·江门调研)若f (x )=⎩⎪⎨⎪⎧-x ,x ≤0,x 2-2x ,x >0,则f (x )的最小值是________.解析:当x ≤0时,f (x )=-x ,此时f (x )min =0; 当x >0时,f (x )=x 2-2x =(x -1)2-1, 此时f (x )min =-1.综上,当x ∈R 时,f (x )min =-1. 答案:-114.已知函数f (x )=x -2m 2+m +3(m ∈Z)为偶函数,且f (3)<f (5),则m =________. 解析:因为f (x )是偶函数, 所以-2m 2+m +3应为偶数.又f (3)<f (5),即3-2m 2+m +3<5-2m 2+m +3, 整理得⎝⎛⎭⎫35 -2m 2+m +3<1, 所以-2m 2+m +3>0,解得-1<m <32.又m ∈Z ,所以m =0或1.当m =0时,-2m 2+m +3=3为奇数(舍去); 当m =1时,-2m 2+m +3=2为偶数. 故m 的值为1. 答案:115.里氏震级M的计算公式为M=lg A-lg A0,其中A是测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震的最大振幅的________倍.解析:根据题意,由lg 1 000-lg 0.001=6得此次地震的震级为6级.因为标准地震的振幅为0.001,设9级地震的最大振幅为A9,则lg A9-lg 0.001=9,解得A9=106,同理5级地震的最大振幅A5=102,所以9级地震的最大振幅是5级地震的最大振幅的10 000倍.答案:610 00016.已知函数f(x)的定义域为[-1,5],部分对应值如下表:f(x)的导函数y=f′(x)的图象如图所示.下列关于函数f(x)的命题:①函数f(x)的值域为[1,2];②函数f(x)在[0,2]上是减函数;③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)-a最多有4个零点.其中真命题的序号是________.解析:由导数图象可知,当-1<x<0或2<x<4时,f′(x)>0,函数单调递增,当0<x<2或4<x<5时,f′(x)<0,函数单调递减,当x=0和x=4时,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2)=1.5.又f(-1)=f(5)=1,所以函数的最大值为2,最小值为1,值域为[1,2],①正确.②正确.因为当x=0和x=4时,函数取得极大值f(0)=2,f(4)=2,要使当x∈[-1,t]时函数f(x)的最大值是2,则t 的最大值为5,所以③不正确. 由f (x )=a ,因为极小值f (2)=1.5,极大值为f (0)=f (4)=2, 所以当1<a <2时,y =f (x )-a 最多有4个零点, 所以④正确.故真命题的序号为①②④. 答案:①②④Ⅱ.大题规范练(限时25分钟)17.(本小题满分12分)设f (x ) =a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6).(1)确定a 的值;(2)求函数f (x )的单调区间与极值. 解:(1)因为f (x )=a (x -5)2+6ln x (x >0), 故f ′(x )=2a (x -5)+6x.令x =1,得f (1)=16a ,f ′(1)=6-8a , 所以曲线y =f (x )在点(1,f (1))处的切线方程为 y -16a =(6-8a )·(x -1),由点(0,6)在切线上可得6-16a =8a -6, 故a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x =(x -2)(x -3)x .令f ′(x )=0,解得x =2或x =3. 当0<x <2或x >3时,f ′(x )>0, 故f (x )在(0,2),(3,+∞)上为增函数; 当2<x <3时,f ′(x )<0, 故f (x )在(2,3)上为减函数.由此可知f (x )在x =2处取得极大值f (2)=92+6ln 2,在x =3处取得极小值f (3)=2+6ln 3.18.(本小题满分12分)已知函数f (x )=k ·a -x (k ,a 为常数,a >0且a ≠1)的图象过点A (0,1),B (3,8).(1)求实数k ,a 的值;(2)若函数g (x )=f (x )-1f (x )+1,试判断函数g (x )的奇偶性,并说明理由. 解:(1)把A (0,1),B (3,8)的坐标代入f (x )=k ·a -x,得⎩⎪⎨⎪⎧k ·a 0=1,k ·a -3=8. 解得k =1,a =12.(2)g (x )是奇函数.理由如下: 由(1)知f (x )=2x , 所以g (x )=f (x )-1f (x )+1=2x -12x +1.函数g (x )的定义域为R , 又g (-x )=2-x -12-x +1=2x ·2-x -2x2x ·2-x +2x=-2x -12x +1=-g (x ),所以函数g (x )为奇函数.附加卷:集合与常用逻辑用语、函数、导数及其应用(教师备选)(时间:70分钟 满分:104分)Ⅰ.小题提速练(限时45分钟)(一)选择题(本大题共12小题,每小题5分)1.已知集合A ={}a ,0,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪y =lg x 5-2x ,x ∈Z ,如果A ∩B ≠∅,则a =( )A.52 B .1 C .2D .1或2解析:选D 由题意得B =⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <52,x ∈Z ={}1,2,则由A ∩B ≠∅,得a =1 或2.2.(2016·长沙一模)已知函数f (x )=⎩⎨⎧x 12,x >0,⎝⎛⎭⎫12 x,x ≤0,则f [f (-4)]=( )A .-4B .4C .-14D.14解析:选B 因为f (-4)=⎝⎛⎭⎫12 -4=16,所以f [f (-4)]=f (16)=(16)12=4.3.已知函数f (x )=(m 2-m -1)x -5m -3是幂函数且是(0,+∞)上的增函数,则m 的值为( )A .2B .-1C .-1或2D .0解析:选B 因为函数f (x )为幂函数,所以m 2-m -1=1,即m 2-m -2=0,解得m =2或m =-1.因为该幂函数在(0,+∞)上是增函数,所以-5m -3>0,即m <-35.所以m=-1.4.已知命题p :∃x 0∈(-∞,0),3x 0<4x 0,命题q :∀x ∈⎝⎛⎭⎫0,π2 ,tan x >x .则下列命题中为真命题的是( )A .p ∧qB .p ∨(綈q )C .p ∧(綈q )D .(綈p )∧q解析:选D 由指数函数的单调性可知命题p :∃x 0∈(-∞,0),3x 0<4x 0为假,则命题綈p 为真;易知命题q :∀x ∈⎝⎛⎭⎫0,π2 ,tan x >x 为真,则命题綈q 为假.根据复合命题的真值表可知命题p ∧q 为假,命题p ∨(綈q )为假,命题p ∧(綈q )为假 ,命题(綈p )∧q 为真.5.(2016·沧州质检)如果函数f (x )=x 2+bx +c 对任意的x 都有f (x +1)=f (-x ),那么( )A .f (-2)<f (0)<f (2)B .f (0)<f (-2)<f (2)C .f (2)<f (0)<f (-2)D .f (0)<f (2)<f (-2)解析:选D 由f (1+x )=f (-x )知f (x )的图象关于直线x =12对称,又抛物线f (x )开口向上,∴f (0)<f (2)<f (-2).6.(2015·云南二检)设a =3log 132,b =log 1213,c =23,则下列结论正确的是( )A .a <b <cB .a <c <bC .b <a <cD .b <c <a解析:选B a =3log 132<0,1<b =log 1213=log 23<2,0<c =23<1,故a <c <b . 7.已知函数f (x )是R 上的偶函数,g (x )是R 上的奇函数,且g (x )=f (x -1),若f (0)=2,则f (2 016)的值为( )A .2B .0C .-2D .±2解析:选A ∵g (-x )=f (-x -1),∴-g (x )=f (x +1). 又g (x )=f (x -1),∴f (x +1)=-f (x -1), ∴f (x +2)=-f (x ),f (x +4)=-f (x +2)=f (x ), 则f (x )是以4为周期的周期函数, 所以f (2 016)=f (0)=2.8.已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0,且a ≠1).若g (2)=a ,则f (2)等于( )A .2 B.154 C.174D .a 2解析:选B ∵f (x )为奇函数,g (x )为偶函数, ∴f (-2)=-f (2),g (-2)=g (2)=a , ∵f (2)+g (2)=a 2-a -2+2,①∴f (-2)+g (-2)=g (2)-f (2)=a -2-a 2+2,②由①,②联立得g (2)=a =2,f (2)=a 2-a -2=154. 9.已知函数f (x )=x 2-bx +a 的图象如图所示,则函数g (x )=ln x +f ′(x )的零点所在的区间是( )A.⎝⎛⎭⎫14,12B.⎝⎛⎭⎫12,1 C .(1,2) D .(2,3)解析:选B 由题图可知f (x )的对称轴x =b 2∈⎝⎛⎭⎫12,1,则1<b <2,易知g (x )=ln x +2x -b ,则g ⎝⎛⎭⎫14 =-2ln 2+12-b <0,g ⎝⎛⎭⎫12 =-ln 2+1-b <0,g (1)=2-b >0,故g (x )的零点所在的区间是⎝⎛⎭⎫12,1.10.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3 000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为( )A .3 000元B .3 300元C .3 500元D .4 000元解析:选B 由题意,设利润为y 元,租金定为3 000+50x 元(0≤x ≤70,x ∈N). 则y =(3 000+50x )(70-x )-100(70-x ) =(2 900+50x )(70-x ) =50(58+x )(70-x ) ≤50⎝⎛⎭⎫58+x +70-x 22≤204 800,当且仅当58+x =70-x ,即x =6时,等号成立,故每月租金定为3 000+300=3 300(元)时,公司获得最大利润.11.设函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),函数g (x )是二次函数,若函数f (g (x ))的值域是[0,+∞),则函数g (x )的值域是( )A .(-∞,-1]∩[1,+∞)B .(-∞,-1]∪[0,+∞)C .[0,+∞)D .[1,+∞)解析:选C 因为函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),所以m +1=1,解得m =0,所以f (x )=⎩⎪⎨⎪⎧x 2,|x |≥1,x ,|x |<1,因为函数g (x )是二次函数,值域不会是选项A ,B ,画出函数y =f (x )的图象(如图所示),易知,当g (x )的值域是[0,+ ∞)时,f (g (x ))的值域是[0,+∞).12.已知定义在R 上的函数f (x )满足:①对任意x ∈R ,有f (x +2)=2f (x );②当x ∈[-1,1]时,f (x )=1-x 2.若函数g (x )=⎩⎪⎨⎪⎧e x (x ≤0),ln x (x >0),则函数y =f (x )-g (x )在区间(-4,5)上的零点个数是( )A .7B .8C .9D .10解析:选C 函数f (x )与g (x )在区间[-5,5]上的图象如图所示,由图可知,函数f (x )与g (x )的图象在区间(-4,5)上的交点个数为9,即函数y =f (x )-g (x )在区间(-4,5)上零点的个数是9.(二)填空题(本大题共4小题,每小题5分)13.函数y =log 13(2x +1)(1≤x ≤3)的值域为________.解析:当1≤x ≤3时,3≤2x +1≤9, 所以-2≤y ≤-1,所求的值域为[-2,-1]. 答案:[-2,-1] 14.若函数y =xx -m在区间(1,+∞)内是减函数,则实数m 的取值范围是________. 解析:y =x x -m =1+mx -m ,由函数的图象及性质可得0<m ≤1.答案:(0,1]15.(2016·台州调考)若函数f (x )=1ax 2+bx +c(a ,b ,c ∈R)的部分图象如图所示,则b=________.解析:令g (x )=ax 2+bx +c ,由图象可知,1,3是ax 2+bx +c =0的两个根,因此a +b +c =0,9a +3b +c =0,又函数f (x )的图象过点(2,-1),则f (2)=-1,即4a +2b +c =-1,因此可得a =1,c =3,b =-4.答案:-416.关于函数f (x )=lg x 2+1|x |(x ≠0,x ∈R)有下列命题:①函数y =f (x )的图象关于y 轴对称;②在区间(-∞,0)上,函数y =f (x )是减函数; ③函数f (x )的最小值为lg 2;④在区间(1,+∞)上,函数f (x )是增函数. 其中是真命题的序号为________.解析:∵函数f (x )=lg x 2+1|x |(x ≠0,x ∈R),显然f (-x )=f (x ),即函数f (x )为偶函数,图象关于y 轴对称,故①正确;当x >0时,f (x )=lg x 2+1x =lg ⎝⎛⎭⎫x +1x ,令t (x )=x +1x ,x >0,则t ′(x )=1-1x 2,可知当x ∈(0,1)时,t ′(x )<0,t (x )单调递减,当x ∈(1,+∞)时,t ′(x )>0,t (x )单调递增,即在x =1处取到最小值为2.由偶函数的图象关于y 轴对称及复合函数的单调性可知②错误,③正确,④正确,故答案为①③④.答案:①③④Ⅱ.大题规范练(限时25分钟)17.(本小题满分12分)已知集合A ={}x |x 2-2x -3≤0,B ={x |x 2-2mx +m 2-9≤0},m ∈R.(1)若m =3,求A ∩B ;(2)已知命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数m 的取值范围. 解:(1)由题意知,A ={}x |-1≤x ≤3, B ={}x |m -3≤x ≤m +3. 当m =3时,B ={}x |0≤x ≤6, ∴A ∩B =[0,3].(2)由q 是p 的必要条件知,A ⊆B ,结合(1)知⎩⎪⎨⎪⎧m -3≤-1,m +3≥3解得0≤m ≤2.故实数m 的取值范围是[0,2].18.(本小题满分12分)(2016·辽宁五校联考)已知函数f (x )=ln x +1x +ax (a 是实数),g (x )=2xx 2+1+1. (1)当a =2时,求函数f (x )在定义域上的最值;(2)若函数f (x )在[1,+∞)上是单调函数,求a 的取值范围;(3)是否存在正实数a 满足:对于任意x 1∈[1,2],总存在x 2∈[1,2],使得f (x 1)=g (x 2)成立?若存在,求出a 的取值范围,若不存在,说明理由.解:(1)当a =2时,f (x )=ln x +1x +2x ,x ∈(0,+∞), f ′(x )=1x -1x 2+2=2x 2+x -1x 2=(2x -1)(x +1)x 2,令f ′(x )=0,得x =-1或x =12.。

高中数学新人教A版选修4-5 绝对值三角不等式

高中数学新人教A版选修4-5  绝对值三角不等式

(1)利用绝对值不等式求函数最值,要注意利用绝对 值的性质进行转化,构造绝对值不等式的形式. (2)求最值时要注意等号成立的条件,它也是解题的 关键.
3. 若 a, b∈R, 且|a|≤3, |b|≤2, 则|a+b|的最大值是________, 最小值是________.
解析:∵|a|-|b|≤|a+b|≤|a|+|b|, ∴1=3-2≤|a+b|≤3+2=5.
解:∵a<|x+1|-|x-2|对任意实数恒成立, ∴a<(|x+1|-|x-2|)min. ∵||x+1|-|x-2||≤|(x+1)-(x-2)|=3, ∴-3≤|x+1|-|x-2|≤3. ∴(|x+1|-|x-2|)min=-3. ∴a<-3.即 a 的取值范围为(-∞,-3).
“应用创新演练”见“课时跟踪检测(四)” (单击进入电子文档)
|A|+|B| 2 1 2 2 = (| A | + | B | +2|A||B|) 4 2
|A|+|B| 1 ≥ (2|A||B|+2|A||B|)=|A||B|,∴2lg ≥lg|A||B|. 4 2 |A|+|B| 1 ∴lg ≥ (lg|A|+lg|B|),④正确. 2 2 答案:A
解析:∵|a+b|=|(b-a)+2a|≤|b-a|+2|a| =|a-b|+2|a|,∴|a+b|-2|a|≤|a-b|,①正确; ∵1>|a-b|≥|a|-|b|,∴|a|<|b|+1,②正确; 1 1 |x| 2 ∵|y|>3,∴ < .又∵|x|<2,∴ < ,③正确; |y| 3 |y| 3
②若|a|<|b|, 左边>0,右边<0,∴原不等式显然成立. ③若|a|=|b|,原不等式显然成立. 综上可知原不等式成立.

最新人教版高中数学选修4-5《绝对值不等式》教材梳理

最新人教版高中数学选修4-5《绝对值不等式》教材梳理

庖丁巧解牛知识·巧学一、绝对值三角不等式1.定理1 如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理1的等号成立的情况具体来说,当a=0或b=0时,或a>0、b>0时,或a<0,b<0时,等号都是成立的,即有|a+b|=|a|+|b|.除此之外,就是|a+b|<|a|+|b|了.如果把定理1中的实数a,b分别替换为向量a,b,则定理1的形式仍旧成立.即有|a+b|≤|a|+|b|成立,当且仅当向量a,b不共线时,有|a+b|<|a|+|b|成立.联想发散根据定理1,我们可以得到许多正确的结论.其中比较常用的结论有:(1)如果a,b是实数,那么|a|-|b|≤|a±b|≤|a|+|b|.(2)|a1+a2+a3+…+a n|≤|a1|+|a2|+|a3|+…+|a n|(n∈N*).2.绝对值三角不等式所谓绝对值三角不等式就是指把定理1中的实数a,b分别替换为向量a,b,且向量a,b不共线时,所成立的不等式|a+b|<|a|+|b|.绝对值三角不等式即向量不等式|a+b|<|a|+|b|的几何意义就是三角形的两边之和大于第三边(如下图所示).记忆要诀由于绝对值三角不等式其形式与定理1是完全类似的,所以只要记住定理1,那么这个绝对值三角不等式也就记住了.3.定理2 如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.对于定理2,同学们不但要记住它的形式,还应注意它的特点,尤其要注意它的不等号左边没有字母b,只有右边才有.学法一得要注意|a-c|可以变形为|(a-b)+(b-c)|,熟悉这种变形,那么在具体解题时就可以通过变形来巧妙地利用定理2了.二、绝对值不等式的解法要熟记简单绝对值不等式的解法,它是解较复杂的绝对值不等式的基础,即要记住:一般地,如果a>0,则有:|x|<a⇔-a<x<a,因此,不等式|x|<a的解集是(-a,a);|x|>a⇔x<-a或x>a,因此,不等式|x|>a的解集是(-∞,-a)∪(a,+∞).1.|ax+b|≤c和|ax+b|≥c型不等式的解法.求解这类绝对值不等式,只要将ax+b看成一个整体,然后套用|x|<a或|x|>a的不等式的解法即可.2.|x-a|+|x-b|≤c和|x-a|+|x-b|≥c型不等式的解法.求解这类绝对值不等式,主要的方法有如下三种:(1)利用绝对值的几何意义;(2)分区间讨论法;(3)构造函数利用函数的图象求解.求解这类绝对值不等式时,可根据题目的不同而适时选用不同的方法求解.误区警示解绝对值不等式切勿盲目地套用某一类解法,一定要注意不等式的形式,要针对不同的形式对号入座采取相应的方法来求解.典题·热题知识点一: 与定理1、2相关的绝对值不等式的判断与证明例1 若|x-a|<m,|y-a|<n ,则下列不等式一定成立的是( )A.|x-y|<2mB.|x-y|<2nC.|x-y|<n-mD.|x-y|<n+m思路分析:注意观察比较|x-y|与|x-a|,|y-a|之间的关系,不难发现通过适当变形就可运用定理1及已知条件来巧妙求解此题了,具体解题过程为:|x-y|=|x-a-(y-a)|≤|x -a|+|y-a|<m+n,故选D.答案:D巧解提示对某些式子进行适当的变形,以便创造条件利用某些定理、公式来解题,这是一种常用的技巧,如此题求解过程中的|x-y|=|x-a-(y-a)|就是变形,而变形的基础是必须要熟悉公式. 例2 已知a 、b 、c 、d 都是实数,且a 2+b 2=m 2,c 2+d 2=n 2(m>0,n>0),求证:|ac+bd|≤222n m +. 思路分析:证明此题时,可将ac 、bd 分别看成整体,那么就可以套用定理1来证明了. 证明:∵a 、b 、c 、d ∈R ,∴|a c+bd|≤|ac|+|bd|≤222222d b c a +++ =222222222r R d c b a +=+++, ∴|ac+bd|≤222R r +. 误区警示如果利用ab≤222b a +来证明此题,就容易出现似是而非的证法,而利用较严格的公式|ab|≤222b a +来证明就不易出错了.因此同学们要注意公式的适时选用. 知识点二: 绝对值不等式的解法例3 解关于x 的不等式|2x-1|<2m-1(m ∈R ).思路分析:要注意对2m-1的正负情况进行讨论.解:若2m-1≤0,即m≤21,则|2x-1|<2m-1恒不成立,此时,原不等式无解;若2m-1>0,即m>21,则-(2m-1)<2x-1<2m-1,所以1-m<x<m. 由上可得:当m≤21时,原不等式的解集为∅, 当m>21时,原不等式的解集为:{x|1-m<x<m}. 方法归纳对于不等号右侧是含有参数的式子的这类绝对值不等式,在求解时一定要通过对参数式子的正、负、零三种情况的讨论来求解.例4 解不等式3≤|x -2|<4.思路分析:此题的不等式属于绝对值的连不等式,求解时可将其化为绝对值的不等式组再求解.解:原不等式等价于⎩⎨⎧<-≥-)2.(4|2|)1(,3|2|x x 由(1)得x-2≤-3或x-2≥3,∴x≤-1,或x≥5.由(2)得-4<x-2<4,∴-2<x<6.如上图所示,原不等式的解集为{x|-2<x≤-1或5≤x<6}.误区警示有些同学求解这类问题时,为了图省事,往往不爱通过画图来寻找解集,总爱耍点小聪明,这是造成求解出错的主要原因.例5 解不等式|x+7|-|x-2|≤3.思路分析:解含有绝对值的不等式,总的思路是同解变形为不含绝对值的不等式,但要根据求解不等式的结构,选用恰当的方法.此题中有两个绝对值符号,故可用绝对值的几何意义来求解,或用分区间讨论法求解,还可构造函数利用函数图象求解.图1解:[方法一] |x+7|-|x-2|可以看成数轴上的动点(坐标为x)到-7对应的点的距离与到2对应的点的距离的差,先找到这个差等于3的点,即x=-1(如图1所示).从图易知不等式|x+7|-|x-2|≤3的解为x≤-1,即x ∈(-∞,-1].[方法二] 令x+7=0,x-2=0得x=-7,x=2.①当x<-7时,不等式变为-x-7+x-2≤3,∴-9≤3成立,∴x<-7.图2②当-7≤x≤2时,不等式变为x+7+x-2≤3,即2x≤-2,∴x≤-1,③当x>2时,不等式变为x+7-x+2≤3,即9≤3不成立,∴x ∈∅.∴原不等式的解集为(-∞,-1].[方法三] 将原不等式转化为|x+7|-|x-2|-3≤0,构造函数y=|x+7|-|x-2|-3,即y=⎪⎩⎪⎨⎧>≤≤-+-<-.2,6;27,22;7,12x x x x .作出函数的图象(如图2),从图可知,当x≤-1时,有y≤0,即|x+7|-|x-2|-3≤0,所以,原不等式的解集为(-∞,-1].巧妙变式针对此题,我们可以进行各种不同的题目变式.如:可以将两个绝对值里面的运算符号改变、可以将两个绝对值之间的运算符号改变、可以将“≤”改变为“≥”,还可以将不等号右边的数改成字母等等.变式后题目的求解还是用上述的几种解法.问题·探究误区陷阱探究问题1 对此题“写出不等式|2x-1|<3的解集并化简”,某同学的错解如下:不等式|2x-1|<3的解集是{x||2x-1|<3}={x|2x-1<3}∪{x|2x-1>-3}={x|x<2}∪{x|x>-1}={x|-1<x<2}.探究过程:这位同学解得的结果是正确的,但解法不对.解法中有两处错误,但却歪打正着得出了正确的结果.首先是把绝对值不等式的解法搞错了.这位同学写的求解过程中的两个集合{x|2x-1<3}与{x|2x-1>-3}的中间不应当用并的符号“∪”,而应改为“∩”.这两个集合是应该取交集的.另外,按照这位同学错写的两集合“并”来运算时又解错了.{x|x<2}∪{x|x>-1}的结果应为{x|-∞<x<+∞},而不是{x|-1<x<2}.探究结论:如果按照这位同学的思路求解,可以修改为:不等式|2x-1|<3的解集是: {x||2x-1|<3}={x|2x-1<3}∩{x|2x -1>-3}={x|x<2}∩{x|x>-1}={x|-1<x<2}.不过,更简单的解法应是:不等式|2x-1|<3的解集是:{x||2x-1|<3}={x|-3<2x-1<3}={x|-1<x<2}.思维发散探究问题2 已知a 、b 、c 是实数,函数f(x)=ax 2+bx+c ,g(x)=ax+b ,当-1≤x≤1时,|f(x)|≤1,试探究当x ∈[-1,1]时,|g(x)|≤2.探究过程:这是一个通过关联二次函数、一次函数考查不等式的变换能力的问题,因此在证明中要注意合理应用绝对值不等式的性质定理,由于g(x)是一次函数,可将|g(x)|≤2转化为g(-1)与g(1)与2的关系加以证明,也可挖掘g(x)与f(x)的隐含关系,构造函数模型,寻求整体突破.探究结论:[方法一] 当a>0时g(x)=ax+b 在[-1,1]上是增函数,∴g(-1)≤g(x)≤g(1),∵|f(x)|≤1(-1≤x≤1),∴|c|=|f(0)|≤1,∴g(1)=a+b=f(1)-c≤|f(1)|+|c|≤2,g(-1)=-a+b=-f(-1)+c≥-(|f(-1)|+|c|)≥-2,当a<0时,g(x)=ax+b 在[-1,1]上是减函数, ∴g(1)≤g(x)≤g(-1),∵|f(x)|≤1(-1≤x≤1),∴|c|=|f(0)|≤1,∴g(-1)=-a+b=-f(-1)+c≤|f(-1)|+|c|≤2,g(1)=a+b=f(1)-c≥-(|f(-1)|+|c|)≥-2,∴|g(x)|≤2.当a=0时,g(x)=b ,f(x)=bx+c ,∵-1≤x≤1,∴|g(x)|=|f(1)-c|≤|f(1)|+|c|≤2.综上所述,当x ∈[-1,1]时,|g(x)|≤2.[方法二] ∵x=4)1()1(22--+x x , ∴g(x)=ax+b=a [(21+x )2-(21-x )2]+b(21+x -21-x ) =a [(21+x )2+b(21+x )+c ]-[a(21-x )2+b(21-x )+c ] =f(21+x )-f(21-x ). 当-1≤x≤1时,有0≤21+x ≤1,-1≤21-x ≤0, ∴|g(x)|=|f(21+x )-f(21-x )|≤|f(21+x )|+|f(21-x )|≤2,∴|g(x)|≤2.。

选修4-5 不等式选讲 (3)

选修4-5  不等式选讲 (3)

1.在△ABC中,设其各边长边a,b,c,外接圆半径为R, 求证: 证明:由柯西不等式知:
2.若x,y,z∈R,a>0,b>0,c>0,求证: 证明:
点击此处进入 作业手册
反序 时最小,即
a1bn+a2bn-1+„+anb1 ,等号当
(3)平均不等式 定理:若a1,a2,…,an为正数,则 ,等号
当且仅当a1=a2=„=an时成立.这个不等式通常称为算术—几何平均不 等式. 思考:在应用算术—几何平均不等式时要注意什么问题? 提示:一是要注意定理成立的条件是各项必须全是正数;二是要注意等 号成立的条件. 2.利用不等式求最大(小)值 (1)利用平均不等式求最大(小)值.(2)利用柯西不等式求最大(小)值.
【答题模板】
解法一:用均值不等式
解法二:用柯西不等式
即所求的最大值为
【状元笔记】
重要不等式,均值不等式: (a1>0,a2>0,…,an>0),当
且仅当a1=a2=…=an时等号成立;柯西不等式:(a1b1+a2b2+…+anbn)≤(a+a+… +a)(b+b+…+b)(aibi∈R,i=1,2,…,n),当且仅当a1=a2=…=an=0或bi=kai 时(k为常数,i=1,2,…,n)等号成立.这两个不等式是证明其他不等式和求多元函 数最值的有力工具,使用时要注意等号成立的条件.使用柯西不等式的重要技巧就 是通过常数构造使用柯西不等式成立的条件.
变式2:设a1,a2,…,an为正数,求证: 证明:不妨设0<a1≤a2≤…≤an,则 由排序不等式知 即
利用不等式求最值时,应观察条件能否满足不等式的条件,如要条件满足还要看等
号能否成立,能满足等号成立说明能取得最值,否则没有取得最值.

高中数学选修4-5中的著名不等式

高中数学选修4-5中的著名不等式

选修4-5中的著名不等式内蒙古赤峰市翁牛特旗乌丹一中熊明军新课程改革推出了知识模块,把高等数学中一些领域的知识进行了简化,下放到高中。

选修4-5中给出了许多著名不等式的特例,下面对课本上的这些不等式及其一般形式做一下介绍。

绝对值的三角不等式():定理:若为实数,则,当且仅当时,等号成立。

绝对值的三角不等式一般形式:,简记为。

柯西不等式()定理:(向量形式)设为平面上的两个向量,则。

当及为非零向量时,等号成立及共线存在实数,使。

当或为零向量时,规定零向量与任何向量平行,即当时,上式依然成立。

定理:(代数形式)设均为实数,则,当且仅当时,等号成立。

柯西不等式的一般形式()定理:设为实数,则,当且仅当时,等号成立(当某时,认为)。

闵可夫斯基不等式()定理:设均为实数,则,当且仅当存在非负实数(不同时为0),使时,等号成立。

闵可夫斯基不等式的一般形式:定理:设是两组正数,,则或,当且仅当时,等号成立。

排序不等式()定理:设为两组实数为的任一排列,则有。

当且仅当或时,等号成立。

排序原理可简记作:反序和乱序和顺序和。

切比晓夫不等式():定理:设为任意两组实数,①如果或,则有②如果或,则有①②两式,当且仅当或时,等号成立。

平均值不等式()定理:设为个正数,则,当且仅当时,等号成立。

当时,,当且仅当时,等号成立。

加权平均不等式()定理:设为正数,都是正有理数,并且,那么。

杨格不等式():定理:设为有理数,满足条件(互称为共轭指标),为正数,则。

当时,,此时的杨格不等式就是熟知的基本不等式。

贝努利不等式():定理:设,且,为大于1的自然数,则。

贝努利不等式的一般形式:(1)设,且同号,则;(2)设,则①当时,有;②当或时,有,①②当且仅当时等号,成立。

人教版高中数学选修4-5《3.1 柯西不等式》

人教版高中数学选修4-5《3.1 柯西不等式》
2 1 2 2 2 n 2 1 2 2 2 n
2
k,使 得a i kbi ( i 1,2, , n)时, 等 号 成 立 。 2n 问题: 1、柯西不等式里一共涉及多少个实数? 个 2、柯西不等式的结构有何特征?
平方和的乘积不小于乘积和的平方
1、柯西是什么人?
• 法一:问柯西本人;
2、他是怎么发现该不等式的?
4 4 2 2 3 3 2
(2)复杂问题:变形后运用柯西不等式。
例3 求函数 y 5 x 1 10 2 x的最大值
思考:该题目用了哪些变形技巧? 凑配系数,平方。
2.已知x y 1, 那么2 x 2 3 y 2的最小值是( 5 A. 6 6 B. 5 25 C. 36 36 D. 25 )
( 2) a b c d ac bd2 ຫໍສະໝຸດ 2 2222
2
自主探究: 1、这两个变式 怎么来的呢? 2、这三个不等 式取“=” 的条 件分别是什么?
进一步—理解—柯西不等式
• 1、代数理解。
2 2 2 2
• 2、几何理解。
(1) a b c d ac bd
小组讨论:根据变式一,你能给出柯西不 等式的几何解释吗?
柯西不等式
选修4-5 不等式选讲
定 理(一 般 形 式 的 柯 西 不 等 ) 式 设a1 , a 2 , a 3 , , a n , b1 , b2 , b3 , , bn是 实 数 ,则
(a a a )( b b b ) (a1b1 a2b2 anbb ) 当且仅当 bi 0( i 1,2, , n)或 存 在 一 个 数
教学目标:
• 1、发现、推导
柯西不等式

高二数学之人教版高中数学选修4-5课件:1.1不等式.2

高二数学之人教版高中数学选修4-5课件:1.1不等式.2

所以 1 1 1 a b c a b c a b c
abc a
b
c
1 b c 1 a c 1 a b aa bb cc
3 b c a c a b aabbcc
3 2 b a 2 c b 2 c a 9, ab bc ac
当且仅当 b c 即a a, =b=c时,等号成立. abc
b
b
b
所以(1 1 )(1 1 ) (2 b )(2 a )
ab
ab
当 5且 仅2( b当 a ) 即5 a2=b2 时 9,,等号成立.
ab

b a,
ab
(11)(11)9.
ab
2.已知a,b,c都是正数,且a+b+c=1. 求证: 1 1 1 9.
abc
【证明】因为a,b,c都是正数,且a+b+c=1.
16 此时x=6. y
故每间虎笼长6m,宽4m时,可使钢筋网总长最小.
类型二 利用基本不等式证明不等式
【典例】已知a>0,b>0,c>0,且a+b+c=1,证明:
(1)a2+b2+c2≥ .
1
(2)
3
abc3.
【解题探究】典例中如何建立a2与a的不等关系?
提示:由 a212 a2 12a,可建立a2与a的不等关系.
提示:由x+2y+xy=30,得y=
30 x . x2
【解析】1.选C.因为 1 2 ab ,所以a>0,b>0,由 ab
ab 12 2 12 = 2
2 , 所以ab≥2
(当且仅当
2
b=2a时a取等b 号),a所b以ab的a b最小值为2 .

选修4-5第三讲《柯西不等式与排序不等式》

选修4-5第三讲《柯西不等式与排序不等式》

8、设,利用排序不等式证明:
答案:1.C 2. A 3. B 4. A 5. D 8. 证明:不妨设则, (逆序和) (逆序和)
二、【知识梳理】
(一)、柯西不等式
6. 1 7. 9
1、定理1:(柯西不等式的代数形式)设均为实数,则 , 其中等号当且仅当时成立。
几何意义:设,为平面上以原点O为起点的两个非零向量,它们的终点分别为 A(),B(),那么它们的数量积为, 而,, 所以柯西不等式的几何意义就是:, 其中等号当且仅当两个向量方向相同或相反(即两个向量共线)时成立。
柯西不等式有两个很好的变式: 变式1 设 ,等号成立当且仅当 同号且不为0(i=1,2,…,n),则:,等号成立当且仅当。
(二)、排序不等式 1、基本概念: 一般地,设有两组数:≤≤,≤≤,我们考察这两组数两两对应之积的和,
利用排列组合的知识,我们知道共有6个不同的和数,它们是:
对应关系

(,,) (,,)
解:函数的定义域为,且. 则
, 当且仅当时,等号成立,即时函数取最大值
[例 3] 求函数的最大值. 【思路分析】因为,自然会联系到三角恒等式,联想到柯西不等式的结构特征, 而这个式子恰好具有柯西不等式的结构特征,所以可以利用柯西不等式来解决. 【解析】 当且仅当,即,函数有最大值 【锦囊妙计】先变形凑成柯西不等式的结构特征,是利用柯西不等式求解的先决 条件,需要不断的学习与体会.
考点三 均值不等式的运用 [例5] 求函数的最小值. 解:,于是 当且仅当,即时,函数的最小值是. 锦囊妙计: 在运用求最值时,要注意满足“一正、二定、三相等”的条件,具 体地说,要注意是正变数,三个正变数之积是常数,那么当且仅当这三个正变数 相等时,它们的和取得最小值,同时注意相等时的自变量的取值属于给定的范围 内。本题常见的错误是:由均值不等式得,,故最小值为6.事实上这种变形使方 程无解,即等号不能成立,所以最小值不是6,为了保证等号成立,一般需要平 均拆项. 考点四 排序不等式的运用(选做) [例 6] 设是n个互不相同的正整数,求证:

人教版-高中数学选修4-5-柯西不等式

人教版-高中数学选修4-5-柯西不等式
合作探究问题3:
尝试给出以上柯西不等式的推广 的严密证明。
合作探究问题4: 尝试发现柯西不等式其他的推
广与应用。
2021/3/10
14
研究性学习的课题
数学具有现实的性质,它来源于现实生活, 再应用到现实生活中去。正如均值不等式在 实际生活中有许多应用,那么,柯西不等式 在现实生活中也应该有它的数学情境。
我们共同探究了柯西不等式的几何背景, 表示形式,得出其不同证明方法,同时也 发现了很多值得我们进一步研究的有价值 的问题。更重要的是我们通过自主探究, 发现问题,解决问题,更多的体验到数学 发展过程。数学是一门通过数学思想方法 逐渐将问题化繁为简的科学,它有深刻的 文化底蕴和内涵,我们更应该在今后的学 习中不断的挖掘和发现,真正体验到数学 学习带来的美感和快感。
2021/3/10
5
二、诱思发现,剖析论证
(一)柯西不等式的表达形式(二维形式)
注意观察此不等式的简洁性,对称性,深刻体现出 数学形式的美。
2021/3/10
6
(二)柯西不等式的证明方法
共同思考,讨论发现。借助以往的知识和经验, 运用类比联想与化归转化的思想,探究用什么方法来 证明它。
归纳总结
1.向量法:(类比数学模型) 2.比较法:(不等式证明的基本方法) 3.构造法:(类比联想,利用二次函数的性质) 4.几何法:(利用余弦定理)
我们从中可进一步观察体验柯西不等式所蕴含的形式上的
对称美,简洁美及和谐性。
2021/3/10Leabharlann 16四、应用举例,能力提高
2021/3/10
17
尝试解决:
选作 1:
选作 2:
2021/3/10
18
例2:

选修4-5基本不等式

选修4-5基本不等式

题型一:利用基本不等式判断代数式的大小关系
例1:设a>0,b>0,出下列不等式(1)a 1 2 (2)(a 1 )(b 1) 4
a
ab
(3)(a b)(1 1) 4 ab
(4)a2
2
1 a2
2
2
其中成立的是 (1)(2)(3)(4)
等号能成立的是(1)(2)(3) 。 例2:若 a b 1, P lg alg b,
一、重要不等式:
一般地,对于任意实数a,b,我们有
a2+b2≥2ab
(当且仅当a=b时,取“=”号)
文字语言:两个数的平方和不小于它们积的2倍
二、定理2(基本不等式)
如果a, b>0, 那么
a b ab
2
当且仅当a=b时,等号成立。
如果a,b都是正数,我们就称 a 为 ba,b的 2
ab叫做a,b的 几何平均数
B、6 3 C、4 6 D、18 3
题型三:构造积为定值,利用基本不等式求最值
例4、 求函数 y 1 x(x 3)的最小值
x3
例5、求函数 y x2 5 的最小值
x2 4
例6、已知正数x、y满足2x+y=1,求
1 x
1y的最小值
例7、 求函数 y 1 2x 3 的值域
x
题型四:利用基本不等式证明不等式
例8、已知x, y, z都为正数,且xyz( x y z) 1 求证: ( x y)( y z) 2
1.若a1, a2 , a3,an R ,
则a1 a2 a3 an nn a1 a2 an
当且仅当a1 a2 a3 an时取 号
4.若a, b R , 则
1
2

湘教版高中数学选修4-5不等式选讲:贝努利不等式

湘教版高中数学选修4-5不等式选讲:贝努利不等式
不等式(排序原理)
设 a1≤a2≤…≤an,b1≤b2≤…≤bn 为两组实数,c1,c2,…,
cn 是 b1,b2,…,bn 的任一排列,
则 a1bn+a2bn-1+…+anb1
≤ a1c1+a2c2+…+ancn
≤ a1b2+a2b2+…+anbn
,当且
仅当 a1=a2=…=an 或 b1=b2=…=bn 时,反序和等于顺序
中产生了8位科学家,后裔有
不少于120位被人们系统地追
溯过,他们在数学、科学、技
术、工程乃至法律、管理、文
学、艺术等方面享有名望,有
伯努利
的甚至声名显赫。
例题讲解
例:已知a>c>d>b,a+b=c+d,n为大于 1的正整数,求证:
an +bn>cn +dn.
小结 贝努利不等式的理解以及简单应用.
n=k+1时不等式①也成立.
根据(1),(2)可知对任何正整数n,当 x>-1时,不等式①成立.
我们称不等式
(1+x)n 1+nx (x>-1)

为贝努利不等式.
贝努利不等式,又称伯努利不等式, 是分析不等式中最常见的一种不等式,由 数学家伯努利提出。
瑞士的伯努利家族(也译
作贝努力),一个家族3代人
和,此不等式简记为__反__序___和___≤ 乱序和 ≤顺序和.
新知探究
我们已学过二项式定理,根据二项式定 理易知,当x>0,n为正整数时,有
(1+x)n 1+nx.

其实,当x>-1时,不等式①仍然成立, 这一点我们不难用数学归纳法给予证明.
(1)n=1时,不等式①显然成立. (2)假设n=k时不等式①成立.因x>-1, 可得x+1>0,则

选修4-5(不等式)

选修4-5(不等式)

高中数学选修4--5知识点1、不等式的基本性质①(对称性)a b b a >⇔>②(传递性),a b b c a c >>⇒>③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>,(异向可减性)d b c a d c b a ->-⇒<>,④(可积性)bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d c d >><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且⑦(开方法则)0,1)a b n N n >>∈>且 ⑧(倒数法则)b a b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b +≥()a b R +∈,,(当且仅当a b =时取到等号).变形公式:a b +≥ 2.2a b ab +⎛⎫≤ ⎪⎝⎭ 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:1122a b a b --+≤≤+,,a b R +∈(,当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭ 222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n +++≥+++③二维形式的三角不等式:1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++⑦向量形式的柯西不等式: 设,αβ 是两个向量,则,αβαβ⋅≤ 当且仅当β 是零向量,或存在实数k ,使k αβ= 时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法: ①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小), 如211,(1)kk k <- 211,(1)k k k >+=⇒<*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或 2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解⑴2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩⑵2()0(0)()f x a a f x a ≥⎧<>⇔⎨<⎩⑶2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或⑷2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩⑸()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩ 规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当1a >时,()()()()f x g x a a f x g x >⇔>⑵当01a <<时,()()()()f x g x a a f x g x >⇔< 规律:根据指数函数的性质转化.10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法: ⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩ ⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或 ③()()()()()(()0)f xg x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小.14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是: ①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩ ⑶()f x a <恒成立max ();f x a ⇔< ()f x a ≤恒成立max ();f x a ⇔≤⑷()f x a >恒成立min ();f x a ⇔> ()f x a ≥恒成立min ().f x a ⇔≥15、线性规划问题⑴二元一次不等式所表示的平面区域的判断:法一:取点定域法:由于直线0Ax By C ++=的同一侧的所有点的坐标代入Ax By C ++后所得的实数的符号相同.所以,在实际判断时,往往只需在直线某一侧任取一特殊点00(,)x y (如原点),由00Ax By C ++的正负即可判断出0Ax By C ++>(或0)<表示直线哪一侧的平面区域. 即:直线定边界,分清虚实;选点定区域,常选原点.法二:根据0Ax By C ++>(或0)<,观察B 的符号与不等式开口的符号,若同号,0Ax By C ++>(或0)<表示直线上方的区域;若异号,则表示直线上方的区域.即:同号上方,异号下方.⑵二元一次不等式组所表示的平面区域:不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分.⑶利用线性规划求目标函数z Ax By =+(,A B 为常数)的最值:法一:角点法:如果目标函数z Ax By =+ (x y 、即为公共区域中点的横坐标和纵坐标)的最值存在,则这些最值都在该公共区域的边界角点处取得,将这些角点的坐标代入目标函数,得到一组对应z 值,最大的那个数为目标函数z 的最大值,最小的那个数为目标函数z 的最小值 法二:画——移——定——求:第一步,在平面直角坐标系中画出可行域;第二步,作直线0:0l Ax By += ,平移直线0l (据可行域,将直线0l平行移动)确定最优解;第三步,求出最优解(,)x y ;第四步,将最优解(,)x y 代入目标函数z Ax By =+即可求出最大值或最小值 .第二步中最优解的确定方法:利用z的几何意义:A zy xB B=-+,zB为直线的纵截距.①若0,B>则使目标函数z Ax By=+所表示直线的纵截距最大的角点处,z取得最大值,使直线的纵截距最小的角点处,z取得最小值;②若0,B<则使目标函数z Ax By=+所表示直线的纵截距最大的角点处,z取得最小值,使直线的纵截距最小的角点处,z取得最大值.⑷常见的目标函数的类型:①“截距”型:; z Ax By =+②“斜率”型:yzx=或;y bzx a-=-③“距离”型:22z x y=+或z=22 ()() z x a y b =-+-或z=在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修4-5中的着名不等式
内蒙古赤峰市翁牛特旗乌丹一中熊明军
新课程改革推出了知识模块,把高等数学中一些领域的知识进行了简化,下放到高中。

选修4-5中给出了许多着名不等式的特例,下面对课本上的这些不等式及其一般形式做一下介绍。

绝对值的三角不等式():
定理:若为实数,则,当且仅当时,等号成立。

绝对值的三角不等式一般形式:
,简记为。

柯西不等式()
定理:(向量形式)设为平面上的两个向量,则。

当及为非零向量时,等号成立及共线存在实数,使。

当或为零向量时,规定零向量与任何向量平行,即当时,上式依然成立。

定理:(代数形式)设均为实数,则,当且仅当时,等号成立。

柯西不等式的一般形式()
定理:设为实数,则
,当且仅当时,等号成立(当某时,认为)。

闵可夫斯基不等式()
定理:设均为实数,则,当且仅当存在非负实数(不同时为0),使时,等号成立。

闵可夫斯基不等式的一般形式:
定理:设是两组正数,,则
或,当且仅当时,等号成立。

排序不等式()
定理:设为两组实数为
的任一排列,则有。

当且仅当或时,等号成立。

排序原理可简记作:反序和乱序和顺序和。

切比晓夫不等式():
定理:设为任意两组实数,
①如果或,则有
②如果或,则有
①②两式,当且仅当或时,等号成立。

平均值不等式()
定理:设为个正数,则,当且仅当时,等号成立。

当时,,当且仅当时,等号成立。

加权平均不等式()
定理:设为正数,都是正有理数,并且,那么。

杨格不等式():
定理:设为有理数,满足条件(互称为共轭指标),为正数,则。

当时,,此时的杨格不等式就是熟知的基本不等式。

贝努利不等式():
定理:设,且,为大于1的自然数,则。

贝努利不等式的一般形式:
(1)设,且同号,则;
(2)设,则①当时,有;②当或时,有,①②当且仅当时等号,成立。

相关文档
最新文档