结构动力学思考题解答by李云屹
结构力学课后思考题答案
复习思考题1结构动力计算与静力计算的区别是什么?答:区别是动力计算考虑的力系中包括惯性力,考虑的平衡是瞬时平衡。
2动力学中体系的自由度与几何组成分析中体系的自由度的概念有什么不同?动力学中体系的自由度如何确定?答:动力学中体系的自由度是确定全部质点与某一时刻的位置所需要的独立的几何参变量的数目。
几何组成分析中体系是指体系运动时可以独立变化的几何参数的个数,动力学中体系的自由度的确定,采用附加链杆法,即加入最少数量的链杆限制钢架上所有质点的位置,则该刚架的自由度数目等于所加入链杆数目。
4建立振动微分方程有哪两种基本方法?两种方法的物理意义是什么?答:是刚度法和柔度法。
物理意义,刚度法是动力平衡方法,柔度法是位置协调。
5在建立振动微分方程时,若考虑重力的影响,动位移方程有无变化?答:无变化,因为振动本身不考虑重力,动位移是从平衡位置算起的。
6为什么说自振频率和自振周期是结构的固有性质?它与结构的哪些因素有关?答:因为自振频率和自振周期跟体系是否振动无关,跟质量大小,质量分布,结构形式,结构跨度,材料,截面形式等有关。
7阻尼对结构的自振频率和振幅有什么影响?什么是临界阻尼系数?答:影响,(1)在阻尼比§<0.2的情况下,阻尼对自振频率的影响不大,可以忽略。
(2)由于阻尼的影响,振幅随时间而逐渐衰减,阻尼比§值越大,则衰减速度越快。
当阻尼比§<1时,体系在自由反应中是会引起振动的,而当阻尼增大到阻尼比§=1时,体系在自由度振动中即不再引起振动,这时的阻尼系数成为临界阻尼系数。
9在计算简谐荷载作用下体系的振幅时,在什么情况下阻尼的影响最大?答:在共振情况下阻尼的影响最大。
10何谓动力系数?动力系数与哪些因素有关?在什么情况下动力系数为负值?为负值的物理意义是什么?动力系数为考虑阻尼时的放大系数Ud ;动力系数Ud不仅与Ѳ和w 的比值有关,而且还与阻尼比§有关;无阻尼的动力系数可以为负值;物理意义为表现出共振现象。
第7章思考题与参考答案
第7章思考题参考答案1. 为什么说结构的自振频率是结构的重要动力特征,它与那些量有关,怎样修改它? 答:动荷载(或初位移、初速度)确定后,结构的动力响应由结构的自振频率控制。
从计算公式看,自振频率与质量与刚度有关。
质量与刚度确定后自振频率就确定了,不随外部作用而改变,是体系固有的属性。
为了减小动力响应一般要调整结构的周期(自振频率),只能通过改变体系的质量、刚度来达到。
总的来说增加质量将使自振频率降低,而增加刚度将使自振频率增加。
2.自由振动的振幅与那些量有关?答:振幅是体系动力响应的幅值,动力响应由外部作用和体系的动力特性确定。
对于自由振动,引起振动的外部作用是初位移和初速度。
因此,振幅应该与初位移、初速度以及体系的质量和刚度的大小与分布(也即频率等特性)有关。
当计及体系阻尼时,则还与阻尼有关。
3. 任何体系都能发生自由振动吗?什么是阻尼比,如何确定结构的阻尼比?答:并不是所有体系都能发生自由振动的,当体系中的阻尼大到一定程度时,体系在初位移和初速度作用下并不产生振动,将这时的体系阻尼系数称为临界组尼系数,其值为2m ω。
当阻尼系数小于该值时(称为小阻尼),可以发生自由振动。
阻尼比是表示体系中阻尼大小的一个量,它为体系中实际阻尼系数与临界阻尼系数之比。
若阻尼比为0.05,则意味着体系阻尼是临界阻尼的5%。
阻尼比可通过实测获得,方法有多种,振幅法是其中之一,振幅法确定阻尼比读者可见教材例题7-1。
4. 阻尼对频率、振幅有何影响?答:按粘滞阻尼(或等效粘滞阻尼)假定分析出的体系自振频率计阻尼与不计阻尼是不一样的,2者之间的关系为d ω=,计阻尼自振频率d ω小于不计阻尼频率ω,计阻尼时的自振周期会长于不计阻尼的周期。
由于相差不大,通常不考虑阻尼对自振频率的影响。
阻尼对振幅的影响在频比(荷载频率与自振频率的比)不同时大小不同,当频比在1附近(接近共振)时影响大,远离1时影响小。
为了简化计算在频比远离1时可不计阻尼影响。
结构动力学课后习题答案
结构动力学课后习题答案结构动力学是研究结构在动态载荷作用下的响应和行为的学科。
它涉及到结构的振动、冲击响应、疲劳分析等方面。
课后习题是帮助学生巩固课堂知识、深化理解的重要手段。
以下内容是结构动力学课后习题的一些可能答案,供参考:习题1:单自由度系统自由振动分析解答:对于一个单自由度系统,其自由振动的频率可以通过以下公式计算:\[ f = \frac{1}{2\pi}\sqrt{\frac{k}{m}} \]其中,\( k \) 是系统的刚度,\( m \) 是系统的总质量。
系统自由振动的振幅随着时间的衰减可以通过阻尼比 \( \zeta \) 来描述,其衰减系数 \( \delta \) 可以通过以下公式计算:\[ \delta = \sqrt{1-\zeta^2} \]习题2:单自由度系统受迫振动分析解答:当单自由度系统受到周期性外力作用时,其受迫振动的振幅可以通过以下公式计算:\[ A = \frac{F_0}{\sqrt{(k-m\omega^2)^2+(m\zeta\omega)^2}} \] 其中,\( F_0 \) 是外力的幅值,\( \omega \) 是外力的角频率。
习题3:多自由度系统模态分析解答:对于多自由度系统,可以通过求解特征值问题来得到系统的模态。
特征值问题通常表示为:\[ [K]{\phi} = \lambda[M]{\phi} \]其中,\( [K] \) 是系统的刚度矩阵,\( [M] \) 是系统的质量矩阵,\( \lambda \) 是特征值,\( {\phi} \) 是对应的特征向量,即模态形状。
习题4:结构的冲击响应分析解答:对于结构的冲击响应分析,通常需要考虑冲击载荷的持续时间和冲击能量。
结构的冲击响应可以通过冲击响应谱(IRF)来分析,它描述了结构在不同频率下的响应。
冲击响应分析的结果可以用来评估结构的耐冲击性能。
习题5:疲劳分析解答:结构的疲劳分析需要考虑结构在重复载荷作用下的寿命。
结构力学思考题答案
结构力学思考题答案(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1、结构的动力特性一般指什么答:结构的动力特性是指:频率(周期)、振型和阻尼。
动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)所确定的、表征结构动力响应特性的量。
动力特性不同,在振动中的响应特点亦不同。
2、什么是阻尼、阻尼力,产生阻尼的原因一般有哪些什么是等效粘滞阻尼答:振动过程的能量耗散称为阻尼。
产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。
当然,也包括结构中安装的各种阻尼器、耗能器。
阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假想力。
粘滞阻尼理论假定阻尼力与质量的速度成比例。
粘滞阻尼理论的优点是便于求解,但其缺点是与往往实际不符,为扬长避短,按能量等效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼假设称为等效粘滞阻尼。
3、采用集中质量法、广义位移法(坐标法)和有限元法都可使无限自由度体系简化为有限自由度体系,它们采用的手法有何不同答:集中质量法:将结构的分布质量按一定规则集中到结构的某个或某些位置上,认为其他地方没有质量。
质量集中后,结构杆件仍具有可变形性质,称为“无重杆”。
广义坐标法:在数学中常采用级数展开法求解微分方程,在结构动力分析中,也可采用相同的方法求解,这就是广义坐标法的理论依据。
所假设的形状曲线数目代表在这个理想化形式中所考虑的自由度个数。
考虑了质点间均匀分布质量的影响(形状函数),一般来说,对于一个给定自由度数目的动力分析,用理想化的形状函数法比用集中质量法更为精确。
有限元法:有限元法可以看成是广义坐标法的一种特殊的应用。
一般的广义坐标中,广义坐标是形函数的幅值,有时没有明确的物理意义,并且在广义坐标中,形状函数是针对整个结构定义的。
而有限元法则采用具有明确物理意义的参数作为广义坐标,且形函数是定义在分片区域的。
结构动力学习题解答一二章
2、 动量距定理法
适用范围:绕定轴转动的单自由度系统的振动。
解题步骤:(1) 对系统进行受力分析与动量距分析;
(2) 利用动量距定理J ,得到系统的运动微分方程;
(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
3、 拉格朗日方程法:
;
1、7求图1-36所示齿轮系统的固有频率。已知齿轮A的质量为mA,半径为rA,齿轮B的质量为mB,半径为rB,杆AC的扭转刚度为KA,,杆BD的扭转刚度为KB,
解:由齿轮转速之间的关系 得角速度 ;转角 ;
系统的动能为:
CA
;B D
图1-36
系统的势能为:
;
系统的机械能为
;
由 得系统运动微分方程
;
适用范围:所有的单自由度系统的振动。
解题步骤:(1)设系统的广义坐标为 ,写出系统对于坐标 的动能T与势能U的表达式;进一步写求出拉格朗日函数的表达式:L=T-U;
(2)由格朗日方程 =0,得到系统的运动微分方程;
(3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。
4、 能量守恒定理法
1、2叙述用衰减法求单自由度系统阻尼比的方法与步骤。
用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法与共振法。
方法一:衰减曲线法。
求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期与相邻波峰与波谷的幅值 、 。
(2)由对数衰减率定义 , 进一步推导有
,
因为 较小,所以有
。
方法二:共振法求单自由度系统的阻尼比。
;L/2L/2
则固有频率为:
图1-33(b)
结构动力学习题解答
然后积分求初始速度
̇̇ d t = θ̇0 = θ 0
0+ 0+ 0+
∫
0
∫ hδ ( t ) d t = h ∫ δ ( t ) d t = h
0 0 0+
;
再积分求初位移
̇̇ d t == h )d t = 0 ; θ0 = θ 0
0+
∫
0
∫
0
̇̇ 、 θ̇ 和 θ 的瞬态响应 这样方程(6)的解就是系统对于初始条件 θ 0 0 0
1.6 求图 1-35 所示系统的固有频率。图中磙子半径为 R,质量为 M,作纯滚动。弹簧刚度 为K 。 解:磙子作平面运动, 其动能 T=T 平动 +T 转动 。
K R M 图 1-35 x
T平动 = T转动
1 ̇2; Mx 2 2 2 ̇ ⎞ 1 ⎛ MR 2 ⎞ ⎛ x ̇⎞ 1 ⎛x = I⎜ ⎟ = ⎜ ⎟⎜ ⎟ ; 2 ⎝R⎠ 2 ⎝ 2 ⎠⎝ R ⎠
U= r 2 1 1 1 1⎛ K A ϕ A 2 + K B ϕ B 2 = K Aϕ A 2 + K B ϕ B 2 = ⎜ K A + K B A 2 2 2 2 2⎜ rB ⎝
(
)
⎞ 2 ⎟ϕ ; ⎟ A ⎠
系统的机械能为
T +U = r 2 1 1⎛ ̇ A2 + ⎜ K A + K B A (m A + m B )rA 2ϕ 4 2⎜ rB 2 ⎝
d (T + U ) = 0 ,进一步得到系 dt
统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤: (1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷 的幅值 Ai 、 Ai +1 。 (2)由对数衰减率定义 δ = ln(
结构力学思考题答案
结构力学思考题答案12.1怎样区别动力荷载与静力荷载? 结构动力计算与静力计算的主要区别是什么?答:静力荷载:施力过程缓慢,不致使结构发生显著加速度,可略去惯性力的影响,各量值不随时间而变化。
例:在梁上砌砖。
动力荷载:在荷载作用下使结构发生不容忽视的加速度,必须考虑惯性力的影响,使结构发生振动,各量值内力位移(动力反应)随时间而变化。
二者的主要区别:是否考虑惯性力的影响。
实际荷载处理:当荷载变化缓慢时,其变化周期远大于结构的自振周期时,动力作用是很小的,为简化计算将它作为静力荷载处理;当荷载过于激烈时,动力作用比较明显的荷载,惯性力不可忽略,按动力荷载考虑。
结构动力计算与静力计算主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力;(2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。
12.2 什么是振动自由度?结构振动自由度与机动分析中的自由度有何区别?确定体系动力自由度的目的是什么?答:结构的振动自由度:结构在弹性变形过程中,确定全部质量的位置所需要的独立参数的数目。
相同点:表明体系运动形式的参变量的数目相同。
不同点:几何组成分析表示的是刚体运动的自由度;振动的自由度,表示变形体系中质点的自由度。
确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。
12.3 建立运动微分方程有哪几种基本方法?各种方法的适用条件是什么?答:常用的有3 种:直接动力平衡法、虚功原理、变分法(哈密顿原理)。
直接动力平衡法是在达朗贝尔原理和所设阻尼理论下,通过静力分析来建立体系运动方程的方法,也就是静力法的扩展,适用于比较简单的结构。
结构动力学思考题解答
结构动力学思考题made by 云屹思考题一1、结构动力学与静力学的主要区别是什么?结构的运动方程有什么不同?主要区别为:(1)动力学考虑惯性力的影响,静力学不考虑惯性力的影响;(2)动力学中位移等量与时间有关,静力学中位移等量不随时间变化;(3)动力学的求解方法通常与荷载类型有关,静力学一般无关。
运动方程的不同:动力学的运动方程包括位移项、速度项和加速度项;静力学的平衡方程只包括位移项。
2、什么是动力自由度?什么是静力自由度?区分动力自由度和静力自由度的意义是什么?动力自由度:确定结构体系质量位置的独立参数;静力自由度:确定结构体系在空间中的几何位置的独立参数。
意义:通过适当的假设,当静力自由度数大于动力自由度数时,使用动力自由度可以减少未知量,简化计算,提高计算效率。
3、采用集中质量法、广义坐标法和有限元法都可以使无限自由度体系简化为有限自由度体系,它们所采用的手法有什么不同?4、在结构振动的过程中引起阻尼的原因有哪些?(1)材料的摩擦或材料变形引起的热耗散;(2)构件连接处或结构构件与非结构构件之间的摩擦;(3)结构外部介质的阻尼。
5、在建立结构运动方程时,如考虑重力的影响,动位移的运动方程有无改变?如果满足条件:(1)线性问题;(2)重力的影响预先被平衡;则动位移的运动方程不会改变,否则会改变。
思考题二1、刚度系数k ij和质量系数m ij的直接物理意义是什么?如何直接用m ij的物理概念建立梁单元的质量矩阵[M]?k ij:由第j自由度的单位位移所引起的第i自由度的力;m ij:由第j自由度的单位加速度所引起的第i自由度的力。
依次令第j(j=1,2,3,4)自由度产生单位加速度,而其他的广义坐标处保持静止,使用平衡方程解出第i自由度上的力,从而得到m ij,集成得到质量矩阵[M]。
2、如何用刚度矩阵和质量矩阵,以矩阵的形式表示多自由度体系的势能和动能?{}[]{}1=2TT u M u {}[]{}1=2TV u K u3、建立多自由度体系运动方程的直接动力平衡法和拉格朗日方程法的优缺点是什么? (1)直接动力平衡法:优点:概念直观,易于通过各个结构单元矩阵建立整体矩阵,便于计算机编程。
结构动力学思考题解答by李云屹
结构动力学思考题made by 李云屹思考题一1、结构动力学与静力学的主要区别是什么?结构的运动方程有什么不同?主要区别为:(1)动力学考虑惯性力的影响,静力学不考虑惯性力的影响;(2)动力学中位移等量与时间有关,静力学中位移等量不随时间变化;(3)动力学的求解方法通常与荷载类型有关,静力学一般无关。
运动方程的不同:动力学的运动方程包括位移项、速度项和加速度项;静力学的平衡方程只包括位移项。
2、什么是动力自由度?什么是静力自由度?区分动力自由度和静力自由度的意义是什么?动力自由度:确定结构体系质量位置的独立参数;静力自由度:确定结构体系在空间中的几何位置的独立参数。
意义:通过适当的假设,当静力自由度数大于动力自由度数时,使用动力自由度可以减少未知量,简化计算,提高计算效率。
3、采用集中质量法、广义坐标法和有限元法都可以使无限自由度体系简化为有限自由度体系,它们所采用的手法有什么不同?4、在结构振动的过程中引起阻尼的原因有哪些?(1)材料的内摩擦或材料变形引起的热耗散;(2)构件连接处或结构构件与非结构构件之间的摩擦;(3)结构外部介质的阻尼。
5、在建立结构运动方程时,如考虑重力的影响,动位移的运动方程有无改变?如果满足条件:(1)线性问题;(2)重力的影响预先被平衡;则动位移的运动方程不会改变,否则会改变。
思考题二1、刚度系数k ij和质量系数m ij的直接物理意义是什么?如何直接用m ij的物理概念建立梁单元的质量矩阵[M]?k ij:由第j自由度的单位位移所引起的第i自由度的力;m ij:由第j自由度的单位加速度所引起的第i自由度的力。
依次令第j(j=1,2,3,4)自由度产生单位加速度,而其他的广义坐标处保持静止,使用平衡方程解出第i自由度上的力,从而得到m ij,集成得到质量矩阵[M]。
2、如何用刚度矩阵和质量矩阵,以矩阵的形式表示多自由度体系的势能和动能?{}[]{}1=2TT u M u {}[]{}1=2TV u K u3、建立多自由度体系运动方程的直接动力平衡法和拉格朗日方程法的优缺点是什么? (1)直接动力平衡法:优点:概念直观,易于通过各个结构单元矩阵建立整体矩阵,便于计算机编程。
结构动力学思考题(20170106)
《结构动力学》思考题第1~2章1、对于任一振动系统,可划分为由激励、系统和响应三部分部分。
试结合工程实际,分别举例说明何为响应求解、环境识别和系统识别。
2、单自由度系统(SDOF )的响应,如何从物理意义上理解其速度比位移的相位超前 ,加速度比速度的相位超前 。
3、如何从物理意义上理解线性振动系统 解的可叠加性。
4、正确理解等效刚度的概念,进而求解单自由度系统的固有频率。
5、试总结单自由度系统求解固有频率的方法。
6、固有频率f 和圆频率ω的物理意义是什么。
7、正确理解过阻尼、临界阻尼、欠阻尼的概念。
8、正确理解自由振动和强迫振动的概念。
9、一单自由度振动系统的幅-频曲线如图所示,依据频率一般划分为三个区域,试说明各频段内其振动现象的物理含义。
10、一单自由度振动系统,何谓位移共振、速度共振和加速度共振?试说明其物理含义。
11、一单自由度振动系统的位移传递率如图所示,试分析各频率段阻尼比对其响应的影响作用。
12、单自由度振动系统旋转矢量法求解的物理含义是什么。
13、利用旋转矢量法直接求解 控制方程响应的幅值与相位滞后角。
)(t f kx x c x m =++ 2π2πsin()a mx cx kx F t ++=Ω14、对于单自由度(SDOF )振动系统,其运动微分方程为,分析其共振时系统动力学行为与动静平衡力学行为的差异。
15、推导杜哈梅(Duhamel )积分。
16、如何理解频率响应函数的物理意义。
17、阻尼、结构阻尼与等效阻尼的基本概念。
18、结合第一章单自由系统的强迫振动,试总结简谐力激励、周期函数力激励、脉冲力激励、阶跃力激励及任意力激励响应的求解方法。
19、试分析线性振动系统响应谱求解和时间历程响应求解的特点与区别。
20、抗弯刚度为EI 的悬臂杆OA (不计质量)长为l ,与一半径为R 、质量为m 的匀质圆盘在A 点固结,该系统可在xoy 平面内作微幅振动。
①当R =0时,试求该系统振动的固有频率;②当R 不为零时,试求该系统振动的固有频率。
结构动力计算课后习题答案
结构动力计算课后习题答案结构动力计算课后习题答案在学习结构动力学这门课程时,我们经常会遇到各种各样的习题。
这些习题旨在帮助我们巩固所学的知识,并提供实践的机会。
在这篇文章中,我将为大家提供一些结构动力计算课后习题的答案,希望能对大家的学习有所帮助。
1. 计算一个简支梁的固有频率。
答案:简支梁的固有频率可以通过以下公式计算:f = (1/2π) * √(k/m)其中,f为固有频率,k为刚度,m为质量。
在简支梁的情况下,刚度k等于弹性模量E乘以截面面积A除以长度L。
质量m等于密度ρ乘以截面面积A除以长度L。
2. 计算一个悬臂梁的固有频率。
答案:悬臂梁的固有频率可以通过以下公式计算:f = (1/2π) * √(3k/m)在悬臂梁的情况下,刚度k等于弹性模量E乘以截面面积A的三次方除以长度L的四次方。
质量m等于密度ρ乘以截面面积A除以长度L。
3. 计算一个简支梁的振动模态。
答案:简支梁的振动模态可以通过以下公式计算:f_n = (n^2 * v) / (2L)其中,f_n为第n个振动模态的频率,v为波速,L为长度。
n为振动模态的序号,从1开始。
4. 计算一个悬臂梁的振动模态。
答案:悬臂梁的振动模态可以通过以下公式计算:f_n = (2n-1) * (v/4L)其中,f_n为第n个振动模态的频率,v为波速,L为长度。
n为振动模态的序号,从1开始。
5. 计算一个简支梁的最大挠度。
答案:简支梁的最大挠度可以通过以下公式计算:δ_max = (5qL^4) / (384EI)其中,δ_max为最大挠度,q为均布载荷,L为长度,E为弹性模量,I为截面惯性矩。
6. 计算一个悬臂梁的最大挠度。
答案:悬臂梁的最大挠度可以通过以下公式计算:δ_max = (qL^4) / (8EI)其中,δ_max为最大挠度,q为均布载荷,L为长度,E为弹性模量,I为截面惯性矩。
以上是一些常见的结构动力计算课后习题的答案。
通过解答这些习题,我们可以更好地理解结构动力学的概念和原理,提高我们的计算能力和问题解决能力。
结构动力计算课后习题答案
结构动力计算课后习题答案结构动力计算是土木工程和机械工程领域中的一个重要分支,它涉及到结构在动力作用下的响应分析。
这门课程的课后习题通常要求学生运用所学的理论,解决实际工程问题。
以下是一些可能的习题答案示例,请注意,这些答案是基于假设的习题内容,实际的习题答案应根据具体的题目来确定。
习题1:单自由度系统的动力响应假设有一个单自由度系统,其质量为m,阻尼系数为c,刚度系数为k。
系统受到一个简谐激励F(t) = F0 * sin(ωt),其中F0是激励力的幅值,ω是激励频率。
求系统的稳态响应。
答案:对于单自由度系统,其运动方程可以表示为:\[ m\ddot{x}(t) + c\dot{x}(t) + kx(t) = F_0 \sin(\omega t) \]稳态响应可以通过求解上述方程的特解来获得。
特解的形式为:\[ x(t) = X \sin(\omega t + \phi) \]其中,振幅X和相位角φ可以通过以下公式计算:\[ X = \frac{F_0}{\sqrt{(\omega^2 m - \omega^2)^2 +(c\omega)^2}} \]\[ \phi = \arctan\left(\frac{c\omega}{\omega^2 m -\omega^2}\right) \]习题2:多自由度系统的模态分析考虑一个两自由度系统,其质量矩阵、刚度矩阵和阻尼矩阵分别为:\[ M = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix},\quad K = \begin{bmatrix} k_1 & k_c \\ k_c & k_2\end{bmatrix}, \quad C = \begin{bmatrix} c_1 & 0 \\ 0 & c_2\end{bmatrix} \]求系统的自然频率和模态形状。
结构动力学思考题
思考题
1-1结构动力计算与静力计算的主要区别是什么?
1-2结构动力自由度的概念与结构几何组成分析中的自由度概念有何异同?
1-3结构动力分析中的阻尼力有何特点?
思考题
2-1在自由振动中,自振频率与系统哪些因素有关?如欲改变系统自振频率,应调整哪些因素?
2-2什么叫动力系数?动力系数的大小与哪些因素有关?单自由度系统位移的动力系数与内力动力系数是否一样?
2-3什么叫临界阻尼?什么叫阻尼比?怎样量测系统振动过程中的阻尼比?
2-4试举出几个单自由度系统自由振动的例子(水平运动、竖向运动或转动)。
思考题
3-1 试用柔度法建立多自由度系统的运动方程,并与式(3-2)进行比较。
3-2 n个自由度系统有多少个发生共振的可能性?为什么?
3-3振型叠加法用到了叠加原理,在结构动力计算中,什么情况下能用这个方法?什么情况下不能应用?
3-4在何种特定荷载作用下,多自由度系统按某个主振型作单一振动?
3-5多自由度系统各质点的位移动力系数是否都是一样的?它们与内力动力系数是否相同?与单自由度系统有些什么不同?
3-6试分析何种情况下用刚度法求自振频率和振型方便,何种情况下用柔度法求自振频率和振型较为方便?
思考题
4-1在瑞利能量法和李兹法中,所设的位移函数应满足什么条件?
4-2采用瑞利法或瑞利—李兹法求得的频率值是否总是真实频率的一个上限?
4-3 影响幂法迭代收敛性的因素有哪些?如何加速迭代收敛?。
结构动力学思考题解答by李云屹
结构动力学思考题made by 李云屹思考题一1、结构动力学与静力学的主要区别是什么?结构的运动方程有什么不同?主要区别为:(1)动力学考虑惯性力的影响,静力学不考虑惯性力的影响;(2)动力学中位移等量与时间有关,静力学中位移等量不随时间变化;(3)动力学的求解方法通常与荷载类型有关,静力学一般无关。
运动方程的不同:动力学的运动方程包括位移项、速度项和加速度项;静力学的平衡方程只包括位移项。
2、什么是动力自由度?什么是静力自由度?区分动力自由度和静力自由度的意义是什么?动力自由度:确定结构体系质量位置的独立参数;静力自由度:确定结构体系在空间中的几何位置的独立参数。
意义:通过适当的假设,当静力自由度数大于动力自由度数时,使用动力自由度可以减少未知量,简化计算,提高计算效率。
3、采用集中质量法、广义坐标法和有限元法都可以使无限自由度体系简化为有限自由度体系,它们所采用的手法有什么不同?4、在结构振动的过程中引起阻尼的原因有哪些?(1)材料的内摩擦或材料变形引起的热耗散;(2)构件连接处或结构构件与非结构构件之间的摩擦;(3)结构外部介质的阻尼。
5、在建立结构运动方程时,如考虑重力的影响,动位移的运动方程有无改变?如果满足条件:(1)线性问题;(2)重力的影响预先被平衡;则动位移的运动方程不会改变,否则会改变。
思考题二1、刚度系数k ij和质量系数m ij的直接物理意义是什么?如何直接用m ij的物理概念建立梁单元的质量矩阵[M]?k ij:由第j自由度的单位位移所引起的第i自由度的力;m ij:由第j自由度的单位加速度所引起的第i自由度的力。
依次令第j(j=1,2,3,4)自由度产生单位加速度,而其他的广义坐标处保持静止,使用平衡方程解出第i自由度上的力,从而得到m ij,集成得到质量矩阵[M]。
2、如何用刚度矩阵和质量矩阵,以矩阵的形式表示多自由度体系的势能和动能?{}[]{}1=2TT u M u {}[]{}1=2TV u K u3、建立多自由度体系运动方程的直接动力平衡法和拉格朗日方程法的优缺点是什么? (1)直接动力平衡法:优点:概念直观,易于通过各个结构单元矩阵建立整体矩阵,便于计算机编程。
结构动力学习题答案
结构动力学习题答案结构动力学学习题答案结构动力学是土木工程中的一个重要分支,它研究结构在受到外部荷载作用下的响应和变形规律。
在学习结构动力学的过程中,我们经常会遇到一些复杂的问题和难题。
下面我将为大家提供一些常见结构动力学学习题的答案,希望能够帮助大家更好地理解和掌握这门学科。
1. 什么是结构的固有频率?结构的固有频率是指结构在没有外部激励作用下,自由振动时的频率。
它是结构的固有特性之一,与结构的质量、刚度和几何形状有关。
固有频率越高,结构的振动越快。
2. 如何计算结构的固有频率?计算结构的固有频率需要先求解结构的固有振型和固有频率。
常用的方法有模态分析法和有限元法。
模态分析法是通过求解结构的特征方程得到结构的固有频率和振型;有限元法则是将结构离散化为有限个单元,通过求解单元的振动特征得到整体结构的固有频率和振型。
3. 结构的固有频率对结构有何影响?结构的固有频率与结构的动态特性密切相关。
当外部激励频率接近结构的固有频率时,会引起共振现象,使结构的振幅急剧增大,从而可能导致结构的破坏。
因此,在结构设计和抗震设计中,需要合理选择结构的固有频率,以避免共振现象的发生。
4. 什么是结构的阻尼?结构的阻尼是指结构在振动过程中能量损耗的程度。
阻尼可以分为线性阻尼和非线性阻尼。
线性阻尼是指结构的阻尼与结构的振幅成正比,非线性阻尼则是指结构的阻尼与结构的振幅不成正比。
5. 如何考虑结构的阻尼?在结构动力学分析中,通常会考虑结构的阻尼对结构响应的影响。
常用的阻尼模型有粘滞阻尼模型和柱塞阻尼模型。
粘滞阻尼模型是指结构的阻尼与结构的速度成正比;柱塞阻尼模型是指结构的阻尼与结构的速度平方成正比。
根据结构的实际情况和要求,可以选择适当的阻尼模型进行分析。
6. 结构的地震反应分析中常用的方法有哪些?在结构的地震反应分析中,常用的方法有等效静力法、响应谱法和时程分析法。
等效静力法是一种简化的方法,将地震作用等效为静力作用进行计算;响应谱法是一种基于地震响应谱的方法,通过将地震作用转化为结构的响应谱进行计算;时程分析法是一种基于地震时程的方法,通过模拟地震过程对结构进行动力响应分析。
结构动力学习题答案
结构动力学习题答案结构动力学学习题答案结构动力学是一门研究结构在外部力作用下的运动和响应的学科。
在学习结构动力学时,学生通常会遇到各种各样的学习题,这些学习题既考验了学生对知识的掌握程度,又帮助他们加深对结构动力学理论的理解。
下面我们就来看一些结构动力学学习题的答案。
1. 什么是结构动力学?结构动力学是研究结构在外部力作用下的振动特性和响应的学科。
它主要研究结构在地震、风载等外部力作用下的动力响应,以及结构的振动特性和控制。
2. 结构的自由振动频率如何计算?结构的自由振动频率可以通过结构的刚度矩阵和质量矩阵来计算。
首先需要求解结构的特征值和特征向量,然后根据特征值来计算结构的自由振动频率。
3. 结构的阻尼比对结构动力学有什么影响?阻尼比是衡量结构在振动过程中能量损失的比例。
阻尼比越大,结构的振动响应越快速衰减;阻尼比越小,结构的振动响应越慢。
因此,阻尼比对结构的振动特性和稳定性有着重要的影响。
4. 结构的地震响应如何进行分析?结构的地震响应可以通过有限元分析、时程分析和频率响应分析等方法进行。
这些方法可以帮助工程师评估结构在地震作用下的受力情况,从而指导结构的设计和加固。
5. 结构的振动控制方法有哪些?结构的振动控制方法包括主动控制、被动控制和半主动控制等。
主动控制是通过外部激励来控制结构的振动;被动控制是通过阻尼器、减震器等被动装置来控制结构的振动;半主动控制则是结合了主动和被动控制的特点,通过智能控制系统来控制结构的振动。
通过以上学习题的答案,我们可以看到结构动力学是一个复杂而又有趣的学科,它涉及到结构的振动特性、动力响应和振动控制等多个方面。
通过对这些学习题的学习和理解,我们可以更好地掌握结构动力学的理论知识,为今后的工程实践打下坚实的基础。
(完整版)结构动力学-习题解答
解
11
5 48
l3 EI
;
3.098
EI ml 3
;
l/2
ml 3 T 2.027 ;
EI
m
EI y1(t)
l
l/2 l/2
l/4
7-1(b)试求图示体系的自振频率与周期。
解: 求柔度系数: 用位移法或力矩分配法 求单位力作用引起的弯矩图(图a); 将其与图b图乘,得
48EI 2k
T 2 ( 1 l3 1 )m
48 EI 2k
m
k EI
k
l/2
l/2
7-3 试求图示体系质点的位移幅值和最大弯矩值。
已知 0.6
l
解:
yst
FPl 3 EI
m
y1(t)
1
1
2
/
2
1.5625
位移幅值
A
yst
1.5625
FPl 3 EI
2l
yst
11
5 3
l3 EI
1 11
l
X11 0.4612 ; X12 4.336
X 21
X 22
12 7.965 EI / ml 3
2 2
65.53EI
/
ml 3
1 2.822 EI / ml3
8-6.试求图示刚架的自振频率和振型。设楼面质量分别为m1=120t和m2=100t,
柱的质量已集中于楼面, 柱的线刚度分别为i1=20MN.m和i2=14MN.m,横梁
m 2 A 0.3375 FP
l/2
EI=常数
FP sin t
2l
FP
FPl
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构动力学思考题made by 李云屹思考题一1、结构动力学与静力学的主要区别是什么结构的运动方程有什么不同主要区别为:(1)动力学考虑惯性力的影响,静力学不考虑惯性力的影响;(2)动力学中位移等量与时间有关,静力学中位移等量不随时间变化;(3)动力学的求解方法通常与荷载类型有关,静力学一般无关。
运动方程的不同:动力学的运动方程包括位移项、速度项和加速度项;静力学的平衡方程只包括位移项。
2、什么是动力自由度什么是静力自由度区分动力自由度和静力自由度的意义是什么动力自由度:确定结构体系质量位置的独立参数;静力自由度:确定结构体系在空间中的几何位置的独立参数。
意义:通过适当的假设,当静力自由度数大于动力自由度数时,使用动力自由度可以减少未知量,简化计算,提高计算效率。
3、采用集中质量法、广义坐标法和有限元法都可以使无限自由度体系简化为有限自由度体系,它们所采用的手法有什么不同4、在结构振动的过程中引起阻尼的原因有哪些(1)材料的内摩擦或材料变形引起的热耗散;(2)构件连接处或结构构件与非结构构件之间的摩擦;(3)结构外部介质的阻尼。
5、在建立结构运动方程时,如考虑重力的影响,动位移的运动方程有无改变 如果满足条件: (1)线性问题;(2)重力的影响预先被平衡;则动位移的运动方程不会改变,否则会改变。
思考题二1、刚度系数k ij 和质量系数m ij 的直接物理意义是什么如何直接用m ij 的物理概念建立梁单元的质量矩阵[M]k ij :由第j 自由度的单位位移所引起的第i 自由度的力; m ij :由第j 自由度的单位加速度所引起的第i 自由度的力。
依次令第j (j=1,2,3,4)自由度产生单位加速度,而其他的广义坐标处保持静止,使用平衡方程解出第i 自由度上的力,从而得到m ij ,集成得到质量矩阵[M]。
2、如何用刚度矩阵和质量矩阵,以矩阵的形式表示多自由度体系的势能和动能{}[]{}1=2TT u M u {}[]{}1=2TV u K u3、建立多自由度体系运动方程的直接动力平衡法和拉格朗日方程法的优缺点是什么 (1)直接动力平衡法:优点:概念直观,易于通过各个结构单元矩阵建立整体矩阵,便于计算机编程。
缺点:涉及矢量计算,通常计算较繁琐;涉及叠加原理,不易处理非线性问题。
(2)拉格朗日方程法:优点:仅涉及标量计算;求解不限于线性问题,适用范围广。
缺点:不便计算机编程,不适用于大规模问题。
4、什么是几何刚度,几何刚度主要与什么量有关,几何刚度对结构动力特性有什么影响 几何刚度:表示结构在变形状态下的刚度变化。
(轴力引起的附加弯矩的影响) 几何刚度主要与轴力的大小及构件的几何形状与尺寸有关。
几何刚度会产生P-Δ效应,改变结构的动力特性。
压力降低刚度,拉力增加刚度。
5、什么是结构动力问题分析中的静力凝聚法动力自由度的概念是什么静力凝聚法在结构动力问题分析中可起什么作用静力凝聚法:当静力自由度数目大于动力自由度时,消去广义质量为零或很小的广义坐标,从而缩减结构体系自由度数目的方法。
动力自由度:确定结构体系质量位置的独立参数。
作用:缩减计算规模,提高计算效率,降低计算量。
6、试证明多自由度体系的位能和动能分别为:11111=212N Nij i ji j NNij i j i j V k u u T m u u =====∑∑∑∑证明:弹性恢复力所做的功为()()1111111111121122NNN N N NB BBij i ij j i ij j i ji i j A A Ai j i j i j NN N NBij i j ij iB jB iA jA Ai j i j W F du k u du k u du k u du k du u k u u u u =============+==-∑∑∑∑∑∑⎰⎰⎰∑∑∑∑⎰故定义弹性位能为:111=2N Nij i j i j V k u u ==∑∑惯性力所做的功为()()1111111111121122NN N NNNB BBij i ij j i ij j i ji i j AAAi j i j i j NNNNBij i j ij iB jB iA jA A i j i j W F du m u du m u du m u du m du u m u u u u =============+==-∑∑∑∑∑∑⎰⎰⎰∑∑∑∑⎰注意到=j j i i i j du u du du u du dt=故定义动能为:1112N Nij i j i j T m u u ===∑∑7、如何充分论证,当多自由度体系的动力自由度不能充分确定体系的几何位置时,初始建立的运动方程组中一定含有非动力自由度的静力自由度 证明:假设初始建立的运动方程组不含非动力自由度的静力自由度,则质量矩阵[M]满秩,则动力自由度可以充分确定体系的几何位置,与前提条件矛盾。
8、在推导拉格朗日方程时,给出了以下几个基本表达式: 位移:()12,,...,;i i n u u q q q t =(1) 动能:()1212,,...,;,,...,n n T T q q q q q q = (2) 势能:()12,,...,n V V q q q =(3)问题:(1)式为什么显含时间t有时位移中可以存在已知的显含的时间t 的函数,比如地基运动问题。
(2)式(2)中是否应显含时间t如果位移显含t ,由于动能是位移的函数,也应该显含时间t 。
(3)难道广义坐标及速度完全确定后,体系的动能还与时间t 有关系 可以有关系,比如地基运动问题中,体系的动能就与时间t 有关系。
(4)势能中是否应显含时间t如果位移显含时间t,由于势能是相对位移的函数,也可能会显含时间t。
(5)为什么在变分运算时,不对显含的时间t进行运算因为显含时间的函数随时间的变化规律是已知的,它的变分为零,即δt=0。
(6)若式(2)、(3)中显含时间t,对拉格朗日方程的推导是否有影响由于时间t的变分为零,对拉格朗日方程的推导没有影响。
(实质上是方程的边界条件)思考题三1、在振动过程中产生阻尼的原因有哪些什么叫临界阻尼什么叫阻尼比怎样测量结构振动过程中的阻尼比一般建筑结构的阻尼比是多少产生阻尼的原因:(1)材料的内摩擦或材料变形引起的热耗散;(2)构件之间或构件与非构件之间的摩擦;(3)结构外部介质的阻力。
临界阻尼:使体系自由振动反应中不出现往复振动所需的最小阻尼值。
阻尼比:体系中实际阻尼系数与临界阻尼系数的比值。
测量结构阻尼比的方法:(1)对数衰减率法;(2)共振放大法;(3)半功率带宽法;(4)等效粘性阻尼法。
对于钢结构,ζ=左右;对于混凝土结构,脉动荷载下ζ=左右,地震下ζ=左右。
2、分析临界阻尼体系自由振动的可能运动形式及其满足的条件。
()()00n u u ω≥-时,位移不会变号; ()()00n u u ω<-时,位移会变号。
3、阻尼对结构的自振频率有什么影响阻尼变大,结构的自振周期如何变化由21D ωωζ=-当ζ<1时,自振频率会变小,但当阻尼比较小时(ζ<),这一影响可忽略不计。
当ζ<1时,阻尼变大,结构的自振周期变大。
4、为什么说自振周期是结构的固有特性它与结构哪些固有量有关动荷载及初始条件确定后,结构的动力响应就仅由结构的自振周期(自振频率)控制。
自振频率与结构的质量、刚度及阻尼比有关。
5、什么是动力放大系数动力放大系数的大小与哪些因素有关单自由度体系位移的动力放大系数与内力的动力放大系数是否一样动力放大系数:动荷载引起的响应幅值与动荷载幅值作为静荷载所引起的结构静响应的比值。
简谐荷载下的动力放大系数与频率比(自振频率、荷载频率)、阻尼比有关:()()2221/2/d n n R ωωζωω=⎡⎤-+⎡⎤⎣⎦⎣⎦当惯性力与动荷载作用线重合时,位移动力系数与内力动力系数相等,否则不相等。
原因是:当把动荷载换成作用于质量的等效荷载时,引起的质量位移相等,但内力并不等效,根据动力系数的概念可知不会相等。
6、根据动力放大系数分析,什么时候动力放大系数Rd->1,如何理解下述结论:“随时间变化很慢的动荷载实际上可看作静荷载”。
这里“很慢”的标准是什么 当ω->0时,Rd->1。
根据上述结论,当动荷载的频率很小时,动力放大系数趋于1,动荷载可以看作静荷载。
“很慢”的标准是惯性力相对于总荷载可忽略不计。
7、单自由度体系动荷载作用点不在体系的集中质量上时,动力计算如何进行此时,体系中的动力放大系数是否仍然一样通过动平衡方程或虚位移原理,将原动荷载用沿自由度方向作用于质量上的等效动荷载代替。
集中质量位移的动力放大系数仍然一样,但体系其他部位的位移以及内力的动力系数通常不再相同,即不能采用统一的动力系数。
8、简谐荷载作用下有初始条件影响的无阻尼单自由度体系动力反应的瞬态反应项中()02/sin 1/nn n p t k ωωωωω- 一项是如何产生的,它与外荷载和初始条件的关系如何是由外荷载产生的伴生自由振动,作用是使求得的解满足初始条件,它与外荷载的幅值和频率有关,与初始条件无关。
9、什么是共振什么是共振频率结构位移反应、速度反应和加速度反应的共振频率是否相同 定义一:共振是指体系在动荷载作用下振幅最大的情形,相应的动荷载的频率称为共振频率。
定义二:共振是指体系自振频率与动荷载频率相同而使振幅变得很大的一种现象。
当体系无阻尼时,结构位移反应、速度反应和加速度反应的共振频率相同;当体系有阻尼时,结构位移反应、速度反应好加速度反应的共振频率不同。
10、无阻尼体系和有阻尼体系的自振频率和共振频率是否相同分别为多少 不相同,分别为:思考题四1、在结构动力反应分析中采用的阻尼理论有哪几种各有什么特点 (1)粘滞阻尼:大小与速度成正比 (2)摩擦阻尼:大小为常数 (3)滞变阻尼:大小与位移成正比 (4)流体阻尼:大小与速度的平方成正比2、加速度计和位移计的设计原理是什么如何设计速度计加速度计:在所量测的频段内(低频段,0.5n ωω≤)动力放大系数接近常数。
速度计:在所量测的频段内(高频段,2n ωω>)动力放大系数接近常数。
速度计:在所量测的频段内(中频段)动力放大系数接近常数。
3、用拟静力试验(往复加载的静力试验)测量结构构件阻尼比的原理是什么如何实现 原理是阻尼耗能与加载频率关系不大。
实现方法是通过拟静力试验测出一个周期内的阻尼耗能E D ,从而计算出等效粘滞阻尼比:202Deq n E ku ζωπω=4、测量结构阻尼比的方法有几种每一方法的优点和缺点是什么 (1)对数衰减率法优点:测量一阶振型的阻尼比比较容易。