Fourier变换练习题(全,有答案).docx

合集下载

积分变换习题解答1-2

积分变换习题解答1-2

1-21.求矩形脉冲函数,0()0,A t f t τ⎧≤≤⎪=⎨⎪⎩其他的Fourier 变换.解:[]()j j j j 01e e()()()e d e d 0j j t t t t A F f t f t t A t A τωωωωτωωω-----+∞⎡⎤=====⎢⎥-∞-⎣⎦⎰⎰F 2.设()F ω是函数()f t 的Fourier 变换,证明()F ω与()f t 有相同的奇偶性.证明:()F ω与()f t 是一个Fourier 变换对,即 ()()j e d t F f t t ωω-+∞=-∞⎰,()()j 1e d 2πt f t F ωωω+∞=-∞⎰ 如果()F ω为奇函数,即()()F F ωω-=-,则()()()()()()j j 11e d e d 2π2πt tf t F F ωωωωωω--+∞+∞-==---∞-∞⎰⎰ (令u ω-=)()j 1e d 2πut F u u -∞=+∞⎰(换积分变量u 为ω)()()j 1e d 2πtF f t ωωω+∞=-=--∞⎰ 所以()f t 亦为奇函数.如果()f t 为奇函数,即()()f t f t -=-,则()()()()()j j e d e d t t F f t t f t t ωωω----+∞+∞-==---∞-∞⎰⎰ (令t u -=)()j e d u f u u ω--∞=+∞⎰(换积分变量u 为t )()()j e d t f t t F ωω-+∞=-=--∞⎰所以()F ω亦为奇函数.同理可证()f t 与()F ω同为偶函数.4.求函数()()e 0t f t t -=≥的Fourier 正弦变换,并推证()20012sin πd e αωαωωαω+∞-=>+⎰解:由Fourier 正弦变换公式,有()()s s F f t ω⎡⎤=⎣⎦F ()0sin f t t t ω+∞=⎰d 0sin tt t ω+∞-=⎰e d ()2sin cos 10t t t ωωωω---+∞=+e 21ωω=+ 由Fourier 正弦逆变换公式,有()120022sin ()()sin 1s s s t f t F F t ωωωωωωωω+∞+∞-===⎡⎤⎣⎦+⎰⎰F d d ππ 由此,当0t α=>时,可得()()2sin ππd e 0122f αωαωωααω+∞-==>+⎰5.设()()f t F ω⎡⎤=⎣⎦F ,试证明:1)()f t 为实值函数的充要条件是()()F F ωω-=; 2)()f t 为虚值函数的充要条件是()()F F ωω-=-.证明: 在一般情况下,记()()()r i f t f t f t =+j 其中()r f t 和()i f t 均为t 的实值函数,且分别为()f t 的实部与虚部. 因此()()()()[]j e d j cos jsin d t r i F f t t f t f t t t t ωωωω-+∞+∞⎡⎤==+-⎣⎦-∞-∞⎰⎰ ()()()()cos sin d j sin cos d ri r i f t t f t t t f t t f t t t ωωωω+∞+∞⎡⎤⎡⎤=+--⎣⎦⎣⎦-∞-∞⎰⎰ ()()Re Im F j F ωω⎡⎤⎡⎤=+⎣⎦⎣⎦其中()()()Re cos sin d r i F f t t f t t t ωωω+∞⎡⎤⎡⎤=+⎣⎦⎣⎦-∞⎰, ()a ()()()Im sin cos d ri F f t t f t t t ωωω+∞⎡⎤⎡⎤=--⎣⎦⎣⎦-∞⎰()b 1)若()f t 为t 的实值函数,即()()(),0r i f t t f f t ==.此时,()a 式和()b 式分别为()()Re cos d rF f t t t ωω+∞⎡⎤=⎣⎦-∞⎰()()Im sin d rF f t t t ωω+∞⎡⎤=-⎣⎦-∞⎰所以()()()Re jIm F F F ωωω⎡⎤⎡⎤-=-+-⎣⎦⎣⎦()()()Re jIm F F F ωωω⎡⎤⎡⎤=-=⎣⎦⎣⎦反之,若已知()()F F ωω-=,则有()()()()Re jIm Re jIm F F F F ωωωω⎡⎤⎡⎤⎡⎤⎡⎤-+-=-⎣⎦⎣⎦⎣⎦⎣⎦此即表明()F ω的实部是关于ω的偶函数;()F ω的虚部是关于ω的奇函数.因此,必定有()()()cos d j sin d r rF f t t t f t t t ωωω+∞+∞=--∞-∞⎰⎰ 亦即表明()()r f t f t =为t 的实值函数.从而结论1)获证.2)若()f t 为t 的虚值函数,即()()()j ,0i r f t f f t t ==.此时,()a 式和()b 式分别为()()Re sin d i F f t t t ωω+∞⎡⎤=⎣⎦-∞⎰ ()()Im cos d i F f t t t ωω+∞⎡⎤=⎣⎦-∞⎰所以()()()Re jIm F F F ωωω⎡⎤⎡⎤-=-+-⎣⎦⎣⎦()()Re jIm F F ωω⎡⎤⎡⎤=-+⎣⎦⎣⎦()(){}Re jIm F F ωω⎡⎤⎡⎤=--⎣⎦⎣⎦()F ω=-反之,若已知()()F F ωω-=-,则有()()()()Re jIm Re jIm F F F F ωωωω⎡⎤⎡⎤⎡⎤⎡⎤-+-=-+⎣⎦⎣⎦⎣⎦⎣⎦此即表明()F ω的实部是关于ω的奇函数;()F ω的虚部是关于ω的偶函数.因此,必定有()()()sin d j cos d i iF f t t t f t t t ωωω+∞+∞==+-∞-∞⎰⎰, 亦即表明()()j i f t f t =为t 的虚值函数.从而结论2)获证.6.已知某函数的Fourier 变换sin ()F ωωω=,求该函数()f t .解:sin ()F ωωω=为连续的偶函数,由公式有()()j π1sin e d cos d 2π0tf t F t ωωωωωωω+∞+∞==-∞⎰⎰ ()()sin 1sin 111d d 2π02π0t t ωωωωωω+∞++∞-=+⎰⎰ 但由于当0a >时sin sin sin πd d()d 0002a a t a t t ωωωωωω+∞+∞+∞===⎰⎰⎰ 当0a <时sin sin()πd d 002a a ωωωωωω+∞+∞-=-=-⎰⎰当0a =时,sin d 0,0a ωωω+∞=⎰所以得 ()11211401t f t t t ⎧<⎪⎪⎪==⎨⎪⎪>⎪⎩,,,7.已知某函数的Fourier 变换为()()()00πδδF ωωωωω⎡⎤=++-⎣⎦,求该函数()f t .解:由函数()()()00δd t t g t t g t -=,易知()()()()j j j 001e d 2π11πδe d πδe d 2π2πt t t f t F ωωωωωωωωωωω+∞=-∞+∞+∞=++--∞-∞⎰⎰⎰j j 00011e e cos 22t t t ωωωωωωω=-==+=8.求符号函数(又称正负号函数)()1,0sgn 1,0t t t -<⎧=⎨>⎩的Fourier变换.解:容易看出()()()sgn t u t u t =--,而1[()]()πδ().j u t F ωωω=-+F 9.求函数()()()1δδδδ222aa t a t a t f t t ⎡⎤⎛⎫⎛⎫=++-+++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的Fourier 变换.解 :()()()()j 1δδδδe d 222ta a F f t t a t a t t ωωω+∞--∞⎡⎤⎛⎫⎛⎫⎡⎤==++-+++- ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦⎰F j j j j 1e e e e 222t t t t a a t a t a t t ωωωω----⎡⎤⎢⎥=+++⎢⎥=-==-=⎢⎥⎣⎦cos cos 2aa ωω=+.10 .求函数()cos sin t f t t =的Fourier 变换. 解: 已知()()000sin j πδδt ωωωωω⎡⎤=+--⎡⎤⎣⎦⎣⎦F由()1cos sin sin 22f t t t t ==有()()()πjδ2δ22f t ωω⎡⎤⎡⎤=+--⎣⎦⎣⎦F 11.求函数()3sin f t t =的Fourier 变换.解:已知()0j 0e 2πδtωωω⎡⎤=-⎣⎦F ,由()()3j j 33j j -j 3j e e j sin e 3e 3e e 2j 8t t t t t t f t t --⎛⎫-===-+- ⎪⎝⎭即得()()()()()πjδ33δ13δ1δ34f t ωωωω⎡⎤⎡⎤=---++-+⎣⎦⎣⎦F12.求函数()πsin 53t t f ⎛⎫=+ ⎪⎝⎭的Fourier 变换.解: 由于()π1sin 5sin5cos5322f t t t t ⎛⎫=+=+ ⎪⎝⎭故()()()()()πjδ5δ55δ52f t ωωωω⎤⎡⎤⎡⎤=+--+++-⎥⎣⎦⎣⎦⎣⎦F . 14.证明:若()()j e t F ϕω⎡⎤=⎣⎦F ,其中()t ϕ为一实数,则()()()1cos 2t F F ϕωω⎡⎤⎡⎤=+-⎣⎦⎣⎦F ()()()1sin 2j t F F ϕωω⎡⎤⎡⎤=--⎣⎦⎣⎦F 其中()F ω-为()F ω的共轭函数.证明:因为 ()()j j e e d t t F t ϕωω+∞--∞=⋅⎰()()()j j j j ee d ee d t t tt F t t ϕϕωωω+∞+∞---∞-∞-==⋅⎰⎰()()()()()()j j j j 1e ee d cos e d cos 22t t t t F F t t t t ϕϕωωωωϕϕ-+∞+∞---∞-∞+⎡⎤⎡⎤+-===⎣⎦⎣⎦⎰⎰F 同理可证另一等式.17.求作如图的锯齿形波的频谱图.(图形见教科书).解 :02π,T ω=()1,00,ht t Tf t T ⎧≤≤⎪=⎨⎪⎩其他()00111d d 2TTh C f t t ht t TTT ===⎰⎰()()000j j j 02011e d e d e d TTTn t n t n t n ht h C F n f t t t t t TTT Tωωωω---===⋅=⎰⎰⎰00j j 211j e e d j j 2πTn t n t Thht T n n n ωωωω--⎡⎤=⋅+=⎢⎥-⎣⎦⎰()()()()()000j j 2πδ2πδπδδ.22πn n n n h h hF n h n n nωωωωωωω+∞+∞=-∞=-∞≠≠=+⋅-=+⋅-∑∑。

复变函数与积分变换习题册(含答案)

复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。

2、k 为任意整数,则34+k 的值为 。

3、复数i i (1)-的指数形式为 。

4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。

(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。

复变函数与积分变换习题册(含答案)

复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。

2、k 为任意整数,则34+k 的值为 。

3、复数i i (1)-的指数形式为 。

4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。

(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。

工程数学-积分变换(第四版)-高等教育出版社-课后答案(1)

工程数学-积分变换(第四版)-高等教育出版社-课后答案(1)

再由 Fourier 变换公式得
f (t ) =
1 +∞ 1 +∞ 1 +∞ ω 2 + 2 jω t F ω e d ω = F ω cos ω t d ω = cos ω t dω ( ) ( ) 2 π ∫ −∞ π∫0 π ∫ 0 ω4 + 4 +∞ ω 2 + 2 π −t ∫ 0 ω 4 + 4 cos ω tdω = 2 e cos t
f (t) =
2 +∞ ⎡ +∞ f (τ ) sin ωτ dτ ⎤ sin ω tdω ⎢ ∫0 ⎥ ⎦ π ∫0 ⎣
=
2 +∞ ⎡ +∞ − β t sin ω tdω e sin ωτ dτ ⎤ ∫ ∫ ⎢ ⎥ 0 0 ⎣ ⎦ π
− βτ 2 +∞ ⎡ e ( β sin ωτ − ω cos ω t ) +∞ ⎤ = ∫ ⎢ ⎥ sin ω tdω π 0 ⎣ β 2 + ω2 0 ⎦
=
=
由于 a ( ω ) = a ( −ω ) , b ( ω ) = − b ( −ω ) , 所以
f (t) =
1 +∞ 1 +∞ a ( ω ) cos ω t dω + ∫ b ( ω ) sin ω tdω ∫ 2 −∞ 2 −∞
+∞ +∞ 0 0
= ∫ a ( ω ) cos ω t dω + ∫ b ( ω ) sin ω t dω 2.求下列函数的 Fourier 积分:
2 2 ⎧ ⎪1 − t , t ≤ 1 1)函数 f ( t ) = ⎨ 解: 解:1 为连续的偶函数,其 Fourier 变换为 2 0, 1 t > ⎪ ⎩

积分变换习题

积分变换习题

p30 : 11 .解 : sin 3 t sin 2 t sin t (1 cos2 t ) sin t 1 sin t 1 (1 cos 2t ) sin t cos 2t sin t 2 2 2 3 1 sin t sin 3t 4 4
1 1 3 3 sin t sin t sin 3t sin t sin 3t 4 4 4 4
p30 : 8.解 : sgnt 2u(t ) 1 2u(t ) 2 ( )
2 2 2 ( ) 2 ( ) j j
1 1 ja 1 p30 : 9.解 : (t a) e (cosa j sin a) 2 2 2 1 1 ja 1 (t a) e (cosa j sin a) 2 2 2 1 1 a 1 2 j a 1 a a (t ) e (cos j sin ) 2 2 2 2 2 2 1 1 a 1 2 j a 1 a a (t ) e (cos j sin ) 2 2 2 2 2 2

(u cost v sin t ) j (v cost u sin t dt


F ( )
(u cost v sin t ) j (v cost u sin t dt
v 0 即f (t ) u为实值函数.
3


3 1 j ( 1) ( 1) j ( 3) ( 3) 4 4 j ( 3) ( 3) 3 ( 1) 3 ( 1) 4
p30 : 12.
解 : sin(5t ) sin 5t cos cos 5t sin 3 3 3 1 3 sin 5t cos 5t 2 2

变换试题及答案

变换试题及答案

变换试题及答案一、单项选择题(每题2分,共10分)1. 以下哪个选项是数学中的变换概念?A. 旋转B. 反射C. 缩放D. 所有选项答案:D2. 在二维坐标系中,将点(1,2)绕原点顺时针旋转90度后,新的坐标是?A. (-2,1)B. (2,-1)C. (1,-2)D. (-1,2)答案:A3. 将一个图形按比例因子2缩放,意味着什么?A. 所有长度翻倍B. 所有长度减半C. 所有角度翻倍D. 所有角度减半答案:A4. 在三维空间中,反射变换通常指的是?A. 旋转B. 缩放C. 翻转D. 移动答案:C5. 变换矩阵在变换中的作用是什么?A. 改变图形的颜色B. 改变图形的形状和位置C. 改变图形的大小D. 改变图形的纹理答案:B二、填空题(每题2分,共10分)1. 将点(3,4)绕原点旋转180度后,新的坐标是______。

答案:(-3,-4)2. 将图形按比例因子1/2缩放,意味着所有长度变为原来的______。

答案:一半3. 在二维坐标系中,点(-1,3)关于x轴的反射点是______。

答案:(-1,-3)4. 在三维空间中,将点(2,3,4)绕z轴旋转90度后,新的坐标是______。

答案:(-4,3,-2)5. 变换矩阵[1 0; 0 -1]表示的变换是______。

答案:y轴反射三、简答题(每题5分,共20分)1. 描述一下平移变换是如何影响一个图形的。

答案:平移变换会将一个图形沿着某个方向移动一定的距离,而不会改变图形的形状、大小和方向。

2. 什么是相似变换?请举例说明。

答案:相似变换是一种保持图形形状和方向不变的变换,但可以改变图形的大小。

例如,将一个正方形放大两倍,形状和方向不变,但大小改变。

3. 请解释一下仿射变换。

答案:仿射变换是一种线性变换,它保持了图形中的直线和平行性,但不一定保持角度。

它可以包括平移、缩放、旋转和剪切等变换。

4. 请描述一下投影变换及其应用。

答案:投影变换是一种将三维空间中的图形映射到二维平面上的变换。

《高等数学教学资料》fourier变换的性质复习

《高等数学教学资料》fourier变换的性质复习

03
Fourier变换的应用
信号处理
80%
信号的频谱分析
通过Fourier变换,可以将信号分 解成不同频率的成分,从而更好 地理解信号的特性。
100%
信号去噪
在信号处理中,Fourier变换可以 帮助我们识别和去除噪声,提高 信号的清晰度。
80%
信号压缩
通过识别信号中的冗余成分, Fourier变换可以实现信号压缩, 减少存储和传输所需的资源。
卷积的逆Fourier变换
总结词
卷积的逆Fourier变换是将两个函数在频 域中的乘积转换为时域表示的过程。
VS
详细描述
卷积的逆Fourier变换是将两个函数在频 域中的乘积转换为时域表示的过程。这个 过程可以通过将两个函数的Fourier变换 相乘,然后进行逆Fourier变换来实现。 在时域中,两个函数的乘积可以通过卷积 来表示,因此卷积的逆Fourier变换可以 用来计算两个函数的乘积在时域中的表示 。
02
Fourier变换的卷积性质
卷积定理
总结词
卷积定理是Fourier变换中的一个重要性质,它表明两个函数的卷 积的Fourier变换等于这两个函数Fourier变换的乘积。
详细描述
卷积定理是Fourier分析中的一个基本定理,它表明两个函数的卷 积的Fourier变换等于这两个函数Fourier变换的乘积。这个定理在 信号处理、图像处理、量子力学等领域有广泛的应用。
叠和计算量大。
习题答案与解析
01
进阶习题3解析
02
进阶习题4答案
03
进阶习题4解析
全面分析了Fourier变换在图像处 理中的优缺点和应用时的注意事 项。
Fourier变换在数值分析中主要用 于求解微分方程、积分方程等数 学问题,提高计算效率和精度。

傅里叶变换的练习题

傅里叶变换的练习题

傅里叶变换的练习题傅里叶变换是一种重要的数学工具,广泛应用于信号处理、图像处理、音频处理等领域。

通过傅里叶变换,我们可以将一个时域信号转换为频域表示,从而更好地理解和处理信号。

为了加深对傅里叶变换的理解,以下将提供一些傅里叶变换的练习题,帮助读者巩固相关知识点。

练习一:离散信号的傅里叶变换考虑离散信号x(n) = [1, 2, 3, 4],使用离散傅里叶变换(DFT)计算其频谱X(k)。

解答:首先,我们需要计算离散信号的长度N,即N = 4。

然后,根据傅里叶变换的定义,计算频谱X(k)的每个元素:X(k) = Σ[n=0, N-1] x(n) * exp(-j2πkn/N)带入x(n)的值:X(0) = 1 * exp(-j2π*0*0/4) + 2 * exp(-j2π*0*1/4) + 3 * exp(-j2π*0*2/4) + 4 * exp(-j2π*0*3/4)= 1 + 2 + 3 + 4= 10X(1) = 1 * exp(-j2π*1*0/4) + 2 * exp(-j2π*1*1/4) + 3 * exp(-j2π*1*2/4) + 4 * exp(-j2π*1*3/4)= 1 + 2 * exp(-jπ/2) + 3 * exp(-jπ) + 4 * exp(-j3π/2)= 1 - 2j + 3 - 4j= 4 - 6jX(2) = 1 * exp(-j2π*2*0/4) + 2 * exp(-j2π*2*1/4) + 3 * exp(-j2π*2*2/4) + 4 * exp(-j2π*2*3/4)= 1 + 2 * exp(-jπ) + 3 + 4 * exp(-j2π)= 1 + 2 - 3 + 4= 4X(3) = 1 * exp(-j2π*3*0/4) + 2 * exp(-j2π*3*1/4) + 3 * exp(-j2π*3*2/4) + 4 * exp(-j2π*3*3/4)= 1 + 2 * exp(-j3π/2) + 3 * exp(-j3π) + 4 * exp(-j9π/4)= 1 + 2j + 3 - 4j= 4 - 2j因此,离散信号[1, 2, 3, 4]的频谱为X(k) = [10, 4-6j, 4, 4-2j]。

复变函数与积分变换:7-Fourier变换习题课

复变函数与积分变换:7-Fourier变换习题课

0
1
0
2 2 4 4 4 cos
td .

2
0 4
2 costd
4
e|t| cos t .
2
13
机动 目录 上页 下页 返回 结束
例4 已知某函数的傅氏变换为
F ( ) sin ,
求该函数.

f
(t)
1
2
sin eitd
1
0
sin
cos
td
1
2
0
sin(1
t )d
25
机动 目录 上页 下页 返回 结束
4. 综合运用
例7 计算函数f (t) tu(t)et sin 0t的Fourier
变 换.
解 法一 由F [u(t )et ] 1 ,
i
利用位移性质
F [u(t )et sin 0t]
1 F [u(t )etei0t ] 1 F [u(t )etei0t ],
2i
2i
26
机动 目录 上页 下页 返回 结束
1
1
1
1
2i i( 0 ) 2i i( 0 )
2 0
0 (
i
)2
,
再由微分性质
F
[tu(t )et
sin 0t]
i
d
d
02
0 (
i )2
20 (
[
2 0

i ) i)2 ]2
27
机动 目录 上页 下页 返回 结束
法二
F
[tu(t )et
(C )F [2 (t )] 1
(D)F [sgn(t )] 2
i

傅里叶变换练习题

傅里叶变换练习题

证:因为 、 在 上可积, , ,
设 ,

由系数公式得

当 时,

于是由贝塞尔等式得

总练习题15
1试求三角多项式
的傅里叶级数展开式.
解:因为 是以 为周期的光滑函数,所以可展为傅里叶级数,
由系数公式得

当 时,


故在 , 的傅里叶级数就是其本身.
2设 为 上可积函数, 为 的
傅里叶系数,试证明,当 时,
推论1设 在 上可积,则
, .
推论2设 在 上可积,则


定理2设以 为周期的函数 在 上可积,则

此称为 的傅里叶级数的部分和的积分表达式.
二、收敛性定理的证明
定理3 (收敛性定理)设以 为周期的函数 在 上按段光滑,则

定理4如果 在 上有有限导数,或有有限的两个单侧导数,则

定理5如果 在 按段单调,则

由贝塞尔等式得 ,
故 .
(3)取 ,由§1习题1 (2)得

由贝塞尔等式得 ,
故 .
4证明:若 均为 上可积函数,且他们的傅里叶级数在 上分别一致收敛于 和 ,则

其中 为 的傅里叶系数, 为 的傅里叶系数.
证:由题设知 ,

于是



所以 .
5证明若 及其导函数 均在 上可积, ,
,且成立贝塞尔等式,则
由系数公式得

当 时,
所以
, 为所求.
2设 是以 为周期的可积函数,证明对任何实数 ,有


证:因为 , , 都是以 为周期的可积函数,所以令 有

积分变换课后答案之欧阳语创编

积分变换课后答案之欧阳语创编

111.2. 试证:若()f t 满足Fourier 积分定理中的条件,则有其中()()()()d d ππ11cos ,sin .a f b f ωτωττωτωττ+∞+∞-∞-∞==⎰⎰阐发:由Fourier 积分的单数形式和三角形式都可以证明此题,请读者试用三角形式证明.证明:利用Fourier 积分的单数形式,有由于()()()(),,a a b b ωωωω=-=--所以 2.求下列函数的Fourier 积分:1)()2221,10,1t t f t t ⎧-≤⎪=⎨>⎪⎩; 2) ()0,0;e sin 2,0tt f t t t -⎧<⎪=⎨≥⎪⎩ 3)()0,11,101,010,1t t f t t t ⎧-∞<<-⎪--<<⎪=⎨<<⎪⎪<<+∞⎩阐发:由Fourier 积分的单数形式和三角形式都可以解此题,请读者试用三角形式解.解:1)函数()2221,10,1t t f t t ⎧-≤⎪=⎨>⎪⎩为连续的偶函数,其Fourier 变换为122330sin 2cos 2sin sin 4(sin cos )2t t t t t t ωωωωωωωωωωωω⎡⎤⎛⎫-=--+=⎢⎥ ⎪⎝⎭⎣⎦(偶函数)f(t)的Fourier 积分为2)所给函数为连续函数,其Fourier 变换为()224252j j 1121(2)j 1(2)j 256ωωωωωω⎡⎤--⎛⎫⎣⎦=+=⎪-+-+--+⎝⎭(实部为偶函数,虚数为奇函数) f (t)的Fourier 变换为这里用到奇偶函数的积分性质.3)所给函数有间断点1,0,1且f(t)= f(t)是奇函数,其Fourier 变换为12j(cos 1)2j 1sin d 0t t ωωω-=-⋅=⎰(奇函数)f(t)的Fourier 积分为 其中t ≠1,0,1(在间断点0t 处,右边f(t)应以()()00002f t f t ++-取代).3.求下列函数的Fourier 变换,并推证下列积分结果: 1)()e (0),t f t ββ-=>证明:22cos πd e ;02tt βωωβωβ-+∞=+⎰2)()e cos tf t t -=,证明:242πcos d e cos ;042tt t ωωωω-+∞+=+⎰ 3)sin ,π()0,πt t f t t ⎧≤⎪=⎨>⎪⎩,证明:2πsin ,πsin πsin 2d 010,πt t t t ωωωω⎧≤+∞⎪=⎨-⎪>⎩⎰ 证明:1)函数()e t f t β-=为连续的偶函数,其Fourier 变换为再由Fourier 变换得 即2)函数()e cos t f t t -=为连续的偶函数,其Fourier 变换为 再由Fourier 变换公式得 即242πcos d e cos 042tt t ωωωω-+∞+=+⎰ 3)给出的函数为奇函数,其Fourier 变换为 故4.求函数()()e 0,0t f t t ββ-=>≥的Fourier 正弦积分表达式和Fourier 余弦积分表达式.解:根据Fourier 正弦积分公式,并用分部积分法,有 根据Fourier 余弦积分公式,用分部积分法,有121.求矩形脉冲函数,0()0,A t f t τ⎧≤≤⎪=⎨⎪⎩其他的Fourier 变换.解:2.设()F ω是函数()f t 的Fourier 变换,证明()F ω与()f t 有相同的奇偶性.证明:()F ω与()f t 是一个Fourier 变换对,即()()j e d t F f t t ωω-+∞=-∞⎰,()()j 1e d 2πtf t F ωωω+∞=-∞⎰ 如果()F ω为奇函数,即()()F F ωω-=-,则(令u ω-=)()j 1e d 2πutF u u -∞=+∞⎰ (换积分变量u 为ω)()()j 1e d 2πt F f t ωωω+∞=-=--∞⎰所以()f t 亦为奇函数.如果()f t 为奇函数,即()()f t f t -=-,则(令t u -=)()j e d u f u u ω--∞=+∞⎰(换积分变量u 为t )()()j e d t f t t F ωω-+∞=-=--∞⎰ 所以()F ω亦为奇函数.同理可证()f t 与()F ω同为偶函数.4.求函数()()e 0t f t t -=≥的Fourier 正弦变换,并推证 解:由Fourier 正弦变换公式,有 由Fourier 正弦逆变换公式,有 由此,那时0t α=>,可得5.设()()f t F ω⎡⎤=⎣⎦F ,试证明:1)()f t 为实值函数的充要条件是()()F F ωω-=; 2)()f t 为虚值函数的充要条件是()()F F ωω-=-. 证明: 在一般情况下,记()()()r i f t f t f t =+j 其中()r f t 和()i f t 均为t 的实值函数,且辨别为()f t 的实部与虚部. 因此其中()()()Re cos sin d r i F f t t f t t t ωωω+∞⎡⎤⎡⎤=+⎣⎦⎣⎦-∞⎰, ()a 1)若()f t 为t 的实值函数,即()()(),0r i f t t f f t ==.此时,()a 式和()b 式辨别为所以反之,若已知()()F F ωω-=,则有此即标明()F ω的实部是关于ω的偶函数;()F ω的虚部是关于ω的奇函数.因此,肯定有亦即标明()()r f t f t =为t 的实值函数.从而结论1)获证.2)若()f t 为t 的虚值函数,即()()()j ,0i r f t f f t t ==.此时,()a 式和()b 式辨别为所以反之,若已知()()F F ωω-=-,则有此即标明()F ω的实部是关于ω的奇函数;()F ω的虚部是关于ω的偶函数.因此,肯定有()()()sin d j cos d i iF f t t t f t t t ωωω+∞+∞==+-∞-∞⎰⎰,亦即标明()()j i f t f t =为t 的虚值函数.从而结论2)获证.6.已知某函数的Fourier 变换sin ()F ωωω=,求该函数()f t .解:sin ()F ωωω=为连续的偶函数,由公式有但由于那时0a > 那时0a <那时0a =,sin d 0,0a ωωω+∞=⎰所以得()11211401t f t t t ⎧<⎪⎪⎪==⎨⎪⎪>⎪⎩,,,7.已知某函数的Fourier 变换为()()()00πδδF ωωωωω⎡⎤=++-⎣⎦,求该函数()f t .解:由函数()()()00δd t t g t t g t -=,易知8.求符号函数(又称正负号函数)()1,0sgn 1,0t t t -<⎧=⎨>⎩的Fourier 变换.解:容易看出()()()sgn t u t u t =--,而1[()]()πδ().j u t F ωωω=-+F 9.求函数()()()1δδδδ222a a t a t a t f t t ⎡⎤⎛⎫⎛⎫=++-+++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的Fourier 变换.解 :cos cos 2a a ωω=+.10 .求函数()cos sin t f t t =的Fourier 变换. 解: 已知由()1cos sin sin 22f t t t t ==有()()()πjδ2δ22f t ωω⎡⎤⎡⎤=+--⎣⎦⎣⎦F 11.求函数()3sin f t t =的Fourier 变换.解:已知()0j 0e 2πδtωωω⎡⎤=-⎣⎦F ,由即得12.求函数()πsin 53t t f ⎛⎫=+⎪⎝⎭的Fourier 变换.解: 由于故()()()()()πjδ5δ5δ5δ522f t ωωωω⎤⎡⎤⎡⎤=+--+++-⎥⎣⎦⎣⎦⎣⎦F .14.证明:若()()j e t F ϕω⎡⎤=⎣⎦F,其中()t ϕ为一实数,则其中()F ω-为()F ω的共轭函数.证明:因为()()j j ee d t t F t ϕωω+∞--∞=⋅⎰()()()()()()j j j j 1e ee d cos e d cos 22t t t t F F t t t t ϕϕωωωωϕϕ-+∞+∞---∞-∞+⎡⎤⎡⎤+-===⎣⎦⎣⎦⎰⎰F 同理可证另一等式.17.求作如图的锯齿形波的频谱图.(图形见教科书).解 :02π,T ω=()1,00,ht t Tf t T ⎧≤≤⎪=⎨⎪⎩其他1-31.若1122()[()],()[()],F f t F f t ωω== F F ,αβ是常数,证明(线性性质):阐发:根据Fourier 变换的界说很容易证明. 证明:根据Fourier 变换与逆变换的公式辨别有 6.若()[()]F f t ω= F,证明(翻转性质):()[()]F f t ω-=- F 阐发:根据Fourier 变换的界说,再进行变量代换即可证明.证明:()[()]t f t f t t ω+∞--∞-=-⎰Fj e d (令t u -=)()()u f u u ω+∞---∞=⎰j ed(换u 为t )()()t f t t ω+∞---∞=⎰j e d 9.设函数()1,10,1t f t t ⎧<⎪=⎨>⎪⎩,利用对称性质,证明:π ,1sin .0,1t t ωω⎧<⎪⎡⎤=⎨⎢⎥>⎣⎦⎪⎩F 证明:()[()]t f t f t t ω+∞--∞=⎰Fj e d 11t t ω--=⎰j e d由对称性质:()[()]f t F ω= F ,则()[()]2,F t f ω=-F π有12.利用能量积分()()2212f t t F ωω+∞+∞-∞-∞⎡⎤=⎣⎦⎰⎰d d π,求下列积分的值:1)21cos xx x+∞-∞-⎰d ; 2)42sin x x x +∞-∞⎰d ; 3)()2211x x +∞-∞+⎰d ;4)()2221x x x +∞-∞+⎰d .解:1)2222sin 1cos 2xxx x x x +∞+∞-∞-∞-=⎰⎰d d(令2xt =)2sin t t t +∞-∞⎛⎫= ⎪⎝⎭⎰d 2)()22422sin 1cos sin x x xx x x x+∞+∞-∞-∞-=⎰⎰d d 3)()22221111x t t x +∞+∞-∞-∞⎛⎫= ⎪+⎝⎭+⎰⎰d d 221121t ω+∞-∞⎡⎤=⎢⎥+⎣⎦⎰F d π,其中 从而4)()()2222221111x x x x x x +∞+∞-∞-∞+-=++⎰⎰d d ()2221111x x x x +∞+∞-∞-∞=-++⎰⎰d d 1-41.证明下列各式:2)()1f t ()()()()()23123f t f t f t f t f t ⎡⎤⎡⎤=⎣⎦⎣⎦;6)()()()()()()121212d dd;d d d f t f t f tf t f t f t t t t ⎡⎤==⎣⎦ 10)()()()d t f t u t f ττ-∞=⎰阐发:根据卷积的界说证明. 证明: 2)()()()123f t f t f t ⎡⎤⎣⎦()()()123d f f t f t ττττ+∞-∞⎡⎤=--⎣⎦⎰6)()()()()1212d d d d d f t f t f f t tt τττ+∞-∞⎡⎤⎡⎤=⋅-⎢⎥⎣⎦⎣⎦⎰()()()()1212ddd d d f f t f t f t t t τττ+∞-∞⎡⎤=⋅-=⎣⎦⎰,()()()()1212d d d d d f t f f t f t t t τττ+∞-∞⎡⎤=-⋅=⎢⎥⎣⎦⎰.10)()()()()d f t u t f u t τττ+∞-∞=-⎰()1,0,t u t t τττ⎛⎫⎧<⎪-= ⎪⎨ ⎪>⎪⎩⎝⎭()d t f ττ-∞=⎰. 2.若()()()()12e ,sin t f t u t f t tu t α-==,求()()12f t f t .注意:不克不及随意调换()1f t 和()2f t 的位置. 解:由()()1e ,0e0,0t tt f t u t t αα--⎧>⎪==⎨<⎪⎩,()()2sin ,0sin 0,0t t f t tu t t >⎧==⎨<⎩,所以 ()()()()1221f t f t f t f t =()()21d f f t τττ+∞-∞=-⎰要确定()()210f f t ττ-≠的区间,采取解不等式组的办法.因为()()210,0;0,0f t f t ττττ>≠->-≠.即必须满足00t ττ>⎧⎨->⎩, 即tττ>⎧⎨<⎩, 因此 (分部积分法)()2e sin cos e 10tt ατααττα-⎡⎤-=⎢⎥+⎣⎦ 4 .若()()()()1122,F f t F f t ωω⎡⎤⎡⎤==⎣⎦⎣⎦F F ,证明: 证明:()()()()121211d 2π2πF F F u F u u ωωω+∞-∞=⋅-⎰ 5.求下列函数的Fourier 变换: 1)()()0sin f t t u t ω=⋅; 2)()()0e sin t f t t u t βω-=⋅; 5)()()0j 0e t f t u t t ω=-;解: 1)已知()()1πδj u t ωω⎡⎤=+⎣⎦F,又()()()()()00j j 01sin e e 2jtt f t t u t u t u t ωωω-=⋅=-. 由位移性质有()()000220πδδ2j ωωωωωωω⎡⎤=--+-⎣⎦-. 2)由Fourier 变换的界说,有5)利用位移性质及()u t 的Fourier 变换,有再由象函数的位移性质,有7.已知某信号的相关函数()21e 4a R ττ-=,求它的能量谱密度()S ω,其中0a >.解 由界说知9.求函数()()()e ,0t f t u t αα-=>的能量谱密度. 解: 因为()()e ,0e 0,0t tt f t u t t αα--⎧>⎪==⎨<⎪⎩, 那时0τ>,()()0f t f t τ+≠的区间为()0,+∞,所以 那时0τ<,()()0f t f t τ+≠的区间为(),τ-+∞,所以 因此,()1e 2R αττα-=,现在可以求得()f t 的能量谱密度,即1-51.求微分方程()()(),()x t x t t t δ'+=-∞<<+∞的解. 阐发:求解微分、积分方程的步调:1)对微分、积分方程取Fourier 变换得象函数的代数方程;2)解代数方程得象函数;3)取Fourier 逆变换得象原函数(方程的解). 解:设()(),x t X ω⎡⎤=⎣⎦F 对方程两边取Fourier 变换,得 即其逆变换为()0,0.e ,0tt x t t -⎧<⎪=⎨≥⎪⎩ 4.求解下列积分方程:1)()()()222210;y a b t b t aτττ+∞-∞=<<+-+⎰d 2)()222t t y τττ+∞----∞=⎰e d πe.解:1)利用卷积定理可以求解此类积分方程.显然,方程的左端是未知函数()y t 与221t a +的卷积,即()221y t t a +.设()(),y t Y ω⎡⎤=⎣⎦F 对方程两边取Fourier 变换,有即 易知:220cos 2tt βωωβωβ+∞-=+⎰πd e ,有即所以()()22b b a a a b Y b aωωωω----==πee πe由上可知222201cos π2d e a t t t a t a a ωω+∞-⎡⎤=⎢⎦=⎥++⎣⎰F ,()()22--a b a b t b a =⎡⎤+⎣⎦π.2)设()(),y t Y ω⎡⎤=⎣⎦F 对方程两边取Fourier 变换,同理可得利用钟形脉冲函数的Fourier 变换224e eπt A A ωβββ--⎡⎤=⎣⎦F 及由Fourier 变换的界说可求得:222e t βββω-⎡⎤=⎣⎦+F ,从而即 从而()()222-1-122y t ωωω--⎡⎤⎡⎤=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦πe πj e F F, 其中,记()22ef t ω-⎡⎤=⎣⎦F ,则()22t f t -=,上式中第二项可利用微分性质()()()()2222f t f t ωωω-''⎡⎤⎡⎤==⎣⎦⎣⎦F F j j e ,则因此()22222t t y t --=-π22221t t -⎫=-⎪⎭e .5.求下列微分方程的解()x t :其中()(),f t h t 为已知函数,,,a b c 均为已知常数.解:设()()()()()(),,.f t F h t H x t X ωωω⎡⎤⎡⎤⎡⎤===⎣⎦⎣⎦⎣⎦F F F 对方程两边取Fourier 变换,可得 即 从而2-11.求下列函数的Laplace 变换,并给出其收敛域,再用查表的办法来验证结果.1)()sin 2tf t =.阐发:用Laplace 变换的界说解题. 解:j j 22001sin sin d d 222j e e e st s t s t t t t t ⎛⎫⎛⎫+∞+∞--+- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎡⎤==+ ⎪⎢⎥⎣⎦⎝⎭-⎰⎰L()21112Re()0j j 2j 4122s s s s ⎡⎤⎢⎥=-=⎢⎥+⎢⎥-+⎣⎦>.2)()2e t f t -=.解:()()d d Re()e e ee t t st s t t t s s >-22220012+∞+∞----+⎡⎤===⎣⎦+⎰⎰L . 3)()2f t t =. 解:2220000112e d d(e )2e d e st stst st t t t t s s t tt -+∞+∞+∞--+∞-⎡⎤⎡⎤==-=--⎣⎦⎢⎥⎣⎦⎰⎰⎰L ∣()022300222d(e )e e d Re()0st st st t t t s s s s+∞+∞--+∞-⎡⎤=-=--=⎢⎥⎣⎦⎰⎰∣ >.4)()sin cos f t t t =. 解:[]0sin cos sin cos e d st t t t t t +∞-=⎰L22121244s s =⋅=++. 7)()2cos f t t =. 解 :22001cos 2cos cos e d e d 2ststt t t t t +∞+∞--+⎡⎤==⎣⎦⎰⎰L()2211112242j 2j 4s s s s s s ⎡⎤+=++=⎢⎥-++⎣⎦. 2.求下列函数的Laplace 变换: 1)()3,021,2 4.0,4t f t t t ⎧≤<⎪=-≤<⎨⎪≥⎩解: ()()24002d 3d d e e e stststf t f t t t t +∞---⎡⎤==-⎣⎦⎰⎰⎰L2)()π3,2.πcos ,2t f t t t ⎧<⎪⎪=⎨⎪>⎪⎩解:()()π2π02e d 3e d cos e d stst stf t f t t t t t +∞+∞---⎡⎤==+⎣⎦⎰⎰⎰L()()()()ππj j πππ222222313111e e Re()02j j 1e e e s s s ss s s s s s s -+----⎛⎫⎛⎫⎛⎫ ⎪=-+-=--> ⎪ ⎪ ⎪+-+⎝⎭⎪⎝⎭⎝⎭3) ()()2e 5δt f t t =+解:()()()()220005δe d d 5δe d e et s tst st f t t t t t t +∞+∞+∞---⎡⎤⎡⎤=+=+⎣⎦⎣⎦⎰⎰⎰L()0115e 5Re()222st t s s s -==+=+>--∣. 4)()()()cos δsin f t t t t u t =⋅-⋅ 解:()()()∣∣∣j j j 000011cos e e d 12j 2j j j e e ees t j s tttststt t t s s --++∞+∞+∞---=⎡⎤⎢⎥=--=-+-+⎢⎥⎣⎦⎰()222111111Re()2j j j 11s s s s s s⎛⎫=---=-= ⎪+-++⎝⎭>0. 2-21.求下列函数的Laplace 变换式: 1)()232f t t t =++.解:由[]2132!1232132mm m t s ss s s t t +⎡⎤⎡⎤==++=++⎣⎦⎣⎦及有L L L . 2)()1e t f t t =-.解 :[]()()1111,e e t tt t t s ss s --⎡⎤⎡⎤===-⎣⎦⎣⎦222+1-1L L,L 1-.3)()()21e t f t t =-. 解:5)()cos f t t at =. 解: 由微分性质有: 6) ()5sin23cos2f t t t =- 解:已知[][]2222sin ,cos st t s s ωωωωω==++L L ,则 8)()4e cos4t f t t -=.解: 由[]2cos 416t s +s=L 及位移性质有 42cos 4416e ts t s -⎡⎤=⎣⎦++4(+)L . 3.若()()f t F s ⎡⎤=⎣⎦L ,证明(象函数的微分性质):特别地,()()tf t F s '⎡⎤=-⎣⎦L ,或()()11f t F s t-'⎡⎤=-⎣⎦L ,并利用此结论计算下列各式:1)()3e sin2t f t t t -=,求()F s . 解:()()()322sin 224ett s s ωωω-===++22+3+3L,2)()30e sin 2d tt f t t t t -=⎰,求()F s .解:()0332112sin 2d sin 234e e t tt t t t s ss --⎡⎤⎡⎤==⋅⎢⎥⎣⎦⎣⎦++⎰L L ,3)()1ln1s F s s +=-,求()f t . 解:()1ln,1s F s s +=-()(),F s f t ⎡⎤=⎣⎦令-1L故 ()()-12sinh t F s f t t⎡⎤==⎣⎦L . 4.若()()f t F s ⎡⎤=⎣⎦L ,证明(象函数的积分性质):()()d s f t F s s t ∞⎡⎤=⎢⎥⎣⎦⎰L ,或()()1d s f t t F s s ∞-⎡⎤=⎢⎥⎣⎦⎰L并利用此结论计算下列各式:1)()sin ktf t t=,求()F s . 解: ()2222sin kkkt s s kωωω===++L , 2)()3e sin 2t t f t t-=,求()F s .解:()()322e sin 234t t s -=++L ,2-31.设()()12,f t f t 均满足Laplace 变换存在定理的条件(若它们的增长指数均为c ),且()()()()1212,f t f t F s F s ⎡⎤⎡⎤==⎣⎦⎣⎦L L ,则乘积()()12f t f t ⋅的Laplace 变换一定存在,且 其中(),Re .c s c ββ>>+证明: 已知()()12,f t f t 均满足Laplace 变换存在定理的条件且其增长指数均为c ,由Laplace 变换存在定理知()()12f t f t ⋅也满足Laplace 变换存在定理的条件且标明()()12f t f t ⋅的增长指数为2c .因此()()12f t f t ⋅的Laplace 变换在半平面()Re 2s c >上一定存在,且右端积分在()()Re s c c ββ≥+>上绝对且一致收敛,并且在()Re 2s c >的半平面内,()F s 为解析函数.根据()()11F f t s ⎡⎤=⎣⎦L ,则()1f t 的Laplace 反演积分公式为 从而(交换积分次第)()()()1j 0j 2e 12πj d d s q t F q f t t q ββ++∞-∞∞--⎡⎤=⎢⎥⎣⎦⎰⎰ 2.求下列函数的Laplace 逆变换(象原函数);并用另一种办法加以验证.1)()221F s s a =+. 2)()()()sF s s a s b =--. 3)()()()2s cF s s a s b +=++. 10)()()()2214sF s s s =++.解: 1)12211sin at s a a-⎡⎤=⎢⎥+⎣⎦L . 2)()()1sa b s a s b a b s a s b ⎛⎫=- ⎪-----⎝⎭, 3)()()()()()222111s cc a b c F s s a s b b a s a s b b a s b +--⎡⎤==-+⋅⎢⎥++-⎣⎦++-+,故10)由()()()2222131414ss s s s s F s s ⎛⎫=⎪++++⎝⎭=-,有 ()()()11cos cos 23f t F s t t -⎡⎤==-⎣⎦L.3.求下列函数的Laplace 逆变换: 1)()()2214F s s=+.6)()221ln s F s s -=.13)()221e sF s s-+=.解 : 1)用留数计算法,由于122j,2j s s ==-均为()F s 的二级极点, 所以6)令()()()22212ln ,ln 1s F s F s s s s -'==-,()()()()112e e 211t t F s tf t s s s-'=+-=+-=-+-L L , ()()21212ln 1cosh s f t t s t -⎛⎫-==- ⎪⎝⎭L. 13)2211122221e 1e s s ss s s -----⎡⎤⎡⎤⎡⎤+=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦LLL ()()()21,222,02t t t t u t t t ⎧->⎪=+--=⎨≤<⎪⎩.2-41.求下列卷积:3)m t n t (,m n 为正整数). 解:mt()()()0d 1C d nttnknm mk n k k n k t t t ττττττ-==⋅-=-∑⎰⎰()1!!1!m n m n t m n ++=++.注:本小题可先用卷积定理求出m t n t 的Laplace 变换,再由Laplace 逆变换求出卷积6)sin kt ()sin 0kt k ≠. 解:sin kt ()()001sin sin sin d cos cos 2d 2ttkt k k t kt k kt τττττ⎡⎤=-=---⎣⎦⎰⎰ ()0sin 211sin cos cos 2422tt k ktt kt t kt kkτ-=-+=-+. 7) t sinh t解 :t sinh sinh t t =t ()0sinh d tt τττ=⋅-⎰()()()000111d(e )d(e )2e e sinh 2220t t t t t t t t t ττττττ---⎡⎤=-+-=-++-=-⎢⎥⎣⎦⎰⎰ 9)()u t a -()()0f t a ≥ .解:()u t a -()()()()00,d d ,tt a t a f t u a f t f t t a τττττ⎧<⎪=-⋅-=⎨-≥⎪⎩⎰⎰.10)()δt a -()()0f t a ≥. 解: 当t a <,()δt a -()0f t =. 当t a ≥,()()()()δd aa f t f t f t a τττττ+∞-∞==-⋅-=-=-⎰.2.设()()f t F s ⎡⎤=⎣⎦L ,利用卷积定理,证明:()()0d t F s f t t s⎡⎤=⎢⎥⎣⎦⎰L 证明:()()()()()1f t u t f t u t F s s⎡⎤⎡⎤⎡⎤=⋅=⋅⎣⎦⎣⎦⎣⎦LL L , ()()()()()()000d d d t t tf t u t u f t f t f t t τττττ⎡⎤⎡⎤⎡⎤⎡⎤=⋅-=-=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎰⎰⎰L L L L 3.利用卷积定理,证明:()2221sin 2s a at a s t -⎡⎤⎢⎥=⎢⎥+⎣⎦L. 证明 :()()22222221ss F s s a s a sa==⋅+++,由有251.求下列常系数微分方程的解: 1)()2e ,00t y y y '-==;8)()()()331,0000y y y y y y y '''''''''+++====; 12)()()()()()420,0000,01y y y y y y y ''''''''++=====; 16)()π10sin 2,00,12y y t y y ⎛⎫''+===⎪⎝⎭。

Fourier变换

Fourier变换
例6. 习题二.3(2).利用Euler公式.
8.求 .
解: , .
11. .
解:


习题三.11(4). , .
解:

例7. 习题四.5.
(4) .
(2)据 例1, ,故

补充两题:
例8.求 .
解:原式

例9.求 .
解:利用位移性质,原式

课堂练习:
求Fourier变换:
1. ;2. .
§1.5 Fourier变换的应用
,ቤተ መጻሕፍቲ ባይዱ.
在频谱分析中,称 为 的频谱函数,模 称为 的(振幅)频谱.其图形称为频谱图.这是连续频谱图.
频谱 是偶函数:
= ,
为偶函数.
例1.作单个矩形脉冲函数的频谱图.
解:频谱函数
,E
频谱 , . o t
频谱图:
0
例2.作单位脉冲函数 的频谱图.
解:频谱函数: ,频谱: , .
频谱图:
11
oto
§1.3 Fourier变换的性质

利用Euler公式,转化成复数形式: , ,
.(1)记
.可合写成: .
代入(1)得: ——Fourier级数的复数形式.
,(2).
非周期函数的展开: 设 不是周期函数, .作周期 的函数:


,(3).称为Fourier积分公式.
它成立的条件如下.
Fourier积分定理.若 在 上满足: 在任一有限区间上满足Dirichlet条件; 收敛,即 绝对可积. 则在Cauchy主值意义下,广义积分(3)在连续点t处成立.
称 为 的Fourier正弦逆变换式.

积分变换(Fourier)课件与习题

积分变换(Fourier)课件与习题

的工程中使用的周期函数都可以用一系列的三角函数的
线性组合来逼近.---- Fourier级数
方波
4个正弦波的逼近
100个正弦波的逼近
4
研究周期函数实际上只须研究其中的一个周 期内的情况即可, 通常研究在闭区间[T/2,T/2]内 函数变化的情况.
T T fT (t )为T 周期函数,在 , 上满足 2 2 Dirichlet条件: fT (t )连续或仅有有限个第一类间断点; fT (t )仅有有限个极值点 则fT (t )可展开为Fourier级数,且在连续点t处成立: a0 fT (t ) an cos nt bn sin nt 2 n1

18
一般地, 对于周期T
1 T2 j n t cn T fT (t )e dt T 2 1 1 j n t e dt T 1 1 1 1 j n t j n j n e e e Tj n Tj n 1 2 sin n 2 sinc( n ) (n 0,1,2, ) T n T
cos nt
e
int
e 2
int
, sin nt
e
int
e 2i
int
6
级数化为: a0 e int e int e int e int an bn 2 n 1 2 2i a0 a n ibn int a n ibn int e e 2 n 1 2 2
1 从 而f (t ) f ( )cos (t )d d 2 1 可得 f (t ) f ( )cos (t )d d , 0 这就是f (t )的Fourier积分公式的三角形式。

积分变换课后答案

积分变换课后答案

1-11. 试证:若()f t 满足Fourier 积分定理中的条件,则有()()()d d 0cos sin f t a t b t ωωωωωω+∞+∞=+⎰⎰其中()()()()d d ππ11cos ,sin .a f b f ωτωττωτωττ+∞+∞-∞-∞==⎰⎰分析:由Fourier 积分的复数形式和三角形式都可以证明此题,请读者试用三角形式证明.证明:利用Fourier 积分的复数形式,有()()j j e e d π12t tf t f ωωτω+∞+∞--∞-∞⎡⎤=⎢⎥⎣⎦⎰⎰ ()()j j d e d π11cos sin 2t f ωτωτωττω+∞+∞-∞-∞⎡⎤=-⎢⎥⎣⎦⎰⎰()()()j j d 1cos sin 2a b t t ωωωωω+∞-∞⎡⎤=-+⎣⎦⎰ 由于()()()(),,a a b b ωωωω=-=--所以()()()d d 11cos sin 22f t a t b t ωωωωωω+∞+∞-∞-∞=+⎰⎰ ()()d d 0cos sin a t b t ωωωωωω+∞+∞=+⎰⎰2.求下列函数的Fourier 积分:1)()2221,10,1t t f t t ⎧-≤⎪=⎨>⎪⎩; 2) ()0,0;e sin 2,0tt f t t t -⎧<⎪=⎨≥⎪⎩ 3) ()0,11,101,010,1t t f t t t ⎧-∞<<-⎪--<<⎪=⎨<<⎪⎪<<+∞⎩分析:由Fourier 积分的复数形式和三角形式都可以解此题,请读者试用三角形式解.解:1)函数()2221,10,1t t f t t ⎧-≤⎪=⎨>⎪⎩为连续的偶函数,其Fourier 变换为 j 21()[()]()e d 2()cos d 2(1)cos d 00t F f t f t t f t t t t t t ωωωω-+∞+∞⎧====-⎨-∞⎩⎰⎰F122330sin 2cos 2sin sin 4(sin cos )2t t t t t t ωωωωωωωωωωωω⎡⎤⎛⎫-=--+=⎢⎥ ⎪⎝⎭⎣⎦(偶函数)f (t )的Fourier 积分为j 311()()e d ()cos d 02ππ4(sin cos )cos d 0πtf t F F t t ωωωωωωωωωωωω+∞+∞==-∞+∞-=⎰⎰⎰ 2)所给函数为连续函数,其Fourier 变换为()[]j j ω()()e d e sin 2e d 0tt t F f t f t t t t ωωτ---+∞===-∞⎰⎰F2j 2j j (12j j )(12j j )e e 1e e d [e e ]d 02j 2j 0t t t t t t t t ωωω----+--+++∞+∞-=⋅⋅=-⎰⎰ (12j j )(12j j )01e e 2j 12j j 12j j t t ωωωω+∞-+--++⎡⎤=+⎢⎥-+-++⎣⎦ ()224252j j 1121(2)j 1(2)j 256ωωωωωω⎡⎤--⎛⎫⎣⎦=+=⎪-+-+--+⎝⎭(实部为偶函数,虚数为奇函数)f (t )的Fourier 变换为()j 1()e d 2πt f t F ωωω+∞=-∞⎰ ()()224252j 1cos jsin d 2π256t t ωωωωωωω⎡⎤--+∞⎣⎦=⋅--∞-+⎰ ()()()2224242245cos 2sin 5sin 2cos 11d d π256π2565cos 2sin 2d π0256t t t t t t ωωωωωωωωωωωωωωωωωωωωω-+--+∞+∞=+-∞-+-∞-+-++∞=-+⎰⎰⎰这里用到奇偶函数的积分性质.3)所给函数有间断点-1,0,1且f (-t )= - f (t )是奇函数,其Fourier 变换为()[]j ()()e d 2j ()sin d 0tF f t f t t f t t t ωωω-+∞+∞===--∞⎰⎰F12j(cos 1)2j 1sin d 0t t ωωω-=-⋅=⎰(奇函数)f (t )的Fourier 积分为()()j j ()e d sin d π0π021cos sin d π0tf t F F t t ωωωωωωωωωω+∞+∞=+∞-=⎰⎰⎰1=2其中t ≠-1,0,1(在间断点0t 处,右边f (t )应以()()00002f t f t ++-代替).3.求下列函数的Fourier 变换,并推证下列积分结果: 1)()e(0),tf t ββ-=>证明:22cos πd e ;02tt βωωβωβ-+∞=+⎰ 2)()e cos tf t t -=,证明:242πcos d e cos ;042tt t ωωωω-+∞+=+⎰ 3)sin ,π()0,πt t f t t ⎧≤⎪=⎨>⎪⎩,证明:2πsin ,πsin πsin 2d 010,πt t t t ωωωω⎧≤+∞⎪=⎨-⎪>⎩⎰ 证明:1)函数()e t f t β-=为连续的偶函数,其Fourier 变换为()()j e e d 2e cos d 0t t tF f t t t t βωβωω---+∞+∞⎡⎤===⎣⎦-∞⎰⎰F()2222e cos sin 22t t t t t ββωωωββωβω-=+∞=-+==++ 再由Fourier 变换得()()j 22112e d cos d 2ππ0tf t F t t ωβωωωβω+∞+∞==-∞+⎰⎰ 即 22cos πd e 02tt βωωβωβ-+∞=+⎰2)函数()e cos t f t t -=为连续的偶函数,其Fourier 变换为()j j ()e d e cos e d t t t F f t t t t ωωω---+∞+∞==-∞-∞⎰⎰j j j e e e e d 2t t t tt ω---+∞+-∞⎰ (1j j )(1j j )(1j j )(1j j )001e d e d e d e d 200tt t t t t t t ωωωω-+----+--+++∞+∞⎧⎫=+++⎨⎬-∞-∞⎩⎭⎰⎰⎰⎰ (1j j )(1j j )(1j j )(1j j )001e e e e 21j j 1j j 1j j 01j j 0t t t t ωωωωωωωω+--++-+++-⎧⎫+∞+∞=+++⎨⎬+--∞---∞-+-+-⎩⎭2411111221j j 1j j 1j j 1j j 4ωωωωωω⎧⎫-+=+++=⎨⎬+----+-+-+⎩⎭ 再由Fourier 变换公式得()()2j 41112()e d cos d cos d 2ππ0π04tf t F F t t ωωωωωωωωωω+∞+∞+∞+===-∞+⎰⎰⎰ 即 242πcos d e cos 042tt t ωωωω-+∞+=+⎰ 3)给出的函数为奇函数,其Fourier 变换为()()()ππj j ππed sin ed sin cos jsin d ttF f t t t t t t t t ωωωωω+∞---∞--===-⎰⎰⎰()()ππ002j sin sin d j cos 1cos 1d t t t t t t ωωω⎡⎤=-=+--⎣⎦⎰⎰ ()()2sin 1πsin 1πsin sin 2jsin j j 1010111t t ωωωπωπωπωωωωω⎛⎫+---⎛⎫=-=-= ⎪⎪+-+--⎝⎭⎝⎭ ()()()-1j 2112jsin πe d cos jsin d 2π2π1tF F t t ωωωωωωωωω+∞+∞-∞-∞⎡⎤==+⎣⎦-⎰⎰F20sin ,π2sin πsin d π10,πt t t t ωωωω+∞⎧≤⎪=-=⎨->⎪⎩⎰ 故2πsin ,πsin πsin 2d 10,πt t t t ωωωω+∞⎧≤⎪=⎨-⎪>⎩⎰4.求函数()()e 0,0t f t t ββ-=>≥的Fourier 正弦积分表达式和Fourier 余弦积分表达式.解:根据Fourier 正弦积分公式,并用分部积分法,有()()002sin d sin d πf t t f ωωτττω+∞+∞⎡⎤=⎢⎥⎣⎦⎰⎰002sin d sin d πe t t βτωωτω+∞+-∞⎡⎤=⎢⎥⎣⎦⎰⎰ ()220sin cos 2sin d π0e t t βτβωωωωωβτω+-∞⎡⎤-+∞=⎢⎥+⎣⎦⎰ 2202sin d .πt ωωωβω+∞=+⎰ 根据Fourier 余弦积分公式,用分部积分法,有()()002cos d cos d πf t t f ωωτττω+∞+∞⎡⎤=⎢⎥⎣⎦⎰⎰ 002cos d cos d πe tt βτωωτω+∞+-∞⎡⎤=⎢⎥⎣⎦⎰⎰ ()220sin cos 2cos d π0e t t βτβωωωωωβτω+-∞⎡⎤-+∞=⎢⎥+⎣⎦⎰ 2202cos d .πt ωωωβω+∞=+⎰ 1-21.求矩形脉冲函数,0()0,A t f t τ⎧≤≤⎪=⎨⎪⎩其他的Fourier 变换.解:[]()j j j j 01e e()()()e d e d 0j j t t t t A F f t f t t A t A τωωωωτωωω-----+∞⎡⎤=====⎢⎥-∞-⎣⎦⎰⎰F 2.设()F ω是函数()f t 的Fourier 变换,证明()F ω与()f t 有相同的奇偶性.证明:()F ω与()f t 是一个Fourier 变换对,即 ()()j e d t F f t t ωω-+∞=-∞⎰,()()j 1e d 2πt f t F ωωω+∞=-∞⎰ 如果()F ω为奇函数,即()()F F ωω-=-,则()()()()()()j j 11e d e d 2π2πt tf t F F ωωωωωω--+∞+∞-==---∞-∞⎰⎰—(令u ω-=)()j 1e d 2πut F u u -∞=+∞⎰ (换积分变量u 为ω)()()j 1e d 2πtF f t ωωω+∞=-=--∞⎰ 所以()f t 亦为奇函数.如果()f t 为奇函数,即()()f t f t -=-,则()()()()()j j e d e d t tF f t t f t t ωωω----+∞+∞-==---∞-∞⎰⎰ (令t u -=)()j e d u f u u ω--∞=+∞⎰ (换积分变量u 为t )()()j e d t f t t F ωω-+∞=-=--∞⎰ 所以()F ω亦为奇函数.同理可证()f t 与()F ω同为偶函数.4.求函数()()e 0t f t t -=≥的Fourier 正弦变换,并推证()20012sin πd e αωαωωαω+∞-=>+⎰解:由Fourier 正弦变换公式,有()()s s F f t ω⎡⎤=⎣⎦F ()0sin f t t t ω+∞=⎰d 0sin tt t ω+∞-=⎰e d ()2sin cos 10t t t ωωωω---+∞=+e 21ωω=+ 由Fourier 正弦逆变换公式,有()120022sin ()()sin 1ss s tf t F F t ωωωωωωωω+∞+∞-===⎡⎤⎣⎦+⎰⎰F d d ππ由此,当0t α=>时,可得()()20sin ππd e 0122f αωαωωααω+∞-==>+⎰5.设()()f t F ω⎡⎤=⎣⎦F ,试证明:1)()f t 为实值函数的充要条件是()()F F ωω-=; 2)()f t 为虚值函数的充要条件是()()F F ωω-=-.证明: 在一般情况下,记()()()r i f t f t f t =+j 其中()r f t 和()i f t 均为t 的实值函数,且分别为()f t 的实部与虚部. 因此()()()()[]j e d j cos jsin d t r i F f t t f t f t t t t ωωωω-+∞+∞⎡⎤==+-⎣⎦-∞-∞⎰⎰ ()()()()cos sin d j sin cos d ri r i f t t f t t t f t t f t t t ωωωω+∞+∞⎡⎤⎡⎤=+--⎣⎦⎣⎦-∞-∞⎰⎰ ()()Re Im F j F ωω⎡⎤⎡⎤=+⎣⎦⎣⎦ 其中()()()Re cos sin d r i F f t t f t t t ωωω+∞⎡⎤⎡⎤=+⎣⎦⎣⎦-∞⎰, ()a ()()()Im sin cos d r i F f t t f t t t ωωω+∞⎡⎤⎡⎤=--⎣⎦⎣⎦-∞⎰ ()b1)若()f t 为t 的实值函数,即()()(),0r i f t t f f t ==.此时,()a 式和()b 式分别为()()Re cos d r F f t t t ωω+∞⎡⎤=⎣⎦-∞⎰ ()()Im sin d r F f t t t ωω+∞⎡⎤=-⎣⎦-∞⎰所以()()()Re jIm F F F ωωω⎡⎤⎡⎤-=-+-⎣⎦⎣⎦()()()Re jIm F F F ωωω⎡⎤⎡⎤=-=⎣⎦⎣⎦ 反之,若已知()()F F ωω-=,则有()()()()Re jIm Re jIm F F F F ωωωω⎡⎤⎡⎤⎡⎤⎡⎤-+-=-⎣⎦⎣⎦⎣⎦⎣⎦此即表明()F ω的实部是关于ω的偶函数;()F ω的虚部是关于ω的奇函数.因此,必定有()()()cos d j sin d r rF f t t t f t t t ωωω+∞+∞=--∞-∞⎰⎰亦即表明()()r f t f t =为t 的实值函数.从而结论1)获证.2)若()f t 为t 的虚值函数,即()()()j ,0i r f t f f t t ==.此时,()a 式和()b 式分别为()()Re sin d i F f t t t ωω+∞⎡⎤=⎣⎦-∞⎰ ()()Im cos d iF f t t t ωω+∞⎡⎤=⎣⎦-∞⎰所以()()()Re jIm F F F ωωω⎡⎤⎡⎤-=-+-⎣⎦⎣⎦()()Re jIm F F ωω⎡⎤⎡⎤=-+⎣⎦⎣⎦()(){}Re jIm F F ωω⎡⎤⎡⎤=--⎣⎦⎣⎦()F ω=-反之,若已知()()F F ωω-=-,则有()()()()Re jIm Re jIm F F F F ωωωω⎡⎤⎡⎤⎡⎤⎡⎤-+-=-+⎣⎦⎣⎦⎣⎦⎣⎦此即表明()F ω的实部是关于ω的奇函数;()F ω的虚部是关于ω的偶函数.因此,必定有()()()sin d j cos d i iF f t t t f t t t ωωω+∞+∞==+-∞-∞⎰⎰, 亦即表明()()j i f t f t =为t 的虚值函数.从而结论2)获证.6.已知某函数的Fourier 变换sin ()F ωωω=,求该函数()f t .解:sin ()F ωωω=为连续的偶函数,由公式有()()j π1sin e d cos d 2π0tf t F t ωωωωωωω+∞+∞==-∞⎰⎰()()sin 1sin 111d d 2π02π0t t ωωωωωω+∞++∞-=+⎰⎰但由于当0a >时sin sin sin πd d()d 0002a a t a t t ωωωωωω+∞+∞+∞===⎰⎰⎰ 当0a <时sin sin()πd d 002a a ωωωωωω+∞+∞-=-=-⎰⎰ 当0a =时,sin d 0,0a ωωω+∞=⎰所以得 ()11211401t f t t t ⎧<⎪⎪⎪==⎨⎪⎪>⎪⎩,,,7.已知某函数的Fourier 变换为()()()00πδδF ωωωωω⎡⎤=++-⎣⎦,求该函数()f t .解:由函数()()()00δd t t g t t g t -=,易知()()()()j j j 001e d 2π11πδe d πδe d 2π2πtt t f t F ωωωωωωωωωωω+∞=-∞+∞+∞=++--∞-∞⎰⎰⎰j j 00011e e cos 22t t t ωωωωωωω=-==+=8.求符号函数(又称正负号函数)()1,0sgn 1,0t t t -<⎧=⎨>⎩的Fourier 变换.解:容易看出()()()sgn t u t u t =--,而1[()]()πδ().j u t F ωωω=-+F 9.求函数()()()1δδδδ222a a t a t a t f t t ⎡⎤⎛⎫⎛⎫=++-+++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的Fourier 变换.解 :—()()()()j 1δδδδe d 222t a a F f t t a t a t t ωωω+∞--∞⎡⎤⎛⎫⎛⎫⎡⎤==++-+++- ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦⎰F j j j j 1e e e e 222t t t t a a t a t a t t ωωωω----⎡⎤⎢⎥=+++⎢⎥=-==-=⎢⎥⎣⎦cos cos 2aa ωω=+.10 .求函数()cos sin t f t t =的Fourier 变换. 解: 已知()()000sin j πδδt ωωωωω⎡⎤=+--⎡⎤⎣⎦⎣⎦F 由()1cos sin sin 22f t t t t ==有()()()πjδ2δ22f t ωω⎡⎤⎡⎤=+--⎣⎦⎣⎦F 11.求函数()3sin f t t =的Fourier 变换.解:已知()0j 0e 2πδtωωω⎡⎤=-⎣⎦F ,由()()3j j 33j j -j 3j e e j sin e 3e 3e e 2j 8t t t t t tf t t --⎛⎫-===-+- ⎪⎝⎭即得()()()()()πjδ33δ13δ1δ34f t ωωωω⎡⎤⎡⎤=---++-+⎣⎦⎣⎦F12.求函数()πsin 53t t f ⎛⎫=+ ⎪⎝⎭的Fourier 变换.解: 由于()π1sin 5sin532f t t t t ⎛⎫=+=+ ⎪⎝⎭故()()()()()πjδ5δ5δ5δ522f t ωωωω⎤⎡⎤⎡⎤=+--+++-⎥⎣⎦⎣⎦⎣⎦F .14.证明:若()()j e t F ϕω⎡⎤=⎣⎦F ,其中()t ϕ为一实数,则 ()()()1cos 2t F F ϕωω⎡⎤⎡⎤=+-⎣⎦⎣⎦F()()()1sin 2j t F F ϕωω⎡⎤⎡⎤=--⎣⎦⎣⎦F其中()F ω-为()F ω的共轭函数.证明:因为 ()()j j ee d t t F t ϕωω+∞--∞=⋅⎰()()()j j j j ee d ee d t t tt F t t ϕϕωωω+∞+∞---∞-∞-==⋅⎰⎰()()()()()()j j j j 1e eed cose d cos 22t t tt F F t t t t ϕϕωωωωϕϕ-+∞+∞---∞-∞+⎡⎤⎡⎤+-===⎣⎦⎣⎦⎰⎰F 同理可证另一等式.17.求作如图的锯齿形波的频谱图.(图形见教科书).解 :02π,T ω=()1,00,ht t T f t T ⎧≤≤⎪=⎨⎪⎩其他()00111d d 2TTh C f t t ht t TTT ===⎰⎰()()000j j j 02011ed e d e d TTTn tn t n t n ht h C F n f t t t t t TTT Tωωωω---===⋅=⎰⎰⎰00j j 211j e e d j j 2πTn t n t Thht T n n n ωωωω--⎡⎤=⋅+=⎢⎥-⎣⎦⎰()()()()()000j j 2πδ2πδπδδ.22πn n n n h h hF n h n n n ωωωωωωω+∞+∞=-∞=-∞≠≠=+⋅-=+⋅-∑∑1-31.若1122()[()],()[()],F f t F f t ωω== F F ,αβ是常数,证明(线性性质):1212()()()()f t f t F F αβαωβω+=+⎡⎤⎣⎦F -11212()()()()F F f t f t αωβωαβ+=+⎡⎤⎣⎦F分析:根据Fourier 变换的定义很容易证明. 证明:根据Fourier 变换与逆变换的公式分别有1212()()()()tf t f t f t f t t ωαβαβ+∞--∞+=+⎡⎤⎡⎤⎣⎦⎣⎦⎰F j e d12()()tt f t t f t t ωωαβ+∞+∞---∞-∞=+⎰⎰j j ed e d12()()F F αωβω=+-112121()()()()2tF F F F ωαωβωαωβωω+∞-∞+=+⎡⎤⎡⎤⎣⎦⎣⎦⎰Fj e d π1211()()22t tF F ωωαωωβωω+∞+∞-∞-∞⎡⎤⎡⎤=+⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰j j e d e d ππ12()()f t f t αβ=+6.若()[()]F f t ω= F ,证明(翻转性质):()[()]F f t ω-=- F 分析:根据Fourier 变换的定义,再进行变量代换即可证明. 证明:()[()]t f t f t t ω+∞--∞-=-⎰F j e d (令t u -=)()()u f u u ω+∞---∞=⎰j e d(换u 为t )()()tf t t ω+∞---∞=⎰j ed()F ω=-9.设函数()1,10,1t f t t ⎧<⎪=⎨>⎪⎩,利用对称性质,证明:π ,1sin .0,1t t ωω⎧<⎪⎡⎤=⎨⎢⎥>⎣⎦⎪⎩F 证明:()[()]t f t f t t ω+∞--∞=⎰F j e d 11t t ω--=⎰j e d1cos t t ω=⎰d 1sin tt ωω=⎰d由对称性质:()[()]f t F ω= F ,则()[()]2,F t f ω=-F π有()sin [()]2t F t f t ω⎡⎤==-⎢⎥⎣⎦F F π (),1sin 0,1t f t ωωω⎧<⎪⎡⎤=-=⎨⎢⎥>⎣⎦⎪⎩F π π 12.利用能量积分()()2212f t t F ωω+∞+∞-∞-∞⎡⎤=⎣⎦⎰⎰d d π,求下列积分的值: 1)21cos xx x +∞-∞-⎰d ; 2)42sin x x x +∞-∞⎰d ;3)()2211x x +∞-∞+⎰d ;4)()2221x x x +∞-∞+⎰d .解:1)2222sin 1cos 2xxx x x x +∞+∞-∞-∞-=⎰⎰d d(令2xt =)2sin t t t +∞-∞⎛⎫= ⎪⎝⎭⎰d 21sin 2t t ω+∞-∞⎡⎤=⎢⎥⎣⎦⎰F d π 12112ω-=⎰πd π=π 2)()22422sin 1cos sin x x xx x x x+∞+∞-∞-∞-=⎰⎰d d 22sin sin cos x x x x x x x +∞+∞-∞-∞⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭⎰⎰d d 21sin 2t t t +∞-∞⎛⎫=- ⎪⎝⎭⎰πd22=πππ-=3)()22221111x t t x +∞+∞-∞-∞⎛⎫= ⎪+⎝⎭+⎰⎰d d 221121t ω+∞-∞⎡⎤=⎢⎥+⎣⎦⎰F d π,其中221111tt t t ω+∞--∞⎡⎤=⎢⎥++⎣⎦⎰F j e d 20cos 21t t t ω+∞=+⎰d 22ωω--==πe πe 从而()2221121x x ωω+∞+∞--∞-∞=+⎰⎰d πe d π2201ωω+∞-=⎰πe d π20122ω-+∞=⋅=-ππe 4)()()2222221111x x x x x x +∞+∞-∞-∞+-=++⎰⎰d d ()2221111x x x x +∞+∞-∞-∞=-++⎰⎰d d arctan 2x+∞-∞=-π2222=+-=ππππ1-41.证明下列各式: 2)()1f t ()()()()()23123f t f t f t f t f t ⎡⎤⎡⎤=⎣⎦⎣⎦;6)()()()()()()121212d dd;d d d f t f t f tf t f t f t tt t⎡⎤==⎣⎦ 10)()()()d t f t u t f ττ-∞=⎰分析:根据卷积的定义证明. 证明: 2) ()()()123f t f t f t ⎡⎤⎣⎦()()()123d f f t f t ττττ+∞-∞⎡⎤=--⎣⎦⎰()()()132d f f u f t u du τττ+∞+∞-∞-∞⎡⎤=--⎢⎥⎣⎦⎰⎰ ()()()132d d f f u f t u u τττ+∞+∞-∞-∞=--⎰⎰()()()123d d f f t u f u uτττ+∞+∞-∞-∞⎡⎤=--⎢⎥⎣⎦⎰⎰ ()()()123d f t u f t u f u u +∞-∞⎡⎤=--⎣⎦⎰()()()123f t f t f t ⎡⎤=⎣⎦6)()()()()1212d d d d d f t f t f f t tt τττ+∞-∞⎡⎤⎡⎤=⋅-⎢⎥⎣⎦⎣⎦⎰()()()()1212ddd d d f f t f t f t t t τττ+∞-∞⎡⎤=⋅-=⎣⎦⎰, ()()()()1212d d d d d f t f t f t f t t τττ+∞-∞⎡⎤⎡⎤=-⋅⎢⎥⎣⎦⎣⎦⎰ ()()()()1212d d d d d f t f f t f t t t τττ+∞-∞⎡⎤=-⋅=⎢⎥⎣⎦⎰.10) ()()()()d f t u t f u t τττ+∞-∞=-⎰()1,0,t u t t τττ⎛⎫⎧<⎪-= ⎪⎨ ⎪>⎪⎩⎝⎭()d t f ττ-∞=⎰. 2.若()()()()12e ,sin t f t u t f t tu t α-==,求()()12f t f t .注意:不能随意调换()1f t 和()2f t 的位置.解:由()()1e ,0e 0,0t tt f t u t t αα--⎧>⎪==⎨<⎪⎩,()()2sin ,0sin 0,0t t f t tu t t >⎧==⎨<⎩, 所以 ()()()()1221f t f t f t f t =()()21d f f t τττ+∞-∞=-⎰要确定()()210f f t ττ-≠的区间,采用解不等式组的方法.因为()()210,0;0,0f t f t ττττ>≠->-≠.即必须满足 00t ττ>⎧⎨->⎩, 即0t ττ>⎧⎨<⎩, 因此 ()()()()1221f t f t f t f t =()()21d f f t τττ+∞-∞=-⎰()0sin ed t t ατττ--=⎰e sin e d t t αατττ-=⎰(分部积分法)()2e sin cos e 10ttατααττα-⎡⎤-=⎢⎥+⎣⎦ ()22e sin cos 1e11tαταατταα-⎡⎤-=+⎢⎥++⎣⎦ 2sin cos e 1tααττα--+=+ 4 .若()()()()1122,F f t F f t ωω⎡⎤⎡⎤==⎣⎦⎣⎦F F ,证明:()()()()11221*2πF f t t F f ωω⎡⎤⋅=⎣⎦F证明:()()()()121211d 2π2πF F F u F u u ωωω+∞-∞=⋅-⎰ ()()j 211e d d 2πut F u f t t u ω+∞+∞--∞-∞⎡⎤=-⋅⋅⎢⎥⎣⎦⎰⎰ ()()j 211e d d 2πut F u f t t u ω+∞+∞--∞-∞⎡⎤=-⎢⎥⎣⎦⎰⎰ ()()j 211e d d 2πut F u f t u t ω+∞+∞--∞-∞⎡⎤=-⎢⎥⎣⎦⎰⎰—()()j 121e d d 2πut f t F u u t ω+∞+∞--∞-∞⎡⎤=-⎢⎥⎣⎦⎰⎰ ()()j j 121e e d d 2πst tf t F s s t ω+∞+∞--∞-∞⎡⎤=⋅⎢⎥⎣⎦⎰⎰ ()()()()j 1212e d t f t f t t f t f t ω+∞--∞⎡⎤=⋅⋅=⋅⎣⎦⎰F5.求下列函数的Fourier 变换: 1)()()0sin f t t u t ω=⋅; 2)()()0e sin t f t t u t βω-=⋅; 5)()()0j 0e t f t u t t ω=-;解: 1)已知()()1πδj u t ωω⎡⎤=+⎣⎦F ,又 ()()()()()00j j 01sin e e 2jtt f t t u t u t u t ωωω-=⋅=-. 由位移性质有()()()()()0000111πδπδ2j j j f t ωωωωωωωω⎛⎫⎡⎤=-+-+- ⎪⎣⎦ ⎪-+⎝⎭F()()000220πδδ2j ωωωωωωω⎡⎤=--+-⎣⎦-. 2)由Fourier 变换的定义,有()()j 00e sin e sin e d t t tt u t t u t t ββωωω+∞----∞⎡⎤⋅=⋅⎣⎦⎰F ()j 00sin ed tt t βωω+∞-+=⎰()()()j 000220ej sin cos 0j tt t βωβωωωωβωω-+⎡⎤-+-+∞⎣⎦=++()22j ωβωω=++5)利用位移性质及()u t 的Fourier 变换,有()()0j 0e t u t t u t ω-⎡⎤⎡⎤-=⎣⎦⎣⎦F F ()0j 1e πδj t ωωω-⎛⎫=+⎪⎝⎭再由象函数的位移性质,有()()()()000j j 0001e e πδj t tu t t ωωωωωωω--⎡⎤⎡⎤-=+-⎢⎥⎣⎦-⎢⎥⎣⎦F 7.已知某信号的相关函数()21e 4a R ττ-=,求它的能量谱密度()S ω,其中0a >.解 由定义知()()j e d S R ωτωττ+∞--∞=⎰2j 1e e d 4a τωττ+∞---∞=⎰ 02j 2j 011e e d e e d 44a a τωττωτττ+∞----∞=+⎰⎰ ()()()2j 2j 001e 1e 42j 42j a a a a ωτωτωω--++∞=+--∞-+2211142j 2j 4aa a a ωωω⎛⎫=+= ⎪-++⎝⎭ 9.求函数()()()e ,0t f t u t αα-=>的能量谱密度. 解: 因为()()e ,0e0,0t tt f t u t t αα--⎧>⎪==⎨<⎪⎩,()()()()e,e0,t t t f t u t t ατατττττ-+-+⎧>-⎪+=+=⎨<-⎪⎩当0τ>时,()()0f t f t τ+≠的区间为()0,+∞,所以()()()()d e ed t t R f t f t t t αταττ+∞+∞-+--∞=+=⎰⎰22011eed ee e 22tt t αταατααταα+∞-----+∞===--⎰当0τ<时,()()0f t f t τ+≠的区间为(),τ-+∞,所以()()()d R f t f t t ττ+∞-∞=+⎰()e ed t t t ατατ+∞-+--=⎰2eed tt ατατ+∞---=⎰21e e2t ατατα--+∞-=-21e e 2ατατα-=1e 2ατα= 因此,()1e2R αττα-=,现在可以求得()f t 的能量谱密度,即 ()()j ed S R ωτωττ+∞--∞=⎰j 1e e d 2ατωττα+∞---∞=⎰()()0j j 01e d e d 2αωταωτττα+∞--+-∞⎡⎤=+⎢⎥⎣⎦⎰⎰ ()()()j j 0111e e 2j j 0αωταωτααωαω--+⎡⎤+∞=+⎢⎥--∞-+⎣⎦1112j j ααωαω⎡⎤=+⎢⎥-+⎣⎦221αω=+ 1-51.求微分方程()()(),()x t x t t t δ'+=-∞<<+∞的解. 分析:求解微分、积分方程的步骤:1)对微分、积分方程取Fourier 变换得象函数的代数方程; 2)解代数方程得象函数;3)取Fourier 逆变换得象原函数(方程的解).解:设()(),x t X ω⎡⎤=⎣⎦F 对方程两边取Fourier 变换,得 ()()j 1.X X ωωω+= 即()1.1X j ωω=+其逆变换为()0,0.e ,0tt x t t -⎧<⎪=⎨≥⎪⎩ 4.求解下列积分方程: 1)()()()222210;y a b t b t aτττ+∞-∞=<<+-+⎰d2)()222t t y τττ+∞----∞=⎰e d πe.解:1)利用卷积定理可以求解此类积分方程.显然,方程的左端是未知函数()y t 与221t a+的卷积,即()221y t t a+.设()(),y t Y ω⎡⎤=⎣⎦F 对方程两边取Fourier 变换,有()222211y t t a t b ⎡⎤⎡⎤=⎢⎥*+⎢⎥⎣⎦⎣+⎦F F即()222211y t t a t b ⎡⎤⎡⎤⎡⎤⋅=⎣⎦⎢+⎥⎢⎥⎣⎦⎣⎦+F F F 易知:22cos 2tt βωωβωβ+∞-=+⎰πd e ,有 ()222211t tY t t t a t bωωω+∞+∞---∞-∞⋅=++⎰⎰j j e d e d 即()222200cos cos 22t t Y t t t a t bωωω+∞+∞⋅=++⎰⎰d d 所以()()22b b a a a b Y b aωωωω----==πee πe由上可知222201cos π2d e a t t t a t a a ωω+∞-⎡⎤=⎢⎦=⎥++⎣⎰F ,()()-1b a a y t e b ω--⎥=⎡⎤⎢⎣⎦F()-1-b a a b a b b a ω--=⋅-⎡⎤⎢⎥⎣⎦F πe π()()22--a b a b t b a =⎡⎤+⎣⎦π.2)设()(),y t Y ω⎡⎤=⎣⎦F 对方程两边取Fourier 变换,同理可得()22e 2πe t t y t --⎡⎤⎡⎤=⎢⎥⎣⎦⎥⎦F F利用钟形脉冲函数的Fourier 变换224e eπt A A ωβββ--⎡⎤=⎣⎦F 及由Fourier 变换的定义可求得:222e tβββω-⎡⎤=⎣⎦+F ,从而 ()22e 2πe t t y t --⎡⎤⎡⎤⎡⎤⋅=⎢⎥⎣⎦⎣⎦⎥⎦F F F即()()2222222121Y ωωωωω--==++πe πe()22222ωωω--=-πeπj e从而()()222-1-122y t ωωω--⎡⎤⎡⎤=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦πe πj e F F , 其中,记()22ef t ω-⎡⎤=⎣⎦F ,则()222πet f t -=,上式中第二项可利用微分性质()()()()2222f t f t ωωω-''⎡⎤⎡⎤==⎣⎦⎣⎦F F j j e,则()()2222-12222t f t t ωω--⎡⎤⎛⎫''== ⎪⎢⎥ ⎪⎢⎥⎣⎦⎝⎭F πd j e e d 2222t-=πe 因此()2222222t t y t --=⋅-πeπeππ222221t t -⎛⎫=- ⎪⎭e π.5.求下列微分方程的解()x t :()()()()d ax t b x f t ch t τττ+∞-∞'+-=⎰其中()(),f t h t 为已知函数,,,a b c 均为已知常数.解:设()()()()()(),,.f t F h t H x t X ωωω⎡⎤⎡⎤⎡⎤===⎣⎦⎣⎦⎣⎦F F F 对方程两边取Fourier 变换,可得()()()()j a X bX F cH ωωωωω+= 即()()(),j cH X a bF ωωωω=+从而()()()()-1.12tcH X a bF x t ωωωωωω+∞-∞⎡⎤==⎣⎦+⎰Fj πe d j 2-11.求下列函数的Laplace 变换,并给出其收敛域,再用查表的方法来验证结果.1)()sin 2tf t =.分析:用Laplace 变换的定义解题.解: j j 22001sin sin d d 222j e e e st s t s t t t t t ⎛⎫⎛⎫+∞+∞--+- ⎪⎪⎝⎭⎝⎭⎛⎫⎡⎤==+ ⎪⎢⎥⎣⎦⎝⎭-⎰⎰L ()21112Re()0j j 2j 4122s s s s ⎡⎤⎢⎥=-=⎢⎥+⎢⎥-+⎣⎦>. 2)()2e t f t -=.解:()()d d Re()e e eett sts tt t s s >-2222012+∞+∞----+⎡⎤===⎣⎦+⎰⎰L . 3)()2f t t =. 解:2220000112e d d(e )2e d e st stst st t t t t s s t tt -+∞+∞+∞--+∞-⎡⎤⎡⎤==-=--⎣⎦⎢⎥⎣⎦⎰⎰⎰L ∣()022300222d(e )e e d Re()0st st st t t t s sss+∞+∞--+∞-⎡⎤=-=--=⎢⎥⎣⎦⎰⎰∣ >.4)()sin cos f t t t =. 解:[]0sin cos sin cos e d st t t t t t +∞-=⎰L01sin 2e d 2stt t +∞-=⎰22121244s s =⋅=++. 7)()2cos f t t =.解 :22001cos 2cos cos e d e d 2ststt t t t t +∞+∞--+⎡⎤==⎣⎦⎰⎰L ()()2j 2j 001111cos 2e d e e d 2224s t s t st t t t s s +∞+∞--+-⎡⎤=+=++⎣⎦⎰⎰ ()2211112242j 2j 4s s s s s s ⎡⎤+=++=⎢⎥-++⎣⎦. 2.求下列函数的Laplace 变换:1)()3,021,2 4.0,4t f t t t ⎧≤<⎪=-≤<⎨⎪≥⎩解: ()()24002d 3d d e e e stststf t f t t t t +∞---⎡⎤==-⎣⎦⎰⎰⎰L()∣∣24240231134.e e e e st st s ss s s----=-+=-+2)()π3,2.πcos ,2t f t t t ⎧<⎪⎪=⎨⎪>⎪⎩解:()()π2π02e d 3e d cos e d stst stf t f t t t t t +∞+∞---⎡⎤==+⎣⎦⎰⎰⎰L ()()()∣∣j j πj -j π22ππ0223e e 31e e d 122j j e e e s t s tt tsst st t s s s s --++∞+∞---⎛⎫+⎛⎫ ⎪=-+=-++ ⎪ ⎪--+⎝⎭⎝⎭⎰()()()()ππj j πππ222222313111e e Re()02j j 1e e e s s s ss s s s s s s -+----⎛⎫⎛⎫⎛⎫ ⎪=-+-=--> ⎪ ⎪ ⎪+-+⎝⎭ ⎪⎝⎭⎝⎭3) ()()2e 5δt f t t =+解:()()()()220005δe d d 5δe d e et s tst st f t t t t t t +∞+∞+∞---⎡⎤⎡⎤=+=+⎣⎦⎣⎦⎰⎰⎰L()0115e 5Re()222st t s s s -==+=+>--∣. 4)()()()cos δsin f t t t t u t =⋅-⋅ 解:()()()()()0δcos sin ed δcose d sin e d stst st f t t t u t t t t t t t t+∞+∞+∞---⎡⎤=-=-⎣⎦⎰⎰⎰L()()()∣∣∣j j j 00011cos e e d 12j 2j j j e e ees tj s tttst st t t t s s--++∞+∞+∞---=⎡⎤⎢⎥=--=-+-+⎢⎥⎣⎦⎰ ()222111111Re()2j j j 11s s s s s s ⎛⎫=---=-= ⎪+-++⎝⎭>0. 2-21.求下列函数的Laplace 变换式: 1)()232f t t t =++.解:由[]2132!1232132m m m t s s s s st t +⎡⎤⎡⎤==++=++⎣⎦⎣⎦及有L L L .2)()1e t f t t =-. 解 :[]()()1111,e e t tt t t s ss s --⎡⎤⎡⎤===-⎣⎦⎣⎦222+1-1L L,L 1-.3)()()21e t f t t =-. 解:()22-1e e 2e e t t t tt t t ⎡⎤⎡⎤=-+⎣⎦⎣⎦L L ()()()232322145.-1-1-1s s s s s s -+=-+=-1 5)()cos f t t at =. 解: 由微分性质有:[][]()2222222d d cos cos d d s s a t at at s s s a s a -⎛⎫=-=-= ⎪+⎝⎭+L L 6) ()5sin23cos2f t t t =-解:已知[][]2222sin ,cos st t s s ωωωωω==++L L ,则 []522222103sin 23cos 253444s t t s s s --=-=+++L 8)()4e cos4t f t t -=. 解: 由[]2cos 416t s +s=L 及位移性质有 42cos 4416e ts t s -⎡⎤=⎣⎦++4(+)L . 3.若()()f t F s ⎡⎤=⎣⎦L ,证明(象函数的微分性质):()()()()()1,Re nn nF s t f t s c ⎡⎤=->⎣⎦L特别地,()()tf t F s '⎡⎤=-⎣⎦L ,或()()11f t F s t-'⎡⎤=-⎣⎦L ,并利用此结论计算下列各式:1)()3e sin2t f t t t -=,求()F s . 解:()()()322sin 224ett s s ωωω-===++22+3+3L,()()()()()32222343d 2sin 2d 444e ts s t st s s s -⎡⎤⎡⎤-++⎢⎥⎣⎦⎡⎤=-=-=⎢⎥⎣⎦⎡⎤⎡⎤+⎢⎥++⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦222+3+3+3L2)()30e sin 2d tt f t t t t -=⎰,求()F s .解:()0332112sin 2d sin 234e e t t tt t t s s s --⎡⎤⎡⎤==⋅⎢⎥⎣⎦⎣⎦++⎰L L ,()()()02322222312132sin 2d 3434e t t s s t t t s s s s -'⎛⎫++ ⎪⎡⎤=-=⎢⎥ ⎪⎣⎦⎡⎤⎡⎤ ⎪++++⎣⎦⎝⎭⎣⎦⎰L3)()1ln1s F s s +=-,求()f t . 解:()1ln,1s F s s +=-()(),F s f t ⎡⎤=⎣⎦令-1L()()()()()()'211111ee ttF s tf t tf t s s s -=-=-=-=-=--+-2L L L故 ()()-12sinh tF s f t t⎡⎤==⎣⎦L. 4.若()()f t F s ⎡⎤=⎣⎦L ,证明(象函数的积分性质):()()d s f t F s s t ∞⎡⎤=⎢⎥⎣⎦⎰L ,或()()1d s f t t F s s ∞-⎡⎤=⎢⎥⎣⎦⎰L并利用此结论计算下列各式:1)()sin ktf t t=,求()F s . 解: ()2222sin kkkt s s kωωω===++L , 222sin 1d d 1s skt k s s t s k k s k ∞∞⎛⎫⎛⎫== ⎪ ⎪+⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭⎰⎰L πarctan arctan 2ss s k k∞==- 2)()3e sin 2t tf t t-=,求()F s .解:()()322e sin 234t t s -=++L ,()32e sin 22π3d arctan 2234t s t s s t s -∞⎡⎤+==-⎢⎥++⎣⎦⎰L 2-31.设()()12,f t f t 均满足Laplace 变换存在定理的条件(若它们的增长指数均为c ),且()()()()1212,f t f t F s F s ⎡⎤⎡⎤==⎣⎦⎣⎦L L ,则乘积()()12f t f t ⋅的Laplace 变换一定存在,且()()()()j 1122j 1d 2πj F q F s q q f t f t ββ+∞-∞⎡⎤=-⎣⋅⎦⎰L其中(),Re .c s c ββ>>+证明: 已知()()12,f t f t 均满足Laplace 变换存在定理的条件且其增长指数均为c ,由Laplace 变换存在定理知()()12f t f t ⋅也满足Laplace 变换存在定理的条件且()()()()1212e e ct ct f t f t f t f t M M ⋅=⋅≤⋅22e ,0ct M t =≤<+∞ 表明()()12f t f t ⋅的增长指数为2c .因此()()12f t f t ⋅的Laplace 变换()()()120e d st F sf t f t t +∞-=⎰在半平面()Re 2s c >上一定存在,且右端积分在()()Re s c c ββ≥+>上绝对且一致收敛,并且在()Re 2s c >的半平面内,()F s 为解析函数.根据()()11F f t s ⎡⎤=⎣⎦L ,则()1f t 的Laplace 反演积分公式为()()11j j 1e d 2πj qt q f F q t ββ+∞-∞=⎰ 从而()()()()12120e d stf t f t f t f t t +∞-⎡⎤⎣⋅=⎦⎰L()()j 12j e d 1e d 2πj q s t tF q q f t t ββ+∞+--∞∞⎡⎤=⎢⎥⎣⎦⎰⎰(交换积分次序)()()()1j 0j 2e 12πj d d s q t F q f t t q ββ++∞-∞∞--⎡⎤=⎢⎥⎣⎦⎰⎰ ()()j 12j 1d 2πjF q F s q q ββ+∞-∞=-⎰ 2.求下列函数的Laplace 逆变换(象原函数);并用另一种方法加以验证. 1)()221F s s a=+. 2)()()()sF s s a s b =--.3)()()()2s cF s s a s b +=++.10)()()()2214sF s ss =++.解: 1)12211sin at s a a -⎡⎤=⎢⎥+⎣⎦L. 2)()()1sa b s a s b a b s a s b ⎛⎫=- ⎪-----⎝⎭, ()()()11e e .at bt s a b s a s b a b-⎡⎤=-⎢⎥---⎣⎦L3)()()()()()222111s cc a b c F s s a s b b a s a s b b a s b +--⎡⎤==-+⋅⎢⎥++-⎣⎦++-+, 故()()()()1222e at bts c c a b c a c e t b a s a s b b a a b ---⎡⎤⎡⎤+---⎢⎥⎢⎥=++-++--⎢⎥⎢⎥⎣⎦⎣⎦L10)由()()()2222131414ss s s s s F s s ⎛⎫=⎪++++⎝⎭=-,有 ()()()11cos cos 23f t F s t t -⎡⎤==-⎣⎦L.3.求下列函数的Laplace 逆变换: 1)()()2214F s s=+.6)()221ln s F s s -=.13)()221e sF s s -+=.解 : 1)用留数计算法,由于122j,2j s s ==-均为()F s 的二级极点,所以()()()()()2112211e 2j 2j Res k s sts k F s F s s s f t --==⎡⎤⎡⎤⎡⎤⎢⎥===⎣⎦⎣⎦⎢⎥⎣-⎦+∑LL()()2222j j e e 2j 2d d lim lim d d j st s s t s s s s s →→-⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎦⎣-⎣⎦+⎥ ()()()()()()2j 22244j22j 22j e e e e 2j 2j 2j 2l j im lim s s st st st st s s t t s s s s →→-⎡⎤⎡⎤⎢⎥⎢⎥=++---++⎢⎥⎢⎣⎦⎣-⎦-⎥ 2j 2j 2j 2j 8j 8j e e e e 1625616256t t t t t t --=---+ 2j 2j 2j 2j e e 1e e sin 2cos 282162j 168t t t t t t t t --+-=-+=-6)令()()()22212ln ,ln 1s F s F s s s s -'==-, ()()()()112e e 211t t F s tf t s s s-'=+-=+-=-+-L L , ()()21212ln 1cosh s f t t s t -⎛⎫-==- ⎪⎝⎭L. 13)2211122221e 1e s s ss s s -----⎡⎤⎡⎤⎡⎤+=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦LLL ()()()21,222,02t t t t u t t t ⎧->⎪=+--=⎨≤<⎪⎩.2-41.求下列卷积:3)mt n t (,m n 为正整数). 解:mt ()()()0d 1C d nttnknm mk n k k n k t t t ττττττ-==⋅-=-∑⎰⎰()()001C d 1d C nnt tkkk n km km k k n knn k k tt ττττ-++-===-=-⋅∑∑⎰⎰ ()()()11001C 1C 11m k n k nnkk k m n k n nk k t t t m k m k ++-++==⋅=-⋅=-++++∑∑()1!!1!m n m n t m n ++=++.注:本小题可先用卷积定理求出mt n t 的Laplace 变换,再由Laplace 逆变换求出卷积6)sin kt ()sin 0kt k ≠.解 :sin kt ()()001sin sin sin d cos cos 2d 2ttkt k k t kt k kt τττττ⎡⎤=-=---⎣⎦⎰⎰ ()()011cos cos 2d 224tt kt k t t k k ττ=-+--⎰()0sin 211sin cos cos 2422tt k ktt kt t kt kkτ-=-+=-+. 7) t sinh t解 :t sinh sinh t t = t ()0sinh d tt τττ=⋅-⎰()()0011e d e d 22t t t t ττττττ-=---⎰⎰ ()()()000111d(e )d(e )2e e sinh 2220t t t t t t t t t ττττττ---⎡⎤=-+-=-++-=-⎢⎥⎣⎦⎰⎰ 9)()u t a - ()()0f t a ≥ .解:()u t a - ()()()()00,d d ,tt a t a f t u a f t f t t a τττττ⎧<⎪=-⋅-=⎨-≥⎪⎩⎰⎰.10) ()δt a - ()()0f t a ≥. 解: 当t a <,()δt a - ()0f t =. 当t a ≥,()δt a - ()()()0δd tf t a f t τττ=-⋅-⎰()()()()δd aa f t f t f t a τττττ+∞-∞==-⋅-=-=-⎰.2.设()()f t F s ⎡⎤=⎣⎦L ,利用卷积定理,证明:()()0d t F s f t t s⎡⎤=⎢⎥⎣⎦⎰L 证明:()()()()()1f t u t f t u t F s s⎡⎤⎡⎤⎡⎤=⋅=⋅⎣⎦⎣⎦⎣⎦L L L ,。

Fourier变换练习题(全,有答案)(可编辑修改word版)

Fourier变换练习题(全,有答案)(可编辑修改word版)

0
eateit dt
0
R
0
= lim e(ai)t dt lim e(ai)t dt
R
=
lim
R
0
e(ai )t (a i)
R 0
R R
lim e(ai)t R a i
0 R
1 a i
1 a i
2a a2 2
;
F1[F ()]
1 2
F ()eitd=
1 2
2a a2 2
sin
td
2
0
1 0
1d
cos
sin td
2
0
1
cos
1 0
1 0
cos d
sin td
2
0
1
cos
sin
1 sintd 0
2
0
1
cos
sin
sin
td
2
sin
2
cos
sin td
0
3
0,
(2)
f
(t
)
1,
1,
0,
2
1 2i (cos sin )(cost i sin t)d
2
2 sin sin t cos sin t d
0
2
解法二:由于 f(t)为奇函数,故由课本 P12 页的(1.12)式可知,
f
(t)
2
0
0
f
(
) sin d
sin
td
2
0
1 0
sin d
(1)
f
(t
)
t, 0,
| t | 1

数学分析习题及答案 (47)

数学分析习题及答案 (47)

习题 16.4 Fourier 变换和Fourier 积分1.求下列定义在),(+∞-∞的函数的Fourier 变换:⑴⎩⎨⎧<<=;,0,0,)(其它δx A x f ⑵ f x a x ()e ||=-, a >0;⑶ f x a x ()e =-2, a >0; ⑷ ⎩⎨⎧<≥=-;0,0,0,e )(2x x x f x ⑸ ⎩⎨⎧>≤=;||,0,||,cos )(0δδωx x x A x f 00≠ω是常数,0ωπδ=。

解 (1)()()i x f f x e dx ωω+∞--∞=⎰%0i x Ae dx δω-=⎰=)1(ωδωi e i A--。

(2)()()i x ff x e dx ωω+∞--∞=⎰%0()()0a i x a i x e dx e dx ωω+∞-+--∞=+⎰⎰ 11a i a i ωω=++-=222ω+a a。

(3)()()i x f f x e dx ωω+∞--∞=⎰%2ax i x e dx ω+∞---∞==⎰2cos ax e xdx ω+∞--∞⎰22t e+∞-=⎰ (利用例15.2.8的结果) 2-==aea42ωπ-。

(4)()()i x ff x e dx ωω+∞--∞=⎰%(2)0i x e dx ω+∞-+==⎰ωi +21。

(5)()()i x ff x e dx ωω+∞--∞=⎰%=0cos i x A xe dx δωδω--⎰ 0cos cos A x xdx δδωω-=⎰(虚部为奇函数,积分为0)00[cos()cos()]2A x x dx δδωωωω-=-++⎰ =0000sin()sin()()()A ωωδωωδωωωω⎡⎤-++⎢⎥-+⎣⎦。

2.求f x ax ()e =-(),0[+∞∈x ,a >0)的正弦变换和余弦变换。

解 正弦变换:()()sin f f x xdx ωω+∞=⎰%0sin ax e xdx ω+∞-==⎰22ωω+a ,余弦变换:()()cos f f x xdx ωω+∞=⎰%0cos ax e xdx ω+∞-==⎰22ω+a a。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

积分变换练习题第一章 Fourier 变换________系 _______专业班级姓名 ______ ____学号 _______§ 1 Fourier 积分§ 2 Fourier 变换一、选择题1.设 f (t ) (t t 0 ) ,则 F [ f (t)][](A ) 1(B ) 2(C )ej t( D ) e jt 0F [ f ( t)]( t t 0 )e i tdte i te i t 0t t 0二、填空题1.设 a0 , f (t)e at, t 0,则函数 f (t) 的 Fourier 积分表达式为e at , t2a cos tdt0 a 22F ( )[ f (t )]f (t )e i t dt = e at e i t dte at e i t dtFR= lim e ( ai )tdtlime (ai ) tdtRRR( a i )tR( a i )t 0= lim e lim e1122a 2;R(a i ) 0 Ra i Ra ia iaF 1[F()]1 F ( )e itd= 1 a 22a 2 (cost i sin t)d22= 2acos t d 0 a 2 21 2.设 F [ f (t)]( ) ,则 f (t )2F1[()]1( )e i td = 1e i t12223.设 f (t) sin 2 t ,则 F [ f (t)]( )[ (2) (2)]F [ f (t )]f ( t)e i t dt= sin 2 te i t dt1 cos2t e i t dt2 1e i t dt 1(e 2ite 2 it )e i t dt( )[ ( 2) ( 2)]2424.设(t ) 为单位脉冲函数,则(t )cos 2 (t3 )dt 14(t)cos 2 (t)dt cos 2 ( ) 13 34三、解答题1.求下列定积分: (可用《高等数学》的方法做)(1)1(2)1e az sin bzdze az cosbzdz1 i sin bz)dze az(cosbz 0( e a (cosb i sin b) 1)(a a 2 b 211(a ib ) z1a ibee1e az e ibz dze ( a ib ) z dza iba ibib ) ae a cosb be a sin b 1 i ae a sin b be a cosb ba 2b 2 a 2 b 2在原积分中,由于被积函数解析,则I1 1 1e az(cosbz i sin bz)dze ax(cosbx i sin bx)dx e ax e ibxdx,从而1 e az1 e azsin bzdz Im I0cosbzdz Re I ;A,0 t 2.求矩形脉冲函数f (t )0, 其他的 Fourier 变换。

F [ f ( t)]f ( t)e i t dt= Ae i tA(1 e Ai )dti3.求下列函数的 Fourier 积分:t, | t | 1(1) f (t),0, | t | 1解法一:1F ( )f (t) e i tdt = te i t dt11 it11 i1 i2isinei te ii(cos2122e);f (t)1 F ( ) e it d1 2i(cossin)e itd221 2i(cossin )(cos ti sin t )d22 sin sin t2cossin t d解法二:由于 f(t) 为奇函数,故由课本P12 页的 (1.12) 式可知,221f (t)f ( )sindsin tdsind sin td0 0211d cos211 1sin tdcoscos dsin td0 021sin12 1sincossin tdtdcossin 02 sin2 cos sin td0,t1,1, 1 t0,(2) f (t)1,0t1,0,1t.解法一: f ( t)为奇函数,从而F () f (t) e i t dt = f (t )(cos t i sin t )dt2i f (t)sin tdt12i cos t 11)2i sin tdt2i (cos00f (t)1 F ()e i t dt =12i (cos1) e i t dt22i(cos1)(cos t i sin t) dt2(1cos)sin t dt解法二:同上题,根据余弦逆变换公式可得:221f (t) f ()sin d sin tdt sin d sin tdt00002cos12 1 cossin tdt tdtsin000sint ,| t |4.求函数 f (t)0, | t|的 Fourier 积分 ,并计算下列积分:sin sin t2sin t ,| t |012d0,| t |解:同上题,f (t)2f ()sin d sin tdt2sin sin d sin tdt 00001[cos(1)cos(1) ]d sin tdt 1sin(1)sin(1)sin tdt11000001sin(1)sin(1)sin tdt 2sin sin tdt2sin sin t112112dt000当 t时,f (0) f (0)0. 从而2sinsin t2 sin t,| t | 01 2d0,| t |e j a5.设 a 为实数,求积分2 d 的值。

(分别讨论 a 为正实数和负实数的情形 )1当 a 0时,R( z)1在上半平面只有一个奇点z i ,从而1 z 2e ia 2 d2 i Res[ R(z)e iaz ,i ] 2i lime iaze a ;1z iz i当 a 0时,e iae ia 2d2 i Res[ R(z) e iaz,i ] 2 i lime iaza1 2dz ie .1z i解法二:参考课本 146 页 Fourier 变换表中的 21,即Fc t]2c ,[e2c2 Re(c) 0取 c=-1,从而F - t]2,则积分[e 21ej ata1 2dF 1[ 12 ]ee 211 t a2t a2e ja 2de a1积分变换练习题第一章 Fourier 变换 ________系 _______专业班级姓名 ______ ____ 学号 _______ § 3 Fourier 变换的性质§ 4 卷积与相关函数一、选择题1.设 F [ f (t )]F ( ) ,则 F [( t 2) f (t )](A )F() 2F( )(B )( C ) iF ( ) 2F ( )( D )[ ]F( ) 2F( )iF ( ) 2F ( )(利用 Fourier 变换的线性性质和象函数的导数公式)2.设 F [ f (t )]F ( ) ,则 F [ f (1t)][]( A ) F ( )e j(B ) F()e j(C ) F()e j( D ) F ()e j1 t sf ( s)e i(1 s) (F [ f (1 t )]f (1 t )e i t dtds)e if (s)e i ()sdse iF ()二、填空题1.设 F[ f (t)] 3 ,则 f (t )3e - t122由1 三 -5解法二中的分析可知: F - t] 2 ,- [e 21从而 3F [ e - t ]3 f (t ) 3e - t22122.设 f (t ) e tu(t) ,则 F [ f (t)]。

已知单位阶跃函数u(t) t( )d ,及 Fourier 变换的微分性质: F [ f '(t )]i F [ f (t)]令 g(t ) e tu(t )e tt( )d ,则dg (t)e t t ( )d e t (t ) g(t ) e t (t ),dt即 F [dg (t)]F [ g(t ) e t (t )]F [ g(t )] F [e t (t )],dt又由 F [dg(t )] i F [ g (t )],从而dtFF [ e t (t )]e t (t )e i t dt[ g(t)]=i1 i11e (1 i)t 011 i t 1 i三、解答题1.若 F( )F [ f (t)] ,且 a0,证明:s ati F [ f (at )] f (at)e i tdt =f ( s)e2.若 F() F d[ f (t)] ,证明:F ( )d即证: F1[d F ( )]itf (t)d1 (t )e (1 i )t dt1 iF [ f (at)]1F ( )a as ds1 f ( s)ea ds1F( )isa aa aF [ jtf (t )]F1[d F( )] 1 d F ( )e i t d 1 F ( )e i t1F ( ) d e i t dd 2 d 22d1F ()ite i td( it )1F ( )e itd( it ) f (t )22sin3.已知某函数的Fourier 变换为F ( ),求该函数f (t) 。

F ( )sinF ( ) sinF1[F( )]F1[sin ]一方面, F[ f '(t )] i F[ f (t)] i F ( ) F1[ F ()]if;'(t)另一方面, F1[sin ] 1 sine i t d1 e ie i e i t d 12122ie i (1 t )e i ( 1 t ) d(t 1)(t 1) ;4 i 2i从而if '(t)1 (t1)(t 1)f '(t ) 1 (1 t ) (t1)2i2f (t )1t( 1)d t(1)d 1 u(t 1) u(t1)224.若 F( ) F [ f (t)] ,证明: F () F[ f ( t)]证:t sf (s)e i s ( ds) f ( s)e i ( ) s ds F ( )F [ f ( t )]f ( t) e i t dt5.若 f 1(t)e t u(t ),f 2 (t ) sin t u(t) ,求 f 1 (t )* f 2 (t)f 1(t) * f 2 (t )e t u(t)sin t u(t )e u( )sin( t) u(t ) dtts te t te t1 te sin(t)de ( t s) sin sds e s sin sds sin s coss e s 021 sin t cost e t 2积分变换练习题第一章 Fourier 变换________系 _______专业班级姓名 __________ 学号 _______§ 5 Fourier变换的应用综合练习题一、选择题:1.设 F [ f (t )]F ( ) 且当 ttf ( )d0,则F [ 2t时 , g (t) f ( )d ] [](A )1F ( )(B ) 1F() (C )1F ()(D )1F( )2i 2i22ii变换的积分性质: F [ t f (1 F [ f (t )]F [f ( )d ]= 1F [ f (2t )]1iF ( )2ti2i 2最后一个等号由 2(§ §)三 -1得到.3 4 -2.设 F [ f (t )] F ( ) ,则下列公式中, 不正确的是[](A ) F [ f (t ) f (t )](F ())2( B ) F [( f (t)) 2 ]1 F()F()2(C ) F [ f (t)ejt] F (0 )( D ) t f (t ) jF1( )][ FjtF [ f ( t)e] F ( m 0 )1.设 f (t)0, t 0,则 u(t )f (t)et ,t 0参照课本 51 页 (10), u(t) f (t )f (t) u(t)2.计算积分(t )sin 2tdt 12(t)sin 2 tdt sin 2 t12t23.设 sgntt1, t 0 |t |1, t,则 F [sgn t]0, t 01 e t , tt)df (。

相关文档
最新文档