第16讲函数与一次函数
高中数学函数知识点

高中数学函数知识点一般的,在一个变化过程中,假设有两个变量x、y,如果对于任意一个x都有唯一确定的一个y和它对应,那么就称y是x的函数,其中x是自变量,y是因变量,x的取值范围叫做这个函数的定义域,相应y的取值范围叫做函数的值域。
下面小编给大家分享一些高中数学函数知识点,希望能够帮助大家,欢迎阅读!高中数学函数知识一、一次函数定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
一次函数的图象与性质知识讲解及例题

一次函数的图象与性质(基础)【学习目标】1. 理解一次函数的概念,理解一次函数的图象与正比例函数的图象之间的关系;2. 能正确画出一次函数的图象.掌握一次函数的性质.利用函数的图象解决与一次函数有关的问题,还能运用所学的函数知识解决简单的实际问题.3. 对分段函数有初步认识,能运用所学的函数知识解决实际问题.【要点梳理】要点一、一次函数的定义一般地,形如(,是常数,≠0)的函数,叫做一次函数.要点诠释:当=0时,即,所以说正比例函数是一种特殊的一次函数.一次函数的定义是根据它的解析式的形式特征给出的,要注意其中对常数,的要求,一次函数也被称为线性函数.要点二、一次函数的图象与性质1.函数(、为常数,且≠0)的图象是一条直线 ;当>0时,直线是由直线向上平移个单位长度得到的; 当<0时,直线是由直线向下平移||个单位长度得到的.2.一次函数(、为常数,且≠0)的图象与性质:y kx b =+y kx =y kx b =+y kx b =+k b k b y kx b =+y kx =k b y kx b =+k b k b y kx b =+y kx =b b y kx b =+y kx =b y kx b =+k b k3. 、对一次函数的图象和性质的影响:决定直线从左向右的趋势,决定它与轴交点的位置,、一起决定直线经过的象限.4. 两条直线:和:的位置关系可由其系数确定:(1)与相交; (2),且与平行;要点三、待定系数法求一次函数解析式一次函数(,是常数,≠0)中有两个待定系数,,需要两个独立条件确定两个关于,的方程,这两个条件通常为两个点或两对,的值.要点诠释:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而具体写出这个式子的方法,叫做待定系数法.由于一次函数中有和两个待定系数,所以用待定系数法时需要根据两个条件列二元一次方程组(以和为未知数),解方程组后就能具体写出一次函数的解析式.要点四、分段函数对于某些量不能用一个解析式表示,而需要分情况(自变量的不同取值范围)用不同的k b y kx b =+k y kx b =+b y k b y kx b =+1l 11y k x b =+2l 22y k x b =+12k k ≠⇔1l 2l 12k k =12b b ≠⇔1l 2l y kx b =+k b k k b k b x y y kx b =+k b k b解析式表示,因此得到的函数是形式比较复杂的分段函数.解题中要注意解析式对应的自变量的取值范围,分段考虑问题.要点诠释:对于分段函数的问题,特别要注意相应的自变量变化范围.在解析式和图象上都要反映出自变量的相应取值范围.【典型例题】类型一、待定系数法求函数的解析式1、根据函数的图象,求函数的解析式.【思路点拨】由于此函数的图象过(0,2),因此=2,可以设函数的解析式为,再利用过点(1.5,0),求出相应的值.【答案与解析】利用待定系数法求函数的解析式.解:设函数的解析式为.它的图象过点(1.5,0),(0,2)∴该函数的解析式为. 【总结升华】用待定系数法时需要根据两个条件列二元一次方程组(以和为未知数),解方程组后就能具体写出一次函数的解析式.举一反三:【变式1】已知一次函数的图象与正比例函数的图象平行且经过(2,1)点,则一次函数的解析式为________.【答案】 ;提示:设一次函数的解析式为,它的图象与的图象平行,则,又因为一次函数的图象经过(2,1)点,代入得1=2×2+.解得. ∴ 一次函数解析式为.b 2y kx =+k y kx b =+41.50322k b k b b ⎧+==-⎧⎪⎨⎨=⎩⎪=⎩∴∴423y x =-+k b 2y x =23y x =-y kx b =+2y x =2k =b 3b =-23y x =-【变式2】已知函数y1=2x﹣3,y2=﹣x+3.(1)在同一坐标系中画出这两个函数的图象.(2)求出函数图象与x轴围成三角形的面积.【答案】解:(1)函数y1=2x﹣3与x轴和y轴的交点是(1.5,0)和(0,﹣3),y2=﹣x+3与x轴和y轴的交点是(3,0)和(0,3),其图象如图:(2)设y1=2x﹣3,y2=﹣x+3的交点为点A,可得:,可得:,S△ABC=BC•1=×(3﹣1.5)×1=.类型二、一次函数图象的应用2、电力公司为鼓励市民节约用电,采取按月用电量分段收费的办法,已知某户居民每月应缴电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解答下列问题.(1)分别写出当0≤x≤100和x>100时,y与x之间的函数关系式;(2)若该用户某月用电80度,则应缴费多少元?若该用户某月缴费105元,则该用户该月用了多少度电?【思路点拨】(1)对0≤x≤100段,列出正比例函数y=kx,对x≥100段,列出一次函数y=kx+b;将坐标点代入即可求出.(2)根据(1)的函数解析式以及图标即可解答即可.【答案与解析】解:(1)当0≤x≤100时,设y=kx,则有65=100k,解得k=0.65.∴y=0.65x .当x >100时,设y=ax +b ,则有,解得∴y=0.8x ﹣15.(2)当用户用电80度时,该月应缴电费0.65×80=52(元).当用户缴费105元时,由105=0.8x ﹣15,解得x=150.∴该用户该月用电150度.【总结升华】本题主要考查一次函数的应用,关键考查从一次函数的图象上获取信息的能力. 举一反三:【变式】小高从家骑自行车去学校上学,先走上坡路到达点A ,再走下坡路到达点B ,最后走平路到达学校C ,所用的时间与路程的关系如图所示.放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是( )A.14分钟B.17分钟C.18分钟D.20分钟【答案】D ;提示:由图象可知,上坡速度为80米/分;下坡速度为200米/分;走平路速度为100米/分.原路返回,走平路需要8分钟,上坡路需要10分钟,下坡路需要2分钟,一共20分钟.类型三、一次函数的性质3、已知一次函数.(1)当、是什么数时,随的增大而增大;(2)当、是什么数时,函数图象经过原点;(3)若图象经过一、二、三象限,求、的取值范围.【答案与解析】解:(1),即>-2,为任何实数时,随的增大而增大;()()243y m x n =++-m n y x m n m n 240m +>m n y x(2)当、是满足即时,函数图象经过原点; (3)若图象经过一、二、三象限,则,即. 【总结升华】一次函数的图象有四种情况:①当>0,>0时,函数的图象经过第一、二、三象限,的值随的值增大而增大;②当>0,<0时,函数的图象经过第一、三、四象限,的值随的值增大而增大;③当<0,>0时,函数的图象经过第一、二、四象限,的值随的值增大而减小;④当<0,<0时,函数的图象经过第二、三、四象限,的值随的值增大而减小.4、已知点A (4,0)及在第一象限的动点P (x ,y ),且x+y=5,0为坐标原点,设△OPA 的面积为S .(1)求S 关于x 的函数解析式;(2)求x 的取值范围;(3)当S=4时,求P 点的坐标.【思路点拨】(1)根据题意画出图形,由x+y=5可知y=5﹣x ,再由三角形的面积公式即可得出结论;(2)由点P (x ,y )在第一象限,且x+y=5得出x 的取值范围即可;(3)把S=4代入(1)中的关系式求出x 的值,进而可得出y 的值.【答案与解析】解:(1)如图所示,∵x+y=5,∴y=5﹣x ,∴S=×4×(5﹣x )=10﹣2x ;(2)∵点P (x ,y )在第一象限,且x+y=5,∴0<x <5;(3)∵由(1)知,S=10﹣2x ,∴10﹣2x=4,解得x=3,∴y=2,∴P(3,2).m n 24030m n +≠⎧⎨-=⎩23m n ≠-⎧⎨=⎩24030m n +>⎧⎨->⎩23m n >-⎧⎨<⎩y kx b =+k b y kx b =+y x k b y kx b =+y x k b y kx b =+y x k b y kx b =+y x【总结升华】本题考查的是一次函数的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.举一反三:【变式】函数在直角坐标系中的图象可能是( ).【答案】B ;提示:不论为正还是为负,都大于0,图象应该交于轴上方,故选B.【巩固练习】一.选择题1. 已知一次函数的图象如图所示,那么的取值范围是( )A .B .C .D .2.关于一次函数y=﹣2x+3,下列结论正确的是( )A .图象过点(1,﹣1)B .图象经过一、二、三象限C .y 随x 的增大而增大D .当x >时,y <03. 已知一次函数的图象经过第一、二、三象限,则的取值范围是( )A. B. C. D. 4.点P (x ,y )在第一象限内,且x+y=6,点A 的坐标为(4,0).设△OPA 的面积为S ,则下列图象中,能正确反映面积S 与x 之间的函数关系式的图象是( )(0)y kx k k =+≠k k x (1)y a x b =-+a 1a >1a <0a >0a<k x k y +-=)21(k 0>k 0<k 210<<k 21<kA .B .C .D .5.已知直线和直线相交于点(2,),则、的值分别为( ). A .2,3 B .3,2 C .,2 D .,3 6. 如图弹簧的长度与所挂物体的质量关系为一次函数,则不挂物体时,弹簧长度为( ).A .7B .8C .9D .10二.填空题7. 如果直线经过第一、二、三象限,那么 0.8.已知点M (1,a )和点N (2,b )是一次函数y=﹣2x +1图象上的两点,则a 与b 的大小关系是 .9. 已知一次函数的图象与直线平行, 则= .10. 一次函数的图象与轴的交点坐标是_____,与轴的交点坐标是______. 11.已知一次函数y=kx+b (k≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,则此一次函数的解析式为 .12.一次函数与两坐标轴围成三角形的面积为4,则=________.三.解答题13.已知直线y=kx+3经过点A (﹣4,0),且与y 轴交于点B ,点O 为坐标原点.(1)求k 的值;(2)求点O 直线AB 的距离;(3)过点C (0,1)的直线把△AOB 的面积分成相等的两部分,求这条直线的函数关系式.14.已知与成正比例,且当=1时,= 5y x =12y x b =-+c b c 12-12-cm cm cmcm y ax b =+ab 2y kx =-34y x =+k 113y x =-+x y 2y x b =+b 1-y 1+x x y(1)求与之间的函数关系式;(2)若图象与轴交于A 点,与交于B 点,求△AOB 的面积.15.某风景区集体门票的收费标准是:20人以内(含20人),每人25元;超过20人,超过部分每人10元.(1)写出应收门票费(元)与游览人数(人)之间的函数关系式;(2)利用(1)中的函数关系计算:某班54名学生去该风景区游览时,为购门票共花了多少元?【答案与解析】一.填空题1. 【答案】A ;【解析】由题意知.2. 【答案】D ;【解析】解:A 、当x=1时,y=1.所以图象不过(1,﹣1),故错误;B 、∵﹣2<0,3>0,∴图象过一、二、四象限,故错误;C 、∵﹣2<0,∴y 随x 的增大而减小,故错误;D 、画出草图.∵当x >时,图象在x 轴下方,∴y <0,故正确.故选D .3. 【答案】C ;【解析】由题意知,且>0,解得4. 【答案】C ;【解析】∵点P (x ,y )在第一象限内,且x+y=6,∵y=6﹣x (0<x <6,0<y <6). ∵点A 的坐标为(4,0),∵S=×4×(6﹣x )=12﹣2x (0<x <6).5. 【答案】B ;【解析】点(2,)在直线上,故=2.点(2,2)在直线上,故,解得=3.6. 【答案】D ;【解析】5+=12.5,20+=20,解得=0.5,=10.二.填空题7. 【答案】>【解析】画出草图如图所示,由图象知随的增大而增大,可知>0;图象与轴的交点在轴上方,知>0,故>0.y x x y y x 10,1a a ->>∴120k ->k 210<<k c y x =c 12y x b =-+12b -+=b k b k b k b y x a y x b ab8. 【答案】a >b ;【解析】∵一次函数y=﹣2x +1中k=﹣2,∴该函数中y 随着x 的增大而减小,∵1<2,∴a >b .故答案为:a >b .9. 【答案】3;【解析】互相平行的直线相同.10.【答案】,【解析】令=0,解得=1;令=0,解得=3.11.【答案】y=x+2或y=﹣x+2.【解析】解:∵一次函数y=kx+b (k≠0)图象过点(0,2),∴b=2,设一次函数与x 轴的交点是(a ,0),则×2×|a|=2,解得:a=2或﹣2.把(2,0)代入y=kx+2,解得:k=﹣1,则函数的解析式是y=﹣x+2; 把(﹣2,0)代入y=kx+2,得k=1,则函数的解析式是y=x+2. 故答案是:y=x+2或y=﹣x+2.12.【答案】;【解析】一次函数与轴交点为,与轴交点为(0,),所以,解得=±4.三.解答题13. 【解析】解:(1)依题意得:﹣4k+3=0,解得k=;(2)由(1)得y=x+3,当x=0时,y=3,即点B 的坐标为(0,3).如图,过点O 作OP ⊥AB 于P ,则线段OP 的长即为点O 直线AB 的距离. ∵S △AOB =AB•OP=OA•OB,∴OP===;k ()3,0()0,1x y y x 4±x ,02b ⎛⎫-⎪⎝⎭y b 1||||422b b -=b(3)设所求过点C(0,1)的直线解析式为y=mx+1.S△AOB=OA•OB=×4×3=6.分两种情况讨论:①当直线y=mx+1与OA相交时,设交点为D,则S△COD=OC•OD=×1×OD=3,解得OD=6.∵OD>OA,∴OD=6不合题意舍去;②当直线y=mx+1与AB相交时,设交点为E,则S△BCE=BC•|x E|=×2×|x E|=3,解得|x E |=3,则x E =﹣3,当x=﹣3时,y=x+3=,即E 点坐标为(﹣3,).将E (﹣3,)代入y=mx+1,得﹣3m+1=,解得m=.故这条直线的函数关系式为y=x+1.14.【解析】解:(1)∵与成正比例,∴当=1时,=5解得=2∴(2)A(),B(0,3) =. 15.【解析】解:(1)由题意,得1-y 1+x ()11y k x -=+x y k 23y x =+3,02-12AOB S OA OB ∆=⨯1393224⨯⨯=25(020,)252010(20)(20,x x x y x x x <≤⎧=⎨⨯+->⎩且为整数且为整数)化简得: (2)把=54代入=10+300,=10×54+300=840(元). 所以某班54名学生去该风景区游览时,为购门票共花了840元.甲由B 地到A 地所用时间是:20÷=20分钟, 设甲由B 地到A 地的函数解析式是:,∵点(24,20)与(44,0)在此函数图象上,∴,解得:,∴甲由B 地到A 地函数解析式是:,(2)乙由A 地到B 地的函数解析式是:,即; 根据题意得:, 解得:, 则经过分钟相遇.25(020,)10300(20,x x x y x x x <≤⎧=⎨+>⎩且为整数且为整数)x y x y 1111212⎛⎫+ ⎪⎝⎭y kx b =+2420440k b k b +=⎧⎨+=⎩144k b =-⎧⎨=⎩44y x =-+711212y x ⎛⎫=- ⎪⎝⎭12y x =4412y x y x =-+⎧⎪⎨=⎪⎩883x =883。
一次函数的应用

一次函数的应用一次函数的应用一、学习目标:1. 巩固一次函数的知识,灵活运用变量关系解决相关实际问题.2. 熟练掌握一次函数与方程,不等式的关系,有机地把各种数学模型通过函数统一起来使用,提高解决实际问题的能力.二、重点、难点:运用一次函数与正比例函数的图象和性质解决实际问题。
各种数学思想的渗透和应用。
三、考点分析:利用函数解决实际问题,并求最值,这是近三年中考应用题的新特点。
一次函数的概念、图象和性质是中考的必考内容,一次函数的应用是中考的热点内容。
中考对这部分内容的要求是结合具体情境体会一次函数的意义,根据已知条件确定一次函数的表达式;会画一次函数的图象,根据图象与表达式探索并理解其性质;根据一次函数的图象求二元一次方程组的近似解;利用一次函数解决实际问题。
利用一次函数解决实际问题的题型多样,填空、选择、解答、综合题都有,主要考查学生应用函数知识分析、解决问题的能力.典型例题此前我们学习了有关一次函数的一些知识,认识了变量间的变化情况,并系统学习了一次函数的有关概念及应用,且用函数观点重新认识了方程及不等式,利用函数观点把方程(组)、不等式有机地统一起来,使我们解决相关实际问题时更方便了.例1. 乘坐某种出租汽车,当行驶路程小于2千米时,乘车费用都是4元(即起步价4元);当行驶路程大于或等于2千米时,超过2千米的部分每千米收费1.5元.(1)请你求出x≥2时乘车费用y(元)与行驶路程x(千米)之间的函数关系式;(2)按常规,乘车付费时按计费器上显示的金额进行“四舍五入”后取整(如计费器上的数字显示范围大于或等于9.5而小于10.5时,应付车费10元),小红一次乘车后付了车费8元,请你确定小红这次乘车路程x的范围。
思路分析:1)题意分析:本题考查一次函数与不等式的综合运用。
2)解题思路:注意审题。
注意考虑函数的取值范围,能灵活应用所学知识解决问题。
解答过程:(1)根据题意可知:y=4+1.5(x-2),∴y=1.5x+1(x≥2)(2)依题意得:7.5≤1.5x+1<8.5∴≤x<5解题后的思考:一次函数的性质:当k>0,时y随x的增大而增大,当k<0时,y随x的增大而减小。
2024年中考数学一轮复习考点精讲课件—一次函数的图象与性质

的.由此可知直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)平行.
4)一次函数与正比例函数有着共同的性质:
①当k>0时,y的值随x值的增大而增大;②当k<0时,y的值随x值的增大而减小.
考点二 一次函数的图象与性质
1. 正比例函数y= kx中,|k|越大,直线y= kx越靠近y轴;反之,|y|越小,直线y= kx越靠近x轴.
C.3
D.−3或3
∴9 = 2 ,∴ = ±3,又∵正比例函数 = 的图象经过第二、
∴ < 0,∴ = −3,故选:B.
【对点训练1】(2023·浙江杭州·统考一模)已知 − 与 − 1成正比例,且当 = −2时, = 3.若关
于的函数图象经过二、三、四象限,则m的取值范围为(
用待定系数法求一次函数表达式的一般步骤:
1)设出函数的一般形式y=kx(k≠0)或y=kx+b(k≠0);
2)根据已知条件(自变量与函数的对应值)代入表达式得到关于待定系数的方程或方程组;
3)解方程或方程组求出k,b的值;
4)将所求得的k,b的值代入到函数的一般形式中,从而得到一次函数解析式.
考点二 一次函数的图象与性质
两点即可,
图象确定
b
k
1)画一次函数的图象,只需过图象上两点作直线即可,一般取(0,b),(− ,0)两点;
2)画正比例函数的图象,只要取一个不同于原点的点即可.
考点二 一次函数的图象与性质
三、k,b的符号与直线y=kx+b(k≠0)的关系
在直线y=kx+b(k≠0)中,令y=0,则x=− ,即直线y=kx+b与x轴交于(− ,0)
综上所述,0 > 1 > 2
一次函数图像讲义)

y/千米X/O4530181514131211109龙文教育一对一讲义根据这个折线图回答下列问题:)这个人什么时间离家最远?这时他离家多远?)何时他开始第一次休息?休息多长时间?这时他离家多远? 他骑了多少千米?和10:30~12~30的平均速度各是多少? )他返家时的平均速度是多少?时他离家多远?何时他距家10千米? 、王教授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(从,看图回答下列问题:、一次函数的图像为一条直线,直线)0kxy中,k ,b的取值决定直线的位置:b(≠+=k直线经过___________象限;直线经过___________象限;直线经过___________象限;直线经过___________象限;例3 已知一次函数(1)k 为何值时x 的增大而减小 21.(1)当x=0时, y = ;(2 )当x=5时, y= ., x= ;(4)当y >0时,x 的取值范围是 . ,x 的取值范围是 _________ ; ,x 的取值范围是 ____________ .的图像不经过( )、第二象限 C 、 第三想象限 D 、 第四象限 不经过第三象限,也不经过原点,则下列结论正确的是( )B 、0,0<>b kC 、0,0><b kD 、0,0<<b k 的增大而增大的是( )12-=x y C 、103+-=x y D 、12--=x y符合上述条件的函数关系式_____________1)不经过第二象限,(2)经过点(2,-5),请写出一个同时满足这两个条件的函数关系式:_______________ 类型二一次函数解析式的求法已知一次函数的图像经过点(3,5)与(2,3),求这个一次函数的解析式。
2+,当x = 5时,y = 4,)求这个一次函数。
初二-第16讲-二元一次方程组与一次函数的关系

二元一次方程与一次函数的关系1.掌握二元一次方程组与一次函数的关系。
2.利用二元一次方程组确定一次函数的解析式。
教学建议:教师演变如何将一次函数变为二元一次方程。
分析二元一次方程组与一次函数的关系。
知识概述1、二元一次方程与一次函数的关系任何一个二元一次方程都可化成一次函数表达式的形式.一个二元一次方程的解有无数个,以一个二元一次方程的所有的解为坐标的点组成的图象与这个二元一次方程化成的一次函数的图象相同,是一条直线,如二元一次方程x-y=2有无数个解,以这无数个解为坐标的点组成的图象就是一次函数y=x-2的图象.一般地,以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数的图象相同.2、二元一次方程组与一次函数的关系一般地,从图形的角度看,确定两条直线交点的坐标,相当于求相应的二元一次方程组的解;解一个二元一次方程组相当于确定相应两条直线交点的坐标.即二元一次方程组的解可以看作是两个一次函数的图象的交点;反之两个一次函数的图象的交点坐标可以当作二元一次方程组的解.3、利用二元一次方程组确定一次函数的表达式(1)待定系数法:先设出函数表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做待定系数法.(2)利用二元一次方程组确定一次函数的表达式是求一次函数表达式的主要方法,其一般步骤如下:①设出函数表达式:y=kx+b;②把已知条件代入,得到关于k,b的方程组;③解方程组,求出k,b的值;④写出其表达式.注意:待定系数法的步骤可总结为“设、代、解、写”.二、典型例题讲解例1、已知直线y=x与y=-2x+1相交,则其交点坐标为__________.解析:由题意可知两条直线的交点坐标是方程组的解,解此方程组,得所以两条直线的交点坐标为.答案:规律总结:(1)每个二元一次方程组都对应两个一次函数,两个一次函数图象的交点坐标就是相应的二元一次方程组的解.(2)如果方程组无解,那么两图象无交点,反之,如果两图象无交点,那么方程组无解.例2、如图所示,一次函数的图象经过A(2,4)和B(0,2)两点,且与x轴交于C点.(1)求这个一次函数的表达式;(2)求三角形AOC的面积.分析:设定表达式,将A,B两点的坐标代入得方程组可求解.在直角坐标系中求三角形的面积,一般选择比较特殊的线段作为底,如x轴、y轴上的线段或平行于x轴、y轴的线段.解:(1)设一次函数表达式为y=kx+b,因为函数图象经过点A(2,4),B(0,2),则有解得所以该一次函数的表达式为y=x+2.(2)令y=0,则由y=x+2,得x=-2,则点C的坐标为(-2,0),所以OC=|-2|=2.过点A作AD⊥x轴于点D,则AD=4,所以三角形AOC的面积为.方法归纳:确定一次函数y=kx+b(k≠0)的表达式,只要确定k,b的值即可.一般需要两个点的坐标,把两个点的坐标分别代入y=kx+b中,列出关于k,b的二元一次方程组,使问题得到解决.此法对于正比例函数y=kx(k≠0)仍适用,不同的是确定正比例函数表达式只需一个点的坐标就可以解决.例3、用作图象的方法解方程组分析:用图象法解二元一次方程组的关键是要作出两个二元一次方程表示的函数的图象,找出它们的交点.解:由2x-3y+3=0得由5x-3y-6=0得.在同一直角坐标系中作出直线和的图象,如图所示,得交点(3,3)所以方程组例4、一次函数y=kx+b的自变量x的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,则这个函数的解析式为____________.分析:本题分两种情况讨论:①当k>0时,y随x的增大而增大,则有:当x=-3,y=-5;当x=6时,y=-2,把它们代入y=kx+b中可得∴∴函数解析式为y=x-4.②当k<O时则随x的增大而减小,则有:当x=-3时,y=-2;当x=6时,y=-5,把它们代入y =kx+b中可得∴∴函数解析式为y=-x-3.∴函数解析式为y=x-4,或y=-x-3.答案:y=x-4或y=-x-3.说明:本题充分体现了分类讨论思想,方程思想在一次函数中的应用,切忌考虑问题不全面.1、直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程2x+b=0的解是()A.x=2 B.x=4C.x=8 D.x=102、如图,过点Q(0,3.5)的一次函数的图象与正比例函数y=2x的图象相交于点P,能表示这个一次函数图象的方程是()A.3x-2y+3.5=0 B.3x-2y-3.5=0C.3x-2y+7=0 D.3x+2y-7=03、已知一次函数的图象都经过A(-2,0),且与y轴分别交于B、C两点,那么△ABC的面积是()A.2 B.3C.4 D.64、小艳用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图象l1,l2,如图所示,她解的这个方程组是()A.B.C. D.5、如图是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象,下列说法:①买2件时,甲、乙两家售价一样;②买1件时买乙家合算;③买3件时,买甲家的合算;④买乙家的1件售价约为2元,其中正确的说法是()A.①②B.②③④C.②③D.①②③6、已知方程组没有解,则一次函数y=2-x与的图象必定()A.重合B.平行C.相交D.无法判断7、如图,若点P(m,n)的坐标可以通过解关于x、y的方程组求得,则m和n的值最可能为()A.m=-,n=0 B.m=-3,n=-2C.m=-3,n=4 D.m=-,n=28、在同一直角坐标系中,直线l1:y=(k-2)x+k和l2:y=kx的位置可能是()A.B.C.D.答案:ADCAD BCB9、如图,在同一直角坐标系内作出的一次函数y1,y2的图象l1,l2,则两条直线l1,l2的交点坐标可以看做方程组_________的解.答案:解:由图可知:直线l1过(2,3),(0,-1),因此直线l1的函数解析式为:y=2x-1;直线l2过(2,3),(0,1),因此直线l2的函数解析式为:y=x+1;因此所求的二元一次方程组为.10、已知y是x的一次函数,下表给出了部分对应值,则m的值是_____________.x -1 2 5y 5 -1 m答案:-7解:设该一次函数的解析式为y=kx+b.由题意得解得故m的值是-7.【巩固练习】1、已知一次函数y=3x-2k与y=x+k交点的纵坐标为6,求这两个函数图象与x轴、y轴的交点坐标.解:根据题意可列方程组解得所以其中一个一次函数表达式为,当x =0时,,所以与y轴的交点坐标为;当y=0时,,所以与x轴的交点坐标为.另一个一次函数表达式为,所以与y轴交点坐标为;当y=0时,,所以与x轴交点坐标为.所以一次函数与x轴的交点坐标为,与y轴的交点坐标为.一次函数与x轴的交点坐标为,与y轴的交点坐标为.2、如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组请你直接写出它的解;(3)直线l2:y=nx+m是否也经过点P?请说明理由.解:(1)∵P(1,b)在直线y=x+1上,∴当x=1时,b=1+1=2.(2)(3)直线y=nx+m也经过点P.理由:因为点P(1,2)在直线y=mx+n上,所以m+n=2,即2=n×1+m,这说明直线y=nx+m也经过点P.3、请你根据图中图象所提供的信息解答下面问题:(1)分别写出a1、a2中变量y随x变化而变化的情况:(2)求出一个二元一次方程组,使它满足图象中的条件.解:(1)a1:y随x的增大而增大,a2:y随x的增大而减小;(2)直线a1经过点(0,-1)与(1,1),设它的解析式为:y=kx+b;得:解得:k=2,b=-1即它的解析式是:y=2x-1.同理可求直线a2的解析式是,则所求的方程组是4、(南通)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A、B、C、D、分析:由于函数图象交点坐标为两函数解析式组成的方程组的解.因此本题应先用待定系数法求出两条直线的解析式,联立两个函数解析式所组成的方程组即为所求的方程组.解:设经过图象上的点的坐标(0,-1)和(1,1)的解析式为y=kx+b,将(0,-1)和(1,1)坐标代入得方程组解得所以经过(0,-1)和(1,1)的直线的解析式为y=2x-1,同理求得另一条直线的解析式是y=-x+2,因此所解的二元一次方程组是.故选D.点评:方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.5、(上海中考节选并改编)某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系如图所示.求y关于x的函数表达式,并写出它的自变量的取值范围.解:设y与x的函数表达式为y=kx+b(k≠0),由图象过点(10,10),(50,6),得所以y关于x的函数表达式为.6、通过电脑拨号上“因特网”的费用是由电话费和上网费两部分组成.以前我市通过“黄冈热线”上“因特网”的费用为电话费0.18元/3min,上网费为7.2元/小时.后根据信息产业部调整“因特网”资费的要求,自1999年3月1日起,我市上“因特网”的费用调整为电话费0.22元/3min,上网费为每月不超过60h,按4元/小时计算,超过60h部分,按8元/小时计算.(1)根据调整后的规定,将每月上“因特网”的费用y(元)表示为上网时间x(h)的函数;(2)资费调整前,网民晓刚在其家庭经济预算中,一直有一笔70h的上网费用支出,“因特网”资费调整后,晓刚要想不超过其家庭经济预算中的上网费用支出,他现在每月至多可上网多少小时?(3)从资费调整前后的角度分析,比较我市网民上网费用的支出情况.解:(1)当0≤x≤60时,当x>60时,y=60×4+4.4x+(x-60)×8=12.4x-240.即调整后,每月上“因特网”的费用y与上网时间t的函数关系是:(2)资费调整前,上网70h所需费用为(3.6+7.2)×70=756(元).资费调整后,若上网60h,则所需费用为8.4×60=504(元).因为756>504元,所以晓刚现在上网时间超过60h.由12.4x-240≤756,解得x≤80.32所以现在晓刚每月至多可上网约80.32h.(3)设调整前所需费用为y1(元),调整后所需费用为y2(元).则y1=10.8x,当0≤x≤60时,y2=8.4x,10.8x>8.4x,故y1>y2;当x>60时,y2=12.4x-240,当y1=y2时,11/ 11。
一次函数详细讲义

1变量和函数一、变量1.变量:在一个变化过程中,我们称数值发生变化的量为变量.2.常量:在一个变化过程中,数值始终不变的量为常量。
注意:(1)变量和常量是相对的,前提条件是在一个变化过程中;(2)常数也是常量,如圆周率要作为常量二、函数1.函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
注意:①函数是相对自变量而言的,如对于两个变量x,y,y是x的函数,而不能简单的说出y是函数。
②判断一个关系式是否为函数关系:一看是否在一个变化过程中,二看是否只有两个变量,三看对于一个变量没取到一个确定的值时,另一个变量是否有唯一的值与其对应。
③函数不是数,它是指在一个变化过程中两个变量之间的关系,函数本质就是变量间的对应关系④“y有唯一值与x对应”是指在自变量的取值范围内,x每取一个确定值,y都唯一的值与之相对应,否则y不是x的函数.⑤判断两个变量是否有函数关系,不仅要有关系式,还要满足上述确定的对应关系.x取不同的值,y的取值可以相同.例如:函数2(3)y x=-中,2x=时,1y=;4x=时,1y=.2.函数的三种表示形式(1)解析法:用数学式子表示函数的方法叫做解析法.(2)列表法:通过列表表示函数的方法.(3)图象法:用图象直观、形象地表示一个函数的方法.3确定函数解析式的步骤(1)根据题意列出两个变量的二元一次方程(2)用汉字变量的式子表示函数4确定自变量的取值范围(1)分母不为0(2)开平方时,被开方数非负性(3)实际问题对自变量的限制。
注意:(1)整式型:一切实数(2)根式型:当根指数为偶数时,被开方数为非负数.(3)分式型:分母不为0.(4)复合型:不等式组(5)应用型:实际有意义即可2.函数图象一、函数图象的概念一般地,对于一个函数,如果把自变量与函数的每对对应诃子分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。
一次函数知识点

初中数学一次函数知识点总结:一次函数与正比例函数的概念一般的,形如y=kx+b(k,b为常数,k≠0)的函数,叫做一次函数。
特别的,当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。
二、一次函数的图像:1.作法与图形:通过如下3个步骤:(1)列表.(2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。
一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。
正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。
(3)连线,可以作出一次函数的图象——一条直线。
因此,作一次函数的图象只需知道2点,并连成直线即可。
(通常找函数图象与x轴和y轴的交点分别是-k分之b与0,0与b).2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。
3.函数不是数,它是指某一变化过程中两个变量之间的关系。
4.k,b与函数图像所在象限:y=kx时(即b等于0,y与x成正比例):当k>0时,直线必通过第一、三象限,y随x的增大而增大;当k<0时,直线必通过第二、四象限,y随x的增大而减小。
y=kx+b时:当k>0,b>0, 这时此函数的图象经过第一、二、三象限;当k>0,b<0, 这时此函数的图象经过第一、三、四象限;当k<0,b>0, 这时此函数的图象经过第一、二、四象限;当k<0,b<0, 这时此函数的图象经过第二、三、四象限;当b>0时,直线必通过第一、二象限;当b<0时,直线必通过第三、四象限。
特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。
2021年于新华中考数学16讲第16讲 定值

第16讲定值一、参数之定例题讲解:若一次函数y=2mx+m+3的图象经过一个定点,则这个定点的坐标是____.答案:【例题讲解】用变换主元法,y=(2x+l)m+3,则2x+1=0,求得定点为(-12,3).变式1:已知一次函数y=kx+b,若3k–b=2,则它的图象一定经过的定点坐标是答案:变式1:(-3,-2).变式2:不论k为何实数,直线y=kx-2017k+2016总经过一个定点,则这个定点的坐标为.答案:变式2:(2017,2016).归纳代数中,参数的存在导致代数式的变化,从而导致相关函数的变化,一般可以通过变换主元寻找定点的存在.【同型练】1.已知二次函数y=x2+(m+1)x+4m-13.(1)求证:此二次函数与x轴必有两个交点;(2)当m取不同的值时,此函数图象的位置就会不一样,但是,这些抛物线都会经过一个定点.求此定点的坐标.答案:1.(1)∵△=( m+1)2-4(4m-13)=(m-7)2+4>0.∴不论m为何实数,此函数图象与x轴总有两个交点.(2)∵y=x2+(m+1)x+4m-13=x2+(x+4)m+x-13,∴当x+4=0时,y=-1.∴这些抛物线都会经过一个定点(-4,-l).2.设函数y=kx2+(2k+1)x+1(k为实数).(2)写出其中的两个特殊函数,使它们的图象不全是抛物线,并求它们的交点坐标;(2)对于任意的k,函数图象都经过一个定点,直接写出所有定点的坐标,答案:2.(1)如两个函数为y=x+1,y=kx2+3x+1,交点为(-2,-1),(0,1);(2)k(x2+2x)+x-y+1=0恒成立,必过定点(0,1),(-2.-1).3.已知在平面直角坐标系中,点O(0,0),A(3,2),B(4,0),直线y=mx-3m+2将△OAB分成面积相等的两部分,求m的值,答案:3.m=2.二、几何之定 1.解题方法寻“定’’ 例题讲解【问题情境】如图①,在△ABC 中,AB =AC ,P 为BC 边上任一点,过点P 作PD ⊥AB ,PE ⊥AC ,垂足分别为D ,E ,过点C 作CF ⊥AB ,垂足为F ,求证:PD +PE =CFPFE D CBAGHABCDEFPNME DCBA图① 图② 图③【结论运用】如图②,将矩形ABCD 沿EF 折叠,使点D 落在点B 处,点C 落在点C 处,P 为折痕EF 上的任一点,过点P 作PG ⊥BE ,PH ⊥BC ,垂足分别为G ,H .若AD =8,CF =3,求PG +PH 的值.【迁移拓展】图③是一个航模的截面示意图.在四形ABCD 中,E 为AB 边上一点,ED ⊥AD ,EC ⊥CB ,垂足分别为D ,C ,且AD ·CE =DE ·BC ,AB =8,AD =3,BD =7, M ,N 分别为AE ,BE 的中点,连接DM ,CN ,求△DEM 与△CEN 的周长之和. 答案:1.解题方法寻“定” 【例题讲解】【问题情境】连接AP ,运用面积法:S △ABC =S △ABP +S △ACP 解决. 【结论运用】由翻折+平行→等腰,转化为基本模型,得PG +PH =4.【迁移拓展】延长AD ,BC 交于点F ,转化为等腰三角形;△DEM 与△CEN 的周长之和为DE +EC +AB ,从而将问题转化为基本模型,DE +EC =43,所以周长之和为8+43.归纳 几何中,运动会导致变化,变化中的不变是永恒的.有些问题是基于解题方法的不变,如本题始终围绕面积之间的关系构造方程组解决.变式:在菱形ABCD 中,AB =6,∠ABC =60°,P 为对角线BD 上的动点,PE ⊥AB 于点E ,PF ⊥AD 于点F ,则PE +PF =__________. 33【同型练】1. 已知在矩形ABCD 中,AB =4,BC =3,对角线AC ,BD 交于点O , 过AB 上任意一点 E 作EM ⊥AO , EN ⊥BO , 垂足分别是M , N , 则EM +EN =_________.125变式:已知P 是边长为a 的等边△ABC 内任意一动点,点P 到三边的距离分别为h 1,h 2,h 3,则点P 到三边的距离之和是否为定值?若点P 为△ABC 外一点又如何?当点P 在△ABC 内部时,点P 到三边的距离之和h 1+h 2+h 3=2a . 2. 如图,等边△ABC 外一点P 到三边的距离分别为h 1,h 2,h 3,且为h 3+ h 2-h 1=3,其中PD = h 3, PE =h 2, PF =h 1, 则△ABC 的面积S △ABC =____________.当点P 在△ABC 外部时,不妨设点P 在BC 的下方,且点P 到BC 的距离为h 1,到其余两边的距离为h 2,h 3,则h 2+h 3-h 1.2. 基本图形寻“定” 例题讲解如图①,在平面直角坐标系中,A 是反比例函数(0)ky x x=>图象上一点,作AB ⊥x 轴于点B ,AC ⊥y 轴于点C , 得正方形OBAC 的面积为16.(1)求点A 的坐标和反比例函数的解析式; (2)如图②,P 16(,)3m 是第一象限内反比例函数图象上一点,请问:是否存在一条过点P 的直线l 与y 轴正半轴交于点D ,使得BD ⊥PC ?若存在,请求出直线l 的解析式;若不存在,请说明理由; (3)连接BC ,将直线BC 沿x 轴平移,交y 轴正半轴于点D ,交x 轴正半轴于点E (如图③),DQ ⊥y 轴交反比例图象于点Q ,QF ⊥x 轴于点F ,交DE 于点H , M 是EH 的中点,连接QM , OM . 有下列结论:①QM +OM 的值不变;②QMOM的值不变;可以证明,其中有且只有一个是正确的,请你作出正确的选择并求值.图① 图② 图③(1)A (4,4), 16y x =(2)存在, 11:99l y x =-+ (3)结论②正确1QM OM=归纳 有些几何图形有着天生的不变性,如反比例函数中矩形面积的不变性,圆中圆周角的不变性等.【同型练】1. 已知P 是反比例函数12y x=在第一象限内图象上的一点,其横坐标x 0满足0<x 0<1, 过 点P 作x 轴, y 轴的垂线PM , PN ,分别交一次函数y =1-x 的图象于点E , F ,则∠EOF (O 为原点)的度数为___________. 45°xy NMFEB A OP第1题图2. 如图,一次函数y =ax +b 的图象分别与x 轴,y 轴交于A , B 两点,与反比例函数k y x=相 交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE ,EF . 有下列四个结论:①△CEF 与△DEF 的面积相等;②△AOB ∽△FOE ;③△DCE ≌△CDF ; ④AC =BD . 其中正确的结论有_________________.(填序号)①②④第2题图3.如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的动点,P是线段CN上的点,过点P 分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M.(1)若∠AOB=60°,OM=4,OQ=1,求证:CN⊥OB;(2)当点N在OB上运动时,四边形OMPQ始终保持为菱形,问:11OM ON-的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由.(1) 在△NOC中,ON =3,CC=6,∠AOB=60°,要证明CN⊥OB.法1:勾股定理逆定理法:过点N作NE上OA于点E,用勾股定理求出NC,再利用勾股定理逆定理解决.法2:同一法:过点c作CF⊥OB于点F,求出OF=3,则点F与点N重合,法3:相似法:在法1构图的基础上利用相似解决.(2)1116OM ON-=提示:设OM=x, ON=y,根据OMPQ为菱形,得到PM=PQ=OQ=x,QN=y-x,根据相似求值.。
第16讲、期末复习3:一次函数 S版

()()()321000.0k ⎪⎩⎪⎨⎧<=><b b b ()()()32100.0k ⎪⎩⎪⎨⎧<=>>b b b 一次函数一、知识框架二、知识概念1.一次函数:若两个变量x,y 间的关系式可以表示成y=kx+b(k≠0)的形式,则称y 是x 的一次函数(x 为自变量,y 为因变量)。
特别地,当b=0时,称y 是x 的正比例函数。
2.正比例函数一般式:y=kx (k≠0),其图象是经过原点(0,0)的一条直线。
当k>0时,直线y=kx 经过第一、三象限,y 随x 的增大而增大,当k<0时,直线y=kx 经过第二、四象限,y 随x 的增大而减小,在一次函数y=kx+b 中:当k>0时,y 随x 的增大而增大;当k<0时,y 随x 的增大而减小。
3.已知两点坐标求函数解析式的方法叫待定系数法(1)(2)(3)(1)(3)(2)三、考点1.小明和小华是同班同学,也是邻居,某日早晨,小明7:00先出发去学校,走了一段后,在途中停下吃了早晨,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和小明所用时间t(分钟)的关系图.则下列说法中正确的个数是()①小明吃早晨用时5分钟;②小华到学校的平均速度是240米/分;③小明跑步的平均速度是100米/分;④小华到学校的时间是7:05.A.1B.2C.3D.42.一次函数y=kx﹣k,若y随着x的增大而减小,则该函数的图象经过()A.一、二、三B.一、二、四C.二、三、四D.一、三、四3.如图1,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C停止,它们运动的速度都是1cm/s.设P、Q出发ts时,△BPQ 的面积为ycm2,已知y与t的函数关系如图2所示(其中曲线OM为抛物线的一部分,其余各部分均为线段)当点P在ED上运动时,连接QD,若QD平分∠PQC,则t的值为.4.若一次函数y=(1﹣2m)x+m的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1<y2,且与y轴相交于正半轴,则m的取值范围是.5.如图,已知函数y=2x+b与函数y=kx﹣6的图象交于点P,则不等式kx﹣6<2x+b的解集是.6.已知直线y=﹣3x+b与直线y=﹣kx+1在同一坐标系中交于点 t, t ,则关于x的方程﹣3x+b=﹣kx+1的解为x=.7.已知y﹣2与x成正比例,当x=1时,y=6,求y与x的函数表达式.8.已知一次函数的图象经过A(﹣1,4),B(1,﹣2)两点.(1)求该一次函数的解析式;(2)直接写出函数图象与两坐标轴的交点坐标.9.已知一次函数y1=﹣2x+4,完成下列问题:(1)画出此函数的图象;(2)将函数y1的图象向下平移2个单位,得到函数y2的图象,直接写出函数y2的表达式;(3)当x时,y2>0.10.在坐标系中作出函数y=2x+6的图象,利用图象解答下列问题:(1)求方程2x+6=0的解;(2)求不等式2x+6>4的解集;(3)若﹣2≤y≤2,求x的取值范围.11.在如图所示的平面直角坐标系中,已知一次函数y=x+3的图象与x轴交于点A,与y轴交于点B.(1)写出A点和B点的坐标;(2)在平面直角坐标系中画出一次函数=x+3的图象;(3)若C点的坐标为C(3,0),判断△ABC的形状,并说明理由.12.如图,函数 t t h的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M 的横坐标为2,在x轴上有一点P(a,0)(a>2),过点P作x轴的垂线,分别交函数 t t h 和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值;(3)直接写出不等式组 t h< 的解集.13.某教学网站策划了A,B两种上网学习的月收费方式收费方式月使用费/元月包时上网时间/h月超时费/(元/h)A7250.6B10503设每月的上网时间为xh(Ι)根据题意,填写下表:收费方式月使用费/元月上网时间/h月超时费/元月总费用/元A745B1045(Ⅱ)设A,B两种方式的收费金额分别为y1元和y2元,分别写出y1,y2与x的函数解析式;(Ⅲ)当x>60时,你认为哪种收费方式省钱?请说明理由.14.在一条笔直的公路上依次有A、B、C三地,自行车爱好者甲、乙两人分别从A、B两地同时出发,沿直线匀速骑向C地.已知甲的速度为20km/h,如图所示,甲、乙两人与A地的距离y(km)与行驶时间x(h)的函数图象分别为线段OD、EF.(1)A、B两地的距离为km.(2)求线段EF所在直线对应的函数关系式.(3)若两人在出发时都配备了通话距离为3km的对讲机,求甲、乙两人均在骑行过程中可以用对讲机通话的时间段.15.无锡阳山盛产水蜜桃,上市期间,一外地运销客户安排15辆汽车装运A、B、C三种不同品种的水蜜桃120吨到外地销售,按计划15辆汽车都要装满且每辆汽车只能装同一种品种的水蜜桃,每种水蜜桃所用车辆都不少于3辆.(1)设装运A种水蜜桃的车辆数为x辆,装运B种水蜜桃的车辆数为y辆,根据如表提供的信息,求出y与x之间的函数关系式;水蜜桃品种A B C每辆汽车运载量(吨)1086每吨水蜜桃获利(元)80012001000(2)在(1)条件下,求出该函数自变量x的取值范围,车辆的安排方案共有几种?请写出每种安排方案;(3)为了减少水蜜桃积压,无锡市制定出台了促进水蜜桃销售的优惠政策,在外地运销客户原有获利不变的情况下,政府对其中A、C两种水蜜桃按每吨m元(200≤m≤500)的标准实行运费补贴.若要使该外地运销客户所获利润W(元)最大,应采用哪种车辆安排方案?16.甲、乙两个工程队共同开凿一条隧道,甲队按一定的工作效率先施工,一段时间后,乙队从隧道的另一端按一定的工作效率加入施工,中途乙队调离一部分工人去完成其他任务,工作效率降低.当隧道气打通时,甲队工作了40天,设甲,乙两队各自开凿隧道的长度为y(米),甲队的工作时间为x(天),y与x之间的函数图象如图所示.(1)求甲队的工作效率.(2)求乙队调离一部分工人后y与x之间的函数关系式(3)求这条隧道的总长度.17.如图1,在某条公路上有A、B、C三个车站,一辆汽车从A站以速度v1匀速驶向B站,到达B站后不停留,又以速度v2匀速驶向C站,汽车行驶路程y(千米)与行驶时间x(小时)之间的函数图象如图2所示.(1)当汽车在A、B两站之间匀速行驶时,求y与x之间的函数关系式及自变量的取值范围;(2)当汽车的行驶路程为360千米时,求此时的行驶时间x的值;(3)若汽车在某一段路程内行驶了90千米用时50分钟,求行驶完这段路程时x的值.18.某省A,B两市遭受严重洪涝灾害,2万人被迫转移,邻近县市C,D获知A,B两市分别急需救灾物资250吨和350吨的消息后,决定调运物资支援灾区,已知C市有救灾物资280吨,D市有救灾物资320吨,现将这些救灾物资全部调往A,B两市.已知从C市运往A,B两市的费用分别为每吨20元和25元,从D市运往A,B两市的费用分别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)请填写下表.A市(吨)B市(吨)合计(吨)C市280D市x320总计(吨)250350600(2)设C,D两市的总运费为y元,求y与x之间的函数表达式,并写出自变量x的取值范围.(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少a元(a>0),其余路线运费不变.若C,D两市的总运费的最小值不小于12360元,求a的取值范围.19.甲骑电动车、乙骑摩托车都从M地出发,沿一条笔直的公路匀速前往N地,甲先出发一段时间后乙再出发,甲、乙两人到达N地后均停止骑行.已知M、N两地相距 地相t km,设甲行驶的时间为x(h),甲、乙两人之间的距离为y(km),表示y与x函数关系的部分图象如图所示.请你解决以下问题:(1)求线段BC所在直线的函数表达式;(2)求点A的坐标,并说明点A的实际意义;(3)根据题目信息补全函数图象.(须标明相关数据)20.小王准备给家中长为3米的正方形ABCD电视墙铺设大理石,按图中所示的方案分成9块区域分别铺设甲,乙,丙三种大理石(正方形EFGH是由四块全等的直角三角形围成),(1)已知甲大理石的单价为150元/m2,乙大理石的单价为200元/m2,丙大理石的单价为300元/m2,整个电视墙大理石总价为1700元.①当铺设甲,乙大理石区域面积相等时,求铺设丙大理石区域的面积.②设铺设甲,乙大理石区域面积分别为xm2,ym2,当丙的面积不低于1m2时,求出y关于x的函数关系式,并写出y的最大值.(2)若要求AE:AF=1:2,EQ:FQ=1:3,甲,乙大理石单价之和为300元/m2,丙大理石的单价不低于300元/m2,铺设三种大理石总价为1620元,求甲的单价取值范围.21.请你用学习“一次函数”时积累的经验和方法研究函数y=|x|的图象和性质,并解决问题.(1)完成下列步骤,画出函数y=|x|的图象;①列表、填空;x…﹣3﹣2﹣10123…y…31123…②描点:③连线(2)观察图象,当x时,y随x的增大而增大;(3)结合图象,不等式|x|<x+2的解集为.22.在平面直角坐标系xOy中有一点,过该点分别作x轴和y轴的垂线,垂足分别是A、B,若由该点、原点O以及两个垂足所组成的长方形的周长与面积的数值相等,则我们把该点叫做平面直角坐标系中的平衡点.(1)请判断下列各点中是平面直角坐标系中的平衡点的是;(填序号)①A(1,2)②B(﹣4,4)(2)若在第一象限中有一个平衡点N(4,m)恰好在一次函数y=﹣x+b(b为常数)的图象上.①求m、b的值;②一次函数y=﹣x+b(b为常数)与y轴交于点C,问:在这函数图象上,是否存在点M.使S△OMC,若存在,请直接写出点M的坐标;若不存在,请说明理由.=3S△ONC(3)经过点P(0,﹣2),且平行于x轴的直线上有平衡点吗?若有,请求出平衡点的坐标;若没有,说明理由.23.如图,正方形ABCD的边长为6cm,动点P从A点出发,在正方形的边上由A→B→C→D运动,设运动的时间为t(s),△APD的面积为S(cm2),S与t的函数图象如图所示(1)求点P在BC上运动的时间范围;(2)当t为何值时,△APD的面积为10cm2.24.如图1,在直角梯形ABCD中,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.(1)在这个变化中,自变量、因变量分别是、;(2)当点P运动的路程x=4时,△ABP的面积为y=;(3)求AB的长和梯形ABCD的面积.25.如图,在平面直角坐标系中,边长为2的正方形ABCD在第一象限内,AD∥y轴,点A的坐标为(5,3),已知直线l:y t x﹣2.(1)将直线l向上平移m个单位,使平移后的直线恰好经过点A,求m的值;(2)在(1)的条件下,平移后的直线与正方形的边长BC交于点E,求△ABE的面积.26.如图,正方形ABCD中,点A在x轴上,点D在y轴正半轴上,点B和点C都在第一象限,已知点A 的坐标为(3,0),正方形ABCD的面积为25.(1)填空:点D的坐标为,点B的坐标为,点C的坐标为;(2)连接OB、OC,求△OBC的面积;(3)已知直线y=kx﹣(k+1)(k≠0).①若该直线将正方形ABCD分成面积相等的两部分,求k的值;②若点P是该直线上的任意一点,且 ,求此直线解析式.27.点O为平面直角坐标系的坐标原点,直线y t t x+2与x轴相交于点A,与y轴相交于点B.(1)求点A,点B的坐标;(2)若∠BAO=∠AOC,求直线OC的函数表达式;(3)点D是直线x=2上的一点,把线段BD绕点D旋转90°,点B的对应点为点E.若点E恰好落在直线AB上,则称这样的点D为“好点”,求出所有“好点”D的坐标.28.如图,直线y t x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数表达式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q,连接BM.①若∠MBC=90°,求点P的坐标;②若△PQB的面积为 ,请直接写出点M的坐标.29.如图,直线y=kx+b与x轴,y轴分别交于A,B两点,且经过点(4,b+3).(1)求k的值;(2)若AB=OB+2,①求b的值;②点M为x轴上一动点,点N为坐标平面内另一点.若以A,B,M,N为顶点的四边形是菱形,请直接写出所有符合条件的点N的坐标.30.如图,在平面直角坐标系中,过点A(0,6)的直线AB与直线OC相交于点C(2,4)动点P沿路线O→C→B运动.(1)求直线AB的解析式;(2)当△OPB的面积是△OBC的面积的 时,求出这时点P的坐标;(3)是否存在点P,使△OBP是直角三角形?若存在,直接写出点P的坐标,若不存在,请说明理由.。
一次函数讲解

根据函数图像解答问题
必备工具
3.数形结合
例2 如图是某骆驼在两天内的体温变化情况,回答下列问 1.横轴、纵轴代表的含义 2.找特殊点 题:
问 题 模 型 及 类 似 问 题
知识点二从函数图象读取信息 观察函数图象时,首先要看横轴、纵轴分别代表的是什么, 一句话解决方案 也就是观察图象反映的是哪两个变量之间的关系。 观察图 象图象上的特殊点,如与坐标轴的交点、图象上的拐点、线 段的端点等,这些特殊点的意义往往对问题的解决有很大的 数形结合,正确理解自变量 帮助.分析(1)找到第一天中最高点与最低点的坐标,进而可得 和函数代表的含义,根据图 像变化情况回答 骆驼体温的变化范围与它的体温从最低上升到最高需要的时 间;(2)根据图象找出第一天8时和第二天8时的温度,进行比较 即可;(3)根据横、纵坐标的特点得出A点表示的意义,再找出 37,44时的体温与A点所表示的体温相同.
4 C.25
2≤x≤4 之间,∴将
5 x=2代入函数
25 D. 4
1 y=������得
2 y=5.故
选 B. 答案 B
22
教材新知精讲 拓展点一 拓展点二 拓展点三 拓展点四
综合知识拓展
23
教材新知精讲 拓展点一 拓展点二 拓展点三 拓展点四
综合知识拓展
拓展点二根据表格求函数的解析式 例2 婴儿在1到6个月生长发育得非常快,一个婴儿出生时的体 重是3 000克,他的体重y(克)与月龄x(月)关系如下:
16
教材新知精讲
综合知识拓展
知识点一
知识点二
知识点三
知识点四
知识点五
17
教材新知精讲
综合知识拓展
知识点一
知识点二
高考数学讲义一次函数和二次函数

一、函数奇偶性的定义是什么?二、奇偶函数有什么图象特征?三、如何利用定义判断函数奇偶性?一、一次函数1. 一次函数的概念:形如(0)y kx b k =+≠的函数叫做一次函数.(一次函数又叫做线性函数)它的定义域为R ,值域为R .①斜率:一次函数(0)y kx b k =+≠的图象是直线,其中k 叫做该直线的斜率. ②截距:一次函数(0)y kx b k =+≠的图象是直线,其中b 叫做直线在y 轴上的截距.注:截距不是距离,截距可以是正的,可以是负的,也可以是0.2. 一次函数的性质:(1)函数值的改变量21y y y ∆=-与自变量的该变量21x x x ∆=-的比值等于常数k ,即2121y y y k x x x -∆==∆-,k 的大小表示直线与x 轴的倾斜程度. (2)当0k >时,一次函数是增函数;当0k <时,一次函数是减函数. (3)当0b =时,一次函数变为正比例函数,是奇函数;当0b ≠时,它既不是奇函数,也不是偶函数.(4)直线(0)y kx b k =+≠与x 轴的交点为(,0)bk-,与y 轴的交点为(0,)b . (5)直线111:l y k x b =+,直线222:l y k x b =+,①1l //2l 12k k ⇔=且12b b ≠.②1l 与2l 重合12k k ⇔=且12b b =.二、二次函数一次函数和二次函数知识讲解知识回顾1. 二次函数的概念:形如2(0)y ax bx c a =++≠叫做二次函数.它的定义域为R .当0a >时,值域为24|4ac b y y a ⎧⎫-≥⎨⎬⎩⎭;当0a <时,值域为24|4ac b y y a ⎧⎫-≤⎨⎬⎩⎭2. 二次函数的4种解析式:(1)一般式2(0)y ax bx c a =++≠,对称轴2b x a -=,顶点24(,)24b ac b a a--(2)顶点式2()(0)y a x h k a =-+≠,对称轴x h =,顶点(,)h k(3)交点式12()()(0)y a x x x x a =--≠,抛物线与x 轴交于1(,0)x ,2(,0)x (4)对称点式12()()y a x x x x b =--+,抛物线图象上有两对称点12(,),(,)x b x b注:①二次函数的一般式可通过配方得到顶点式.②在求二次函数的解析式时,应根据已知条件,合理设式.已知三点坐标,若有对称点(两点的纵坐标相同),则设对称点式;若没有,则设一般式. 已知对称轴或顶点坐标,应设顶点式.3. 二次函数的性质:(1)函数的图象是一条抛物线,抛物线的顶点坐标是24(,)24b ac b a a--,对称轴2b x a-=,与y 轴交于(0,)c ;(2)当0a >时,开口向上,当2b x a -=时,2min 4()24b ac b y f a a--==;单调递增区间是,2b a -⎡⎫+∞⎪⎢⎣⎭,单调递减区间为,2b a -⎛⎤-∞ ⎥⎝⎦ (3)当0a <时,开口向下,当2b x a -=时,2max 4()24b ac b y f a a--==;单调递增区间是,2b a -⎛⎤-∞ ⎥⎝⎦,单调递减区间为,2b a -⎡⎫+∞⎪⎢⎣⎭. (4)二次函数2(0)y ax bx c a =++≠是偶函数⇔0b = 4. 函数图象的平移:左加右减,上加下减(1)()y f x =(0)a a >−−−−−−−→向左平移个单位()y f x a =+; (2)()y f x =(0)a a >−−−−−−−→向右平移个单位()y f x a =-; (3)()y f x =(0)b >−−−−−−−→向上平移b 个单位()+y f x b =; (4)()y f x =(0)b >−−−−−−−→向下平移b 个单位()y f x b =-;注:左右平移只是针对单个x 而言. 5. 配方法:(1)提,提系数将平方项的系数化为1;(2)配,加上一次项系数的一半的平方,再减去一次项系数的一半的平方; (3)整理.注:“配方法”是研究二次函数的主要方法.熟练地掌握配方法是掌握二次函数性质的关键.6. 韦达定理:设一元二次方程20ax bx c ++=的两根为12,x x ,则1212,b c x x x x a a-+== 7. 中点坐标公式:设11(,)A x y ,22(,)B x y ,AB 中点00(,)M x y ,则0120122,2x x x y y y =+=+8. 交点距离公式:若二次函数2(0)y ax bx c a =++≠与x 轴交于12(,0),(,0)A x B x ,则12AB x x a∆=-=(其中24b ac ∆=-) 三、待定系数法1. 一般地,在求一个函数时,如果知道这个函数的一般形式,可先把所求函数写为一般形式,其中系数待定,然后再跟据题设条件求出这些待定系数.这种通过求待定系数来确定变量之间关系式的方法叫做待定系数法.2. 待定系数法解题的基本步骤是什么?第一步:设出含有待定系数的解析式;第二步:根据恒等的条件,列出含待定系数的方程或方程组; 第三步:解方程或方程组,从而使问题得到解决. 题型一、一次函数的平移【例1】 在平面直角坐标系中,把直线21y x =-向右平移一个单位长度后,其直线解析式为( )A .2y x =B .21y x =-C .22y x =+D .23y x =-【例2】 直线22y x =+向右平移3个单位,再向下平移2个单位,所得到的直线的解析式是 .题型二 用待定系数法求函数解析式【例3】 若直线y kx b =+与直线22y x =+关于x 轴对称,则k b ,的值分别是( ) A .﹣2,﹣2 B .﹣2,2 C .2,﹣2 D .2,2【例4】 已知二次函数图象经过点()13A ,、()02B ,、()53C ,三点,求此二次函数解析式.【例5】 已知一条抛物线的形状和2y x =相同且对称轴为12x =-,抛物线与y 轴交于一点()01-,,求函数解析式.题型三、一次函数与方程及不等式综合【例6】 已知15y x =-,221y x =+.当12y y >时,x 的取值范围是( )A .5x >B .12x <C .6x <-D .6x >-【例7】 一次函数y mx n =+(0m ≠),当25x -≤≤时,对应的y 值为07y ≤≤,求一次函数的解析式.【练一练】已知一次函数y kx b =+,当31x -≤≤时,对应的y 值为19y ≤≤,求kb 的值.【例8】 如图,直线y kx b =+经过()21A ,,()12B --,两点,则不等式122x kx b >+>-的解集为______.BAO yx【例9】 已知一次函数y 6kx b =++与一次函数2y kx b =-++的图象的交点坐标为A (2,0),求这两个一次函数的解析式及两直线与y 轴围成的三角形的面积.题型四、二次函数的图像与性质【例10】(1)已知2y ax bx =+的图象如下左图所示,则y ax b =-的图象一定过( )A .第一、二、三象限B.第一、二、四象限 C.第二、三、四象限D.第一、三、四象限(2)若二次函数222y ax bx a =++-(a b ,为常数)的图象如下中图,则a 的值为( )A. 2-B. 2C. 1D.2(3)已知二次函数2y ax bx c =++的图象如下右图所示,则点()P a bc ,在第 象限.yxOyxOyxO【练一练】(1)函数1y ax =+与()210y ax bx a =++≠的图象可能是( )1xyO 1xyO1Cxy O1xy O(2)在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能..是 DC B A xyO xyO xyO O yx题型五、二次函数在某区间上的值域与最值【例11】求函数()221f x x ax =+-在区间[]0,3上的最小值.【例12】设函数()22g x x =-()x ∈R ,()()()()()4,,,,g x x x g x f x g x x x g x ++<⎧⎪=⎨-≥⎪⎩则()f x 的值域是( ).A.()9,01,4⎡⎤-+∞⎢⎥⎣⎦U B.[)0,+∞, C.9,4⎡⎫+∞⎪⎢⎣⎭ D.()9,02,4⎡⎤-+∞⎢⎥⎣⎦U 题型六、二次函数与一元二次方程【例13】已知方程2210x px ++=的两个实根一个小于1,一个大于1,求p 的取值范围.【练一练】设二次方程()22120x a x a +-+-=有一根比1大,另一根比1-小,试确定实数a 的范围.【例14】已知方程20x ax b ++=的两根均大于2,求a b ,的关系式.【练一练】方程()2250x m x m +-+-=的两根都大于2,求实数m 的取值范围.题型七、二次函数与不等式恒成立问题 【例15】设23y x ax a =++-(1)当x 取任意实数时,y 恒为非负数,求a 的取值范围;(2)当22x -≤≤时,y 的值恒为非负数,求实数a 的取值范围.【练一练】函数()23f x x ax =++.(1)当x R ∈时,()f x a ≥恒成立,求a 得取值范围; (2)当[]2,2x ∈-时,()f x a ≥恒成立,求a 的取值范围.【练1】 一次函数经过沿y 轴向下平移3个单位,在向右平移2个单位,所得的直线的解析式为()23y x =-,则原来的一次函数解析式为 .【练2】 直线1l 是正比例函数的图象,将1l 沿y 轴向上平移2个单位得到的直线2l 经过点()11P ,,那么( )A .1l 过第一.三象限B .2l 过第二.三.四象限C .对于1l ,y 随x 的增大而减小D .对于2l ,y 随x 的增大而增大【练3】 一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是( )A .0x >B .0x <C .2x >D .2x <【练4】 已知二次函数()()222143y x m x m m =-++-+-,m 为非负整数,它的图像与x 轴交于A B ,两点,其中点A 在原点左边,点B 在原点右边. (1)求函数的解析式;(2)若一次函数y kx b =+的图像经过A 与二次函数图像交于C 又10ABC =V S ,求一次函数的解析式.【练5】 若方程2(1)2(1)0m x m x m -++-=的根都为正数,求m 的取值范围.【练6】 设二次函数2()(0),f x ax bx c a =++>方程()f x x =的两根12,,x x 满足1210x x a<<<. (Ⅰ)当1(0,)x x ∈时,求证:1()x f x x <<(Ⅱ)设函数()f x 的图象关于0x x =对称,求证:102x x <随堂练习xOy 32【题1】 已知二次函数过点()01-,,且顶点为()12-,,求函数解析式.【题2】 设抛物线为21y x kx k =-+-,根据下列各条件,求k 的值.(1)抛物线的顶点在x 轴上;(2)抛物线的顶点在y 轴上; (3)抛物线经过点(1,2)--; (4)抛物线经过原点;(5)当1x =-时,y 有最小值; (6)y 的最小值为1-.【题3】 已知二次函数2()0y ax bx c a =++≠的图象如图所示,则下列结论:0ac >①;② 方程20ax bx c ++=的两根之和大于0;y ③随x 的增大而增大;④0a b c -+<,其中正确的个数( )A .4个B .3个C .2个D .1个1Oyx课后作业【题4】 若一元二次方程2330kx kx k ++-=的两根都是负数,求k 的取值范围.【题5】 已知()[]2221f x x x x t t =-+∈+,,,若()f x 的最小值为()g t ,写出()g t 的表达式.。
知识点16正比例函数与一次函数图象、性质及其应用

正比例函数的斜率决定了直线的倾斜程度,斜率越大,直线 越陡峭;斜率越小,直线越平缓。
正比例函数性质分析
比例系数决定函数增减性
正比例函数的增减性由比例系数决定。当比例系数大于0时,函数值随自变量增 大而增大;当比例系数小于0时,函数值随自变量增大而减小。
函数值与自变量成正比
在正比例函数中,函数值与自变量成正比关系,即当自变量成倍增加时,函数值 也成倍增加。
THANKS
感谢观看
实际问题中的一次关系
线性增长问题
某个量随时间的变化而线性增长 ,如年龄、身高等。
线性减少问题
某个量随时间的变化而线性减少, 如汽车行驶中的油耗等。
定价问题
在商品销售中,销售额与销售量之 间的一次函数关系,即销售额=单 价×销售量。
综合应用举例
速度、时间、路程的综合应用
在解决行程问题时,需要同时考虑速度、时间和路程三个因素,利用正比例函数和一次函 数进行求解。
04
正比例函数与一次函数应用
实际问题中的正比例关系
匀速运动问题
当物体做匀速直线运动时,其速度与 时间成正比例关系,即速度=路程/时 间。
工作量问题
在工作效率一定的情况下,工作总量 与工作时间成正比例关系,即工作总 量=工作效率×工作时间。
购物问题
在购买同一种商品时,总价与商品数 量成正比例关系,即总价=单价×数量 。
03
一次函数图象与性质
一次函数图象特点
01
02
03
直线性
一次函数的图象是一条直 线。
斜率
直线的斜率等于一次函数 的比例系数。
截距
直线在y轴上的截距等于 一次函数的常数项。
一次函数性质分析
一次函数讲义

一次函数讲义一.基础概念1.定义:如果y=kx+b(k≠0,k,b是常数),那么y叫做x的一次函数。
当b=0,一次函数y=kx(k不等于0,k是常数)叫做正比例函数。
2.一次函数的图像一次函数的图像是过(0,b),(-b/k,0)两点的一条直线正比例函数的图像是过(0,0),(1,k)两点的一条直线3.一次函数的性质(1)k>0,b>0时,图像经过一、二、三象限,y随x的增大而增大(2)k>0,b<0时,图像经过一、三、四象限,y随x的增大而增大(3)k<0,b>0时,图像经过一、二、四象限,y随x的增大而减小(3)k<0,b<0时,图像经过二、三、四象限,y随x的增大而减小4.一次函数的平移(1)将y=kx向上或向下平移|b|个单位就得到直线y=kx+b(2)将y=kx向左(或右)平移m(m>0)个单位,得到直线y=k(x+m)(或y=k(x-m))二、常见例题1.一次函数的图像与性质的应用【例一】如果一次函数y=kx+b的图象经过第一、三、四象限,那么().A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0【例二】如图1所示,如果kb<0,且k<0,那么函数y=kx+b 的图象大致是 ( )【例三】若直线y=-2x+b 与两坐标轴围成的三角形的面积是1,则常数b 的值为____________【例四】如图2,在同一坐标系内,直线l1:y=(k-2)x+k 和l2:y=kx+b 的位置可能为( )2.待定系数法求解析式【例五】若一次函数y=kx+b ,当-3≤x≤1时,对应的y 值为1≤y≤9,则一次函数的解析式 为________【例六】如图2,一次函数图象经过点A ,且与正比例函数y=-x 的图象交于点B ,则该一次函数的表达式为( ) A .2y x =-+ B .2y x =+C .2y x =-D .2y x =--【例七】已知直线l 与直线y=2x+1交点的横坐标为2,与直线y=x-8交点的纵坐标为-7,求直线l 的解析式. 3.一次函数的平移【例八】把直线y =-5x +6向下平移6个单位长度,得到的直线的解析式为( )图2A.y=-x +6B. y=-5x -12C. y=-11x +6D.y=-5x【例九】将直线y =2x 向右平移2个单位所得的直线的解析式是( )。
一次函数及其图像知识点总结

12、 函数与方程、不等式之间的关系
指示:解决此类题目的关键在于,找到图像的交点,并且理解交点的意思,之后再过交点作x轴的垂线,并且左右平移垂线,进行观察。
例1:画出函数 的图像,根据图像,指出:
(1) 取什么值时,函数值 等于0
(2) 取什么值时,函数值 大于0
备注:上下平移(即 值不变, 值的变化),我们可以从函数与 轴交点的变化更容易观察出结论。
向左平移1个单位______________;向右平移2个单位_________________
备注:左右平移(即 值不变, 值的变化),我们可以从函数与 轴交点的变化更容易观察出结论。
7、直线之间的位置关系
已知直线:
思考:如何解决点关于y=x,y=-x对称,以及点旋转90°之后的坐标。
5、点的平移: 向上平移2格______;向下平移3格_______;向右平移1格______;向右平移5格_______(概括:左右平移改变的是横坐标,上下平移改变的是纵坐标)
6、两点之间的距离
在同一条水平上线上的时候:求A、B两点之间的距离
例、如图所示:直线 与 、 轴轴分别交于点 、 ,其中点E的坐标为 点A的坐标 。点P为直线 上的一动点。
(1)、求 的值
(2)、若点 是第二象限内,在点P的运动过程中,试写出△OPA的面积 与 轴的函数关系式,并写出自变量 的取值范围。
(2)、探究:当点P运动到什么位置时,△OPA的面积为 ,并说明理由。
例2、如图14,已知 , 是一次函数 的图象和反比例函数 的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线 与 轴的交点 的坐标及△ 的面积;
函数与一次函数

函数与一次函数函数与一次函数以下是查字典数学网为您推荐的函数与一次函数,希望本篇文章对您学习有所帮助。
函数与一次函数1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x 和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
*判断A是否为B的函数,只要看B取值确定的时候,A是否有唯一确定的值与之对应3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
练习 1.函数y= 的自变量的取值范围是_______,函数y= 的自变量的取值范围是_____。
2. 函数y= 的自变量的取值范围是 ( )A x2B x2C x2D x23.求下列函数自变量的取值范围:(12分)⑴ y = ⑵ y =4.已知代数式有意义,则点P 在第_______象限。
5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。
7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
练习1。
在同一坐标系中,作出函数y= -2x与y= x+1的图象8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限A、y=B、y=C、y=D、y=2.已知函数y=( +2)x,y随x增大而 ( )A、增大B、减小C、与m有关D、无法确定3.若函数是正比例函数,则 , 图像过______象限.4.已知函数:①y=-x,②y= 3x ,③y=3x-1 ④y=3x2,⑤y= x3 ,⑥y=7-3x中,正比例函数有( )A.①⑤B.①④C.①③D.③⑥10、一次函数及性质一般地,形如y=kx+b(k,b是常数,k0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b (k不为零) ① k不为零②x 指数为1 ③ b取任意实数一次函数y=kx+b的图象是经过(0,b)和(- ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b0时,向上平移;当b0时,向下平移)练习 1.一次函数,y随x的增大而减小,求这个一次函数的解析式。
一次函数知识点讲解

一次函数知识点一、正比例函数及性质一般,形如y=kx (k 是常数,k≠0) 的函数叫做正比例函数,其中k 叫做比例系数.注:正比例函数一般形式 y=kx (k 不为零) ① k ≠0 ② x 指数为1 ③ b =0 解析式:y=kx (k 是常数,k ≠0)(1) 图像必过点:(0,0)、(1,k )(2) 走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限(3) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小二、一次函数及性质一般地,形如y=kx +b (k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1③ b 取任意实数一次函数y=kx+b 的图象是经过(0,b )和(-kb ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b(k 、b 是常数,k ≠0)(2)图像必过点:(0,b )和(-kb ,0) (3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 ⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限 (4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)图像的平移:当b>0时,将直线y=kx的图象向上平移b个单位;当b<0时,将直线y=kx的图象向下平移|b|个单位.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
明士教育集团个性化教学辅导导学案教学课题函数与一次函数课时计划第(16)次课授课教师学科数学授课日期和时段上课学生年级准初二上课形式阶段基础()提高(√)强化()教学目标1.掌握函数的基本概念。
2.了解函数的三种表示方法,并用解析式变数数量关系。
3.理解一次函数与正比例函数的联系。
重点、难点学习重点:领悟函数的基本概念,一次函数的理解。
学习难点:利用代数和方程的相关知识,列出函数关系式。
一、学习与应用积y=×8x,我们可将y看成x的函数,其中x是自变量,y是因变量。
2.对函数概念的理解应抓住以下三点:①有两个变量;②一个变量变化,另一个变量随之变化;③对于自变量确定的每一个值,因变量仅有一个值与之对应。
函数的三种表示形式1.列表法;2.图像法;3.关系式法;一次函数的概念1.若两个变量x、y间的关系式可以表示成y=kx+b(k、b为常数,k≠0)的形式,“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对性。
我们要在预习的基础上,认真听讲,做到眼睛看、耳朵听、心里想、手上记。
Ⅰ、知识梳理认真阅读、理解教材,带着自己预习的疑惑认真听课学习,复习与本次课程相关的重点知识与公式及规律,认真听老师讲解本次课程基本知识要点。
课堂笔记或者其它补充填在右栏。
21则称y是x的一次函数(x为自变量,y为自变量)。
2.理解定义时要注意以下几点:①一次函数的表达式y=kx+b是一个等式,其左边是因变量y,右边是关于自变量x的整式;②自变量x的次数为1,系数k≠0;③当b=0,而k≠0时,y=kx仍为一次函数,当k=0时,它不是一次函数。
正比例函数的概念1.一次函数y=kx+b(k≠0),当b=0时,变为y=kx,这时把y叫做的x正比例函数。
2.注意:正比例函数是一次函数的特例,但一次函数并不一定是正比例函数;k≠0。
类型一:函数概念例1星期天晚饭后,小红从家里出去散步,如图1所示的是她散步过程中离家的距离s(米)与散步所用时间t(分钟)之间的函数关系,则下列描述符合小红散步情境的是()A.从家出发,到了一个公共阅报栏,看了一会儿报就回家了B. 从家出发,到了一个公共阅报栏,看了一会儿报后,继续向前走了一段路后,然后回家了C. 从家出发,一直散步(没有停留),然后回家了D. 从家出发,散了一会儿步,就找同学去了,18分钟才开始返回例2小华的爷爷每天坚持体育锻炼,某天他漫步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家,下面能反映当天小华爷爷离家的距离y与时间x的函数关系的大致图像是()Ⅱ、经典例题-自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三。
若有其它补充可填在右栏空白处。
【对应练习】1.下列说法正确的是()A.温度是常量B. 正方形面积是周长的函数C. 变量x、y满足y2=2x,则y是x的函数D. 如果y>2x,就说y是自变量x的函数2.分别写出下列问题中的函数关系式:(1)50千米的路程,以v(km/h)的速度前进,所用的时间为t(h),t与v之间的函数关系式为。
(2)半径为2的圆柱体的体积为V(米3),高为h(米),V与h的函数关系式为。
(3)一栋住宅楼,底层高4米,以上每层高为3.2米,楼高H与层数n之间的函数关系式为。
(4)1吨自来水的价格为2.35元,所交水费y(元)与使用自来水的数量n(吨)的函数关系式为。
3.一艘轮船在同一航线上往返于甲、乙两地。
已知轮船在静水中的速度为15km/h,水流速度为5km/h。
轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地。
设轮船从甲地出发后所用时间为t(h),航行的路程为s(km),则s与t的函数图像大致是()4.下列四幅图象近似刻画两个变量之间的关系,请按图象顺序将下面四种情景与之对应排序()①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系)②向锥形瓶中匀速注水(水面的高度与注水时间的关系)③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系)④一杯越来越凉的水(水温与时间的关系)A.①②③④B.③④②①C.①④②③D.③②④①5.某风景区集体门票的收费标准是:20人以内(含20人),每人25元;超过 20人的,每人10元。
写出应收门票费y (元)与游览人数x (人)之间的函数关系式; (2)如果某班共有54名同学去该风景区游览,购门票共花了多少元?类型二 一次函数的概念例1 下列函数中,x 是自变量,y 是因变量,哪些是一次函数?①y =3x ;② ;③y =-3x +1;④y =x 2。
例2 当m 取何值时, 是正比例函数?【对应练习】1.若2y +1与x -5成正比例,则( )A. y 是x 的一次函数B. y 与x 的没有函数关系C. y 是x 的函数,但不是一次函数D. y 是x 的正比例函数 2.若y =mx +m -1是关于x 的正比例函数,则m 的值为( ) A. 0 B. 1 C. 2 D. 3 3.若函数y =(m -2)x +(5-m )是关于x 的一次函数,则m 应满足的条件是 ;若此函数为正比例函数,则m 的值为 ,此时函数表达式 为 。
4.某学生的家距离学校有5千米,他以每分钟0.2千米的速度骑车去学校,则他与学 校的距离s (千米)与汽车时间t (分钟)之间的函数表达式为 。
5.函数y =mx -x +m 2-1,当m 取 时,它是正比例函数。
6.下列函数:①y =-8x ;②y =-8;③y =8x 2;④y =8x +1.其中是一次函数的 个数有( )A. 0个B. 1个C. 2个D. 3个 7.下列函数关系式中,是正比例函数的是( )A. y =3x 2-4B. y =5x +1C. y =2xD. y 2=8x 8.若y =(k -1)x +2是一次函数,则k 的值为( ) A. ±1 B. -1 C. 1 D. 不能确定9.以等腰梯形的一个底角的度数为自变量x ,它的顶角的度数为因变量y ,则y 与x 的x y 3-=)2(32++=-m x y m 2k函数表达式为()A. y=90-xB. y=180-2xC. y=90-2xD. y=180-x10.某软件公司开发出一种图书管理软件,前期投入的开发、广告宣传费用共50000元,且每售出一款软件,软件公司还需支付安装调试费用200元。
(1)试写出总费用y(元)与销售套数x(套)之间的函数表达式。
(2)如果每套定价700元,软件公司至少要售出多少套软件才能确保不亏本?11.已知函数y=(m-3)x +m2+4m-12.(1)当m取什么值时,该函数是一次函数?(2)当m取什么值时,该函数是正比例函数?12.某风景区集体门票的收费是20人(含20人)内,每人25元;超过20人的,超过部分每人10元。
(1)请写出应收门票费y(元)与游览人数x(x>20)之间的关系式。
(2)利用(1)中的关系式计算,某班45人去游览,需要多少钱购买门票?(3)若某班花了800元购买门票,请计算一下这个班共有多少人。
13.某种移动通讯服务的收费标准为:每月基本服务费30元,每月免费通话时间为120分钟,以后每分钟收费0.4元.(1)写出每月话费y关于通话时间x(x>120)的函数解析式;(2)分别求每月通话时间为100分钟,200分钟的话费.Ⅲ、综合练习-融会贯通将各种类型的题目融合在一起,请大家认真分析、解答下列练习,尝试总结提升各类型题目的规律和技巧,然后完成举一反三。
若有其它补充可填在右栏空白处。
1.夏天,一杯开水放在桌子上,杯中水的温度T(℃)岁时间t(分)变化的图像正确的是()2.每上6个台阶就升高1米,上升高度h(米)与上台阶数m(个)之间的函数关系式是()A. h=6mB. h=6+mC. h=m-6D. h=3.如图1所示,AB是半圆O的直径,点P从点O出发,沿OA→AB→BO的路径运动一周,设OP为s,运动时间为t,则下列图形能大致地刻画s与t之间的关系的是()4.某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折。
设一次购书数量为x本,付款金额为y元,请填写下表:5.写出下列各题中x与y之间的关系式,并判断y是否为x的一次函数?正比例函数?(1)汽车以60km/h的速度匀速行驶,行驶路程y(km)与行驶时间x(h)之间的关系。
(2)圆的面积y(cm2)与它的半径x(cm)之间的关系。
(3)一棵树现在的高度为50cm,每个月长高2cm,x个月后这棵树的高度为y cm。
6.张老师带领x名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y元,则y=。
7.公路上依次有A,B,C三站,上午8时,甲骑自行车从A,B间离A站18km的P处出发,向C站匀速前进,15分钟后到达离A站22km处.6m(1)设x小时后,甲离A站ykm,写出y关于x的函数关系式;(2)若A,B间和B,C间的距离分别是30km和20km,问从什么时间到什么时间(3)甲在B,C之间.二、总结与测评Ⅳ、总结规律和方法-自我提升认真回顾总结本部分内容的规律和方法,熟练掌握技能技巧。
总结升华:……Ⅴ、自我反馈及课后作业测评学完本节知识,你有哪些新收获?总结本节的有关习题,将其中的好题及错题分类整理。
请同学们使用明士教育错题本进行记录。
及时检测学习效果是提高学习效果的重要保障,请同学们课后认真完成课后测评课后测评1.一个圆的半径r与圆的周长C的关系是______,与它的面积S的关系是______.2.某商店进一批货,每件3元,售出时每件加利润8角,如果售出x件,应收货款y元,那么y与x的函数关系是_________.3.汽车由北京驶往相距850千米的沈阳,它的平均速度为80千米/小时,求汽车距沈阳的路程s(千米)与行驶时间t(小时)的函数关系式.4.一盛满10吨水的水箱,每小时流出0.5吨水.水箱中水量y(吨)与时间x(时)• 之间有什么函数关系?写出x的取值范围.6.一个小球静止在一个斜坡上,向下滚动,其速度每秒钟增加2米.到达坡底时,小球的速度达到40米/秒.(1)请问小球速度v(米/秒)与时间t(秒)之间的函数关系式是怎样的?(2)求t的取值范围;(3)求3.5秒时小球的速度;(4)求几秒时小球的速度为16米/秒.○师○生○互○助你的反馈是我今后教学的重要参考,提升我的教学质量是你成绩进步的重要保障,感谢你的意见与建议!对本课次导学案的评价□好(知识点明朗,规律总结清晰全面,重难点掌握良好)□中(知识点清晰,总结有但不全面,重难点含糊不清)□差(知识点混乱,没总结,不知道哪里是重难点)对本课次课后作业的评价□好(难度及题量适中,针对性强,能检查本次课的学习情况)□中(难度及题量适中,针对性一般,基本能检查本次课的学习情况)□差(难度太大□,或题量过多□,题型混乱,没有针对性)学生意见栏你的意见与建议:_______________ _________________________________________ _______________ ________________________________ _______________ ________________________________家长反馈1、学生是否独立完成课后作业:□是□否□不清楚2、对老师的意见与建议:_______________ _________________________________________ _______________ ________________________________ _______________ ________________________________家长签名:______________指导教师:_________________。