八年级数学定义与命题
初二数学定义与命题试题答案及解析

初二数学定义与命题试题答案及解析1.有下列命题:①两直线平行,同旁内角相等;②无限小数是无理数;③的平方根是±;④点P(1,﹣2)在第四象限,其中是真命题的有.(填序号)【答案】③④【解析】利用平行线的性质、无理数的概念、平方根的意义及平面直角坐标系的知识分别进行判断后即可判定命题的真假.解:①两直线平行,同旁内角互补,故原命题错误,为假命题;②无限不循环小数是无理数,故原命题错误,为假命题;③的平方根是±,正确,为真命题;④点P(1,﹣2)在第四象限,正确,为真命题,故答案为:③④.点评:本题考查了平行线的性质、无理数的概念、平方根的意义及平面直角坐标系的知识,属于基础题,难度较小.2.“等腰梯形同一底上的两个角相等”这个命题的逆命题是,它是命题(填“真”或“假”).【答案】同一底上的两个角相等的梯形是等腰梯形,真【解析】将原命题的假设与结论反下就可得到其逆命题.解:“等腰梯形在同一底上的两个角相等”的条件是:有一梯形为等腰梯形,结论是:同一底上的两个角相等;则它的逆命题是:同一底上的两个角相等的梯形是等腰梯形,是真命题,故答案为:同一底上的两个角相等的梯形是等腰梯形,真.点评:考查了命题与定理,正确的写出一个命题的逆命题的关键是搞清楚原命题的条件和结论.3.命题“任意两个直角都相等”的题设是,结论.【答案】两个角是直角,相等【解析】任何一个命题都是由条件和结论组成.解:“任意两个直角都相等”的题设是:两个角是直角,结论是:相等.故答案为:两个角是直角,相等.点评:本题考查了命题的条件和结论的叙述.4.“有两个角相等的三角形是等腰三角形”的逆命题是.【答案】等腰三角形的两个底角相等【解析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.解:因为原命题的题设是:“有两个角相等”,结论是“这个三角形是等腰三角形”,所以命题“有两个角相等的三角形是等腰三角形”的逆命题是“等腰三角形的两个底角相等”.故答案为:等腰三角形的两个底角相等.点评:本题考查了命题与定理,根据逆命题的概念来回答:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.5.“等腰梯形同一底上的两个角相等”改为如果,那么.【答案】同一底边上的两个角相等,这个梯形是等腰梯形【解析】任何一个命题都可以写成“如果…那么…”的形式.如果是条件,那么是结论.解:“等腰梯形同一底上的两个角相等”改为如果同一底边上的两个角相等,那么这个梯形是等腰梯形,故答案为:同一底边上的两个角相等,这个梯形是等腰梯形.点评:本题考查了命题的叙述形式.属于基础题,比较简单.6.(1)命题“两锐角之和一定是钝角”的题设:,结论:;(2)命题“内错角相等,两直线平行”的题设:,结论:.【答案】(1)命题“两锐角之和一定是钝角”的题设:两个角是锐角,结论:两个角的和为钝角;(2)命题“内错角相等,两直线平行”的题设:内错角相等,结论:两直线平行.两个角是锐角,两个角的和为钝角;内错角相等,两直线平行.【解析】把命题改写成“如果…,那么…”的形式,然后根据如果后面的是题设,那么后面的是结论写出即可.解:(1)命题“两锐角之和一定是钝角”的题设:两个角是锐角,结论:两个角的和为钝角;(2)命题“内错角相等,两直线平行”的题设:内错角相等,结论:两直线平行.两个角是锐角,两个角的和为钝角;内错角相等,两直线平行.点评:本题考查了命题与定理,把命题改写成“如果…,那么…”的形式是解题的关键,难度较小.7.试写出命题“两条直线相交,只有一个交点”的题设部分和结论部分.判断它是真命题还是假命题,并简要说明理由.【答案】见解析【解析】命题分为题设和结论两部分,题设是如果后面的部分,结论是那么后面的部分.解:这个命题的条件是两条直线相交,结论是它们只有一个交点,是真命题,因为平面内两条直线只有两种位置关系:相交和平行,没有交点就平行,有一个交点就是相交.点评:考查了命题与定理的知识,一般命题可写成“如果…那么…”的形式,其中如果后面的部分是题设,那么后面的部分是结论.8.用几何符号语言表示“互为邻补角的平分线互相垂直”的题设与结论,并画出图形.【答案】见解析【解析】首先根据题意画出图形,然后将命题的题设当做条件,将结论当做问题的结论,用几何语言描述出来即可.解:已知:AB,CD相交于O,OE,OF分别平分∠AOC,∠AOD,求证:OE⊥OF.点评:此题主要考查了邻补角与垂线,题目比较基础,但有很多同学不能根据命题画出图形,写出已知与求证,从而导致错误.9.判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.(1)等角的余角相等;(2)平行线的同旁内角的平分线互相垂直;(3)和为180°的两个角叫做邻补角.【答案】见解析【解析】先根据有关性质与定理,对命题的真假进行判断,如果是假命题,再举出反例即可.解:(1)等角的余角相等,正确,是真命题;(2)平行线的同旁内角的平分线互相垂直,正确,是真命题;(3)和为180°的两个角叫做邻补角,错误,是假命题,如两个不同书本上的两个和为180°的角.点评:此题考查了命题与定理,关键是掌握有关性质与定理,对命题的真假进行判断,正确的命题叫真命题,错误的命题叫做假命题.10.下列命题中,不正确的是()A.一组邻边相等的矩形是正方形B.等腰梯形的对角线相等C.直角三角形斜边上的高等于斜边的一半D.圆既是轴对称图形,又是中心对称图形【答案】C【解析】对每个选项逐一判断后即可得到答案.解:A、邻边相等的矩形是正方形,正确,不符合题意;B、等腰梯形的对角线相等,正确,不符合题意;C、直角三角形斜边上的中线等于斜边的一办,错误,符合题意;D、圆既是轴对称图形,又是中心对称图形,正确,符合题意.故选C.点评:本题考查了命题与定理,利用基本概念对每个命题进行分析,作出正确的判断.11.观察下列命题:(1)如果a<0,b>0,那么a+b<0;(2)同角的补角相等;(3)同位角相等;(4)如果a2>b2,那么a>b;(5)有公共顶点且相等的两个角是对等角.其中真命题的个数是()A.1B.2C.3D.4【答案】A【解析】利用学过的定义、性质及定理进行判断即可求解.解:(1)当a=﹣1,b=3时命题错误;(2)同角的补角相等,正确;(3)只有两直线平行,同位角才相等;(4)当a=﹣3,b=2时命题错误;(5)有公共顶点且相等的两个角是对顶角,错误故选A.点评:本题考查了命题与定理,解题的关键是熟练掌握有关的定理及性质.12.下列四个命题是真命题的是()A.同位角相等B.如果两个角的和是180度,那么这两个角是邻补角C.在同一平面内,平行于同一条直线的两条直线互相平行D.在同一平面内,垂直于同一条直线的两条直线互相垂直【答案】C【解析】利用学习过的有关的性质、定义及定理进行判断后即可得到正确的结论.解:A、只有两直线平行,同位角才相等,故选项错误;B、两个角的和是180度,只能是互补,不一定是邻补角,故选项错误;C、在同一平面内,平行于同一直线的两条直线互相平行,故选项正确;D、在同一平面内,垂直于同一条直线的两条直线互相平行,故选项错误;故选C.点评:本题考查了命题与定理的知识,解题的关键是熟悉有关的性质、定理及定义.13.下列定理没有逆定理的是()A.线段垂直平分线上的点到线段两端点的距离相等B.相似三角形的三边对应成比例C.同角的余角相等D.直角三角形斜边上的中线等于斜边的一半【答案】C【解析】没有逆定理就是逆命题不正确的选项.解:A、逆命题是到线段两端点距离相等的点在线段的垂直平分线上;B、逆命题是三边对应成比例的两三角形相似;C、没有逆命题;D、一边上的中线等于这边的一半的三角形是直角三角形.点评:本题考查了命题与定理的知识,解题的关键是了解这些命题的逆命题,然后判断其真假.14.下列命题中逆命题是假命题的是()A.如果两个三角形的三条边都对应相等,那么这两个三角形全等B.如果a2=9,那么a=3C.对顶角相等D.线段垂直平分线上的任意一点到这条线段两个端点的距离相等【答案】C【解析】首先写出各命题的逆命题(将每个命题的题设与结论调换),然后再证明各命题的正误.因为相等的角不只是对顶角,所以此答案是假命题,继而得到正确答案.解:A、逆命题为:如果两个三角形全等,那么这两个三角形的三条边都对应相等.是真命题;B、逆命题为:如果a=3,那么a2=9.是真命题;C、逆命题为:相等的角是对顶角.是假命题;D、逆命题为:到线段两个端点的距离相等的点在这条线段垂直平分线上.是真命题.故选C.点评:此题考查了命题与逆命题的关系.解题的关键是找到各命题的逆命题,再证明正误即可.15.在命题:“三角形的一个外角大于三角形的每一个内角”、“底边及一个内角相等的两个等腰三角形全等”、“两条平行线被第三条直线所截,一对同旁内角的平分线互相垂直中,真命题的个数有()A.0B.1C.2D.3【答案】B【解析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而得出答案.解:三角形的一个外角大于任何与之不相邻的一个内角,故原命题错误,为假命题;底边及一个底角相等的两个等腰三角形全等,故原命题错误,为假命题;两条平行线被第三条直线所截,一对同旁内角的平分线互相垂直,正确,为真命题,故选B.点评:本题考查了命题与定理的知识,能够熟练掌握有关的命题及定理是解答本题的关键.16.下列各命题中,属于假命题的是()A.若m﹣n=0,则m=n=0B.若m﹣n>0,则m>nC.若m﹣n<0,则m<nD.若m﹣n≠0,则m≠n【答案】A【解析】利用不等式的性质逐项进行判断后即可得到答案,也可举出反例.解:A、m﹣n=0,则m=n,但不一定都为0,故错误,是假命题;B、C、D移项即可得到答案,故正确,是真命题.故选A.点评:本题考查了命题与定理的知识,判断一个命题的真假时可以举出反例.17.有下列四个命题:①等弧所对的圆周角相等;②相等的圆周角所对的弧相等;③平分弦的直径垂直于弦;④三点确定一个圆.其中正确的有()A.1个B.2个C.3个D.4个【解析】根据圆周角,圆周角定理,垂径定理以及确定圆的条件即可求解.解:①同圆或等圆中,等弧所对的圆周角相等,故正确;②在同圆或等圆中,相等的圆周角所对的弧相等,故错误;③平分弦(不是直径)的直径垂直于弦,故错误;④不在同一直线上的三点确定一个圆,故错;故选A.点评:本题主要考查了圆周角的性质定理,以及确定圆的条件等圆的基本知识.解题的关键是要注意命题的细节,逐一做出准确的判断.18.下列句子中不是命题的是()A.负数都小于零B.所有的素数都是奇数C.过直线l外一点作l的垂线D.直角都相等【答案】C【解析】分析是否是命题,需要分别分析各选项事是否是用语言、符号或式子表达的,可以判断真假的陈述句.解:C不是可以判断真假的陈述句,不是命题;A、B、D均是用语言表达的、可以判断真假的陈述句,都是命题.故选C.点评:本题考查了命题的定义:一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.19.(2013•河西区一模)下列命题中真命题是()A.任意两个等边三角形必相似B.对角线相等的四边形是矩形C.以40°角为内角的两个等腰三角形必相似D.一组对边平行,另一组对边相等的四边形是平行四边形【答案】A【解析】根据相似三角形的判定、矩形和平行四边形的判定即可作出判断.解:A,正确;B,错误,等腰梯形的对角线相等,但不是矩形;C,错误,没有说明这个40度角是顶角还是底角;D,错误,等腰梯形也满足此条件,但不是平行四边形.故选A.点评:本题考查了特殊四边形的判定和全等三角形的判定和性质.20.下列命题是假命题的是()A.单项式﹣的系数是﹣4πB.x<y,则x+2008<y+2008C.平移不改变图形的形状和大小D.若|x+2|+(y﹣5)2=0则x=﹣2,y=5【答案】A【解析】分析是否为假命题,可以举出反例,也可以运用相关基础知识分析找出真命题,从而利用排除法得出答案.解:A、单项式﹣的系数是﹣,是假命题,故正确;B、由不等式的性质可知是真命题,故错误;C、由平移的性质可知是真命题,故错误;D、由非负数的性质可知是真命题,故错误.点评:主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.。
八年级数学定义与命题

命题的概念与分类
概念
命题是一个陈述句,它表达了一个数 学事实或关系,可以判断其真假。
分类
根据命题的真假性质,可以分为真命 题和假命题。真命题是指描述事实正 确的命题,而假命题则是描述事实错 误的命题。
02 数学中的定义
数的定义
有理数
实数
有理数包括整数和分数,整数包括正整 数、零和负整数,分数包括正分数和负 分数。有理数可以进行四则运算。
实数是有理数和无理数的总称,包括 所有可以表示的数。实数集是数学中 一个最大的数集。
无理数
无理数是不能表示为两个整数的比的 数,常见的无理数有无限不循环小数, 如圆周率π。
运算的定义
01
02
03
04
加法
加法是将两个数合并成一个数 的运算,用加号"+"表示。
减法
减法是从一个数中去掉另一个 数的运算,用减号"-"表示。
证明几何定理
利用命题,可以证明几何定理,如 勾股定理、平行四边形的性质等。
解决几何问题
通过命题,可以解决几何问题,如 求图形的面积、周长等。
在代数中的应用
01
02
03
建立代数方程
利用命题,可以建立代数 方程,如解一元一次方程、 一元二次方程等。
证明代数定理
利用命题,可以证明代数 定理,如合并同类项法则、 分配律等。
例如,要证明“所有的三角形都有内角 和等于180度”,我们可以假设存在一 个三角形其内角和不等于180度,然后 推导出矛盾,从而证明原命题。
反证法
01
反证法是一种常用的数学证明方 法,其基本思想是假设某一命题 不成立,然后通过推理导出矛盾 ,从而证明原命题的正确性。
浙教版数学八年级上册1.2《定义与命题》教案1

浙教版数学八年级上册1.2《定义与命题》教案1一. 教材分析《定义与命题》是浙教版数学八年级上册第一章第二节的内容。
本节内容主要介绍定义与命题的概念,让学生了解如何正确理解和运用定义与命题。
通过本节内容的学习,学生能够掌握定义与命题的基本形式和特点,提高阅读和理解数学文本的能力。
二. 学情分析学生在学习本节内容前,已经学习了实数、代数等基础知识,具备一定的逻辑思维能力。
但部分学生对抽象的概念理解较为困难,对定义与命题的运用还不够熟练。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行引导和辅导。
三. 教学目标1.理解定义与命题的概念,掌握定义与命题的基本形式和特点。
2.能够正确理解和运用定义与命题,提高阅读和理解数学文本的能力。
3.培养学生的逻辑思维能力和数学素养。
四. 教学重难点1.重点:定义与命题的概念、基本形式和特点。
2.难点:对定义与命题的理解和运用。
五. 教学方法1.采用问题驱动法,引导学生主动探究定义与命题的概念和特点。
2.运用案例分析法,让学生通过具体例子理解定义与命题的运用。
3.采用小组合作学习法,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关案例和例题,用于讲解和练习。
2.准备课件和教学素材,以便于教学展示。
七. 教学过程1.导入(5分钟)利用课件展示生活中的定义与命题实例,如“平行线”、“勾股定理”等,引导学生思考:什么是定义?什么是命题?2.呈现(10分钟)讲解定义与命题的概念,阐述定义与命题的基本形式和特点。
通过PPT展示相关知识点,让学生直观地理解定义与命题。
3.操练(10分钟)根据所学内容,让学生尝试判断一些实例是否为定义与命题。
教师引导学生进行分析,纠正错误观点,巩固所学知识。
4.巩固(10分钟)学生自主完成相关练习题,教师巡回指导,解答学生疑问。
通过练习题让学生进一步理解和掌握定义与命题。
5.拓展(10分钟)探讨定义与命题在实际问题中的应用,让学生举例说明。
定义与命题(4种题型)-2023年新八年级数学核心知识点与常见题型(浙教版)(解析版)

定义与命题(4种题型)【知识梳理】一、定义能界定某个对象含义的句子叫做定义.二、命题判断一件事情的句子叫命题.其判断为正确的命题叫做真命题;其判断为错误的命题叫做假命题.命题通常由条件、结论两个部分组成,通常可以写成“如果……那么……”的形式.要点诠释:命题属于判断句或陈述句,是对一件事情作出判断,与判断的正确与否没有关系.其中命题的题设是已知事项,结论是由已知事项推出的事项.当证明一个命题是假命题时只要举出一个反例就可以.三、定理用推理方法证明为正确的,并进一步作为判断其他命题真假的原始依据.要点诠释:也就是说同时满足以下两个条件的真命题称为定理:(1)其正确性可通过公理或其它真命题逻辑推理而得到.【考点剖析】一、判断是否是命题例1.(2022秋·浙江温州·八年级统考期中)下列语句不是..命题的是()A.三角形的内角和等于180度B.把16开平方C.直角都相等D.对顶角相等【答案】B【分析】根据命题的定义即可进行解答.【详解】解:A、C、D都是命题,B不是命题;故选:B.【点睛】本题主要考查了命题的定义,解题的关键是掌握:“判断一件事情的语句是命题”.【变式1】(2022秋·浙江杭州·八年级校联考期中)下列定理中,下面语句是命题的是( )A .π是有理数B .已知3a =,求2aC .作ABC ∠的角平分线D .正数大于一切负数吗? 【答案】A【分析】根据命题的定义逐一判断后即可确定正确的选项.【详解】解:A 、对事情作出了判断,是命题,符合题意;B 、为陈述句,没有对问题作出判断,不是命题,不符合题意;C 、为陈述句,没有对问题作出判断,不是命题,不符合题意;D 、为疑问句,没有对问题作出判断,不是命题,不符合题意.故选:A .【点睛】考查了命题与定理的知识,解题的关键是了解命题是判断一件事情的句子,难度不大.【变式2】下列语句中,哪些是命题,哪些不是命题?(1)若,则;(2)三角形的三条高交于一点;(3)在ΔABC 中,若AB >AC ,则∠C >∠B 吗?(4)两点之间线段最短;(5)解方程;(6)1+2≠3.【答案】(1)(2)(4)(6)是命题,(3)(5)不是命题.二、判断命题真假例2. 判断下列语句在表述形式上,哪些对事情作了判断?哪些没有对事情作出判断?做出判断的哪些是正确的?哪些是错误的?(1)对顶角相等; (2)画一个角等于已知角;(3)两直线平行,同位角相等; (4),两条直线平行吗?(5)鸟是动物; (6)若,求的值;(7)若,则=.【答案与解析】句子(1)(3)(5)(7) 对事情作了判断,其中 (1)(3)(5)判断是正确的,(7)判断是错误的. a b <<-b a −2230x x −−=a b 24a =a 22a b =a b句子(2)(4)(6)没有对事情作出判断.其中(2)属于操作性语句,(4)属于问句,都不是判断性语句. 【变式】(2022秋·浙江·八年级专题练习)下列命题中是假命题的是( )A .两条直线相交有2对对顶角B .互为邻补角的两个角的平分线互相垂直C .同一平面内,垂直于同一条直线的两条直线平行D .互补的两个角一定是邻补角【答案】D【分析】利用对顶角的定义、垂直的定义、平行线的判定及邻补角的定义分别判断后即可确定正确的选项. 【详解】解:A 、两条直线相交有2对对顶角,正确,是真命题,不符合题意;B 、互为邻补角的两个角的平分线互相垂直,正确,是真命题,不符合题意;C 、同一平面内,垂直于同一条直线的两条直线平行,正确,是真命题,不符合题意;D 、互补的两个角不一定是邻补角,故错误,是假命题,符合题意.故选:D .【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的定义、垂直的定义、平行线的判定及邻补角的定义,难度不大.三、举例说明命题真假【答案】C【分析】根据当1n =时,214n =<即可得到答案. 【详解】解:当1n =时,214n =<,∴若2n >−,则24n >”是假命题的反例是1n =,故选:C .【点睛】本题主要考查了命题与定理,熟练掌握假命题的概念是解题的关键. 【变式】.(2023秋·浙江绍兴·八年级统考期末)要说明命题“若22a b >,则a b >”是假命题,能举的一个反例是( )A .1a =,2b =−B .2a =,1b =C .4a =,1b =-D .3a =−,2b =−【答案】D【分析】要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.【详解】解:A 、当1a =,2b =−时,()2212<−不符合22a b >, ∴1a =,2b =−不是假命题的反例,不符合题意;B 、当2a =,1b =时,2221>,而21>,∴2a =,1b =,不是假命题的反例,不符合题意;C 、当4a =,1b =-时,224(1)>−,而41>−,4a ∴=,1b =-不是假命题的反例,不符合题意;D 、当3a =−,2b =−时,()()2232−>−,而32−<−,3a ∴=−,2b =−是假命题的反例,符合题意.故选:D .【点睛】本题主要考查的是命题与定理,解题的关键是掌握要说明数学命题的错误,只需举出一个反例即可这是数学中常用的一种方法.四、写出命题的条件与结论例4.指出下列命题的条件和结论,并改写成“如果……那么……”的形式:(1)三条边对应相等的两个三角形全等;(2)在同一个三角形中,等角对等边;(3)对顶角相等;(4)同角的余角相等;【答案与解析】(1)“三条边对应相等”是对两个三角形来说的,因此写条件时最好把“两个三角形”这句话添加上去,即命题的条件是“两个三角形的三条边对应相等”,结论是“这两个三角形全等”.可以改写成“如果两个三角形有三条边对应相等,那么这两个三角形全等”.(2)“等角对等边含义”是指有两个角相等所对的两条边相等。
八年级上册定义与命题

八年级上册定义与命题一、选择题。
1. 下列语句中,属于定义的是()A. 两点确定一条直线。
B. 同角的余角相等。
C. 两直线平行,内错角相等。
D. 三角形三条中线的交点叫做三角形的重心。
解析:定义是对于一个概念的特征性质的描述。
A选项是一个基本事实;B和C选项是定理。
而D选项是对三角形重心这个概念的定义,所以答案是D。
2. 下列命题中,是真命题的是()A. 相等的角是对顶角。
B. 若a > b,则-2a>-2bC. 两直线平行,同位角相等。
D. 若a^2 = b^2,则a = b解析:A选项,相等的角不一定是对顶角,所以A是假命题;B选项,若a > b,则-2a<-2b,所以B是假命题;C选项,两直线平行,同位角相等,这是定理,是真命题;D选项,若a^2 = b^2,则a=± b,所以D是假命题。
答案是C。
3. 下列命题是假命题的是()A. 对顶角相等。
B. -4是有理数。
C. 两直线平行,同旁内角互补。
D. 若| a|=| b|,则a = b解析:A、B、C选项都是正确的命题。
D选项,若| a|=| b|,则a = b或a=-b,所以D是假命题,答案是D。
4. 命题“垂直于同一条直线的两条直线互相平行”的条件是()A. 垂直。
B. 两条直线。
C. 同一条直线。
D. 两条直线垂直于同一条直线。
解析:命题写成“如果……那么……”的形式为:如果两条直线垂直于同一条直线,那么这两条直线互相平行。
所以条件是“两条直线垂直于同一条直线”,答案是D。
5. 下列语句不是命题的是()A. 两点之间,线段最短。
B. 不平行的两条直线有一个交点。
C. x与y的和等于0吗?D. 对顶角不相等。
解析:命题是可以判断真假的陈述句。
A、B、D都是命题,而C选项是疑问句,不是命题,答案是C。
二、填空题。
6. 把命题“同角的补角相等”改写成“如果……那么……”的形式为:如果______,那么______。
第2课定义与命题(学生版)八年级数学上册讲义(浙教版)

第2课定义与命题目标导航学习目标1.了解定义、命题、定理的含义;2.了解命题的结构,会把一个命题写成“如果…那么…”的形式;3.了解真命题和假命题的概念,会判定命题的真假;知识精讲知识点01 定义、命题、定理的含义1.定义:一般地,能清楚地规定某一名词或者术语的意义的语句叫做该名词或术语的定义.2.命题:一般地,判断某一件事情的句子叫做命题.3.定理:用推理方法判断为正确的命题叫做定理注:定理是真命题,但不是全部真命题都可以称为定理,通常只把一些常用的真命题列为定理.知识点02 命题的结构1.命题的结构:命题一般由条件和结论两部分组成,条件是已知事项,结论是由已知事项推出的事项.2.命题的一般形式:“如果…,那么…”,“如果”后面接的部分是题设,“那么”后面接的部分是结论.知识点03 真命题与假命题1.真命题:正确的命题叫真命题,2.假命题:不正确的命题叫做假命题.注:要判定一个命题是真命题,常常通过推理的方式,即根据已知事实来推断未知事实;也有一些命题是人们经过长期实践,公认为正确的.要判定一个命题是假命题,通常只需给出一个反例能力拓展考点01 定义、命题、定理的含义【典例1】下列选项中不是命题的是()A.过直线外一点作这条直线的垂线B.带根号的数都是无理数C.三角形任意两边之和大于第三边D.在同一平面内,垂直于同一条直线的两条直线平行【即学即练1】下列语句中:(1)你去哪里?(2)2022年北京冬奥会;(3)对顶角相等;(4)3不是奇数.命题共有()A.1个B.2个C.3个D.4个考点02 命题的结构【典例2】命题“如果∠1=∠2,∠2=∠3,那么∠1=∠3”的题设是,结论是,它是命题.【即学即练2】把下列命题改成“如果…那么…”的形式.(1)不相交的两条直线是平行线(2)相等的两个角是对顶角(3)经过一点有且只有一条垂线(4)直角都相等.考点03 判断命题的真假【典例3】下列命题中是真命题的是()A.同位角相等B.平行于同一条直线的两直线平行C.垂直于同一条直线的两直线平行D.过一点作已知直线的平行线,有且只有一条【即学即练2】下列语句是假命题的有()A.同角的余角相等B.平行于同一条直线的两条直线平行C.同位角相等D.同一平面内,垂直于同一条直线的两直线平行分层提分题组A 基础过关练1.下列句子中是命题的是()A.画∠A=30°B.您好!C.对顶角不相等D.谁?2.下列说法:①相等的角是对顶角;②同位角相等;③过一点有且只有一条直线与已知直线平行;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.其中真命题有()个A.1 B.2 C.3 D.43.下列命题是假命题的是()A.如果∠1=∠2,∠2=∠3,那么∠1=∠3B.对顶角相等C.如果一个数能被4整除,那么它也能被2整除D.内错角相等4.下列命题中,为真命题的是()A.内错角相等B.对顶角相等C.同位角相等D.互补的两个角是邻补角5.命题一般都由条件和结论两部分组成,命题“对顶角相等”的条件是.6.一个命题由“题设”和“结论”两部分组成.则命题“如果同旁内角互补,那么两直线平行”的题设是.7.命题:直线a、b、c,若a⊥b,c⊥b,则a∥c;则此命题为命题.(填真或假)8.把下面的命题改写成“如果…那么…”形式:两条平行线被第三条直线所截,内错角相等9.下面语句是那个定义的特征?(1)连接三角形的顶点和对边中点的线段;(2)三角形一边的延长线和另一边组成的角;(3)不等式组中各个不等式的解集的公共部分;(4)点到直线的垂线段的长度.10.指出下列命题的题设和结论:(1)“平行于同一直线的两条直线互相平行”命题的题设、结论.题设是:,结论是:.(2)“两个负数的和是负数”命题的题设、结论.题设是:,结论是:.(3)“相交的两条直线一定不平行”命题的题设、结论.题设是:,结论是:.(4)“任意两个偶数之差是偶数”命题的题设、结论.题设是:,结论是:.题组B 能力提升练11.下列命题中,属于真命题的是()A.同旁内角互补B.若a<1,则a2﹣1<0 C.直角都相等D.相等的角是对顶角12.能说明命题“若x为无理数,则x2也是无理数”是假命题的反例是()A.x=B.x=3 C.x=﹣D.x=π13.下列命题中①相等的角是对顶角;②无理数就是开方开不尽的数;③同旁内角互补;④数轴上的点与实数一一对应.是真命题的有()A.1 个B.2个C.3个D.4个14.将命题“两个锐角的和是钝角”改写成“如果……那么……”的形式是15.判断下列语句是否是命题.如果是,请写出它的题设和结论.(1)内错角相等;(2)对顶角相等;(3)画一个60°的角.16.写出下列命题的条件和结论.(1)两条直线被第三条直线所截,同旁内角互补;(2)绝对值等于3的数是3;(3)如果∠DOE=2∠EOF,那么OF是∠DOE的平分线.题组C 培优拔尖练17.下列语句中,不是命题的是()A.如果b<a,那么a>b B.同旁内角互补C.反向延长射线MN D.垂线段最短18.下列命题中是真命题的是()A.同位角相等B.若a2=b2,则a=b C.等角的补角相等D.两条直线不相交就平行19.对顶角相等是(真或假)命题,此命题的题设是结论是.20.请举出一个关于角相等的定理:.21.已知下列语句:①平角都相等;②画两个相等的角;③两直线平行,同位角相等;④等于同一个角的两个角相等吗;⑤邻补角的平分线互相垂直;⑥等腰三角形的两个底角相等,其中是命题的有(填序号)22.指出下列命题的条件和结论.(1)一个锐角的补角大于这个角的余角;(2)不相等的两个角不是对顶角;(3)异号两数相加得零.23.举反例说明下列命题是假命题.(1)如果a+b>0,那么a>0,b>0;(2)无限小数是无理数;(3)两直线被第三条直线所截,同位角相等.。
初二数学定义与命题

初二数学第八章平行线的有关证明主备人:于爱妮时间:3月17日编号08学习目标:1掌握定义和命题,2 掌握命题的结构和真假学习过程:知识点一:定义与命题定义:用来说明一个或者的意义的语句叫做定义例如:大于直角而小于平角的角叫做钝角。
有两条边相等的三角形叫做等腰三角形命题:判断的句子。
例如:如果a=b,那么a+c=b+c如果两条直线都和第三条直线平行,那么这两个直线也互相平行。
对顶角相等——如果两个角是对顶角,那么这两个角相等。
如果一个句子没有对某件事做出任何判断,那么它就不是命题。
例如下列句子都不是命题平行用符号∥表示;作线段AB=CD;∠A=90度吗?(表示方法、作法、问号都不是命题)跟踪训练一1、下列句子中,是命题⑴对顶角相等;⑵画一个角等于已知角;⑶两直线平行,同位角相等;⑷a、b两条直线平行吗?⑸温柔的李明明。
(6)若a2=4,求a的值。
2下列语言是命题的是()A.画两条相等的线段B.等于同一个角的两个角相等吗?C.延长线段AO到C,使OC=OAD.两直线平行,内错角相等.3下列语句是命题的是()A.作直线AB的垂线B.在线段AB上取点CC.同旁内角互补D.垂线段最短吗?知识点2:命题的结构与真假1、命题的结构观察课本P36的议一议发现这些命题的结构有什么共同特征?命题的结构:命题通常由和两部分组成。
一般地,命题都可以写成“如果....那么.....”的形式如果(条件),那么(结论)2命题的真假的命题叫做真命题;的命题叫做假命题;真假命题都是命题!!例如:对顶角相等——命题;相等的角是对顶角——命题反对假命题的例子叫做反例跟踪训练21.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x2>0,那么x>0.A.1个B.2个C.3个D.4个2.下列命题中,正确的是()A.三角形的一个外角大于任何一个内角B.三角形的一条中线将三角形分成两个面积相等的三角形C.两边和其中一边的对角分别相等的两个三角形全等D.三角形的三条高都在三角形内部3.下列命题是假命题的是()A.同旁内角互补B.垂直于同一条直线的两条直线平行C.对顶角相等D.同角的余角相等4.下列命题是真命题的有()(1)对顶角相等;(2)如果x2>0,那么x>0;(3)两边分别相等且其中一组等边的对角相等的两个三角形全等;(4)两直线平行,同位角相等;(5)若|a|=|b|,那么a=b.A.1个B.2个C.3个D.4个5.下列命题中,是真命题的是()A.相等的两个角是对顶角B.有公共顶点的两个角是对顶角C.一条直线只有一条垂线D.过直线外一点有且只有一条直线垂直于已知直线6.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若a:b:c=1:2:,则这个三角形是直角三角形.其中,假命题的个数为()A.1个B.2个C.3个D.4个7.“如果∠A和∠B的两边分别平行,那么∠A和∠B相等”是()A.真命题B.假命题C.定理D.以上选项都不对8.将命题“对顶角相等”写成“如果…,那么…”的形式,正确的是()A.如果两个角相等,那么它们是对顶角B.如果两个角是对顶角,那么它们相等C.如果对顶角,那么相等D.如果两个角不是对顶角,那么这两个角不相等9.将下列命题写成“如果…,那么…”的形式1)在同一平面内,垂直于同一直线的两条直线平行。
八年级数学上册:1.2定义与命题

(4)对顶角相等。
条件是: 两个角是对顶角 结论是: 这两个角相等 改写成: 如果两个角是对顶角,那么这两个角相等。
指出下列命题的条件和结论,并改写 “如果……那么……”的形式:
⑴两条边和它们的夹角对应相等的两个 三角形全等;
如果两个三角形有两条边和它们的夹角对 应相等,那么这两个三角形全等。
判断一个句子是不是命题的关键是什么?
下图表示某地的一个灌溉系统.
如果C地水流被污染,那么__E_、__F____的水流也被污染。
B EC
A
P D
F
GH I
JK
根据上图,你能说出其他的命题吗?
触类旁通
命题可看做由题设(条件)和结论两部分 组成。题设是已知事项,结论是由已知事项推 出的事项。
两直线平行,同位角相等。
题设:两条直线被第三条直线所截,同旁源自角互补结论:这两条直线平行
4、如果两条平行线被第三条直线所截, 那么内错角相等; 题设:两条平行线被第三条直线所截
结论:内错角相等
指出下列命题的条件和结论,并改写成“如 果……那么……”的形式: ⑴同位角相等,两直线平行;
条件是: 同位角相等 结论是: 两直线平行 改写成:如果同位角相等,那么两直线平行。
1.2 定义与命题(1)
什么叫法律? 什么是法盲?
法律就是法国 的律师
法盲就是法国 的盲人
可见,在交流时对名称和术语要有共同的认识才行。
一般地,能清楚地规定某一名称或术语的意义 的句子叫做该名称或术语的定义。
例如: 1、“具有中华人民共和国国籍的人,叫做中华人民 共和国公民” 是“ 中华人民”共的和定国义公; 民
2、 “两点之间 线段的长度,叫做这两点之间的距离” 是 “ 两点之”间的的定距义离;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正确的命题称为真命题,不正确的 命题称为假命题
说明假命题的方法:
举反例
使之具有命题的条件,而不具有 命题的结论
试用举反例的方法说明下列命题是假命题:
(1)如果a+b>0,那么ab>0.
(2)如果a是无理数,b是无理数,那么a+b是无理数.
(3)两个三角形中,两边及其中一边的对角对应相等, 则这个两个三角形全等.(要求画出图形,并加以说明)
“两点之间 线段的长度,叫做这两点之间的距离”
是“两点之间的距离”的定义;
“无限循环小数称为无理数” 是“无理数”的定义; “有两条边相等的三角形” 是“等腰三角形”的
定义;
你还能举出曾学过的“定义”吗?
下图表示某地的一个灌溉系统.
如果B处水流受到污染,那么 C,E,F,G 处水流便受到污染; E 如果C处水流受到污染,那么 处水流便受到污染; 如果D处水流受到污染,那么 K 处水流便受到污染; ……
上面“如果……,那么……”都是对事情进行判断 的语句.判断一件事情的句子,叫做命题.
例:下列句子对事情做出了判断?
(1)熊猫没有翅膀; (2)任何一个三角形一定有一个角是直角; (3)对顶角相等; (4)无论n为怎样的自然数,式子n2-n+11的值都是质数; (5)如果两条直线都和第三条直线平行,那么这两条直 线也互相平行. 没有对某一事情作 (6)你喜欢数学吗? 出任何判断。 (7)作线段AB=CD. 不是命题
“如果……那么……”
条件
举反例
结论
• 2、说明一个命题是假命题的方法: • 3、说明一个命题是真命题的方法:
证明
证明的依据:公理(等式的性质) 定义、已证明的定理
如何证实一个命题是真命题呢
用我们以前学 过的观察,实验, 验证特例等方 法. 能不能根据已 经知道的真命 题证实呢? 那已经知 道的真命 题又是如 何证实的?. 这些方法 往往并不 可靠.
哦……那 可怎么办
• 如何证实一个命题是真命题呢?
其实,在数学发展史上,数学家们也遇到类似 的问题,公元前3世纪,人们已经积累了大量的 数学知识,在此基础上,古希腊数学家欧几里得 (公元前300前后)编写一本书,书 名叫《原本》,为了说明每一个 结论的正确性,他在编写这本书 时进行了大胆创造:挑选了一部 分数学名词和一部分公认的真命 题作为证实其他命题的起始依据,
解:(1)改写:如果一个数是分数,那么这个 数是有理数。 条件:一个数是分数 结论:这个数是有理数 解:(3)改写:如果两个三角形全等,那么这 两个三角形的面积相等。 条件:两个三角形全等 结论:这两个三角形的面积相等
2、这几个命题哪些是正确的?哪些不正确?你是怎么知 道它们是不正确的?
(1)如果两个角相等,那么它们是对顶角; 不正确 (2)如果a≠b,b≠c,那么a≠c; 不正确 (3)三角形三个内角和等于180度。 正确 (4)全等三角形的面积相等。正确
其中
某些数学名词称为原名. 公认的真命题称为公理. 除了公理外,其它真命题的正确性都通 过推理的方法证实. 推理的过程称为证明.
经过证明的真命题称为定理.
原名、公理、证明、定 理、定义及它们的关系
经过证明 的真命题 叫定理
推理的过 一些 程叫证明 条件 证实其它命 推 理 题的正确性 原名 公理
观察下列命题,你能发现这些命题有什么 共同的结构特征吗?
(1)如果两个三角形的三条边对应相等, 那么这两个三角 形全等; (2)如果一个四边形的一组对边平行且相等, 那么这个四边形是平行四边形; (3)如果a=b,那么a2=b2 你能把下面的命题写成“如果……,那么……”的形式吗?
命题“锐角小于90度” 每个命题都由条件和结论两部分组成.条件是 已知事项,结论是由已知事项推断出的事项.
有一位田径教练向领导汇报训练成绩
小明的百米 成绩是9秒9. 继续努力, 争取达到10 秒.
相传,阎锡山在观看士兵篮球赛,双方争 抢非常激烈.于是命令: 发给每个人一
个球,不要再抢 啦.
可见交流必须对某些名称和术语有共同的认识才能进行。 为此,就要对名称和术语的含义加以描述,作出明确的 规定,也就是给出它们的定义 . 例如: “具有中华人民共和国国籍的人,叫做中华人 民共和国公民” 是“中华人民共和国公民”的定义;
如果两个三角形的三条边对应相等,那 么这三角形全等;
条件
已知事项
结论
由已知事项推断 出来的事项
命题都可以写成“如果……那么……” 的形式;其中“如果”引出的部分是 条件,“那么”引出的部分是结论。
1、下列命题的条件是什么?结论是什么?
(1)分数都是有理数; (2)如果 a b ,那么 a b (3)全等三角形的面积相等。
垂直。 4.两条直线被第三条直线所截,如果同位角相等,那 么这两条直线平行. 5.过直线外一点有且只有一条直线与这条直线平行. 6.两边及其夹角对应相等的两个三角形全等. 7.两角及其夹边对应相等的两个三角形全等. 8.三边对应相等的两个三角形全等.
等式的有关性质和不等式的有关性质 都可以看作公理
在等式或不等式中,一个量可以用它的等量 来代替.例如,如果a=b,b=c,那么a=c,这一性质 也看作公理,称为“等量代换”. 又如,如果a>b,b>c,那么a>c.这一性质同 样可以作为证明的依据.
小结与反思
通过本节课的学习, 你有哪些收获?还有什 么疑问?
课堂小结
• 1、命题都是由条件和结论两部分组成
+
有关概念、公理
条件1
定理1
有关概念、公理
定理2 定理3
……
……
条件2
《原本》问世之前,世界上还没有一 本数学书籍像《原本》这样编排,因 此《原本》是一部具有划时代意义的 著作。
本套教材共九条公理,我们已经学过八条:
1.两点确定一条直线。 2.两点之间线段最短。
3.同一平面内,过一点有且只有一条直线与已知直线
7.2 定义与命题
小华与小刚正在津津有味地阅读《我们爱科学》.
哈!这个黑客 终于被逮住 了. 是的,现在的因特 网广泛运用于我 们的生活中,给我 们带来了方便, 但…….
坐在旁边的两个人一边听着他们的谈话,一 边也在悄悄地议论着。
这个黑客 是个小偷 吧?
可能是个喜 欢穿黑衣服 的贼.
真正的含义